D. KRUPKA / J. JANYSKA

LECTURES
ON DIFFERENTIAL
INVARIANTS

UNIVERZITA J/ E/ PURKYNE V BRNE



© UNIVERZITA J, E. PURKYNE V BRNE — 1990

ISBN 80-210-0165-8



CONTENTS

List of standard symbols . . . . . . . . . .. e e e e e e e e .

Preface . . . . . . o e e e e e e e e e e e e e e e e e e e e e e e

r

Part 1
ELEMENTARY THEORY OF DIFFERENTIAL INVARIANTS

Liegroups . . . . .. .00 e e e e e e e e e -
t.I. Liegroups . . . . « . « . .. ... e e e e e e e e e e
1.2. Semi-direct productsof Liegroups . . . . . . « . « + ¢« v 4 « . .
1.3. Liegroupactions . . . . . « . . . « v 4 v v 4 s .. e e e

. Differential invariants . . . . . . . . . .. e e e e e e e e e e e .
2.1. Manifolds ofjets . . . . . . . . . e e e e e e e e e e e e
2.2, Higher orderframes . . . . . . . . . . . . « . e .
2.3. Fundamental categories . . . . . . . . . . . ... e e e e e .
2.4, Differential invariants and their reahzanons e e e e e e e e e s
2.5. Natural transformations of liftings, associated with the r-frame lifting .

, Differential invariants and Lie derivatives . . . . . . . . . . . ..., ,

. 3.1. Jets of sections of a submersion . . . . . . . . .. ... ...

3.2. Lije algebras of differential groups . . . . . . . . . . .. 0. ..

3.3. Lifting and fundamental vector fields . . . . . . . . . . . . . ..

3.4. Differential invariants and Lie derivatives . . . . . . . . . .. . . .

. Invarianttensors . . . . . . . . . . . . e e e e e s e e e e e s

4.1. Absolute invariant tensors . . . . . . e e e e e e e e e e e .
4.2, Characters of the general linear group . . « « « « « « « 4 ¢« + &+ .
4.3. Relative invariant tensors . . . . . . e e e e e e e e e e
4.4, Multilinear invariants of the general hnear group ..... C e e e e

. Prolongations of liftings . . . . . . . . . . . . . 0. 0. . e e e
5.1. Prolongations of Liegroups . . . . . . . . . .. e e e e “ s e

11
11
16
19

36
36
39
41

46

47
47
50
56
58

66
66
n
73
80

84
84

[51



5.2. Prolongations of left G-manifolds . . . . . . ¢« . . . . . . o0 e 86

$.3. Prolongations of a principal G-bundle . . . . . . . . . . ... ... 86
5.4, Prolopgationsofafiberbundle . . . . . . . ... L. .o, 89
5.5. Prolongations of the r-frame lifting and of the associated liftings . . . . . . . . 92
5.6. Natural differential operators . . . . v . . v v v v v e e e e e e e 95
6. Fundamental vector fields on prolongations of GL,(R)-modules . . . . . R 4
6.1. Projectable vector fields and their prolongations . . . . . . . . . « . . . . . 97
6.2. Fundamental vectors fields on prolongations of GL(R)-modules . . . . .. 101
6.3. Lie bracket of fundamental vector fields on prolongations of GL.(R)- modules .. 106
7. The structure of differential groups . . . . . . . . . .. ..o Lo 110
7.1, Structure constants of a differential group . . . . . . . . .. 0.0 110
7.2. Vector spaces generating the Lie algebra of a differential group . . . . . . 116
7.3. The semi-direct product structure of a differential group and normal subgroups . 118
7.4. Differential invariants with values in GL,{(R)-manifolds . . . . . . . . . . .. 129
Part 2

NATURAL GEOMETRIC OPERATIONS: EXAMPLES

8. Natural differential operators between tensor bundles . . . . . . . .. . . . . .. 131
8.1. Globally defined homogencous functions . . . . . . « « v v v v o v 0 v 131
8.2, Natura! differential operators of order zero . . .". . . . . . . . . . ... 134
8.3. Natural differential operators of higherorders . . . . . . . . . . . . . . .. 141
8.4. The uniqueness of exterior derivative . . . . . . . . . . .« 0. 144
8.5. Bilinear natural differential operators on vector valued forms . . . . . . . . . 148
9. Geometric objects naturally induced from metric . . . . . . e e e e e 154
9.1. The uniqueness of the Levi—Civita connection . . . . . . . . . . « . . . .. 154
9.2. Natural connections of higherorder . . . . . . . . . . . . .« . . . .. 157

9.3, Natural prolongations of Riemannian metrics on manifolds to metrics on tangent
bundles .« .« . L L L L e e e e e e e e e e e ... . 160
10. Other natural differential operators . . . . « « « v« v v v v e e e 166
10.1. Natural transformations of the second order tangent functor . . . . . . . . . 167
10.2, Natural lifts of vector fields . . . . . . . . . . .« o000 169
10.3. Principal copnections on frame bundles . . . . . . . .. . .. .. L. 174
10.4. Natural operations with linear connections . . . . . . . . . . . . . . . .. 178
References . . . . . . . . . oL o000 e e e e 187
Index . . . L L e e e e e e e e e e 191

[6]



Ilv

idx

o

D

Dk

D,, 8jaxt
dy

®

[.1
Mor ¢
Ob ¥
proj
dim
ker

im
rank
det

R

Rl
GL.(R)
GL(E)
T.E
Elﬁ
T.X
T.xf

T

e, eg
L(6)
exp, eXDs
Hx K
Hx K

LIST OF STANDARD SYMBOLS

empty set

Cartesian product

restriction of a mapping fto a set V
identity mapping of a set X

composition of mappings, composition of jets
derivative

k-th derivative

i-th partial derivative

k-th formal derivative

tensor product

direct sum, Whitney sum

group multiplication, action of a group
bracket, Lie bracket

morphisms of a category ¥

objects of a category ¥

projection functor

dimension

kernel

image

rank

determinant

real numbers

ordered n-tuples of real numbers

general linear group

group of linear transformations of a vector space E
tensors of type (r, s) on E

dual vector space of a vector space E
tangent space of a manifold X at a point x
tangent mapping to f at a point x

tangent functor

identity of a group G

Lie algebra of a group G

exponential mapping of a Lie group G
exterior semi-direct product of groups H, K
interior semi-direct product of subgroups H, K < G

[



G/H quotient group
PG orbit space

lq] equivalence class of a point ¢
[4lx K-orbit of a point ¢
YxqP  fiber bundle with fiber P associated with principal fiber bundle ¥
I, r-jet of a mapping fat a point x
JUX, Y) manifold of rjets with source in X and targetin ¥
Jf r-jet prolongation of a mapping £ ‘
Jy r-jet prolongation of a fibered manifold ¥
JrE r-jet prolongation of a projectable vector field ¢
Jr r«jet prolongation functor
L, r-th differential group of g»
FXx bundle of r-frames over ¥
Fr r-frame lifting
X fiber bundle with fiber O asociated with Fry
Faq Q-lifting
s Lie derivative with respect to a vector field &
TP manifold of r-jets with source at 0 e R” and target in P
G, {r, n)-prolongation of a Lie group G

[8]




PREFACE

Part 1 of the present work, written by the first author (D. K.), is based on the
lectures prepared for the seminar “The Calculus of Variations and Its Applica-
tions” at Brno University in the years 1977-78, and published in 1979 as a preprint
of the Department of Algebra and Geometry, Faculty of Science, J. E. Purkyné
Universily, Brno (Czechoslovakia) under the title Differential Invariants (Lecture
Notes). Tn this printing, small changes in the text have been made, and a few
references have been added.

To make the text more self-contained we added an introduction to Lie groups
(Chapter 1), some paragraphs in Chapter 2 and Chapter 3 on the jet structures,
and the theory of invariant tensors (Chapter 4) which is very useful in practical
calculations of differential invariants.

The primary purpose was to explain, in a relatively closed manner, the theory
of those geometric structures which play a basic role in the theory-of the so called
generally invariant (or covariant) Lagrangean structures (see [10], [18]). Tndeed,
working on the subject we had been led to more general problems of the theory
of invariant (geometric, natural) operations, requiring more complexity, and a more
general approach. Our main sources for the fundamental concepts of the theory
of jets and jet prolongations of geometric structures are Ehresmann, Libermann,
and Kolaf (see e.g. [5], [6], [8], [9], [19]). For the theory of fiber bundles and,
in particular, of natural fiber bundles and their relationship to invariants we use
Nijenhuis [20], Sulanke and Wintgen [23], and Terng [24]. The reader can consult
the classical theory of invariants with Dieudonné and Carrell [4], Gurevich [7],
Schouten [22], Thomas [25], and Weyl [26]. The cxposition of the theory of
differential invariants in Part 1 of this book follows the author's papers [10],
[11], and [12] (see also [13]-[17]).

Main problem of the theory of differential invariants is to give a complete
classification of them for concrete underlying geometric structures, To solve this
problem, there are in fact at least four methods available: (1) the method of Lie
equations, (2) the use of auxiliary formal connection, transforming the initial
problem to a tensorial one, (3) the method of passing to a proper quotient group
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of the differential group, and to the quotient group action, and (4) the algebraic
method, The aim of Part 2, written by the second author (J, J.), is to demonstrate
the first and the second method on a few examples of natural differential opera-
tors and natural constructions with tensors, connections, and metric fields. The
topics and results we discuss are due to Jany$ka [41], [42], Kolar [50], [51],
Kolak and Michor [52], Kowalski and Sckizawa [54], and Krupka and Miko-
la8ova [60]. A wide variety of further possible examples and illustrations of all of
the methods (1)—(4) (e.g., invariants of a linear connection, invariant lagrangians
and natural Lagrangean structures, liftings of tensor fields, invariants of a metric)
can be found in the references.

Part 1 of this work has been completed during the first author’s stay at Instituto
di Matematica Applicata “Giovanni Sansone” in Florence (Italy). He is grateful
to CNRS for creating excellent conditions for work, and to Professor M. Modugno
for many valuable discussions on the subject.

Brno, December 1986 Demeter Krupka
Josef JanySka

* [10]



PART 1

ELEMENTARY THEORY
OF DIFERENTIAL {(NVARIANTS

1. LiE GROUPS

This introductory chapter is devoted to basic concepts of the theory of Lie
groups and Lie group actions on smooth manifolds. We discuss some selected
topics which are nceded later on in the theory of differential invariants. Main
notions of Sections 1.1—1.3 are the following: Lie group, Lie group homo-
morphism, Lie subgroup, Lie algebra of a Lic group, exponential mapping; Lie
transformation group, orbit space, orbit manifold, equivariant mapping, funda-
mental vector field; semi-dircct product of Lie groups.

1.1. Lie groups. A Lie group is a set G endowed with the structure of a smooth
manifold and the structure of a group, with group operation denoted multiplicative-
ly, such that the mapping GxXG>3 (g, h) » g.h™ "¢ G is smooth. A Lie group
homomorphism f: G —» H is a smooth group homomorphism of a Lie group G
into a Lie group H. A Lie group homomorphism which is a diffeomorphism is
called a Lie group isomorphism.

The additive group of real numbers R together with its natural smooth structure
is a Lie group. A Lie group homomorphism « : R — G is called a one-parameter
subgroup of G.

The identity of a Lie group G is usually denoted by eq, or e, if there is no danger
of confusion.

Recall that a mapping of manifolds /: X — Y is called an immersion at a point
xe X, if the tangent mapping 7./ : T.X = Tjy»Y is injective; f is called an
immersion if it is an immersion at every point. A manifold X is called an immersed
submanifold of a manifold 7, if (1) X < Y (as a set), and (2) the canonical inclu-
sion 1y : X — Yis an immersion. The smooth structure of X is uniquely determined
by conditions (1) and (2). We note that the topology of an immersed submanifold
X « Yis not neceSsarily induced from Y.

[11]



A Lie group H is called a Lie subgroup of a Lie group G, if (1) H = G' (set
theoretically) and H is a subgroup of G, and (2) H is an immersed submamfolfl
of G.

Let G be a Lic group. For every g e G the mapping Go I - L) =g he G
(resp. Gah— R(h)y="h.ge G) is called the left (resp. righi) translation by &.
Obviously both L, and R, are diffcomorphisms, L, o Ly = Lg.s; R, ° R, = Iifn.g
so that (L)™' = Lg-1, (R)™!=R,-1,and L, = R, = ids (the identity mapping
of G). .

Recall that a (real) Lie algebra is a (real) vector space E together with a bilinear
mapping ExXE 2 (&) = [£, ¢] € E such that (1) [¢, £] =0 for all & c?E, a-nd @3]
[& I8 AT] 4 [¢. [A €11 + [4. [& ¢]] = 0 for all ¢, ¢, A€ E. The mapping (¢, £)
- [&,¢] is called the bracket of the Lie algebra E. The identity (2) is called the
Jacobi identity.

Let I, E; be two vector subspaces of a Lie algebra E, and let [E,, E,] denote
the vector subspace of E generated by the vectors [£, ¢], where £€E;, [ € Es.
A veelar subspace F < E is called a Lie subalgebra of E if [F,F] = F; F is called
an ideal of E if [/, E] = F.

A linear mapping of Lie algebras f : E — F is called a Lie algebra homomorphism
if f([&¢]) = [f(f,),f(C)] for all &, ¢ € E. The kernel (resp. image) of f is then an
ideal of E (resp. a Lie subalgebra of F).

Let E be a finite-dimensional Lie algebra, that is, E is finite-dimensional as
a vector space, let m = dim E. Let (e, e,, ..., e,) be a basis of E. There exist
uniquely determined real numbers y},, such that

(LLT) Less e = 'ijei!

(summation on i). These numbers are called the structure constants of the Lie

algebra E with respect to the basis (e, e,, ..., ¢,). It follows from the definition
of a Lie algebra that

(112) Y+ =0,
1 i 1
YioVha + Via¥pe + Vie¥ap = O-
Conversely, if we have a vector space E of dimension m, a basis (e;, €, ..., €,)
of E, and a system of real numbers yjk satisfying these conditions, then there exists
a upique Lie bracket on E for which y;k are the structure constants with respect
to (ey, €5, ..., €,). This Lie b-acket is obtained by defining the Lie bracket [e;, &,]
as in (1.1.1), and then extending it to E X E on the bilinearity condition.
A vector field € on a Lie group G is called left invariant if for every ge G

(L13) Tl &h) = E(L,()
for all h & G. By definition ¢ is left invariant if and only if the pair of vector fields

[12]



(¢, &) is Ly-related for every g & G. Hence the bracket [& ¢] of any two left invariant
vector fields ¢, { is also a left invariant vector field. Thus the set of left invariant
vector fields on G has the structure of a subalgebra of the Lie algebra of vector
fields on G.

A left invariant vector field ¢ on G is always complete, i.e. every integral curve
of £ can be prolonged to an integral curve defined on R. Clearly, let (—a, a) be
an open interval in R, and let o : (—a, a) > G be an integral curve of ¢; that is,

(1.1.4) %?— = £(a1))

on (—a, ). Let g & G be any point, and consider the curve (—a,a) s t ~ B(1) =
= g .o(f) = (L, o o) (1) e G. We have, since ¢ is left invariant,

d d
115 L= T, 8 o T L, ) = ELEO) = E00).

Thus f is also an integral curve of &. If « starté atee G, i.e. a(0) = e, then f(0) = g,
and B starts at g. Let s € (—a, a), s > 0. We take g = a(s) and put (1) = (¢ — s);
y is a curve in G defined on (—a +- s, a -+ 5), and

(1.1.6) %=F% = &6 — 5) = E6 ().
dt’ Ji-s

Hence y is an integral curve of &, and y(s) = B(0) = a(s). By the uniqueness of

integral curves, y =« on (—a,a) n(~a -+ 5, a+ 5) = (—a -+ s,4a), and « can

be prolonged to (—a, a - 5). Thus « can be prolonged to R, and the vector field &

is complete.

Let VG be the Lie algebra of vector fields on G, and let ¥,G be its subalgebra
of left invariant vector fields. 1t is easily seen that ¥;G is finjte-dimensional and
its dimension is equal to the dimension of G. We shall show that VG is linearly
isomorphic to the vector space TG, the tangent space of G at the identity. For
every tangent vector & € T,G and every h € G we define a vector &,(h) e T,G by

(1.1.7) c(h) = T.L, . L.

¢y is a smooth vector field on G. Let g e G be any point. We have ¢ (L (h)) =
=88 N =TL,,,.E =T(LyoLy).E =TL,.(T,L,.&,) = T,L,. ¢ (k). Thus
£y, is a left invariant vector field. We get a mapping 7,G 3 ¢ = &, € V.G which is
obviously linear. On the other hand, the mapping V.G € &, — £.(e)2 TG is also
linear, and is the inverse to the mapping & — &£,. Therefore, the vector spaces VG
and T,.G are linearly isomorphic, and the dimension of VG is equal to the dimen-
sion of G.

The vector field &, € ¥,G is said to be associated with the tangent vector £ € T, G.

[13]



Using the linear isomorphism ¢ — &, we define a bracket on T,G by the formula

(1.1.8) [&¢] = [£e. 8] (o).

With this bracket, T,G becomes a Lie algebra which is called the Lie algebra
of the Lie group G, and is denoted by L(G).

Let & € L(G) be any vector, ¢, the left invariant vector field on G associated
with €. Let Ra t — expg 1€ € G denote the integral curve of &, passing through
the identity e at 1 = 0.

Theorem 1.1, 4 mapping o : R ~ G is a Lie group homomorphism if and only if
there exists a vector € e L(G) such that a(?) = expg t& for all te R.

Proof, 1. Let ¢ € L(G) be any vector. We want to show that
(1.1.9) expg (s + O & = expg s€ . expg &

for all s, t € R. By the uniqueness of integral curves it is sufficient to show that the
mappings 7 — expg (s + N &, 1> expg 5. expg 16 = L,y poe(exp 1§) are both
integral curves of &, passing through the point exp s& at ¢ = 0. Since

’

d d , dt
(1.1.10) 57 €XPa +Dé= {d_t’ expg ! t}”‘. 4 = {rlexpg (s + D &,

d d
—&T Loxpa s{(expG tf) = T:sxpa 12 Lexpa % F €Xpg t‘f =

= dexpa rCLoxpa g fL(exPG 1&) =
= §1(Lexps 12(6XPc 1§)) = §1r(expg (s + 1) ),

we get that (1.1.9) holds.

Conversely, let « : R~ G be a one-parameter subgroup. Then «(0) = e and
the tangent vector £ = {du/dt}, belongs to L(G). Since for every s, t € R, als + ) =
= o(f) . a(s) = L,(a(s)), we have

da d da .
ALY = {-d—s' a(t + S)}O'—‘ TooyLagsy - {—ds—}o= Loy - & = &((0)).

Thus « is an integral curve of &, passing through e at ¢ = 0. By uniqueness of
integral curves, a(f) = expgq /.

Theorem 1.2. If f : G — H is a Lie group homomorphism, then T.f : I(G) — L(H)
is a Lie algebra homomorphism and for every ¢ e I(G) and te R

(1.112)  f(expg 1) = expy HT,f. &).
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/o
Proof. Letg, h € G be any two points. Since /(g . h) = f(g) . f(h),i.e.,f o La}é‘j =

= (L of) (h), we have
(LLL3) Ty S0 TiL, = TraLyqy o Tif-

Lt?t ¢ € L(G) be a vector, and let &, be the left invariant vector field on G associated
with ¢. Take h = eq; then &,(g) = T..L,. ¢ and (1.1.13) yealds

(1.1.14) Tgf- ¢i(8) = Toplopie) o Teof - {= TzﬂLf(e) C= (),
where { = T,_.f. & This shows that the vector fields ¢, and {,, are f-related. Let

¢y, $2 € L(G) be any two vectors and denote {; = T,_f.¢&,, ¢y = T,.f- &;. Then

T,f. [éu,, 521,] @ = [Cir, CZL] (f(g)). Taking g =e; we obtain by definition
of the Lie brackets in L(G) and L(H)

(1.1.15) T..f. [51, 52] = [CIL: Czr.] (ey) = [Teaf' Sty T.of- éfz]

which proves that T, f is a Lie algebra homomorphism.
Let us prove the second assertion. Obviously, the mapping ¢ = f(expg 1€) is
a one-parameter subgroup of H: this mapping is smooth and for every s, t € R,

flexpg (s + ) &) = flexpg s . expg tE) = flexpg 5E) . flexpg t€) (Theorem 1.1).
Since the tangent vector at 1 = 0 is

(1.1.16) {-—:—, J(expg tf)}0== Tf.¢

this ome-parameter group must be precisely the one-parameter group f —
- expy {7, f. &). This proves the second assertion,

Let G be a Lie group. The mapping L(G) 3 ¢ — expg ¢ € G, where expg ¢ is the
point on the curve t — expg 7¢ defined by ¢ = 1, is called the exponential mapping
of L(G) into G.

Theorem 1.3, (1) The exponential mapping L(G)3 ¢ — expg (e G is a local
diffeomorphism at the point 0 € L(G).
(2) If f: G — H is a Lie group homomorphism, then for each & € L(G)

(1.L.17)  f(expg &) = expg (Tof. &).
Proof. 1. To show that expg is a smooth mapping define a vector field y on

GXL(G) by x(g, &) = (£.(g), 0). Since £.(g) = T.L,.¢ is smooth on G XL(G),
x is also smooth, and the global flow (2, g, &) — a(#, g, £) of x is also smooth. But

d(t, g) 'f) = (g . expG té) é) Since

(1.1.18) {'adT (g . expg té, C)}o = (T.L,. ¢, 0) = ({i(8), 0) = x(&, &)-

[15]
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Thus the mapping RxGxL(G)a (1,8, &) = (g.expg 14, §) e G XL_(G) is smooth,
and so must be the mapping L(G)3 ¢ —e.expgl.¢& =expg C € . Now let
& e L(G) be any vector. We have

d
11.19) &= {—&t- expg tf}o= T, expg - &,

and T, expg is the identity mapping of L(G). In particular, the rank of Ty expg
is maximal, and expg is a local diffeomorphism at 0.
2. Relation (1.1.17) is a consequence of (1.1.12).

1.2. Semi-direct products of Lie groups. If G is a group we denote by Aut G the
group of automorphisms of G. .
Let I and K be groups, ¢ : II — Aut K a homomorphism of groups. It is
directly verified that the mapping
(HXE)X(HxK)5 ((hy, kq), (hy, k3)) = (By, kq) - (hay k2) =
= (hl . ’12, k]_ . (p(hl) (kz)) € HXI(
defines the structure of a group on the set H X K. This group is called the exterior

semi-direct product of the groups H and K, associated with the homomorphism ¢,
and is denoted by H X K.

If (h1 » kl)s (hz » /Cz): (hy, ka) e HX @K are any elements, we have
a2z (k). (o, k). (b, ks) =
= (h1h2h33 k], . ¢(h1) (kZ) N (p(hl) ((p(hz) (k3)).

If ey (resp. eg) is the identity element of the group H (resp. K), then (ey, eg) is the
identity element of H XK, and the inverse element of (b, k) is

(123) (BT =0 o™ k).

The exterior semni-direct product of groups has the following elementary
properties.

1.2.1)

Theorem 1.4. Let H X K be the exterior semi-direct product of groups H and K,
associated with a homomorphism ¢ : H - Aut K.

(@) The mapping h — (h, ex) is an isomorphism of H onto the subgroup H* =
= Hx{ex} of HX K.

(b) The mapping k — (ey, k) (resp. (h, k) — h) is an isomorphism (resp. homo-~
morphism) of K (resp. HX ,K) onto the subgroup K* = {ey} XK of HX K (resp.
the group H), and K* is a normal subgroup of HX K.

(c) HX ,K is the product of H* and K*,

(1.2.49) HX,K=H* K*=K*. H*
(d) The quotient group (Hx oK)/ K* is isomorphic with H.

[16]



Proof. All these assertions are immediate consequences of the definition.

Let G be a group, e its identity element. We say that G is the interior semi-direct
product of its subgroups H and K if the following three conditions are satisfied:
(1) X is a normal subgroup of G, (2) Hn K = {e}, (3) K. H = G, If G is the
semi-direct product we wrile G = Hx K.

Theorem 1.5. Let G = Hx K be the interior semi-direct product of its sub-
groups H and K. Then each element g e G has a unique decomposition

(1.2.5) g=k.h,
where ke K, h e H.

Proof. Let ge G; the existence of ke K and he H such that (1.2.5) holds,
follows from the definition, condition (3). To prove the uniqueness, suppose that

g=k .h =k, .hy. Then hy.h;' = k{*'.k,; since this element belongs to
H n K, condition {2) gives the uniqueness of the decomposition (1.2.5).

Notice that each element g has a unique decomposition g = h . k, where h € H,
k € K; this follows from (1.2.5) by passing to the inverse on both sides.

According to Theorem 1.5, the decomposition (1.2.5) defines two mappings
«:G - K, p:G— H, where

(1.2.6)  g=ua(g). pe).
These mappings satisfy

1.2.7m (g - g2) = olgy) - Plgy) - o(g2) - (Blg:)) ™7,
B(g: . g2) = Blgy) - B(gs)

forall g,, g, €G.

Theorem 1.6. Let G = H % K be the interior semi-direct product of its subgroups H
and K. Let ¢ : H —» Aut K be a homomorphism of groups defined by

(1.28) o)y (k)=h.k.h™.

Then the mapping G2 g — (BXa) (g) = (B(g), a(g))e HX K is an isomorphism
of groups.

Proof. This assertion follows from the properties of the mappings o, § (1.2.7).
From now on, we study the semi-direct products of Lie groups.

Theorem 1.7. Let H x K be the exterior semi-direct product of groups H and K,
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associated with a homomorphism of groups @ : H —~ Aut K. Suppose that H and K
are Lie groups, and the mapping

(12.9)  HxK3(h k) - o) (k) e K

is analytic. Then the group HX K endowed with the product manifold structure, is
a Lie group.

Proof. It is sufficient to check that the mapping ((hy, k1), (hy, ka)) = (hy, ky) .
. (hy, ky) ™t is analytic. By (1.2.1) and (1.2.3),

(1.210)  (hy, k) (hy, ko)™ = (B B Y Ry o(hihy ) (kD)

which shows that this mapping is composed of analytic mappings and hence is
analytic.

If the condition of Theorem 1.7 is satisfied we say that the Lie group A x K
is the exterior semi-direct product of Lie groups, associated with the homo-
morphism ¢.

We have the following analogue of Theorem 1.4.

Theorem 1.8. Le: H x K be the exterior semi-direct product of Lie groups,
associated with a homomorphism ¢ : H — Aut K. ’

(@) The mapping h — (h, e) is an isomorphism of H onto the Lie subgroup H* =
= Hx{ex} of HX K.

(b) The mapping k — (ey, k) (resp. (h, k) - h) is an isomorphism (resp. a homo-
morphism) of K (resp. HX ,K) onto the Lie subgroup K* = {eg} x K of Hx K
(resp. the Lie group H), and K* is a normal Lie subgroup of H X K.

(¢) The quotient Lie group (H X ,K)/K* is isomorphic with the Lie group H.

Proof. All these assertions follow from the standard propertics of Lie groups
and their homomorphisms.

Let a Lie group G be the interior semi-direct product of its subgroups H and K,
G = HX%,K. Suppose that H and K are Lie subgroups of G. As a group, G is
isomorphic with the exterior semi-direct product Hx K, where ¢ : H » Aut X
is defined by (1.2.8). Since H and K are Lie subgroups of G, this mapping is analytic,
and H X ,K is the exterior semi-direct product of Lie groups, associated with ¢.
We say that G is the exterior semi-direct product of its Lie subgroups H and K
if the isomorphism g - (B Xa) (g) (Theorem 1.6) is an isomorphism of Lie grouns.

Theorem 1.9. Let a group G be. the interior semi-a’iréct product of its subgroups H
and K. Suppose that G is a Lie group and H and K are its Lie subgroups. Then the
Jollowing three conditions are equivalent:
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(1) G is the interior semi-direct product of its Lie subgroups H and K.
(2) The mapping G 3 g — a(g) € K is analytic.
() The mapping G > g — p(g) € H is analytic.

Proof. If g — (B(g), «(g)) is an analytic mapping then both g and « are also
analytic; hence (1) implies (2) and (3). If the mapping g — «(g) is analytic then sd
is the mapping g — f(g) = (x(g)) ™" . &; hence (2) implies (3); analogously (3)
implies (2). Finally, if B is analytic, « is also analytic, and so is fxa; hence (3)
implies (I).

Theorem 1.10. Let p : G —» H and s : H -~ G be homomorphisms of Lie groups
such that

(L2.11)  pos=idy.

Then Ker p is a normal Lie subgroup of G, s(H) is a Lie subgroup of G,and G is the
interior semi-direct product of Lie subgroups s(H) X ker p.

Proof. ker p is obviously a normal Lie subgroup of G, and s(H) is a subgroup
and a submanifold, since s is a homeomorphism of H onto s(H); hence s(H) is
a Lie subgroup. Let us check the conditions (2) and (3) of the definition of the
interior semi-direct product. If g € G is any element, we set g, = g. (s(»(g))) ™'+
then p(g,) = en, i.e. g, € ker p. Hence G = (ker p) . s(H) which proves (3), Suppose
gekerp ns(H). Then p(g) = ey, g=1s5(p(g,)), where g, e G, so that p(g) ==
= p(s(p(gy))) = p(go) = ey, g = 5(p(g,)) = s(ey) = e, where e is the identity of G
this proves (2). It remains to show that the mapping g — (s o p) (g) is analytlc
(Theorem 1.9, (3)); since this is obv1ously true, we are done.

1.3. Lie group actions. Let G be a Lie group, P a manifold. A smooth mapping
@ :GXP - Pis called a left action of G on P, if (1) &(e, p) = p for all pe P,
and (2) &(g, ®(h, p)) = &(g . h, p) for every g,he G and pe P. A manifold P
endowed with a left action of a Lie group G is called a left G-manifold; G is called
the Lie transformation group of P. ‘

Let P be a left G-manifold with a left action @ of G. For every g G we define
a smooth mapping &, : P - P by &,(p) = 9(g, p) Obviously,

(13.1) &, =idp, B,.,=D,0 P,

where e € G is the identity, idp is the identity mapping of P, and g, he G are any
elements. In particular, the mappings &,, P,-1 satisfy (8,) ' = &,-1, and @,
is a diffeomorphism. We call &, the transformation of P by g. For every pe P
we define @ a smooth mapping <15 :G — P by 9,(g) = (g, p). &, is called the
orbit mapping at the point p. For every p, the set 8,(G) = {ge P| g = P,(2),8 € G}
is called the G-orbit, or the orbit of the point p.

[19]



Lemma 1.1. The orbit mapping G > g — ®,(g) € P has constant rank.

Proof. Let g € G be any element.- We have by the chain rule, T .(®, o ) =
=Ty®,0T,L, But @,0 g(h) = &(g.h,p) = (g, &(h, p)) =&, 0 (Dp(h): that is,
®,0L, =&, 0®, Thus T,8,0T.P,=T,8,0T.L, Since the mappings T,®,
and T,L, are linear isomorphisms, we have rank 7,9, = rank T,®, as required.

Now we shall introduce basic types of left actions of Lie groups on manifolds.
Let & : GXP — P be a left action of G on P. We say that @ is rransitive, if for
every p € P, ®,(G) = P, i.e. there is only one G-orbit in P. ¢ is called effective
if the condition @, = id, implies g = e. @ is called free if for each g€ G, g # e, the
transformation @, of P has no fixed points, i.e., the condition &,(p) = p, where
ge G, implies g =e. Let &' : GX P — Px P be the mapping defined by ®'(g,p) =
= (p, ¥(g, p)). We say that @ is proper, if for every compact set K < PX P, the
set (')~ 1(K) = GxP is compact.

As above, let G be a Lie group, P a manifold. A smooth mapping ¥ : PXG — P
is called a right action of G on P, if (1) y(p,e) =p for all peP, and (2)
Y(¥Y(p,g),h) = ¥Y(p,g.h) for every g,he G and pe P. A manifold endowed
with a right action of a Lie group G is called a right G-manifold; G is then called
the Lie transformation group of P,

If Pis a right G-manifold with a right action ¥ and we set for every (p,g) €
ePXG

(1329 - P(g.p) = ¥Y0p.g™ "),

P becomes a left G-manifold with the left action ¢. It is clear that all the notions
defined above for left G-manifolds, transfer immediately with the hclp of this
correspondence to right G-manifolds.

Let @ ; GXP — P be a left action of a Lie group G on a manifold P. The rela-
tion “p ~ g if and only if p, g belong to the same G-orbit in P” is an equivalence
relation on P. Let P/G denote the quotient space, i.e. the set of G-orbits, and
7 ; P - P/G the canonical projection. We shall consider the set P/G with the final
topology with respect to =, i.e. the quotient topology; a set U = P/G is open in this
topology if and only if z7!(U) is open in P. It is easily seen that with respect to
this topology, = is an open mapping: If W < P is an open set, then n~'(n(W)) =
= U (W) (union over g € G of the open sets P (). Obviously, since P is second
countable, P/G is also second countable. The topological space P/G is called the:
orbit space of the left G-manifold P.

- If there is no danger of confusion the G-orbit ¢,(G) of a point p € P is denoted
by [p]. Thus [p] = n(p) is the clement of the orbit space P/G whose rcpresentatlve:
is'p.
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Lemma 1.2. Let ¢ : GXP — P be a left action of G on P, n;: P — P|G the
canonical projection onto the orbit space. The orbit space P|G is Hausdorff" if and
only if the set # = {(p,q) e PXP| [p] = [q]} is closed.

Proof. 1. Suppose that # is a closed subset of PxP. Let p,qeP be
representatives of two different points [p], [¢] € P/G; clearly, p # ¢ and (., q) e 2.
Since 2 is closed there exist a neighborhood U of p and a neighborhood ¥ of g
such that (UxV) n £ = 8, and does not exist a G-orbit containing a point of U
and a point of V. This implies that n(U) n (V) = #. But the canonical projec-
tion =z is an open mapping. This implies that n(U) (resp. n(¥)) is a neighborhood
of [ p] (resp. [¢]), and P/G must be Hausdorff.

2. Conversely, suppose that the orbit space P/G is Hausdorff. Let dpig =
= {([r]. [4]) € PIG=<PIG|[p] = [¢]} be the diagonal in P/Gx P/G. Let ([p],
[q]) ¢ 4p/6. Then[p] # [4] and there exist a neighborhood U of [p] and a neigh-
borhood ¥ of [¢] such that U n ¥ = 8. We set W = UxV; W is a neighborhood
of ([p], [¢]) not containing the points of the diagonal 4,;. Thus the diagonal Adpg
is closed in P/G x P/G. Since the mapping nxn : PXP — P/G X P/G defined by
(< w) (p, q) = (n(p), n(q)) is continuous, the set (nXn)™* (dp5) = R < PXP
must also be closed.

Let X (resp. ¥) be an n-dimensional (resp. m-dimensional) manifold, f: X - ¥
a differentiable mapping. Recall that f is called a submersion at a point x € X,
if the tangent mapping T.f: T,X —~ T Y is surjective. f is a submersion at x
if and only if n 2 m and there exist a chart (V, ) at x and a chart (U, o) at /(%)
such that U o f(V), (V) = () X W, where W < R"™™ is an open set, and the
chart expression of £, fif ™! : Y(¥) = @(U) is the first canonical projection of the
Cartesian product ¢(U) X W. f is called a submersion if it is a submersion at every
point x € X. A submersion is an open mapping.

Lemma 1.2 shows that in general, the orbit space P/G does not admit any smooth
structure. Qur aim now will be to give some necessary and sufficient conditions
for P/G to have a smooth structure for which the canonical projection n : P — P/G
is a submersion.

We need a lemma concerning submanifolds of the Cartesian product X x X,
where X is a manifold. Let 4y = {(x, )€ XXX | x =y} be the diagonal of
XxX.

Lemma 1.3, Let X be an n-dimensional manifold, and let & be an r-dimensional
submanifold of XX X such that A, < R. Suppose that the restriction of the first
canonical projection pr; : Xx X = X to & is a submersion. Then to every point
xo € X there exist a neighborhood U of x, and a chart (Ux U, ¥), ¥ = (w', w?, ...,
s WA, at (xq, %) Such that ¥W(x,, X,) = 0 and the following three conditions hold:
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(1) A4 point (x, y) e UxU belongs to & if and only if
(1.3.3) wi(x, p) =0, ..., w?(x, ») = 0.

(2) There exists a chart (U, ¥), Y = (ut, u?, ..., u"), at xo such that
(1.3.4) wh =u o pry, ..., W =u" o pry.

(3) The functions w"**, w't2, ..., w" are independent of x, that is,
(13.5) W) = w0, ), Wk y) = W(Ko, D)
Jor every (x,y) e UXU.

Proof. Let x,€ X be a point. Since (x,,x,) € # and # < XX X is a sub-
manifold, there exists a chart (W, @), ® = (!, v%, ..., v*"), on X adapted to 2
at (xg, Xo), 1.6, such that &(xg, x0) = 0 and (x, ) e W n £ if and only if

(136)  v*(x,y) =0,..,v"(x,y) =0.

We may suppose without loss of generality that &(W) = W; X W,, where:
W, < R, W, c R®" are open sets. Denote by n: W;xW, - W the first
canonical projection and writt Wy=W R, &g=n0® |png, 1.6, Pa=
= (v}, v?, ..., v"), where o' = ¢! |png, ..., V" = 0" |png. Then Wy, Pg) is a chart
on &. Obviously, $4(W4) = W, and the mapping niy, : W — Wy defined by np, =
= @z'nd is a submersion.

By hypothesis, pr, : £ — X is a submersion. Thus there exist a chart (Z, {),
{=(z' 7% ...,2"), on & at (xo, X,), where n < r < 2n, and a chart (V, ),
Y = (@, u% ..., u"), on X at x, such that {(x,, x,) =0, pr(Z) = ¥ and

(1.3.7) Zl=ulopry, .., 2" = uopry.

Schrinking W4 and Z if necessary we may suppose that W, = Z.

Denoting x = (2! o g, 22 oy, ..., 2 o Wy, 'Y, ..., ¥*") we obtain another
chart (77, ) on X X X at (X, x,). Since x(xo, ¥) = (u (xg), ..., u"(xg), 2" (X0, ), «-- »
s 2%, ), U H(xg, ), oo, 9®(xp, ¥)) and g is a diffeomorphism, the mapping
Y= @ %0, ), ., 2'(x0, 1), V(NG B, <ov, 97"(X0, 1)) iS also a diffeomorphism.
In particular, this mapping is of maximal rank (= #) at x, which implies that the
mapping y - (z"*1(xg, »), ..., 2'(x,, »)) must also be of maximal rank (=r— ny

at xo, i.e. of the same rank as the mapping (x,y) = (z"*!(x, ), ..., z"(x, y)) at
(xp, xp). Denote

1
(1.3.8) wh=2zlomy, ., W' = 2" oy, WX, p) = 21 (x, ), ...,

vy wr(x, y) — Zr(xo,y), wr+1 — Ur-i-l, s w2n — DZH'
We have shown that the mapping (x, y) = (w'(x, ), ..., w?"(x, ¥)) must be of
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maximal rank (= 2n) at (x4, x,). Therefore, there exists a neighborhood U of Xg
such that UXU < W and the restriction of this mapping to Ux U is a diffeo-
morphism. We denote ¥ = (w', w?, ..., w?"); then (Ux U, ¥) is a chart on XX X

at (xg, xo). It is immediately verified that this chart satisfies conditions (1), (2),
and (3) of Lemma 1.3.

Lemmal.d. Letn : X — Y be asubmersion, Z < Y asubmanifold. Thenn™'(Z) <
< X is a submanifold.

Proof. Denote k =dim Z, n =dim ¥, and n + m = dim X. Let x, e n~4(2)
be any point, y, = n(x,), and let (U, @), ¢ = (3%, y%, ..., )" x', x%, ..., x™), be
a chart at x,. We may suppose that there exists a chart (V, ), ¥ = (!, u?, ..., u"),
at y, such that ¥V =n(U) and y'=ulon, i=1,2,...,n Let (W,0), { =
= (z', 2%, ..., 2", be a chart at y, adapted to Z; that is, a point y € W belongs
to W n Z if and only if 2**!(y) = 0, ..., z"(y) = 0. We may suppose without loss
of generality that W = V. Let us express the mapping {1 : (V) — {(¥) by the
equations z' = fi(u', ..., w"), i=1,2,...,n, and set U=Un=a"'(¥V), ¢ =
=L, 7% ..., 9", %!, %% ..., %), where ¥ =fi(pL, ..., ), X°=x°, a =1,2, ...,
...,m. (U, @) is a new chart at x,, and ¥ = fi(y!, ...,y = filul o7, ..., u" o 1) =
=1z on. Let xe U be a point. If xe U n n~1(Z), then n(x) € ¥ n Z and j'(x) =
= z'(n(x)) = Ofor i = k 4- 1, ..., n; conversely, if 7'(x) =0 fori=k 4+ 1,...,n,
where x € U, then zi(n(x)) =0 for i = k -+ 1, ..., n, which means that n(x)e
eVnZand xen YZ) hence xe U N n~'(Z). Thus the equations '(x) = 0,
i =k + 1, ...,n, are equations of the set U nn~%(Z), and n~}(Z) is a sub-
manifold of X,

Let @ (resp. ¥) be a left action of a Lie group G on a manifold P (resp. Q).
A mapping f: P — Q is said to be G-equivariant if for all ge G and pe P,
f(d(g, p)) = ¥(g, f(p)), or, which is the same, for all ge G,

(139)  fo®,= ¥,of.

If fis G-equivariant then the G-orbit @,(G) of a point p € P is transferred by f into
the G-orbit ¥, (G) of the point f(p) € Q.

The concept of a G-equivariant mapping is slightly generalized as follows. Let
U < P be an open set. We shall say that a mapping f: U - Q is G-equivariant
if for each p e U and g e G such that ¢(g,p)e U

(1.3.10)  fo ®(g, p) = ¥(g, /(D))

If ¥ is a subset of P we denote ®4(W) = ud, (W) (union over g € G); Po(W) is
the union of the orbits of the points of the set W. If W is open, then P4(W) is also
open. W is said to be G-invariant, if ®(W) = W.
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Let f: U — Q be a G-equivariant mapping. There exists a unique 'G-equivariant
mapping f : Po(U) — Q such that |, = f. To see it we take any point p € P5(U),
any point g € G such that &(g, p) € U, and set

(1311 f(p) = ¥(g™".f o (g p))-

If h € G is another point such that @(h, p) € U, we have &(h, p) = P(h . g7 e =
— ®(h . g~1, B(g, p)) and, since both &(g, p) and &(k, p) belong to U, f o P(h,p) =
=fo®(h.g" !, &g, p)) = ¥(h.g 1, [ o B(g, p)); therefore, P(h ™, F o P(h,p)) =
=¥h L Wh.g™1,foBg p) = Plg™t, fo B(g, p)), and the point F () is well-
defined, i.e. is independent of the choice of g. To show that the mapping p — 7
is G-equivariant, choose any clement g,e G. We have for every pe& @g(U),
W(gu, f(p)) == ‘F(go: !{/(g—-i’ f° gD(g, P)) = lI’(go: T(g_l,fo d)(g . gé_l - 8os P))) =
= P g o ®((g -8 ). g0, p) = ¥(go . &4 f o B((go - 87N,
®(gy, ) = o Blgo, p); hence f is G-equivariant. If fis smooth, fis also smooth.
Clearly, let py € ®4(U) be any point, and let g, € G be such that $(gq,po) € U.
There exists a neighborhood ¥ of pg in ®4(U) such that &,(V) = U. Ther estriction
fly can be expressed as the composition of two smooth mappings Vep —
- ®(gy,p)e U, Usq — (g5, f(@) e Q, and must be smooth. The uniqueness
of f is evident: if F: ®5(U) — @ is any other G-equivariant mapping such that
Fly =f, and pe ®5U) is any point, we write p = &(gq, po) for some g, € G,
Po € Uand get F(p) = f o D(gy, po) = ¥(go, F(Do)) = P(80,/(p0)) = ¥ (Lo J (@) =
=f° ‘b(go,Po) =f(p)

A G-equivariant mapping f: U — R, where R is the real line considered as the
trivial left G-manifold defined by the left action (g, {) — ¢ of G, is called a G-invariant
Sfunetion on U.

Lemma 1.5. Let (V, ), ¥ = (»', »?, ..., y™), be a chart on a left G-manifold P.
The following two conditions are equivalent:

(1) There exists an integer n, 1 < n < m, such that the functions y',y* ...,
<, ¥V = R are G-invariant, and every (not necessarily smooth or continuous)
G-invariant function f : V — R depends on y*, y?, ..., y" only.

(2) There exists an integer n, } £ n < m, such that for every p, g ¥V, y'(p) =
= y}(q), ..., y"(p) = y™(q) if and only if the G-orbits of p and q coincide, i.e. lr] =

= [q].

Proof. 1. Suppose that condition (1) holds. Then we can choose (¥, ¥) in such
away that (V) = V; XV,, where V; <« R", ¥, < R "are open sets. Let : P —
— P/G be the canonical projection, and denote U = n(¥); U < P/G is an open
set. Since the functions y?!, y2, ..., y" are G-invariant, there exist unique functions
x, %% ..,x": U- Rsuchthat y* =x'om, ..., " = x" omon V. Let pry iV, %
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XV =V, be the first canonical projection. Denoting ¢ = (x, x2, ..., x") we
obtain a mapping ¢ : U —» ¥V, such that the diagram

4
V*b’ V1 X Vz
(1.3.12) Tl” lprl

U P_)Vl

commutes. We shall show that ¢ is injective. Let [p], [g] e U, [p] # [g]- Then

there exists a function x : U — R such that x([p]) # x([g]); for instance we may

take y([r]) =0 if [r] # [¢], x([¢]) = 1. Then yozn:¥V - R is a G-invariant

function. By hypothesis, y o # depends on y*, ..., »" only which implies (»*(p), ...,
o YD) # (), ..., ¥(q)), otherwise x([p]) = x([g]). Thus o([s]) = G'(p), -.-,
VD) # N, .- (@) = ©([4]),, and ¢ must be injective.

To show that the chart (V, ) satisfies condition (2), take p, g € ¥. Suppose
that y*(p) = y'(g), ..., ¥"(») = ¥"(@)- Then ¢([p]) = ¢([4q]) and, since ¢ is injective,
[2] = [4q]. Conversely, if [»] = [q], then x*([p]) = x*([g]), ..., *"([p]) = x"([g],
i.e. ¥1(p) = y'(q), ..., y"(p) = ¥"(g). This means that condition (2) is satisfied.

2. To show that (2) implies (1), denote by & the left action of G on P and choose
a point p, € V. Obviously, if g € G is such that @(g, py) € ¥, then »! o &(g, po) =
= (o), -» V" o B(g, po) = ¥"(Do). This implies that the functions y?, ..., y" are
G-invariant. Let (pt, p2, ..., p™, (g%, 4% ..., g™y € (V) be two points such that
pr=gq', ...,p" =¢q", and denote p = Yy~ (p*, p%, ..., P™. ¢ = ¥4}, 4%, ..., ™).
Since y(p) =y (g), ..., Y"(p) = »'(g), there exists, by hypothesis, an element
g € G such that g = &(g, p). Let /: ¥ — R be a G-invariant function. Then f(g) =

= f(p), and we get Y~ '(p*, ..., p"n P, L ™M = AT L PN @YY L, g™

This means that f is independent of »"**, ..., p™.

Let 2P be a left G-manifold, and let m = dim P. A chart (¥, ¥), ¥ = (0%, »?, ...,
..., ¥}, on P satisfying one of the equivalent conditions (1), (2) of Lemma 1.5 is
called a G-flat chart on P.

Simple examples show that in general, a G-flat chart need not exist at every
point.

Let (V, y), ¥ = (»%, ¥%, ..., ™), be a G-flat chart on P. With the notation of the
proof of Lemma 1.5, consider the pair (U, ¢), where U = n(V)and ¢ = (x*, X2, ...,
..., X™). We have shown that ¢ : U — V), is injective; since ¢ is obviously surjective,
it must be a bijection. Since P/G is endowed with the final topology with respect
to = and the mapping pry; o ¥ = ¢ o is continuous, ¢ must be continuous.
Analogously, since @ ' opr; =noty”! is a continuous mapping and pr, is
open, the mapping ¢ ~! must also be continuous., Thus ¢ : U — ¥, is a homeo-
morphism or, in other words, (U, @) is a chart on the topological space P/G. This
chart is said to be associated with the G-flat chart (V, y).
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We note that by definition, none of the functions " **, y"*2, ..., y" is G-invariant.

We are now in a position to prove the following result.

Theorem 1.11. Let P be a left G-manifold, @ the left action of G on P, :P-> PG
the canonical projection onto the orbit space, and % = {(p,q) € Px Pl 455,(0) =
= @,(G)}. Suppose that P is connected. The following three conditions are equivalent:

(1) The orbit space P|G has a smooth Structure such that the canonical projection
7 : P — P|G is a submersion.
(2) 2 is a closed submanifold of PXP.

(3) P can be covered by G-flat charts, and to every p, q& P such that @,(G) #
# D (G) there exist G-invariant open sets Wy W, < P such that p & W, qeW,,
and W,n W, = 0.

Proof. 1. We shall show that (1) implies (2). By Lemma 1.2, £ is a closed
subset of Px P. It remains to verify that £ is a submanifold. Let 4p;6 = {([r]. laD e
€ PIGxP/G | [p] = [g]} be the diagonal. Since P/G is Hausdorff, 4p/c is a closed
submanifold of P/G xP/G, and the mapping mxm : PXP » P/GXP{G defined
by (zx7) (p, q) = (n(p), 7(g)) is a submersion. Hence (nx7) ! (dp;e) = {(,9) €
e PxP|n(p) =n(g)} = & is a submanifold of Px P (Lemma 1.4).

2. Now we shall show that (2) implies (3). Suppose that £ is a submanifold of
Px Panddenote m = dim P,r = dim 4. Since the diagonal 4 is an m-dimensional
submanifold of &, we have m £ ¢ £ 2m.

Let pry : & — P be the restriction of the first canonical projection of the
Cartesian product Px P, Clearly, pr, is surjective because 4p = &. Let (po, go) €
€ & be a point, By definition there exists an element g, € G such that ¢, = ®(go, po)-
We define a mapping 6 : P > & by é(p) = (p, ®(g,, p)). Obviously, pry; o 6 = idp.
Since rank Ty, .0 Ty =k £ m and T, (pry o 8) = Ty, 40y Pr1 0 T8, we get
rank T,o(pry o 8) = m £ min {rank T'(,, 4 Pry, rank 7,6} = min {k, m} =k £
< m so that k = m. Therefore, pr, : # > P & submersion at (p,, g5). Since the
point (pgy, 4,) € & is arbitrary, pr; is a submersion.

Hence by Lemma 1.3, to every point py € P there exist a neighborhood U of pg
and a chart (UX U, ¥), ¥ = (w!, w?, ..., w?™), at (p,, po) such that ¥(pg . po) = 0
and the following conditions hold: (1) A point (p, g) € Ux U belongs to (U < U) n &
if and only if w™*'(p,q) =0, ..., w?"(p,q) = 0, (2) there exists a chart (U, ),
W= (u',u? ..., u™), at p, such that w! = u' o pry, ..., w" = ™ o pry, and (3)
the functions w"*1, ..., w" satisfy w"**(p, ¢) = w™ **(po, ), ..., WD, ) = w'(po, q)
for every (p,q)e UxU. Suppose that we have such a chart and denote f =
= (W' w2, L, w™); fis a mapping from U X U into R™ such that the partial
mapping Us g - f(po, q) € R" is a diffeomorphism. Define the partial mappings
Jiasfa,p 2 U= Ry £1 (0) = f3,,(@) = f(p, q)- The mapping T, fa. oy : TpoP —
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— R™ is a linear isomorphism and, by the implicit function theorem, there exist
neighborhoods U, , U, of p, in U with the following property: to every pe U,
there exists one and only one point x{p) € U, such that

(1.3.12)  f(p, x(p)) = /(po. po) = 0;

the mapping ¥ : U, — U, satisfies x(p,) = po and is smooth. Differentiating (1.3.12)
at pg we obtain

(1.3.13) TI,DX = —(Tpofz,po)-l ° Tpofl,rlo'

Qur aim now will be to show that on a neighborhood of p,, ¥ is a submersion onto
a (2m — r)-dimensional submanifold of U,.

Let us consider the mapping g : Ux U — R?™~" defined by g = (w ey
oy WE™). By definition, g(pg,po) =0, (UXU)n & = g~*(0), and the partial
mapping ¢ — g(pg. ¢) is of maximal rank (= 2m — r) at p,, i.e. is a submersion
at p,. It is casily seen that the partial mapping p — g(p, p,) is also of maximal rank
(=2m — r) at p,, that is, a submersion at p,. Let us define g, , and g, , by
81,4(P) = g2,,(q) = &(p,q). To show that rank T, ,, = rank I,.g, ,, it is
enough to verify that the mappings T,.81, 50> Tpof2,p0 : TpoP = R*" ™" have the
same kernels. Let ker " denote the kernel of a linear mapping I, Let & € ker T',,81, pq»
ie., let T,g, ,,.¢=0. Then T, ,g (&, 0) =Ty g ;o -&=0, and (& 0)e
e ker T, & Denote by j the diffeomorphism (p, ¢) — (g, p) of PXP. Since the
set # < Px P is symmetric, we have (UxU) n # == g~ *(0) = (g 0 j)~*(0) and
ker Tipo, 0008 = Tpo, poyZ = K&t T 4o, poy(& o). Thus (&, 0) e ker Ty )€ 07), (0, E)e
€ ker T,,, ,»g which implies that § € ker T g5, - Thus ker T).81, o = ker T €3, -
Using the same arguments we get ker T8, ,, = ker T8, 5,- This proves that
ker Tp81, 5o = ker Ty@s 5, and the mapping p — g(p, po) = &1,,(p) is a sub-
‘mersion at pg.

Since the rank of f;, ,, at po is maximal (= m), (1.3.13) implies that rank T', y =
= rank Tpofl,po- But fl.po(p) = (W"‘+1(])0, Po), R Wr(Po, po): WrH(Ps Po)’ tre
ey W2M(p, po)). Hence

r+1 P42
’w LI

(1.3.14)  rank Tpox =rank T\ g o0 = 2m — T

(1.3.12) implies that for every pe U,y (p) satisfies the equations w™"*1(p,, x(p)) =
=0, ..., Ww(po, x(p)) = 0. Consequently, y takes its values in a (2m — r)-dimen-
sional submanifold »n of U, defined by the equations

(1315) Wm+1(170’ q)=0’ ---swr([’074)=0,

and by (1.3.14), y must be a submersion at p,. Shrinking U, if necessary we may
suppose that y(U,) < U, n A, is an open subset of A" We set 4 = x(U,) n Uy,
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U, = 5~ Y#) n U, .Then U, is a neighborhood of py, .# is a (2m — r)-dimen-
sional submanifold of Uy, and y : U, - # is a submersion. Since for every
rel,

(1.3.16) W (p, u(p) = 0, ..., w(p, x(p)) = 0,

the pair (p, x(p)) belongs to (U, x Ug) N &, or, which is the same, the G-orbits [p]
and [x(p)] coincide.

Summarizing our results we conclude that to each point p, e P there exist
a neighborhood U, of py, a (2m — r)-dimensional submanifold # < U, contain-
ing pg, and a submersion y : U, ~ .# such that for every pe U,, (p, x(p)) € &,
and if (p, ¢) € (Ug X &) n & then g = x(p).

Denote n = 2m — r. Since y is a submersion at p,, there exist a chart (W, ),
v = (O, »%, ..., ¥™), on Pat p, and a chart (V, @), ¢ = (x!, X%, ..., x"), on .#
at po such that y(W) c ¥V and ' = x' oy, ...,y " = x"ox on W. Let p, ge W
be two points such that [p] = [¢]. Then (p, q) € &, (p, x(p)) € &, and (g, x(9)) € &
which implies, since % is a transitive relation, (x(p), x(g)) € #; but also (x(p), x(p)) €
€ &, and by the uniqueness of y, ¥(p) == x(q). In particular, y'(q) = x'o x(q) =
= x' o y(p) = y(p) for every i = 1,2, ..., n. Conversely, if for some p, ge W,
P(p) =¥4q), i =1,2,...,n, then @ o x(p) = @ o x(q) and, since (¥, @) is a chart,
x(@) = x(q). But (p, x(7)), (4, 2(q)) € # so that, by the transitivity of &, (p,q) e #,
i.e. [p] = [¢]. Thus the chart (W, ¢ on P at p, is G-flat. Since p, is arbitrary,
this shows that P can be covered by G-flat charts,

Suppose that 2 is a closed subset of P P. Then by Lemma 1.2, the orbit space
P{G is Hausdorff, and to every p, g € P such that [p] # [g] there exist a neigh-
borhood U of [p] and a neighborhood ¥ of [¢] such that U n ¥ = 0. Taking
W,==n"Y(U)and W, = n"1(V) we obtain G-invariant open sets in P such that
peW, qeW, ,and W, nW,=0.

3. Now suppose that condition (3) holds. We want to show that P/G has
a smooth structure such that the canonical projection = : P~ P/G is a sub-
mersion.

Since by bypothesis every two points of P not belonging to the same G-orbit
can be separated by G-invariant open sets, P/G must obviously be Hausdorff.
It thus remains to show that the charts on P/G associated to the G-flat charts
on P form an atlas; by definition of a G-flat chart, the mapping = will then auto-
matically be a submersion.

Letm = dim P. Let (W, ¥), ¥ = (3%, 3%, ..., y™,and (V, 9), p = (F*, 7%, ..., 7™,
be two G-flat charts on P such that V' n ¥ s #. Let n (resp. k) be the integer such
that the functions y!, ..., y" (resp. y%, ..., 7*) are G-invariant and every G-invariant
function defined on V (resp. ¥) depends on !, ..., y")(resp. 7%, ..., 7*) only. We
shall show that n = k. Let pe V¥ ~ ¥ be a point. The Jacobi matrix Dy~ 1(y(p))
is of the form
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9_ 9y 0 0
oyt ay"
" St
gl’l— 20 0
y ay
(1‘3'17) ay_k+1 ayk'i'l ay-k'i'l aJ—)k-i-l
ayl ayn aylH'l o 5ym
ajjm a}—)m aJ—)m aym
t ayl ayn ayn+1 o aym ‘ *
since the functions y!, ..., 7* depend on y!, ..., y" only, i.e.
—i =1
(1.3.18) Lyﬂ— =0, .., ?y =0, i=12..,k
a.V" Uy"l

Thus if n < k, ot n > k, we get det Dy~ '((p)) = O which is not possible.
Consequently, n = k.

Let p,ge P be two different points. Let (V, ), ¥ = (3%, »2, ..., ™) (xesp.
7, 9), ® = (5", 52, ..., ™), be a G-flat chart at p (resp. q), and let n (resp. k)
be the integer such that the functions y', ..., y" (resp. ¥%, ..., §%) are G-invariant
and every G-invariant function defined on ¥ (resp. V) depends on y', ...,»"
(resp. 7', ..., 7%) only. It is easily seen that again n = k. Since P is connected, it is
arcwise connected, and there exists a continuous mapping ¢ : [0, 1] — P such
that {(0) = p and ¢(1) = ¢. Clearly, there exists a finite number of G-flat charts
Vi), Vo), ooy (Vn, ¥y) such that (V. 1) = (V, ¥), Vnr¥n) = (7, ),
VinV;., # 8 for every j=1,2,...,N — 1, and {([0, I]) = U¥; (union over
i=1,2, .., N). This guarantees, however, that n = k.

Let (V, ) and (¥, #) be as above, and let (U, @) (resp. (U, @)) be the chart
on P|G associated with (V, y) (resp. (¥, #)). To complete the proof it is sufficient
to check that the mapping @¢~ ! : (U n U) = @(U n U) is smooth. Let the
equations

(1.319) y—i =fi,(y1’ yz’ s yn)’ }—)a- —_ ga(yl,yz’ s ym)’

where 1 £i < n,n+ 1= o £ m, express the mapping = :y(F' n V) — p(¥V n V).
Since £' o = y'and x o 7 = y*, (1.3.19) implies that the mapping o~ : (U N
N U) - (U ~ U) is expressed by the equations

(1.3.20) =% = fi(xt, %2, .., 1Y),

where 1 £ i £ 5, and must be smooth.
This completes the proof of Theorem 1.11.
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Remark 1.1. We note that our assumption in Theorem .11 that P should be
connected was only used to prove the implication (3) = (1); we might Sllp,’}(;s.e
more generally that P = ®s(P,), where P, is a connected component of 1:) li‘
assumption guaranices that every G-flat chart on P has the same m'ma er o
G-invariant coordinate functions which implies in turn that the manifold P/G
has constant dimension (equal to the number of G-invariant functions in a G-flat
chart), If P is not of the form ®¢(F,) and there are two connected componentls P,
P, < P such that @4(P;) N ®e(P;) = @ then the dimensions of the manmnifolds
‘I’—G(Pl)/G and P4(P,)/G need not be the same.

[
.

Remark 1.2. Let # : X — Y be a surjective submersion, Q a manifold, /1 ¥ = 0
a mapping. If fis smooth then /o 7 is smooth; we shall show that the converse
is also true. Let y € Y be a point. There exist a neighborhood U of y and a section
§:U — Xie. asmooth mapping of U into X such that n o § = idy. Thus on U,
f==fonod, and if fom is smooth, / must be smooth at y. Since y is arbitrary,
/is smooth.

In particular, ¥ has a unique structure of a smooth manifold such that 7 : X" = Y
is a submersion. Let (U, @), (U, ¥) be two charis on Y not necessarily belonging
to the same smooth structure. We may suppose that there exists a chart (¥, @)
(resp. (V, ¥)) belonging to the smooth structure of X such that n(¥V) = U and
®om =pry o® (resp. ¥ om = pr; o ¥), where pry; : R"XR"™" » R"is the first
canonical projection and #=dim ¥, m=dim X. Then pr; o ¥® '=y o7 o &=
=yp toprnd ' = Yp ' opr, and since pr; o F&~' is a smooth mapping
@~ o pry is also smooth. Since pry is a surjective submersion the above argument
shows that ¥¢ ™! is a smooth mapping. This proves the uniqueness of the smooth
structure on Y.

Applying these remarks to a left G-manifold P we see that if the orbit space P/G
has a smooth structure such that the canonical projection = : P - P/G is a sub-
nersion, then this smooth structure is unique. If in this case Q is a manifold and
J/: PIG - @ is a mapping, then /f is smooth if and ounly if o 7 is smooth.

If the assumptions of Theorem 1.11 are satisfied we call the orbit space P/G
with its smooth structure the orbit manifold of the left G-manifold P.

Let P be a left G-manifold, let ¢ denote the left action of G on P. As above, we
define a mapping ¢’ : GXP - PXP by

(1.320)  @®'(g, p) = (p, (g, p)).
Clearly, the image of &', im @', is precisely the set &, i.e.

(1.321)  m9 = .
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‘Thus the orbit space P/G has the orbit manifold structure if and only if im @’
is a closed submanifold of P x P. Some simple sufficient conditions imposed on the
mapping &, ensuring the existence of the orbit manifold structure on P/G, are
given by the following corollary.

Corollary 1. Suppose that the left action ¢ of G on P is proper and free. Then the
orbit space has the orbit manifold structure.

Proof. 1. We shall show that under our assumptions, ¢’ is an injective jmmer-
sion. Let m = dim P, n = dim G. Let (g, p) € G X P be a point, (£, e T,GXT,P
a tangent vector to G x P at this point. We have

(1321 T, 0 . (&0 = @ Ti8(g, p) . & + To0(g, p) . {).

Thus rank T, ,, @' = m -+ rank T,®(g, p). Since the orbit mapping g -+ ¥(g, p) =
== @ (g) is of constant rank (Lemma 1.1), we have rank T, ,,® = m -+ rank T,9,.
But @ is a frece action and the mapping g — @,(g) is injective so it is of rank n
-and we have

(1.3.22)  rank Ty, @' =p -+ n.

Thus @' is an immersion. It is directly seen that ¢’ is injective: If (p, @(g, p)) =
= (g, (h, ¢)) for some (g, p), (h,q)e GXP, then p = g and &(g,p) = ¥(h, q),
ie.p==g, p==®(g" . h,p). Since @ is free, we have g = h as required. Thus @
is an injective immersion.

2. We have proved that &’ is an injective immersion. On the other hand, @' is
proper, and the Bolzano— Weierstrass theorem for Euclidean spaces implies
that &’ is a closed mapping. Therefore, @' is a homeomorphism of G X P onto
a closed subspace of PXP. Thus im @' = 2 is a closed submanifold of PxP
which proves our assertion.

Let W « Pbe an open set, and denote by Invg W the set of G-invariant functi-
-ons defined on W. For every f, f;, /> € Invg W and a € R, and every pe W we set

i+ ) =)+, (€. =c.f(p),
U1 -2 ) = /i(p) . /(D).

The mappings (3, /;) = fi +fa, (@.f) = a.f and (f;,/2) =/ ./, define the
structure of a real, associative, commutative algebra with identity on the set Inv, #:
we call this algebra the algebra of G-invariant functions on W, or the algebra of
G-invariants on W.

Let (V,¥), ¥ = (b4, ¥3, ..., ¥™), be a G-flat chart on P, and let n be the integer
for which the functions y!, ..., 3" are G-invariant, and every G-invariant function

(1.3.23)
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on ¥ depends on !, ..., y* only. Then we call the functions y!, ..., y" the G-irvar-
1 the G-flat chart (V, ). )
mnlt.cftm;:’t[::m}‘aﬁc an ogcn set. A system (f%, /2, ..., f™) of G-invariant functfm;;
defined on W is called a basis of the algebra of G-invariants Invg W,or a ba;il-s‘w)
G-invariant functions oo W, if to every point p € W there exists a G-flat chart ( » ¥
¥ = (%, y3, ..., ¥, at p with G-invariant functions y!, ..., ", such that ¥ —f
wr fY1,, oo, ¥ = f*|,. The number n is called the dimension of the algebra o
G-invariants Invg W. . . .

Under the hypothesis of Theorem 1.11, the dimension of the a]gebra' Inve
is independent of the choice of W; in this case the G-invariant functions are
precisely functions on open subsets of the orbit manifold P/G. .

Let us now consider an (algebraic) group G and suppose G is the semi-direct
product of its subgroup H and its normal subgroup K, i.e., G = HXK. Let O
be a set endowed with a left action of the group G, denoted multiplicatively. That
is, for each g,,g8,eG and g€ 0, (8, .8,) . 4 =g, .(g2.9), e.q=g. The set Q
is also endowed with an action of the subgroup K of G. Let [¢]x denote the K-orbit
of a point g€ 0, ie. [¢lx={0€Q1q =g.q, gcK}, let Q/K be the set Of]
K-orbits, and let 7 : O — O/K denote the canonical projection ¢ — [¢]x onto the
quotient space. We set for each he H

(1.3.24) k. [q)e = [h.gl«-

If g, 9, € [q]k, then there exists an element g € K such that g, = g.g¢, so that
h.gy=h.g.q,=h.g.h™" . h.q;; since K is a normal subgroup of G,
h.g.h 'eK and [h.q,]x = [I.q,]x which means that the element & . [@]x €
€ O/K defined by (1.3.24) is correctly defined. The mapping of Hx Q/K into Q/K
defined by (1.3.24) is a left action of H on Q/K.

Let §: Hx,K - H be the canonical homomorphism of groups defined by
(1.2.36)

Lemma 1.6. Suppose that we have a left action (h, p) — h . p of the group H on
a set P, and a mapping F : Q — P such that for each ge G and g€ Q

(13.25)  Flg.q) = B(g). Fla).
Then F has the form

(1326) F=Fpon,

where Fp : Q/K — P is a uniquely determined H-equivariant mapping.

Proof. (1.3.26) implies that if F,, exists it is unique. To prove the existence of Fe,
choose any point g€ @ and consider the point F(g) e P. By (1.3.25), F(g) does
not depend,on the choice of ¢ in the equivalence class [q]x. We put
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(1.3.27)  Fp([q]e) = F(g).

This defines a mapping Fp : Q/K — P satisfying (1.3.26). Let ge G be any point.
Since g is uniquely expressible in the form g = g'. f(g), where g' e K (see Sec. 1.2),
we have

2g.q) =[g.q9]x=[B&).BE)'. 2. 8. q)k =
= B(g). [Be) ™' . g . B(2) . qlx = B(g) . n(q).
‘Thus for every he H and g Q

azg o [6]0) = Folh . n(@) = Fo(n(h. g)) = F(h . q) =
=h.Fg) =h.Fp(q]p),

and Fp is H-equivariant.

(1.3.27)

Now let G be a Lie group. Suppose that G is the interior semi-direct product
of its Lie subgroup H and its normal Lie subgroup K, in notations G = H X K.
Then the canonical homomorphism f : Hx ,K — H is a homomorphism of Lei
groups. Let O be a left G-manifold, and denote by 7 : @ = Q/K the canonical
projection of @ onto the orbit space,

Theorem 1.12. Suppose that Q/K has the structure of the orbit manifold. Then
the formula (1.3.24) defines the structure of a left H-manifold on Q/K.

Proof. We want to show that the mapping HxXQ/K>s(h,y) > h.ye Q/K is
smooth. Let p be a smooth local section of the projection # : Q —» Q/K defined
on an open set I/ = Q/K. We have for everyhe Hand ye U

(1329  h.y=h.a@pO) = xh.yO»).

Thus the mapping (h, y) — h . y is expressible as the composition of smooth map-
pings, locally, so it must be smooth on H x U. Since to every point y € Q/K there
exist a neighborhood U of y and a smooth section of = defined on U, this mapping
is smooth.

Consider a left G-manifold O with the left action @ of G, aud the Lie algebra L(G)
of the Lie group G. Let expg : L(G) — G be the exponential mapping of the Lie
group G, let ¢ e I(G) be a vector. We set for each g€ Q

(1.3.30) 2'D @)= {—dq; P,(exp stf)}

R
@'(¢) is a vector field on Q, called the fundamental vector field on the left G-mani-
fold Q, associated with the element & € L(G). Obviously
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d
(1.3.3D) ') (q) = T,9,. {Fs_ (exp sé)}o= T.9,.¢.
Let g, € G be any element. We define a mapping Int g, : G — G by the formula

(1.3.32)  (Intgo) (8) = gogg ™"
and put

(1.3.33) Adgo = T.Intg,.

By definition, Ad g, is a linear automorphism of the vector space T,G. Since for
any g,, 82 € G, Int(g,8,) = (Int g,;) o (Int g,), we have

(1.3.34)  Ad(21£3) = (Ad gy) o (Ad g,).

This means that the mapping g - Ad g is a homomorphism of the group G into
the group of linear transformations of L(G), GL(L(G)). This homomorphism is.
called the adjoint representation of the Lie group G.

Theorem 1.13 Let Q be a left G-manifold, © the left actionof Gon Q. Let &, &5, &, €
€ L(G) be any vectors, ge G, q& Q any points. Then

(1335) &) od,=Td,.b'(Adg™". ),
(1.3.36) (&, &,]) = —[#E.)s o'(£,)].

Proof. To derive (1.3.35) write (9'(¢) o D)) (9) = TPy, q - & Since for any
he G

Do, (h) = (h, B(g, 7)) = P(gg™ hg, q) =

1.3.3 i :
( 7) = dj(g: ¢(g lhg’ 4)) = (qu o (pq o Int g 1) (h)’
we have
(1'3'38) Te(p‘ﬁ(g,q) ' é = qujg © Teéq o Ad g—l . 6 =

=T,9,. P'(Adg™'. &) (9),

which gives (1.3.35).

To prove (1.3.36) denote by J the diffeomorphism g —» g~! of G onto G. We:
have for any g,he G and g QO

(1.3.39)  (Po-1,9 0 N) (g) = B((hg) ™", q) = (D, 0 J o L) (9),
where L, is the left translation on G by h. Thus

(1.3.40) D0 = P14y 0 J 0 Lyy-1.

(341



Let ¢ € L(G) be any element. Applying T,(®, o J) to &(h) we obtain

T‘h((pq ° J) . é(h) = Te(pw(h'l,q) o TEJ o leyl’]l‘1 ° TGLII . é(e) =

(1.3.41)
= Te(pd’(h“,q) ° TeJ . é(e)

But
(13.42)  TJ.¢e) = TL,J.{-ST (exp zf)} - {% (exp (—18))o = ~&(e),
0]

so that by definition

Ti(®,00). &(h) = =T Py-1,q - £(€) =

= =¢' () (@1, q)) = —D'(&) (P, 0 J) (h)).

This means that the vector fields ¢ and —®'(£) are (P, o J)—related,
(1.3.44) T(P,0J). &= —D'(£) o (P, 0 J).

(1.3.43)

Using this equality we can easily compute &([&,, &,]) for any ¢&,, &, € L(G).
Since

T(®, 0 J) ([&1, &) = ~ (&1, &) o B0 =
=[~®'(&,), —B'(E)] 0 &, 0J

for all g e O, we obtain (1.3.36) as required.

(1.3.45)

Corollary 1. The mapping & - —®'(&) of L(G) into the Lie algebra of vector
fields on Q is a homomorphism of Lie algebras. In particular, the fundamental vector
fields on Q form a subalgebra of the Lie algebra of vector fields on Q.

Proof. This assertion follows from (1.3.36).

Corollary 2. Let Q be a left G-manifold, ® the left action of G on Q.

(a) If @ is effective then the homomorphism of Lie algebras & — —@'(¢) is
injective.

(b) If @ is free then the Lie algebra of fundamental vector fields on Q consists
of nowhere zero vector fields.

Proof. (a) Suppose that & is effective. Let @'(¢) = 0 for some ¢ € L(G). Then
for all ge Q, d(exp t&, g) = q or, which is the same, ®,,,,; = idg. Since @ is
effective, this gives exp t€ = e and & = 0.

(b) Let g € Q be any poiat. By definition, &'(&) (g) is the tangent vector to the
curve ¢ — Pexp t£, q). If &'(£) (¢) = 0 then this curve is constant, contradicting
the assumption that @ is frce. Thus @'(£) (9) # 0 and we are done.
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2. DIFFERENTIAL INVARIANTS

The theory explained in this chapter, reflects and extends the classical general
theory of differential invariants. The fundamental notions for this theory are the
following: r-jet, differential group, principal fiber bundle, associated fiber bundle,
higher order frame bundle, r-frame lifting, Plifting, differential invariant, realiza-
tion of a differential invariant.

2.1, Manifolds of jets. Let X and ¥ be manifolds, » 2 0 an integet, x € X and
ye Y arbitrary points. Let C®(x, y) be the set of smooth mappings f defined
at x, with values in ¥, such that f(x) = y, We say that two mappings fy,/, €
€ C®(x, y) are r-equivalent if there exist a chart (U, ¢) on X and a chart (V, )
on Y such that xe U, ye ¥V, and foreach kK, 0 £ k = »,

(2.1.1) DMyfio ™) (@) = D*lif20™ ) (p(x)).

The relation “fy, f; are r-equivalent” is an equivalence relation on C*(x, y). An
equivalence class with respect to this equivalence relation is called an r-jet with
source x and targe! y. An r-jet P with source x and target y, whose representative
is a mapping fe C*(x, y), is denoted by J.f. The set of r-jets with source x & X
and target y € Y is denoted by J{, ,,(X, ¥).

We denote

(2.1.2) JX,Y)={J V5 &X V),
x,y

and set for each Pe J'(X,Y), P =Jyf, and for each 5, 0 L s £ 1,

(2.1.3) " {(P) = Jif.

7"* is a well-defined surjection of J*(X, ¥) onto J*(X, ¥). For s = 0, JO(X, ¥) is
canonically identified with X' x ¥, and we define

rl

(2.1.4) 7" =n"°, ny = pr; o7, ny = pryon,

where pr, (resp. pr,) is the first (resp. the second) projection of the Cartesian
product X' x ¥. The mappings n"*, #’, ny, and n¥ are called canonical jet projections.

Let X, Y, Z be three manifolds. We say that rjets Pe J(X, ¥), Qe Jy (¥, Z)
are composable if the target of P is equal to the source of 0. If P = J,fand Q =
= Jyg then P and Q are composable if and only if f(x) = y. In this case we set

(215) Q o P = J;(g o f)

and call the r<jet Q o Pe J'(X, Z) the composite of Pand Q. The mapping (P, Q) —~
= Qo P of J (X, Y)xJ, (¥, Z) into Ji, (X, Z) is called the composition
of jets.
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Let dim X = dim ¥. An r-jet Pe (X, ¥) is called invertible if there exists
an rjet Qe Ji,, (¥, X) such that

(2.1.6)  QoP=Jlidy,

where id is the identity mapping of X. It follows from the inverse function theorem
that an r-jet P is invertible if and only if it has a representative which is a diffeo-
morphism of a neighborhood of the point x onto a neighborhood of the point .
If P is invertible then the r-jet Q such that (2.1.6) holds is unique, and is called the
tnverse of P. We have

(21.7)  PoQ=J)idy.

By definition of an r-jet, the set Jg, olR", R™) is canonically identified with the
product

(2.1.8) Ll .= L(R", R™) x L3(R", R x ... x LI(R", R"),

where LX(R*, R") denotcs the vector space of k-linear, symmetric mappings of
R"<X R"X ...x R" (k factors) into R". The canonical (global) chart on L , is defined
by means of the canonical (global) coordinates aj,;, ., introduced as follows. If
AeL, ... A= Jym, where a = (¢°), then for each o,j,,j;, ...,J, such that 1 S
Sosmlsjsh,s.. sj,snlsksr,

(2.1.9) a;‘xfz---.lk(A) = DJaDJ': kaad(o)‘

We note that (2.1.9) defines the functions gj ;, ;. for all sequences (j;,fz, ..+, J.)s
not only for non-decreasing ones; we choose, however, for the canonical coordinates
those of them which are independent, and satisfy j; £ j, £ ... £J,.

Let U7 (resp. V) be an open setin R" (resp. R™), and let ¢, denote the translation
y =y — x of R". Assigning to an r-jet Pe JU, V), P = J.f, the triple (x, f(x),
Jo(tpxy /1~ 5)), we obtain the canonical identification of J'(U, V) with UXV XL} ,.;
J(U, V') thus becomes an open set in the topological space R*XR™XLj ,.
Obviously,

2

+<n+r—l>>=n+m(n+r)'
4 n

Let X and Y be two manifolds, dim X = n, dim ¥ = m. Using the smooth
structures of the manifolds X, ¥, we can introduce a smooth structure on the set
J(X, ¥) of r-jets with source in X and target in ¥. Let (U, p), ¢ = (x), 1 S i g n

dim J'(U, V)=n+m<1+n+<n+l>+...+
(2.1.10)
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(resp. (V, ), ¥ = ("), 1 £ ¢ £ m) be a chart on X (resp. ¥). Denote W = UV,
W' = (n")"}(W), and put for each Pe W’, P = Jf,

(2.1.11) £(P) = (@), ¥(J (%)), Jolty pap¥ifo™ . )

It is easily seen that y" is a bijection of W onto the set J"(p(UN), Y (¥)) = R*X
x R"x L}, ,. This bijection can be described by means of components. Writing
forji £j, £ - 2,

(2.1.12) y}'d,,__jk = d;,j,,,,Jk oy,

we obtain, without explicit mentioning that the sequences (j,, J;, ...,J,) should
be non-decreasing, ¥ = (x', ¥, ¥;» vy ¥, 2...5,). Notice that similarly as in (2.1.9),
the functions (2.1.12) are defined for all sequences (jy, j,, ..., J,). The set J'(X, Y)
can be endowed with a unique smooth structure such that for any charts (U, ),
(V, Y, the pair (W', ¥") is a chart on J'(X, Y); with this smooth structure, J'(X, ¥)
is called the manifold of r-jets with source in X and rarget in ¥, The chart (W™, 1)
is called associated with the charts (U, @), (V, ¥).

It is easily verified that with respect to this smooth structure on J(X, ¥) the
canonical jet projections (2.1.4) become smooth mappings; each of these mappings
is, moreover, & surjective submersion or, in another terminology, a fibered manifold.
The composition of jets (2.1.5), considered as a mapping of J'(X, Y) @ J (Y, Z)
into J(X, Z), where @ denotes the fiber product of the canonical projections
J'(X,Y) - X and J'(Y, Z) » ¥, is also smooth.

The construction of the manifold of r-jets with source in X and target in Y
immediately applies to the case when Y is replaced by J*(X, ¥), where s is a non-
negative integer. In this way we obtain the manifold of r-jets J°(X, J*(X, Y)) whose
elements are usually called non-holonamic jets (with precise specification of the
integers r, s if necessary). If (U, @), (V, ¥), and (W*, ¥*) are the above charts then
we get the associated chart on J'(X, J*(X, Y)) of the form (W), (x*)).

Let U < X be an open set, f : U — ¥ a mapping. We define a mapping U3 x —
— Jf(x) e J'(X, Y) by

@.1.13)  Ifx) =T

Clearly, J'f is smooth, We call it the r-jez prolongation of f,

Let Ze J"*S(X, Y) be a point. Choose a representative f of Z so that Z = J.**f.
Then the r-jet J5(J%/) is an element of J(X, J5(X, ¥)). Expressing Ji(J%/) in the
chart (W*)", (x*)") we can easily see that this r-et depends on Z only. Thus
putting

(2.1.14)  «(2Z) = JLI)

we obtain a mapping 1 : J**¥(X, Y) - J'(X, J(X, Y)) which is an embedding; we
call it the canonical embedding.
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2.2. Higher order frames. Let n, ¥ = 1 be any integers, and let us consider the

manifold 7 (2.1.8). Let a};, , be the canonical coordinates (2.1.9) on I

and denote by L, < L; , the subset of invertible r-jets. Obviously, e
(22.1) L, =1L, \{deL.,|det(a(4) = 0}.

It is directly verified that L}, is a Lie group. By (2.2.1), L is an open subset in L ..
Any two elements 4, Be L] arc composable r-jets, and the camposition of j,c't‘s
(2.1.5) defines a group structure on L],. Since the smooth structure of L} is defined
by the (global) coordinates ), ;. and the coordinates af ;, , (A o B) depend
polynomially on af . . (A) and af,, ., (B), the group multiplication is analytic,
and L; is a Lie group. We call L the r-th differential group of R", or just the
differential group. The functions aj,;, ;. Where 1 Sign 1S/, </, < .. <
£Jj.sn, 1<k £ r (the restrictions of (2.1.9) to L}) are called the canonical
(global) coordinates on L},.

Example 2.1. To illustrate the group multiplication in differential groups we
describe the multiplication of L? in the canonical coordinates. Using the chain.
rule we obtain for any two points 4, Be L}

aj(A4 o B) = ay(4) aj(B),

aj,;.(4 o B) = ay,,(4) a}i(B) ai(B) + ai(4) a}, .(B),
(2.2.2) @}, 1ais(A4 © B) = 8u,,(A) d5i(B) ai¥(B) a}i(B) +

+ ay,u,(A) (af};,(B) a}2(B) + aj};,(B) aji(B) +

+ a4l (B) d(B)) + ai(4) af,,;,(B).

In deriving these formulas, we have used some representatives of the r-jets 4, B,
and (2.1.5).

There are some useful global coordinates on the group L, differing from the
canonical ones. Let A€L], A= Jgu. Then 47! = Jo™*, and we put for all i,

jl:jz: 3jk
223) b)) = @l A7)

or, which is the same, b},;,. ;. = d},j,..jp © J» Where J is the diffeomorphism

A= A~ 1, The functions b.’}ljz---}k’ where 1 Sisn ls2jis/hs.. .54, 80

1 < k < r, define a global chart on L,. The transformation formulas to the

canonical coordinates and vice versa may be easily obtained from definitions.
Let for example » = 3. Putting B = A~! in (2.2.2) and using .

di(J3id) = 8%,  a},;,(J3id) =0,

(224) ajl!zl:(‘]g ld) =0,
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where id = idz., we obtain

ab} = &,

ay ., b)) + a},b’juz = 0,

a,‘,‘,,.,b DYDY 4 ap, (D)L, b5 + B B +
+ b33,07) + aubfpy, = 0.

(2.2.5)

The first of these equations determines bj" as the elements of the inverse matrix
of the matrix (a,) and, multiplying both sides of the second and the third equations
by b7 we obtain the remaining transformation formulas.

Let X be an n-dimensional manifold. An invertible r-jet { e Jig, ,(R", X) is
called an r-frame at the point x € X. Let F"X denote the set of all r-frames {, where
the target of { runs over X, and let n% denote the canonical jet projection of F*.X
onto X. Consider a chart (U, @), ¢ = (x%), on X. Denote W" = (n%)~}(U) and
put for each { e W", { = Jyu,

(22'6) qp,(C) = ((p(,u(O)), Ja(tqz(u,(O)) (pu))'

©" is a bijection of W' onto (U)X L, = R"XI; ,. We set for all I, ji, js, ..., Jy
and for all { e V"

C}u,...p,(C) = a;;j;...ﬁ:(] o(touoyn®w)) =
= DfLsz---‘ka(xiu) (O),

where d},;, ., are the canonical coordinates on L. The set F'X can be endowed
with a unique smooth structure such that for each chart (U, ¢) on X, (W', ¢") is
a chart on F'X. The set F'.X with this smooth structure is called the manifold of
r-frames over X. The chart (W, ") is called associated with the chart (U, @);
we write x! instead of ¥ o % and, without explicit mentioning that the sequences
UtsJas «vs Jy) should be non-decreasing, ¢” = (x, {},, ..., szmh).

The manifold of r-frames F"X is endowed with a natural structure of a principal
L,-bundle. To check it, notice that the mapping =% is smooth, and the differential
group L, acts on F'X to the right by the composition of jets,

(2.2.8) {. A=A

(2.2.7)

This action is free, i.e., no element except the identity of L} has a fixed point, and
its orbits coincide with the sets (n%) ™! (x), where x runs over X. Moreover, slightly
modifying the mapping ¢ (2.2.6) and putting for each (e (n})~ ' (U), { = Jg,u’

(2.2.9) @) = (1(0), Jo(tou0n @B

we obtain a diffeomorphism ¢" : (1%)~! (U) -» UXL] such that for each { e
e(ny)~t (U), { = Jou, and 4 e L},
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(22‘10) q)'(l . A-) = (ﬂ(O), :)(trp(u({)))(p”) o A)s

(multiplication in the group L[, on the right). These observations show that the
manifold of r-frames F*X has the structure of a right principal L} bundle over the
manifold X; we call it the bundle of r-frames over X. The bundles of r-frames are
also called the higher order frame bundles.

Example 2.2. We shall write down explicitly the right action (2.2.8) of L} on F* X..
Let (U, ¢) be a chart on X. For any { e (n})™ "' (U) and de L3

U . A) = Q) dla),
U A) = (@) ali(a) aki(d) + L) ab (),
(22110 @A) = L) a51(4) a§i(4) a¥(4) +
+ L) (a5, (4) d(4) + dfty (A) d¥ied) +
+ ab () aA) + L) af, ., (A)-

These formulas define the right action (2.2.8) in terms of the chart associated
with (U, ).

2.3. Fundamental categories. The purpose of this section is to introduce the
fundamental categories used in this book. We begin by recalling some definitions.

Let us consider a system % = (Ob &, (Mor (X, ¥), X, ¥ e Ob %)), where Ob ¥
is a clasg of elements X, ¥, ..., and Mor (X, Y) is a set. The system % is called
a category, if to any three elements X, ¥, Z € Ob ¥ there is assigned a mapping
(f, 8) — g of of the set Mor (X, ¥)xMor (¥, Z) into Mor (X, Z) such that the
following conditions hold:

) Mor(X, Y)nMor(X', )% @ifandonly if X=X',¥Y=7Y";

(2) each set Mor (X, X) contains an element id, such that for any f € Mor (X, X),
idy of = foidy = f;

(3) the mapping (f, g) — g o f satisfies the associative law.
The elements of the class Ob @ are called the objects of the category ¥, and the
elements of the sets Mor (Y, ¥) are called the morphisms of ¥. The mapping
(f,8) — g of is called the compasition of the category ¥. Two morphisms fe
e Mor (X, Y¥), ge Mor (¥’, Z) are called composable if ¥ = Y'. A morphism fe
€ Mor (X, Y)is called an isomorphism (in the category %) if there exists a morphism
g € Mor (Y, X) such that fo g = idy, g o f = idy.

A covariant functor T : of — 28 from a category & into a category & is a mapping
assigning to each element X € Ob &/ an element 7(X) € Ob 4, and to each morphism
J € Mor (X, Y) of the category o a morphism 7(J) € Mor (z(X), 7(Y¥)) in such a way
that the following two conditions are satisfied:
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(1) for any two composable morphisms f, g of the category .7,
3.1 (g o f) = 1(g) o 1(f),

(2) for each object X € Ob &,
(2.3.2) 7(idy) = idyx)-

Replacing in this definition condition (2.3.1) by the condition (go/f) =
= 7(f) o ©(g) we obtain a contravariant functor v : & — A.

Let # and v be two covariant functors from a category ./ into a category £ -
A natural transformation of the functor x into the functor v is a system ¢ = (tx)
of morphisms 2y : u(X) - v(X) of the category 4, where X runs over Ob &7,
such that for any morphism /'€ Mor (X, Y) of the category « the diagram

HX) —— y(X)
@39 | \vcf)

i tr

§(Y) —— %(¥)

commutes. An analogous definition can be given for contravariant functors.

We now introduce the categories used in the theory of differential invariants.
The category of real, n-dimensional, smooth Hausdorff manifolds satisfying the
second axiom of countability, and their embeddings, is denoted by 2,. #4, detnotes
the category whose objects are smooth right principal fiber bundles over the
objects of the category 2,, and whose morphisms are homomorphisms of these
principal fiber bundles over the morphisms of the category 2,,. If G is a Lie group,
then 24,(G) denotes the category formed by smooth right principal G-bundles
over the objects of 2,, and their G-homomorphisms over the morphisms of 2, .

By a (left) G-manifold we mean a manifold endowed with a left action of a Lie
group G. A mapping /' : P — 0 of G-manifolds is called G-equivariant if f(g. p) =
=g.f(p) for all ge G and pe P.

To introduce a category of fiber bundles we should fix some notation, Let ¥~
be a principal G-bundle with projection n : ¥ — X, P a left G-manifold, and ¥ x g P
the bundle with fiber P, associated with the principal G-bundle Y; the projection
of the bundie ¥ x ;P is denoted by np. A point of ¥ x P is by definition an equi-
valence class z = [y, p] of a pair (y,p)e Y P relative to the right action
00,8~ (.88 .p)of Gon YXP.

Let ¥, (resp. Y,) be a principal G-bundle with projection = : ¥y — X, (resp.
@: Y, = X,), P(resp. Q) a left G-manifold, and consider the fiber bundies ¥, X 52,
Y, X¢Q. We say that a mapping & : ¥y XgP — Y, X0 is & homomorphism of
¥, X¢P into Y, % ;Q if each point x € X, has a neighborhood U such that there
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exist a G-homomorphism of principal G-bundles oy, : 7/} > ¥, and a smooth
mapping of manifolds F, : P - Q such that

(2.3.4) @[y, p]) = [ou(y), Fu(p)]

for all (v, p) e~ L(U) < P.

This condition is equivalent to saying that there exist U, oy, and Fy such that
the diagram

]
Ux P — Y, %0
t

au X Fu ‘

~Y,xQ

(2.3.5)

UxP

where UxX P - UxgP and ¥, X Q — ¥, X0 are the canonical projections onto
the quotient, commutes.

Any pair (oy, Fy) satisfying (2.3.4) is called a representative of the homo-
morphism & over U = X;. We denote by &y = [0y, Fy] the restriction of the
homomorphism & to n; '(U). If U = X, and there exists a representative (o, F)
of @ over X, we write & = [o, F].

We have the foliowing simple consequences of the definition of a homomorphism
of fiber bundles.

Theorem 2.1. Let @ : Y| XzP - Y, X350 be a homomorphism of fiber bundles.

(a) @ is a homomorphism of fibered manifolds, i.e., there exists a unique sniooth
mapping of manifolds &, : X; — X, such that g5 o & = &, o 7p.

(B) If (o, Fy) is a representative of @ over an open set U < X, then Fy : P — Q
is a G-equivariant mapping.

(c) Let U < X, be an open set and &y = [oy, Fy]| = [y, Fy|. Then there exists
a unique mapping hy : n~Y(U) > G such that

(2.3.6) &u(y) = ou(y) . hu(y),  Fulp) = hy(y) . Fulp)

forall ye Y,, g G, and p e P. This mapping satisfies
2.3.73 hy(y.g) =g . hy(y). g

Proof. (a) Let ¢y = [oy, Fy], &y = [0y, Fy] for some open sets U, V' = X;;
it is enough to show that there exists a unique smooth mapping of manifolds
@, : U ¥ - X, such that g 0 & = &5 o 7p 01 7y *(U u V). Denote by proj oy
(resp. proj oy) the projection of gy (resp. ay). Let xeUn/V, zenp(x), z=
— [y, P]- We have (proj o) (x) = proj oy o 7(y) = @ o 0y(p) = @ o Pyl2) =
= 04 o P(2) = 0g o Dy(z) = proj op(x). Putting 00(x) = (proj oy) (x) for xe U,
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00(x) = (proj ay) (x) for xe ¥V we obtain a well-defined mapping ¢, : Uuw V —
s X,. Obviously, ®o o Tp = g o @ on np (U u ¥) as required.

(b) Let z = [y, p] € 77 "(U). For any point ge G, z =[y. g, 7' . pl, ﬂlnd we
have @(z) = [UU(.V)aFU(p)] =[oy(»). 8. 87" . Fu(p)], 2(2) = [0u(y . 2), Fu(g~ P
hence (b) follows from the property oy(y) . g = oy(y . 8) of 0y.

(c) The proof of this assertion is straightforward.

Theorem 2.1 describes the freedom in the choice of the pair (o, Fy) represent-
ing ®. If in particular, oy = @y, then necessarily Fyy = Fy; if Fy = Fy, then hy()
belongs to the isotropy group of the point Fy(p) € @ for each p € P. Theorem 2.1
may also be used to define global homomorphisms of fiber bundles by means
of their local representatives.

Fiber bundles (with various fibers) associated with principal G-bundles from
the category #4,(G), and homomorphisms of fiber bundles over morphisms of the
category &,, form a category which will be denoted by #%,(G).

If XcO0bLY,, then the bundle of r-frames over X, F'X, is a right principal
L’-bundle, i.e. an element of Ob #%,(L};). Let a € Mor 9, o : X; — X, and let wk,
(resp. my,) be the projection of F*X (resp. F'X,) . « defines an L}-homomorphism
Fo: "X, —» F'X, of principal L;-bundles by the formula

(2.3.8) Fa) = Jyo o {,
(composition of jets on the right). The projection of F'a is equal to o, that is,
(2.3.9) 2y, 0 Ft = a o7}, .

The correspondence X — F'X, o — F'a is a covariant functor from the category 2,
to the category £, (L), called the »frame lifting, and denoted by F". The morphism
Fra is called the r-frame lift, or simply. the Zift, of a.

Let F" be the »-frame lifting, Q a left L -manifold. For a manifold XeOb 2,
denote by Fg X the fiber bundle with fiber O, associated with the principal L;-bundle
F'X. Consider 2 morphism o € Mor %,,, o : X; — X,, and put for each z € Fy X,
z =[{,q],

(2.3.10) 0a(z) = [F'a(0), q].

It is easily seen that this defines a morphism Fpo € Mor & %,(L}), in our previous.
notation, Foa = [F'e, idy). The correspondence X — FLX, o — Fpa is a covariant
functor from the category 9, to the category & %,(L}). We call this functor the
Q-lifting associated with the r-frame lifting F', and denote it by Fj. The
morphism Fpo is called the Q-lift, or simply the lif1, of a.

2.4. Differential invariants and their realizations. We state the following defini-

tion. A differential invariant is an L'-equivariant mapping f: P — Q of an
L,-manifold P into an L-manifold Q.
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Let P and Q be two Lj-manifolds, /: P - @ a differential invariant. For each
X e0b 9, and each ze Ob F4,(L)), z = [¢, p], the formula

(2.4.1) Sl =[L fW)]

establishes a morphism fy € Mor F4,(L), Sy  FRX — Fa X, whose projection

is idy. This morphism is called the realization of the differential invariant £ on the
manifold X,

Theorem 2.2. Let X Ob 2, ¢ € Mor FRBLy), D : FpX — FoX. The following
I'wo conditions are equivalent:

(1) For each we Mor 9,,, o« : U — X, where U is an open subset of X,
(242) "Qd. o =0, Fid.

(2) There exists a unique differential invariant f : P — Q whose realization on X
is @, i.e. such that fy = @.

Proof. Suppose that condition (1) holds. Denote by m (resp. Ty, p. TESP. Ty o)
the projection of the bundle F'.X (resp. FpX, resp. FpX). We shall show that the
projection of the morphism &, denoted by @, is idy. We have, using (2.4.2) and
the properties of morphisms of fiber bundles, Ty, g0 Fgtto @ = ny g 0 ® o Fpo,
Zofygo® =Pyonypolpn, odyonyp==®yo0aonyp, that is, x o &y =
= @y o 2; since this holds for each @, we must have @, = idy. Let x, € X be any
point, { € (n})~(x,) an r-frame. { defines a mapping @, : P — ( by the relation

(2.4.3) ®(2) = [, D),

where z = [{, p]. We shall show that the mapping &, is independent of { (over x,).
Fix {, € (ny) ™ (xq), {o = Jgu, choose A€ L], A = Jio, and put o = uou~'. By
the definition of the r-frame lifting, (o o A = Ji(uo) = Ji (uop™*) o Ju =
= F"a({,). Using our assumption, we obtain for each p e P

Fot o 8([{o, p]) = [F'allo), P1(P)] = P o Fre[{o, P]) =
= [F "a({o), (bFra(go)(P)] = [F "a(lo)s ¢{00A(p)])
which implies @y, = &y, 4. By the transitivity of the action of L} on F"X, &, must
be independent of the choice of { in the fiber over x, and depends only on xg.
We shall show that in fact it is independent of x;.

For x e X we define &, as &,, where { is any r-frame over the point x. Let x,,
x, € X be any points. Choose an element a € Mor 9, sending x; to x;. For each

ze(ny,») ! (x1), z = [{, p]
(24.5)  For o ®(z) = [Fu((), 8,,(p)] = P o Fra(z) = [F'a)), 2,,(p)],

which implies &, (p) = D,,(p).

(2.4.4)
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Choose any point xe& X and put f= &,. Let ze (77:4;,,,9)‘1 (x), z =[{, p]. For
any element 4 e L}, z may be represented in the form z =[{. 4, A~ . p]. We
have, using this representation, &(z) = [{, ()] = [(./W)] = [{. 4, /(47" . p)] =
=[t,4./(4'.p)], which implies f(A™'.p)=4"".f(p). Thus (2.4.3) is
rewritten in the form &(z) = [{, f(p)], where fis a differential invariant; by (2.4.1),
¢ is the realization of £ on X. The uniqueness of f follows from Theorem 2.1, (c).
This completes the proof of Theorem 2.2,

2.5. Natural transformations of liftings, associated with the r-frame lifting. By
definition, each differential invariant / gives rise to a correspondence X — fx,
where X runs over Ob 9,, and fy e Mor #4,(L]). We shall now study this
correspondence in more detail.

Theorem 2.3, Let P and O be two Ly-manifolds, f 1 P — Q a differential invariant.
Then for each a € Mor 2, « : X, — X,, the realizations fx, and fx, of [ satisfy
(2.5.1) Faa Ofx‘ = fx‘ oF;:CZ.

In other words, the correspendence Ty : X — fx,where X e Ob2,, fy € Mor FB,(L}),

is a natural transformation of the P-lifting Fg into the Q-lifting Fy.

Proof. Let aeMor @,, @ : X; - X,, and choose an element ze F}X;, z =
= [{, p]. Then by definitions,

Fao. o fr,(z) = Foa([{, ()] = [F'a()), f(D)],
Sx, 0 Fra(z) = fy,([F'a({), p]) = [Fe(d), f(p)]

proving out assertion.

(2.5.2)

With the notation of Theorem 2.3, we have the following result.

Theorem 2.4. The correspondence f — T, is a bijection between the set of diff erential
invariants [ : P — Q and the set of natural transformations of the P-lifting Fj into
the Q-lifting Fg.

Proof. Firstly, we shall show that the correspondence f - T, is injective.
Assuming that for some differential invariants fy,/f,, the relation T, =T,
holds we obtain for each X e Ob Z,, (f\)x = (f2)x» and the apply Theorem 2.2.

Secondly, we shall show that the correspondence f — T, is surjective. Let T
be a natural transformation of Ff into Fg, le Xe Ob 9,. By Theorem 2.2, there
must exist a differential invariant f : P — Q such that fy = Ty, and this differential
invariant is, for fixed X, unique. In order to show its independence of X, suppose
that for some X;, X, e 0b 3, Ty, = fx,» Tx, = fx,. Takeae Mor 9,, o : X; —
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— X, ar%d apply Theorem 2.4. We see that Fja o Ty, = Ty, o Fo. Substituting fx,
and fy, 1nto.thls eq_uality we obtain Fpa o fy, = fx, o Fpa which directly leads
to the equality /= f, by the same calculation as in (2.5.2). This ends the proof.

3. DIFFERENTIAL INVARIANTS AND LIE DERIVATIVES

We describe one of the effective methods for direct computations of differential
invariants, the “infinitesimal” method, based on the concept of the Lie derivative.
Main result are first order partial differential equations for differential invariants.

3.1. Jets of sections of a submersion. Let X (resp. Y) be an n-dimensional (resp.
p-dimensional) manifold. We remind that a (smooth) mapping n : ¥ — Xis called
a submersion if 10 each point y, e Y there exist a chart (V,¢), ¥ = (!, ..., u",
¥, .., ¥ ") with yo € ¥ and a chart (U, ¢), ¢ = (x', ..., x") on X with n(y,) € U
such that (V) = U and

(3.1.1) wt=xeomut=xton, .. ' =x"om.
Condition (3.1.1) may be equivalently expressed by
(3.12)  @om=pr,o,

where pr; : R"XRP™™ -» R" is the first projection. This shows that n(V) is an
open set in X; for (3.1.2) gives @n(V) = pry Y(¥) which means that y(¥) =
= @r(V)x W and by definition both sets ¢n(¥) = R" and W < R"™" must be
open. In particular, the charts (¥, y) and (n(V), @), where ¢ is considered restricted
to m(V), also satisfy (3.1.2). We say that a chart (¥, ) on Yis a fiber chart, or is
adapted to the submersion 7 : ¥ — X if there exists a chart, (U, ) on X such that
(3.1.2) holds and U = =(V). The chart (U, ¢) is then obviously unique. In view
of (3.1.1) the coordinates of a fiber chart (V, i) are usually denoted by ¥ = (x', y),
where | £isn 1 = osm m=p — n; the coordinates of the corresponding
chart (U, ) on X are then denoted, with the obvious convention, by ¢ = (x),
where 1 £ 7 £ n.

From the existence of fiber charts it immediately follows that a submersion is
an open mapping.

A surjective submersion is also called a fibered manifold. More precisely, a fibered
manifold is a triple (¥, m, X) in which ¥ and X are manifolds and = is a surjective
submersion of ¥ onto X. X (resp. =) is called the base (resp. the projection) of this
fibered manifold, the set 7~ '(x) < ¥, where xe X is a point, is called the fiber
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over x. A mapping y: U — Y, where U = X is an open set, is called a section
of the fibered manifold (Y, =, X), if 7 o y = idy.

Many examples of fibered manifolds which we need later on were discussed
in Sections 2.1, 2.2, and 2.4.

Let 7 : ¥ — X be a fibered manifold, and let J,(X, Y), or simply J'Y, denote
the set of r-jets in J'(X, ¥) which may be represented by local sections of 7. It is-
easily seen that J'Y is a closed submanifold of J'(X, ¥). Letn = dim X, n -+ m =
= dim Y. The manifold ¥ can be covered by fiber charts. Let (¥, ) be a fiber
chart on Y, (U, @) the chart on X associated with (¥, y); write for convenience
=G, 1SvZn+mo=©)1=<i<n Put W=UxV and denote by
W), ¥ =Gh2%2, ..., 2 ,.,) the chart on J'(X, ¥) associated with the
charts (U, ¢), (V, ) (Sec. 2.1, (2.1.11)). Let Pe J'(X, ¥Y) n W*, P = Jiy for some
section y of = defined on a neighborhood of x & U. y has equations of the form

2oy = X, 1 gign,

(3'13) Zn+a o7 ____fa(xl’ x2’ s x" R 1 é c _S_ m,

which implies that z(P) =35, z,,(P) =0, ...,2,, ,P)=0. Thus the set
J(X, Y) n W has the equations

] A TR 1
(3.1.4) z'=x,2;=08;,2,,=0..,25,., =0

Since the charts (W’, y) cover J'(X, ¥), J'Y is a closed submanifold of J'(X, ¥).
The manifold J'Y is called the r-jet prolongation of the fibered manifold n : ¥ — X.

The chart representations of the canonical jet projections (2.1.3) show that their
restrictions to the submanifold J'Y of J*(X, Y) are surjective submersions. We
denote these restrictions by n™* : JY - JY, 0 £ s £ r,and #" : J'Y = X; we
also call them the canonical jet projections.

If (V,¥), ¥ =(x,3%, is a fiber chart on ¥, we have J'(X,Y) n W’ =
= (2" %71 (V), and denote this set by ¥”. (3.1.4) shows that the pair (¥7, ¥"),
where y" = (x!, 5,07, . ¥, 0) 1SisEn 1S5cSm 1Ej S/ 5 ...

. £ J, £ n, is a chart on J"Y. This chart is a fiber chart with respect to each of
the canonical jet projections =" *, =". We shall say that this fiber chart is associated
with the fiber chart (¥, ).

Let ny : Y, » X; and =n, : ¥, - X, be two fibered manifolds. A mapping
o Yy = ¥, is called a homomorphism of ibered manifolds if there exists a mapping
ag : X; = X, such that

(3.1.5) Ty o0 = 0o ;.

If such a mapping «, exists, it is unique, and is called the projection of a. If there
is no danger of confusion we denote o, = proj «.

It is clear that the composition of two homomorphisms of fibered manifolds is.
a homomorphism of fibered manifolds.

[48]



Let y be a section of the fibered manifold = : ¥ — X, Adeﬁned on an open subset U
of X. We set for each xe U

(3.1.6) Jy(x) = Joy.

We get a mapping U3 x — J'p(x) € J'Y which is a section of the fibered manifold
n" 1 JY - X. J'y is called the r-jet prolongation of y.

The construction of the »-jet prolongation of a fibered manifold immediately
applies to the s-jet prolongation of this fibered manifold. For a fibered manifold
7 : ¥ — X we obtain in this way a fibered manifold (=*)" : J*(J°Y) — X. Prolonga-
tions of this kind are usually referred to as the non-holonomic prolongations of
fibered manifolds. )

Let » and s be non-negative integers, Z € J'**Y a point. Choose a representative p
of the r-jet Z, so that Z = J,*%y, and consider the mapping x — J*y(x). The r-jet
of J%, JXJ%), is an element of J'(J*Y). Expressing this »jet with respect to the
fiber chart ((F*)", (¥*)"), where (¥, ) is a fiber chart on ¥, we easily see that JL(J®y)
depends only on Z. Therefore, putting

GLY (2 =TUI,

we obtain a well defined mapping 1 : J'*°Y - J'(J°Y)). The chart expression of 1
is the mapping (V°)" o1 o (" T5)™1; finding the explicit expression for this mapping
we obtain at once that : is an embedding. We call it the canonical embedding of
J'TY into J'(J°Y). Clearly, 1 is also a homomorphism of fibered manifolds over
the identity mapping of J°Y.

Letny : ¥y - X and 7, : ¥, = X, be two fibered manifolds over n-dimensional
bases and let « : ¥, —» ¥, be a homomorphism of fibered manifolds. Suppose
that the projection oy of a is a diffeomorphism of X; onto an open subset aq(Xy)
of X,. If y is a section of =, then ayag ! is a section of n,, by (3.1.5). Thus the
formula

B.18)  JuZ) = T mlereg ),

where Z = J)y, defines a mapping J'a : J'Y; — J'Y,. Since the composition of
Jets is smooth, this mapping is also smooth. The following identities immediately
follow from definitions:

(3.1.9) el e=¢ayony, 7z e Ja=J%ony’

Thus J'a is a homomorphism of fibered manifolds n} and %} and a homomorphism
of fibered manifolds z7* and n%*. Moreover, for any two composable homo-
morphisms « and f such that the projections a, and f, are diffeomorphisms,

(B.110)  J(zofp) = Juo B
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3.2, Lie algebras of differential groups. Let us consider the differential group Ly,
its Lie algebra L(L}) and the exponential mapping exp: L(Ly) — L.

Lemma 3.1. Let A, be a one-parameter subgroup of L. There exist a neighbor-
hood U of the origin 0 € R" and a vector field & on U such that £(0) = 0 and Je, = Aq,
where o, is the local one-parameter group of &.

Proof. Let £ e L(L}) be the generator of A4,, that is, exp t& = A,. Let us consider
L(L}) as the tangent space T,L} and denote by 4, ; the canonical coordinates
on L,. £ has a unique expression

(3.2.1) &= CJ{ } me;{a Ju:} +Z‘fn...h{aa}lwﬁ .

We denote by x’ the canonical coordinates on R” and put

B2y (&= .

a R
where
(3.23) E=Fx 438 24 L+ TE L xl

In (3.2.1) and (3.2.3) summation over sequences j; < ... < j is assumed. £ is
a vector field on R". Obviously, £(0) = 0. Let «, be the local one-parameter group
of £ Choose § > 0 and a neighborhood U of the point 0 € R" in such a way that

for each ¢, | ¢t| < 6, and x € U, a,(x) be defined. Then «,(0) =0, and Jgo, € L.

for each t. Let us compute the tangent vector to the curve ¢ — «,(x) at t = 0.

Since ¢! = rr x'e,p we obtain in the canonical coordinates, using commutativity
0

of partial derivatives,

d icpr _ aC‘ _ ¥
{‘d‘,‘ a;(J, oa:)}o = {_67}0 =&,
d 1 r 525‘ T
(3.2.4) {—dT aijZ(Joat)}O"‘ {6x‘l" ax]'.;' 0--' EJUJ’

d , ZEi -
{‘d‘t‘ a}x-..j.(‘loal)}(): {m} = et

This means that
625 1L l_:
‘dt oy o .
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Taking into account that Jgo,,, = Joa, o Jgu, for all s and 7 such that |s], | 1|
|5+ +t] £ 6 and using the uniqueness of the one-parameter subgroup of 1

generated by & we obtain at once that 4, = J§a, for all 7 such that | t| < 6. Tlus
proves Lemma 3.1.

Let TR" be the tangent bundle of R". Since the projection of TR" onto R" is
a surjective submersion, there is defined, for any integer r > 0, the r-jet prolonga-
tion J"TR" (Sec. 3.1). We shall now consider a subset of J'TR", denoted by
I'to, 0y TR", consisted of r-jets of vector fields { : U — TR", where U is a neighbor-
hood of the origin 0 € R*, such that £(0) = 0. The operations

(3.2.6) of Il =JoE +0), e Jok = Tole. d),

where ¢ € R, define a vector space structure on Iy qyTR".
We shall construct a natural linear isomorphism between [y o 7R" and the

tangent space T,Lj. Let Jg¢ € ', o, TR" be any element. The r-jet Jo¢ is expressible
in the form

(4
(3.2.7) e = {dt }

where y, is a one-parameter family of diffeomorphisms of a neighborhood U of
0 e R" onto y,(U) = R" such that x,(0) = O for all 7, and Jgy, = Jg idg. One may
take for y, the local one-parameter group of a vector field representing the r-jet Jgé.
Let x' be the canonical coordinates on R", (x,, x},;,, .., X, ;) 1 SiSn, 1S
<j, £ ... £j, £n, the corresponding canonical coordinates on [I7g,oy7R"
These coordinates are defined by the relatiors

{ gl
X (I58) = {ai} X (58 = {—-—"’—‘——}o,...,xs,...,.uac)-

5x11 ax}z
_ __?.i.__..}
ax’t ... ax o

where &' are the components of the vector field & and the right side expressions
are considered at the point 0 & R". Denoting the mapping (¢, x) - ¥ix) by g
and its components by x' = x'y, condition (3.2.7) reads

() - ot
axitlo larox’ .0y 0 Laxdt...ax" Jo
(3'2‘9) ar+1 i
e R
{ ot ox?t ... ox’r }(0.0)

where (0, 0) is the origin of RxR". Let yx,, {, be two one-parameter families
satysfying (3.2.7). Then, since partial derivatives in (3.2,9) commute,

(3.2.8)
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a ., d
(3-2-10) {—&—t— JOX:}OZ {-a{- Joct}o.
Thence the relation

d
(3.2.11) v(JBf)={—dTJer}O,

where ¥, is any one-parameter family satisfying (3.2.7), determines a well-define
tangent vector ¥(Jgt) € T.Ly.

Lemma 3.2. The mapping v : I'y TR" — T,Ly is a linear isomorphism.
Proof. Let Jh&, Jol € Iy TR® be any elements, let of (resp. of) be the local

one-parameter group of the vector field ¢ (resp. {) representing Jo& (resp. Jol)»
and let af (resp. of) denote the global flow of £ (resp. {). We have

d
2.12 ré 4+ Jol = Jg {—-—OLE az} .
3 ) 0% ob 0y gy % 0% o

To prove this equality notice that for any point x of a neighborhood of 0e R”

{rtod ) = o ) -

(3.2.13) = T,0%(0, x) + T,2*(0, x) . {—d— o(t, x)}

_ {%117 af(x)}o+ {—j,— af(x)}o= &) + (),

where T,6%(0, x) is the tangent mapping of the mapping 7 — ai(s, x) = oi(x) at
t =0, and T,a%0, x) is the tangent mapping of the mapping x — a0, x) =
i.e. the identity mapping of T R". Consequently

v(Jo§ + Jol) = { J:(at °at)} { d oar o Joar}o=
d _ d
214 = {'Et“ (Jo0s J[,af)} = T1D(e, €) . {-—— Jo; }0 +
+ TP(e, ¢) . { ¢ o“t} = y(J5¢) + v(Jod),

where @ denoies the group operation in L. Let now c€ R be any number, and
consider the tangent vector v(c . Jo&). Let of® be the local one-parameter group
of the vector field ¢ . ¢. We have for any point x of a neighborhood of 0 e R"
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(3.2.15) Ta, ) =c.é@Ex) =c. §7 4 ) = 3 i),

so that
{3.2.16) V(e . Jod) = v(Jh(c. &) = { d oa,,} = ¢. v(Jad).

Equalities (3.2.14) and (3.2.16) show that the mapping v is linear. It remains to
verify that it is bijective. If v(J$&) == 0 then using (3.2.9) and (3.2.11) we see at
once that J§& = 0 which means that v is injective; that it is also surjective it follows
directly from Lemma 3.1, This proves Lemma 3.2.

There is one and only one Lic algebra structure on the vector space I"fo' oTR"

such that v is an isomorphism of Lie algebras; this Lie algebra structure is defined
by the bracket

G217 {Jsg, Jol} = v (I8, vIHDD),

where [v(JgC), v(Jg{)] is the Lie algebra bracket in T,L,.

We shall interprete the bracket operation (3.2.17) in terms of the vector fields &, {
representing the r-jets J§&, J4¢. To do this, consider any vector field & defined on
a nieghborhood U of 0 e R” such that £(0) = 0. As before, denote by of the local
one parameter group of £, Since J§a} € L for all ¢ from a neighborhood of 0 € R,
«f induces a local one-parameter group of transformations of L}, (£, 4) = J§u* o A
{multiplication in L;). We put for each 4 & L],

(3.2.18) &)= {-Joa%A}
V]

¢ is a vector field on the Lie group Lj;. We assert that
(32.19) [& 0] =[&10T

for any two vector fields ¢, {. Obviously, we have for any element BeL,, B =
= JOB,

(3220 [&¢T (B)={§t a5 ”oB} { Jo@® "oﬁ)}o,‘

and

[, ](B) = {—— (Jhel. i 0 5ok 7 0 Jo0% o Jool; oB)} =
0

(3.2.21) d

{dl JO(“-—J: —J:aﬁ‘er ° ﬂ)}
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1
(the limit of vectors in L{L}) with respect to t) Using the commutativity of partia

derivatives and the identity

d d
(3.2.22) {dt o B(x)} {_ b nat padiad; o ﬂ(x)}
=[¢,{]0 B0 .

we obtain from (3.2.20) and (3.2.21) that (3.2.19) holds as required.

Notice that the vector fields &" do not belong to the Lie algebra L(L,) for they
are not left invariant. Denote by J : L], — L, the diffeomorphism 4 — 41, and
by Ly the left translation on L) by an element B. We have

E'(B) = {——J o Lg-1 0 J7HJT, a,)} =
(3.2.23) °

=T.(J oLg-:0J7Y). {i.l:,a,} =T,(J o Lg-1 0 J™Y) . &(e).

Since J o Ly-1'0 J™! is the right translation 4 — 4 o B, & is a right invariant
vector field. A left invariant vector field is obtained when we set

(32.24) (B = { Bch,a:‘}o { i oL,J,‘oJ“(B)}

Obviously, then
(3225 T.Lp.E(e) = {d Bona,'l} = &(B).
Since moreover

(3226) &) = —&(e) = —v(J5d)

and v is a linear isomorphism, all left invariant vector fields on L], are obtained in
this way.

We are now in a position to prove the following result.

Theorem 3.1, For any J3¢, Jol € Iy, 0yTR"
(3.2.7 {Jo&, Jol} = —Jo[&, ¢

Proof. It is enough to verify that [v(J§&), v(JJ0)] = —v(J§[£, {]). Notice that
for each Be L,

(32.28)  E(B) = Tp-.J . E(J7Y(B)).

This relation means that the vector fields & and ¢" are J-related. Consequently,
their Lie brackets are also J-related,
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(3.2.29) [EC]od=TJ. [0
Now using (3.2.25), the definition of bracket in T,L}, and (3.2.19) we obtain

(VI8 W50 = [E(e), T(@] = [, T](e) =
(3230)  =TJ.[£,01@O=TJ.[& (0= {'51? J{,af‘,“} =
o
= —[& {1 (&) = —wJg[&, LD

This proves Theorem 3.1.

Corollary 1. The Lie algebra L(Ly) can be identified with the vector space I'ly oy TR"
endowed with the bracket (3.2.27).

Remark 3.1. Some other equivalent descriptions of the Lie algebra L(L]) may
be given by means of effective actions of L] on differential manifolds (see
Corollary 2 to Theorem 1.13). The simplest case of an action of this type, the
prolongation of the tensor action of the general linear group GL,(R) on R", will
be discussed later.

Remark 3.2. The Lie bracket [£, {] of two vector fields is a vector field whose
value at a point x depends on 1-jets Ji& and J1¢, not only on &(x) and ((x). It
should be pointed out that the definition of the bracket {,} on Ty, o,TR" is correct,
i.e., the right side of (3.2.27) depends on rjets J§&, Jg¢ only, not on the (¥ - 1)-jets
JETLE, JT L. Obviously, this is guaranteed by the conditions £(0) = 0, {(0) = 0.

To give an explicit illustration we shall derive the general form of a left invariant
vector field on LJ.

Example 3.1. Let e T,L} be any vector. We shall express in the canonical
coordinates the left invariant vegtor field ¢ on L2 defined by £ Let & be
expressed by

- - 0
¢=&7 { }+z€,,{————}+
daj e @guq,

- )
+2Z g:mm {—é—?—_} '
‘114243

(summation over non-decreasing sequences). By definition, f(A) TL,. E ¢is
of the form

(3.2.31)

N i 6 i a
(3232) =& —+ 38— + YT Py
da; 5 ajyiz By jus
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where
f

&= {_a_‘ﬂLL‘A} .E{,’,

daf
i _ a 4 L -
fhn = {i—i-’f—} gep{tal g
(3.2.33) 8 ¢ 089,y Je
- aa E) aah! 3LA E
éjx}zh = { lazp } é& + Z{ da : - zmz +
‘ Bq19; e

91493498 *

+ z{aam:b } EP
aaqmzqs ¢
Taking the equations of the mapping L, from (2.2.2) and remembering that in

(3.2.33) one should take j; < Jj, £ ja, We obtain after some calculation
65 = a;@f,
e.lh!: = (0;11671 + ajwa 2) €¢ + atflnllz’
é.lh!:j: = (a:?hisé‘jlt + a!w}sah + ajx!zpah) Cf; +
(ap!séh ja 2t allh‘s.g:a + a;h‘sﬁag:) g;mz -+ a;{};x.hh'

(3.2.34)

The left invariant vector field £ such that £(e) = £ is now obtained by substituting
these expressions in (3.2.31). In particular, a basis of left invariant vector fields
92, §oan, guead s obtained when we express ¢ in the form

(3.2.35) = Eq .82+ qu'}q, L Z‘f‘:‘qm . guaes,

3.3. Lifting and fundamental vector fields. In this section we suppose that we
have an Ll-maunifold P and the P-lifting Fy associated with the r-frame lifting F”
(see Sec. 3.3).

Let XeOb Z,. Recall that each morphism o€ Mor @,, o : U — X, where
U c X is an open subset, induces a morphism Fga € Mor F4,(L)—the Fi-lift
of «, This construction is directly transferred to vector fields. Let & be a vector
field on X and «, its local one-parameter group. We put for each ze FpX

@3.3.D nE(2) = { Fpat(z)}

This formula defines a vector field Fg¢ on FpX which we call the Fj-lift of the
vector field £,

Let n% (resp. n%, p) denote the projection of the principal Lj-bundle FfX (resp.
associated fiber bundle FzX). Each r-frame { & FX determines an isomorphism %y
of the fiber in FpX over the point x = n%({) onto the fiber P of FpX. If z ¢ F} X,
z = [{, p], then x,(z) is defined by
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3.3.2) #(2) = p.
Obviously, for each { € F*'X and A& L},
(3.3.3) 4= A"t ny.

The isomorphism of manifolds x, is called the framing of the fiber (ny p) ™' (x)

defined by the r-frame .

Let xe X be a point, { € F'X an r-frame at this point, and let & be a vector
field, defined on a meighborhood of x such that &(x) = 0. Since the local one-
parameter group «, of ¢ preserves the point x, we have Fo,({) = o Ji&, €
e (ny) ™1 (x) for all ¢, and Fpu(z) = [Fal), ple (nk,p)~* (x) for all ¢, where
z=[{, p]. In particular, the Fg-lift of &, restricted to the fiber (nksp)~* (x), defines
a vector field along this fiber. Since %, is an isomorphism, there exists a unique
vector field &, on P such that

(3.34)  Twy. FgE =& o
along (7 )~ ' (x).

We shall show that for each pe P and 4 L],
(3.3.5) éC'A(A- ! .p) = T,,-s - 'ft(P),

where ¢ denotes the action (4, p) = A. p of the group L, on P. Let z = [{, p] =
=[{.4,A47" . p]. We have, using (3.3.2) and (3.3.4)

(3.3.6) Er (A7 p) = &4l 4(2) = Teg. 4 . FREQD).

Differentiating the mapping z — #;. 4(2) = A~ .3(z) = S(A™! . %(2) = P4-1 0
o %#,(z) and substituting its tangent mapping into (3.3.6) we obtain

B37)  Ea(d7V.p) = T, (&) Byor 0 Tuy . FRE(D).

Since x#,(z) = p, this equality coincides with (3.3.5).

The following assertion, together with the definition (3.3.4), establishes a rela-
tion between the fundamental vector fields on P and the Fj-lifts of vector fields
on a manifold Xe Ob 2,.

Theorem 3.2, Let X be an n-dimensional manifold, xe X a point, { e F'X an
r-frame at x, and let P be an L -manifold.

(a) Let & be a vector field defined on a neighborhood of x such that &(x) = O.
Then the vector field {, is a fundamental vector field on P. v

(b) Let Z be a fundamental vector field on P. There exists a vector field & defined
on a neighborhood of x such that {(x) = 0 and E = &,.

[57]



Proof. (a) With the notation of Theorem 3.2, let «, be.the local one-})ararﬂletef
group of & Then a,(x) = x for all ¢, and there exists a unique curve A4, mr L, such
that Fra,(() = 4,. In fact, A, is a local one-parameter' subgroup of L. From
any z from the fiber in FpX over x, z = [¢, p], we obtain

w, o Fpa(2) = w([Fre(0), p]) = ([¢ 4y )=
= A,.p = P(4,, #(2)),

where ¢ is the action of Lj on P. Differentiating both sides of (3.3.8) with respect
to z at t = 0 we obtain

(3.3.8)

d
(3.3.9) Ty - {% F'a,(z)} = T,0,(2) . {_Et— A,}o.

Since the expression on the left is equal to &(p) and the point z is arbitrary, &, iS
a fundamental vector field.

(b) Consider a fundamental vector field Z on P. By definition, there exists an
element £ € L(L}) such that E(p) = T, P, . & According to Lemma 3.1 there exists
a vector field A on a neighborhood of 0 € R" such that A(0) = 0, whose local one-
parameter group «, satisfies Jga, = exp #§. Let (U, ) be a chart on X such that
xeU o(x) =0, and { = Jip~*. Put B, = 9 '¢,0. B, is a one-parameter family
of diffeomorphisms of a neighborhood ¥ of x onto (V) = U. In fact, itisa local
one-parameter group, satisfying f,(x) = x for all 7. Denote by ¢ the vector field

generated by f§,, i.e., ¢ = {th— [)‘,} , and compute the vector field &, (3.3.4). We
0
get for any z = [{, p]

0

5p) = Toxg - F3e(2) = {;‘f—; % o F;ﬁ,(z)}

d (4 - L4 L4 r -
(3.3.10) = {"at- % ([Jop Yo Joa o Jxp o Jo la P])}

=
d -
- {di, 1[4, O, p)])}o= {m— a(exp 2. p>}0= 1.9,.% = Z(p).

Hence £ = ¢&,.

3.4. Differential invariants and Lie derivatives. In this section we discuss
“infinitesimal versions” of Theorem 2.2. The tesulting criterion gives us a possibility
of computing differential invariants by solving some systems of partial differential
equations. To this purpose we first define the notion of the Lie derivative of
a morphism of fiber bundles.

Let Pand Q be two L}-manifolds, Y€ Ob 2,, &€ Mor F#,(L}), § : F3X - Fp X.
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Let £ be a vector field on X, o, its focal one-parameter group. For each z e FiX,
t = (Fgtt; 0 @ o Fpa_,) (2) is a curve in FyX passing through the point &(z). Put

(B41)  08(2) = {_;? (Fipty o o Fyx_,) (z)}o.
The correspondence z — §,8(z) is a vector field along the morphism &. This vector
field is called the Lie derivative of the morphism & with respect to the vector field .

Before going on to the connection between the Lie derivatives and differential
invariants we need, for the proof of the next theorem, a lemma on extension
of vector fields defined on closed submanifolds. In order to formulate this lemma,
we first recall some definitions.

Let Y be an m-dimensional manifold, X = ¥ a non-empty set. We say that X
is as n-dimensional submanifold of Y if to each point x € X there exists a chart

V, ), ¥ = (%), on Y such that x € ¥ and the set ¥ n X is defined by the equa-
tions

(3.4.2) ypr=0,..,y"" =0

In this case the chart (¥, ) is called adapted to the submanifold X at the point x.
The induced topology together with the adapted charts define on X the structure
of an n-dimensional manifold.

Let X < Y be an n-dimensional submanifold, & a vector field on X, & a vector
ficld defined on a neighborhood of X in Y. We say that & (resp. &) is an extension
of & (resp. the restriction of &) if for each x e X, &(x) = &(x).

Lemma 3.3. To each vector field ¢ defined on X there exists an extension £ of &.
If the submanifold X of Y is closed then there exists an extension & of & defined on Y.

Proof. Let X be an #-dimensianal submanifold of an m-dimensional manifold Y.
By definition to each x € X there exists a chart (V, ), y = (3°), where V' is a neigh-
borhood of x in ¥, adapted to X at x; we may suppose without loss of generality
that (V) = R™is an open rectangle. Denote by n : R™ — R" the second projection
of the Cartesian product R™~"x R". With this chart there is associated 2 mapping
Vay-y my()eV n X

Let £ be a vector field on X. Denote by ¢, the translation of R™ sending a point
z € R™ into the origin; that is, for each z’ € R", 1,(z') =z’ — z. We set for each
yeVlV

(G43) GO = Ty-tmonW ™ ey sapen¥) - EW T O)).

£, is a smooth vector field on V.
Let (V;,¥), i =1,2, ..., be adapted charts such that ¥ ,(V,) < R" is an open
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rectangle for each i and UV; o X. Let (x), i=1,2,..., be a partition of unity
on UV, subordinate to its covering (V,). We put for each ye UV,

(3.4.4) Ey) = Y x0) - &)

Eis a smooth vector field on UV, provided ¢ is smooth.

Let y = x € X be any point and let i, ..., i be the indices for which x”(x)

s LX) # 0, xi,(a\) + o X)) =1, We may suppose that i, = 1, = k
Tor every j = 1,2, . k we have ny (x) = ¥,(x) so that

(3-4-5) I —Yr3(x) +adi(x) =1y = dmn’
(3.4.6) T oy mpyo¥ ) = idmy,

where z = y; 'mjr;(x). Therefore

(3.4.7) £y (x) = &(x)-

Thus at x

(48)  Ex) = () &, () o ) &) = E)

which proves the first part of the lemma.

If X is a closed submanifold then the complement ¥\ X is an open subset, and
we may consider the open covering (V) of X, where i =10,1,2, ..., and V, =
= Y\X. Setting &,, = 0 (on ¥,) and defining £ by (3.2.4) again, where (x;) is
a partition of unity subordinate to the covering (V,), i =0,1,2, ..., we obtain
an extension of ¢ defined on Y.

Notice that the differential group L] consists of two components. The first one,
denoted by L'{*), is the maximal connected subgroup of L!, and its formed by
the r-jets A e L] admitting a representation A4 = J§«, where det Da(0) > 0. The
second component, denoted by L7, is the complement of LI¢*) in L, and is
formed by the r-jets 4 e L}, admitting a representation 4 = Jj«, where det Dx(0) <
< Q.

The following theorem gives us a condition equivalent to any of the conditions
(1) and (2) of Theorem 2.2, provided the base manifold X is connected.

Theorem 3.3. Let XeOb 2, be a connected manifold, &< Mor ZA,(L}),
@ : FpX — FoX, a morphism. The following two conditions are equivalent:
(1) For each vector field ¢ defined on an open subset of X,

(349) 80 =

and there exist a point x, € X and a morphism oge Mor @, 4y : U — X, where U
is a neighborhood of x4, such that ag(x,) = Xy, det 2 oco(},o) < 0, and
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(34.10)  Fhago® = & o Fha,.

(2) There exists a unique differential invariant f : P~ Q whose realization on X
is @, i.e. such that fy = ®.

Proof. If condition (2) holds then obviously, by Theorem 2.2, condition (1)
must also hold. We have therefore to show that (1) implies (2).

Let & be any vector field on X: If (1) holds then to each point x € X there exists
a neighborhood U of x and & > 0 such that

(34.11)  Fpo 0P = & o Fpo,
on (n%)~!(U) for all ¢ such that [ ] < 6. We shall show that this implies
(3.4.12)  proj @ = idy,

where proj @ is the projection of the morphism @. Suppose that for some x € X»
proj P(x) = x’ # x, and choose a vector field £ on X such that ¢(x) = 0, &(x') # 0.
The local one-parameter group «, of £ satisfies «,(x) = x and «,(x") # x'. Applying
the projection 7%, o of the fiber bundle F3 X on both sides of (3.4.4) we get 7y ¢ o
oFer, @ =O(fo7'£;(,Qo¢ =0, o proj @ o n}.P = VtSf'Q o @ o Fpo, = proj @ o
ok, p o Fpa, = proj ® o o, o my, p, i.€.

(3.4.13) o, o proj @ = proj ¢ o a,.

This means that «, o proj &(x) = a,(x'), proj @ o a,(x) = proj #(x) = x' which is.
a contradiction, and (3.4.12) must hold.

We now relate to each r-frame { € F'X a mapping &, of P into Q by (2.4.3)
and, using (3.4.4), we deduce that this mapping does not depend on {.

Let x, € X be a point, £ a vector field on X such that £(x,) = 0, e, its local one-
parameter group. Then the one-parameter family of transformations Fpa, preserves
the fiber (7% p) ! (xo) = F;X. Denote 3, = F'a,. From (3.2.4) we obtain for any
r-frame { e (ny) ™! (xo) © F'X and each z e (n}, p)~" (xo) represented in the form

z=[¢pl,

® o Fpa(2) = [Xt(C)a ‘P,M;)(p)] = Fgo, 0 &(z) =
= [Fa,(8), 8(n],

which implies, since p € P is quite arbitrary,

(3.4.14)

(3.4.15) Py, = P,

where by (3.4.4), this equality holds for | #| < 6, and the domain of «, is U.
Now fix {, € (n%) ™! (x,). Restricted U if necessary we may suppose without loss
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of generality that there exists a chart on X of the form (U, ¢), where ¢(xo) = 0
and L, = J§p~ 1. Put for each ¢, | | <4

(3.4.16) By = o0

@(U) - R" is a one-parameter family of transformations such that £,(0) = O.
That is, JiB, € L, for all ¢ for which a, is defined. Denote

(3.4.17) E= {% J{,ﬁ,}o.

£ belongs to the Lie algebra L(L;) ~ T.L, and by the uniqueness of the integral
curves of vector fields,

(3.4.18)  expté = Jof,
for all ¢ such that 1¢1 < d. Thus we get

Lo - Xpt-5=Co-J:)ﬂ:=J:)(‘P_Iﬂr(P)°J'E)(P-I =
Jotrolo=F "e,({o)-
Let us consider the group element A(s) = exp s€ € L}, for arbitrary s € R. There

exists a positive integer K and 7o & R, such that |#,| < §, s = K. 1,. For this
group element

(3.4.19

A(s) = Lo . exp (Kto&) = (o . (exp ty . E)F =
={o. A(te)* = Lo AUY ™. A(to) = Frey(Lo . A(1o))*71,

(K factors exp #o&), where we used (3.4.19). Applying (3.4.15) we obtain after K
steps

(3.421) By 4 = O. .

(3.4.20)

Thus, @, is constant along the orbits of one-parameter subgroups of L in the
fiber (nf) ™" (xo)-

The fiber (n%)~! (x,) of the principal L}-bundle F'X is, however, diffeomorphic
with the Lie group L;. Since the one-parameter subgroups of a Lie group fill
a neighborhood of its identity, &, = &, for all { from a neighborhood of {,.
Thus the mapping { - ¢,(p) is constant for each p on the connected component
of the fiber (n%) ™! (x,). In other words this says that

(3.422) @,. =0,

forall Ae L%,

Let us consider condition (3.4.10). Let {, be an r-frame from the domain of
definition of F'a, and denote y = F'a,. Then (3.4.22) gives, for each pe P,
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(3"423) [X(EO)’ ‘PCD(p)] = [X(CO)’ (‘DZ(CQ)(I))]’
which implies &, = &, \. Writing as before {, = J4¢~* and

(3.4.24) x(o) = Lo o Ih(pagp™1) = ¢y o Ao,

we obtain an element 4, L. Thus &, ,, = &,,, which implies that (3.4.22)
holds for all 4e 7.

@, may therefore depend on the projection of ¢ only. We define
(3.4.25) P, = &,

where { is any r-frame from the fiber (nf)~* (x).

We shall now show that &, is independent of x e X provided X is a connected
manifold. Let x,, x, be two different points of X. Since X is connected there
exists a curve I3 £ — y(f) € Y, where I = Ris an open interval, such that (a) y(a) =
= Xy, y(b) = x, for some points @, be I, a < b, and (b) the tangent vector y(f) =
= dy/dt € T,y X does not vanish along y. That s, y is an immersion, and the interval
[a, b] can be covered by open intervals Iy, ..., I, where I; = (a;, b)), such that
the restriction of y to I;, denoted by y,, is an embedding for each i. Consider the
subset y(I;) = X. This subset is a submanifold of X, and by Lemma 3.3 the vector
field y, defined on y(I}), can be extended to a vector field &,, defined on a neighbor-
hood of p(I,). If « is the local one-parameter group of &;, we have for any z € Fp X,
z = [, p], over the point y(a,) = x;

(3.426)  Fial(z) = [Fuy(0), 0:(p)] = [Fu()), B,,4(0)],

where y;,, = al(x;), which implies that b, = &, ,, 0ot &, = &, for all xe ().
Thus &, does not depend on x on each y({;). In particular, ¢, = &, as required.

We now take any x € X and set /= &,. To verify that /is a differential invariant
whose realization on X is &, we proceed in the same way as in the proof of

Theorem 2.2.

Let G be a Lie group, P and Q two left G-manifolds, and let #: GXP — P
(resp. ¥ : GXQ — Q) denote the left action of G on P (resp. Q). Consider
a mapping f: P — Q and a point p € P. Let { be an element of the Lie algebra L(G)
of the Lie group G. { defines a curve Ra 1t — f(p) € Q, where

fip) = ¥(exp i, f(@lexp (~ 1), p))) =
=~ (lFexp 24 °f° ‘Dexp (—t;)) (P)

Denote by (3,/) (p) the tangent vector to this curve at 7 = 0,

3.4.27)

6429 @n®={4 f,<p>}

0
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Lemma 3.4. For each pe P and t € R
@) ) = V'O UP) ~ Tpf - &) ()

(3.4.29) d
Ft_f’(p) = Tf(me.,¢-:z> [92)] !}_I“N; * acf (‘pcxp(-m(l’))'

where ®'(¢) (resp. W'(0)) is the fundamental vector field on P (resp. Q) associated
with L.
Proof. By definition,
(3430 @) (P = T¥ - L+ Ty ¥ Tof - Tedy - (=),
which gives the first formula. Further,
d d
"d_t' f!(p) = {'E:; lIlexp (a+r)£f¢exp (—n—t)((p)}om
d

(3431) = a;f:(p) = {—d;_ ?expr( ° f) e exp(-l;)(p)}():

d
= Tf (@oxp (-3 (P)) ‘Foxprc . {’&; fl(¢exp(—t;)(p)) o’

which gives the second formula.

The vector field p — 3,f(p) along the mapping f is called the Lie derivative
of the mapping f, relative to the vector { € L(G).

Lemma 3.5. Let G be a Lie group, G, the connected component of G, f: P — Q
a mapping of left G-manifolds. Then f is Gy-equivariant if and only if for each p € P
and { € L(G)

(3432  9f(p)=0.

Proof. Suppose that for some { e L(G) and p € P (3.4.32) holds. Then by the
second formuia (3.4.29), fi(p) = fo(p) = f(p) for all ¢. Using (3.4.27) we obtain
that the mapping f must be (exp #{)-equivariant. Since ¢ is arbitrary this ensures
that f'is Gy-equivariant,

Let us now consider the differential group Ij and its Lie algebra L(17). We have
the following infinitesimal criterion for a mapping between two L.-manifolds to
be a differential invariant.

Theorem 3.4. Let P and Q be two L,-manifolds, f : P — Q a mapping. The follow-
ing conditions are equivalent:
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(1) £ is a differential invariant.
(2) For each element { e L(L.)

(3.4.33) 8,f=0
and there exists an element Ay e L= such that for all pe P

(34.34)  f(4y.p) = A4, ./ (p).

Proof. Obviously, only the implication (2) =- (1) needs proof. By Lemma 3.5,
(3.4.33) ensures that fis LP-equivariant. Moreover, if 4 L™ is any element,
we have for each pe P, f(4.p) = f(A,. A3 . A.p) = Ay . f(A3'. A.p). Since
Agt . Ae L™, f(A7" . A.p) = A5'. A.f(p) and we have f(d.p) = A4 .f(p)
as required.

Remark 3.3. The following example shows that condition (3.4.34) of Theorem 3.4
cannot be omitted. Consider the tensor action of the general linear group GL,(R)
on R*, (4,&) - A.¢&, where, in the canonical coo~dinates on GL,(R) and on R,
A. ¢ is defined by the equations & = Aj'é’. Let a mapping f from R"x...xR"
into R be given by

(34'35) f(élv ey én) = I det (él’ cees gn) [a

where £, in the matrix (§q, ..., €,) stands in the k-th column. It can be directly
verified that fis a GL{"(R)-equivariant mapping which is not GL,(R)-equivariant,
if we consider R as a left GL,(R)-manifold defined by the action 4.t = (det 4). 1.

Condition (3.4.33) may be regarded as a system of first order partial differential
equations for differential invariants from P to Q. Notice that these equations
contain the fundamental vector fields on the left Lj-manifolds P and Q. The
following remark shows that the structure of the Lie algebra L(L;) plays an
important role in solving these equations.

Remark 3.3. Let f: P — Q be as above, and suppose that for some vectors ¢,
{e L(Ly),
(3.4.36) 0.f =0, 3. f = 0.
Then also
(3437  Opaf=0,

where [é, C] is the bracket of the vectors & and ¢ in L(L!). Clearly, the vector
fields @'(¢) and P'(&) are f-related, i.e. [¥'(&), ()] = 1If . [9'(®), #'(0)]. But
(1.1.7) implies that for every p € P, [¥'(&), '(D)] (») — T.¥p- (& =0, [T,
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Y] (p) = T.9, . [& {] which gives o'([¢, () — 7f. 9'([&, {]) = 0 as desired.
Therefore, £ is a solution of the system (3.4.33) for every & e L(L,) if and only if
fis a solution of this system for every & belonging to a vector subspace of L(Ly)-
generating the Lie algebra L(L;).

4. INVARIANT TENSORS

In this chapter we explain the classical theory of invariant tensors on a finite
dimensional vector space. We completely describe the structure of these tensors,
and apply them to the problem of finding multilinear invariants of the general
linear group GL,(R). Main notions are the following: Tensor representatiorn
of GL,(R), invariant tensor, weight.

4.1. Absolute invariants tensors. A finite-dimensional vector space endowed
with a linear representation of a group G will be called a G-module. Each finite-
dimensional vector space E can be regarded as a GL(E)-module, where GL(E) is
the group of linear transformations o E.

Let E be an n~-dimensional vector space, E* its dual vector space, and denote
by T:E the vector space of tensors of type (#, Y nE,TVE=E® ... EQRE* ® ...
... @ E* (r factors E,s factors E*). We shall consider T9E with its canonical
structure of a GL(E)-module, defined by the tensor representation of the
group GL(E).

Let (¢), 1 £ i < n, be a basis of E, (¢') the dual basis of E*. If Ae GL(E) we
define a matrix (4]) by

(4.1.1) A.ej = A]iei.

(A}) is the matrix of the linear isomorphism A with respect to the basis (e;). The
action of GL E) on E* is defined by the condition (4.€") (4. e;) = &} (the Kronecker
symbol) or, which is the same, by the formula

4.12)  4.é = B,

where (B;) is the inverse matrix of the matrix (4j). The action of GL(E) on TLE
is defined by the formula

4.6, ® .. Qe QIR ... ® e =

(4.1.3)
=(4.¢)R.0(4.¢,)R(A4.)R ... ®(4.e)

and by the linearity requirements. If ¢ e T;E is any tensor,
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(4.1.4) 1=t @.. Qe ®e'®... ® e,
then

(4.1.5) Act=0"MTe, &.. Re, e R... ®e%,
where

FP1..Pr __ 4P prJf Japkiokpe
(4.1.6) tgi g = Ag) - AEBy, .. Byt

A tensor te TLE is called an absolute invariant tensor, or simply an invariant
tensor, if for each element 4 € GL(E), A.t = r. Expressing ¢ as in (4.1.4) we obtain
that 7 is absolute invariant if and only if for all A e GL(E)

(4.1.7)  ghbr= APC L APBlE . Bl

qieefs 5

Let e TE be an invariant tensor, (¢;) and (€;) two Dbases of E. Expressing ¢
with respect to (e;) and (&;) we obtain (4.1.4) and

(4.1.8) t=i"re ®.06, 08 Q... Q"

There exists a unique element 4 € GL(E) such that &; = A J‘-'e,.. Since ¢ is invariant,
A.t=1tand i = tj'l{.'.'.if,- Thus the components of an invariant tensor do not

depend on the basis. We write for simplicity
419 t=(h)

not specifying the basis. If F is another n-dimensional vector space, we may define
an invariant tensor ¢ € T¢F by means of the same formula, (4.1.9). It is therefore
sufficient to study invariant tensors on one particular #-dimensional vector space,
for example R".

Example 4.1, The Kronecker tensor
(4.1.10) § = (&%)

is an absolute invariant tensor of type (1,1); this is directly verified by means.
of (4.1.6).

Let S, be the r-th order symmetric group, ie. the group of permutations
(= bijections) ¢ :{1,2,....,r} = {1,2,...,r} of the set {1,2,...,r}, and let
GL,(R) be the general linear group. The connected component of identity in GL,(R)
is denoted by GL{P(R), and its complement in GL,(R) is denoted by GL{(R).
Notice that the group GL,(R) is canonically identified with GL(R"), the group
of linear transformations of the vector space R”"; this identification is defined by
means of the canonical basis of R
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Theorem 4.1. Let t € T R" be a tensor.

(a) If ¥ # s, then t is invariant if and only if t = O.

(b) If r = s, then the following four conditions are equivalent :
(1) ¢ is an invariant tensor.

(2) A.t=tforal Ae GL{(R).

(3) For any integersi, j, Pys s Pus q1s s @ = 1,2, ooy

5Plt.l'l72---l7r. + 5€zt.ﬂxh13---m + .. 5{»1«?1.--1"-11’ _

q1eeelr qieeqr q1.0qr
(4.1.11) .
_51 (Prepr 8 PPrepr _5! [T Lo
q1tiganqr q2°g1iga.s e 4r'q1.-gr~1i :

(4) 1= @flm), where

(4.1.12) =Y ¢, 80 ..ok
aeS,

g1 qr llg(”' * Ylg(ry

Jor some ¢, € R.

Proof. (a) Suppose that » # s, and choose an element A€ GL(R), 4 = (AS,),
of the form

(4.1.13) A4} = 25,
Obviously, 4’ # 0, and A™! = (1/A¥) §}. Then for any e T;R",

. . 1 1
(4.1.14) Al . ATBY . Bltpile = AN LA =g
A A

(no summation on the right side), where ¢3!;:2" are the components of ¢ with respect

to the canonical basis of R". Hence if ¢ is invariant,

(4.1.15) A }f’% ,11” tj‘l‘.'_'fj" = }11’;.3

for all A' # 0 this obviously implies #7 = 0.

(b) Suppose that » = s. We shall prove the second part of Theorem 4.1 in four
steps according to the following schema: (1) = (2) = (3) = (4) = (1).

1. Condition (1) obviously implies (2).

2. Let t € T7R" be a tensor satisfying (2), let d‘, 1 £1i, k £ n, be the fundamental
vector field on T,R", associated with the elements of the canonical basis of the
Lie algebra g/ (R) of the Lie group GL,(R). By definition, each of the vector fields &¥

vanishes at ¢, Since the left action of GL,(R) on T.R" is defined by (4.1.6), we have

il : o, B
(4.1.16) &= {— APLf. APrprcE g } B —
) i 6/1;‘1( J i Jr a1, flr) . LoedMpe at;,:::qp:%

where ¢ is the identity of GLH(R); Using the equality
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(4.1.17) ‘;\'j‘?_ —~ BBk
k

and the conditions &4(#) = 0 we obtain (3).

3. If n=1,(3) is satisfied by every tensor te TR, and so is (4), hence (3)
implies (4). We shall now suppose that n = 2.

Firstly, we shall show that (3) implies (4) for r == 1. In this case (4.1.11) takes
the form 6f#) — §)1P = 0. Contracting the left hand side in i and p we get nt) —
— 03ty = 0 that is, #§ = (1/n) . 156} which coincides with (4.1.12).

Secondly, we shall show that if a tensor 1 = (#2!:Fr) satisfies condition (3) then

its contraction in any of its superscript and subscript also satisfies (3). Consider
3 o PloPr=1 PleeiPr=1 __ P1espr=17 . H
for instance the tensor s = (s2!:Fr-7), where Sqrarst = thiersir. Contracting

(4.1.11) in p, and g, we get

ip2...pr-1k ipa...pr—1k
5?111”'2 Dr-1 _,_5%72[P1]P3 Pr-1 + ...+

q1..-p -1k q1...qr -1k
4.1.18) gl — Sq R —
= Ot e e — Sl = 0,
that is,
SPisirarit + OUspI T 4+
(A119) 4 S 2 = SR -
— Ol S G = e — g ST = 0.

Finally, supposing that a tensor t = (#7!7") satisfies condition (3) we deduce
that it must be of the form (4.1.12), i.e., it must be a linear combination of tensors
55;(1)553(2) 6}1’;(” where ¢ runs over r! elements of the symmetric group S,.
Fix two r~tuples (py, ..., p,)> (@15 --.» 4,). Contracting (4.1.11) we obtain for every

permutation (s, ..., $,) of (p1, ..., Pp)s

ana S von 5r82: 0. 8p— 13
nt;i;’;"‘tsz 183.0.8r +“. +tr2 r—191

(4 1 20) q19233-+4r q14qz2...qr
T _ 5s1t1‘sz,..s,- + 551115153...&- + + 6sll{52...sr_1.i‘,-
= Ya1tigz..gr 92°q1ig3...qr qr°9182..qr - 1}

(summation over i on the right side). (4.1.20) can be considered as a system of n"
linear, non-homogeneous equations for £}, with given right-hand side. It is
easily seen that because »n = 2, this system can be solved by direct eliminating
all #»" unknowns £i% . where (g, ..., 4, is fixed and (sy, ..., s,) runs over all
permutations of (p,, ..., p,). Hence writing this system in the form

@4121) Q.t=7¢,

where 7' is the right side of (4.1.20) we get a regular matrix Q, and the column ¢
must be of the form
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(4122) 1=Q7*.7.

Therefore, to complete the proof it is enough to show that #* has the form (4.1.12)-
We can proceed by induction and suppose that every solution of the system
(4.1.11) with r replaced by » — 1, has the form (4.1.12). Since the contractions of ¢
satisfy (4.1.11), we get for the right side of (4.1.20) the expression
iy DI B ST . S
B Ry e
(summation over all elements ve S,_,). Clearly, (4.1.23) can be regarded, with
a proper choice of constants ¢, € R,, as a sum over ¢ € S,, and we are done.
4. Let a tensor t e THR" be given by (4.1.12), let 4 € GL,(R) be any element,
A= (Aj). Computing the components of the tensor 7 = 4.t we get, with the
summation over S, on the right,

Fitende __ iy ir pay qrs Py e _
tj;...j'r = Z chm APrBll vee B]r‘sqa(l) 54«(.-) -
a

dor(1) * qa(r) " J1

=Y ¢, AL ... AL Bil...BY =
-

= ly L T (1) Qaery
@.124) = X Cegy - Ay, B  BEG) =
{ Ir nk1 k,
= E cﬂAkll e Alejﬂ(].) e Bjr
o

a{r) =
I iy Y PO
=2 Co0jucsy *** Ofuimy = it
-3
so that 4.t = 1. Hence (4) implies (1), and the proof is complete.

Remark 4.1. (4.1.12) implies that if (g, , ..., ¢,) is not a permutation of (p,, ..., p,)»
then

(4.1.25)  thPr= Q,

41

This can be shown directly by solving the system (4.1.11). Clearly, in this case
there exists an integer k which is contained in the r-tuple (p,, ..., p,) more times
than in (g, ..., ¢,). For simplicity of notation, suppose that p; = p, = ... =
=pua=k g =q=..=q =k wherem > s,and pyoqi, ..., Prs Qyt1s =>4, Z K,
and take i = j = k in (4.1.11). Then we get (m — s) f3Pm**P = 0 and because
m — 5 # 0 we get (4.1.25).

Corollary 1. Each invariant 1ensor t = (4}) of type (1,1) is a scalar multiple of the
Kronecker tensor 8,

(4.1.26) £ = csl.
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Corollary 2. Each invariant tensor t = (1) of type (2,2) is of the form
1l = ediBh + e2045] = = (318} + 5580) +

i

2

where ¢,, ¢, € R and ¢, = (1/2) (¢; + ¢3), €3 = (1/2) (c; — ¢3)-

(4.1.27)

+ €3 = (88 — 6udl),

Proof. This follows directly from (4.1.11) or (4.1.12).

Corollary 3. Let (e, , e,, ..., e,) be a basis of the vector space R, (e, €?, ..., e")
the dual basis of R"*. A tensor t € T, R" is invariant if and only if it is a linear combina-
tion of tensors

(41.28) t,=2Z¢,,®..0¢,, Q"@..Q

(summation over p,, ..., p,), where o runs over S,.

Corollary 4. If t = (£31::7) is an invariant tensor, then for any permutation v € §

(1).0a(r) __ vl
(4.1.29) e = e

Proof. By (4.1.12) we get, using commutativity of multiplication in R,

th(l)n-Pv(r) —_ Z caapv(x) . 51’»(') —
)

Qv(1)qu(r) dovil) * Qov(r)
4.1.30
( ) — Z c 6p| 6]’,- = tpx...pp
TV qQu(l) ' Yqa(r) q1...qr
a

(summation over ¢ € S,), as desired.

4,2. Characters of the general linear group. By a (real) character of a group G
we mean a homomorphism of G into the multiplicative group R* of real numbers.
Notice that R* is canonically isomorphic with the group GL(R). Define a function
sign: R\{0} -» {41, ~1} by putting sign t=1if z> 0 and signz = —1 if
t < 0. The following theorem describes all continuous characters of the general
linear group GL,(R).

Theorem 4.2, Each continuous character y of the group GL,(R) has one of the
Sfollowing two forms:
4.2.1) ¥(4A) = |det 4%,
4.2.2) x(4) = sign det 4. | det 4 |,

where c € R.
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Proof. If ¥ : GL,(R) — R* is a continuous character then y is smooth and
T,y : gl (R) - R, where gl (R) (resp. R) is the Lie algebra of GL,(R) (resp. R™*),
is a homomorphism of Lie algebras. That is, T,y is linear and T,x . [¢, ] =
=[Tx.& Tx.t] =0 for all & egl(R).

Let f:gl(R) - R be any homomorphism of Lie algebras. Since the Lie
algebra R is commutative, for any &, ¢ egl(R), f([& D =f¢. L - (.6 =0
(matrix multiplication). In the canonical coordinates on gl,(R)

#23)  f(&) = AjEl.

Hence
(4.2.4) (& O = AJElet — AJtler = (Aloy — APy ek =0

and we have A}&:‘ — A,T&} = 0. Contracting the expression on the left in m, k we
obtain 4 = c. &} for some ¢ & R. Thus f must have the form
4.2.5) f&) =c.ti=c.tré

Let ¢ be fixed, and denote by R;"+) the connected component of the identity of R
(the multiplicative group of positive real numbers). There is a unique homo-
morphism of Lie groups y, : GL{"(R) — R{,, such that T,y = f. It is easily
seen that the homomorphism 4 — (det A)° satisfies this condition. Let i,j,1 < 7,
] S n, be any integers. By the Laplace’s theorem

(42.6)  detAd = A'P! + ALP}+ .. + AP,

{no summation over i), where Pj" is the algebraic complement of the element A%
in the matrix (4}). Since P¥ = B% . det 4, where (BX) is the inverse matrix of the
matrix (4}), we have

a
——det4d = Bl.det4.
@27 o !
Hence for any ¢ e gl(R), & = (&),

(4.2.8) Tx. . &= {5—1,— (det A)”} = 8l = f(0).

i)
This formula proves that each continuous character of the group GL{*(R) is
of the form
4.2.9) Xe(A) = (det A)",

where c e R,

Let now y : GL,(R) - R* be a continnous character. The restriction of ¥ to
the subgroup GL{*)(R) of GL,(R) must be of the form A — (det A) for some ¢ € R.
Let 4, Be GL{™)(R) be any two elements. Since 4. B e GL{P(R), we have
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x(4.B) = x(4). x(B) = (det (4. B))* = | det (4. B)|° =

=|det 4]°.|det B|°
and the number x(A4,/| det 4|° = |det B|*/x(B)) = A should be independent
of the choice of 4 and B. Hence for any Ae GL(R), x(4) = A.|det 4]°.

Condition (4.2.10) now gives A> = 1, A = +1, —1, and x(A4) must be of the form
(4.2.1) or (4.2.2).

(4.2.10)

Corollary. For any integer k,
(4.2.11)  x(A) = (det A)F
is a character of GL,(R), and all algebraic characters of GL(R) are of this form.

Proof. If ¢ is even (4.2.1) reduces to (4.2.11). Since sign det 4.|det 4| =
=detA.|det A7, if ¢ is odd, (4.2.2) reduces to (4.2.11).

We note that for ¢ == 0 (4.2.1) defines the trivial character, and (4.2.2) gives
(4.2.12) %(A) = sign det A.

4.3. Relative invariant tensors. Let us consider an n-dimensional vector space S
and a tensor t € T;E. We say that ¢ is a relative invariant tensor, if there exists
a function y : GL(E) — R* such that for each element 4 € GL(E)

(43.1)  A.t=yd).1.

If ¢ # 0 and such a function x exists, it is unique, and is a (real) character of the
group GL(E). We call y the weight of the relative invariant tensor 7.

An absolute invariant tensor is a relative invariant tensor of weight y = 1.

Let e TIE be a tensor, (e;) a basis of E. Expressing ¢ as in (4.1.4) we can see
at once that 7is a relative invariant tensor of weight y if and only if for each element
Ae GL(E), A = (4Y),

4.3.2) AL APBY . Bt = y(A)

Example 4.2. Let us consider the vector space R". Let (e;) be the canonical basis
of R", and denote by (¢"™), where 1 < iy, ..., i, < n, the system of real numbers
defined by the conditions &' =1 (resp. &' "= —1, resp. & = 0) if
(iys ---» 1) 18 an even (resp. odd, resp. is not) permutation of the set (1, 2, ..., n).
Define an element ¢ € TgR" by

(4.3.3) e=&"""e @..Qe..

If A e GL(R") is any element, 4 = (Ag) with respect to the canonical basis, we have
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A.g= A;‘; A}';s““'“eh ®..Re¢, =
(4.3.4) =gt L Al e, ® L ®e, =
=det(4}). e, @ ... Qe, =detd. s

Thus ¢ is a relative invariant tensor of weight y(A4) = det A4.
Analogously, define ¢, ;, = £"" and set

(4‘3'5) '7 = 8'1...fne“ ® A ® e‘“,

where (e') is the dual basis. € T,?R", and 7 is a relative invariant tensor of weight
x(4) = (det 4)~ 1,
Each of the tensors ¢ and # is usually referred to as the Levi — Civita tensor.

Let r& TIE be a relative invariant tensor of weight y. Let (e;) (resp. (&;)) be
a basis of E, (¢’) (resp. (¢/)) the dual basis of E*. Expressing ¢ as in (4.1.4) and
(4.1.8) and using definition (4.3.1) we obtain

(4.3.6) tihn = x(A) i,

for any sequences (i1, ..., i), (ji» ..-sJ5), Where A is an element of the group GL(E)
defined by the conditions & = 4. e,. In particular, the components of a relative
invariant tensor on E depend, in general, on the basis of E.

Let @ : E - F be a linear isomorphism of n-dimensional vector spaces, (e;)
a basis of E. ¢ induces a linear isomorphism ¢’ : T'E — T'F as follows. We take
any element ¢ e TLE, express ¢ by (4.1.4) and set &, = ¥(e,), and

(4.3.7) P =1t}"5 ®.08 08 ®..e"

Relative invariant tensors of weight y form a vector subspace of TJE, and &',
restricted to this subspace, is an isomorphism onto the vector subspace of relative
invariant tensors of weight y on F. For if 4 € GL(E) and ¢ € T'E then one easily gets

(4.3.8) A. D) =d(4.1) = y(A).

Our main problem in this section is to determine all relative invariant tensors
on an n-dimensional vector space E; the above remark says that this is equivalent
to determining the relative invariant tensors on the vector space R".

Theorem 4,3. Let 1€ T,R" be a tensor.

(a) Suppose that ¥ — s # k. n for all integers k. Then t is a relative invariant
tensor if and only if t = 0.

(b) Suppose that there exists an integer k such that v — s = k . n. Then the follow-
ing three conditions are equivalent:

(1) t is a relative invariant lensor.

(2) For all Ae GL{*Y(R)
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(4.3.9) A.t=(det A . 1.

(3) For any integers i,j,py, «.csPpy Qrs voen s = 1,2, ..., 1,

5f1t1pz-.-pr 4 SPYPUPIpe L 5£7rt511:-_._1’;—11_

[ FERet P} L *g1..@s
(43.10) = Sl — S+~
— 5Pty 51,01...0r
5q¢t¢1...qs—1l =k . bitqll...q, »

where Ij‘l’j', are the components of t with respect to the canonical basis of R".

Proof. (a) Let te TIR" be a relative invariant tensor. We shall show that if
t # 0 then r — s = k.n for some integer k. According to Theorem 4.2 we
distinguish two cases. Suppose first that ¢ is of weight y, where x(4) = (det 4)°.
If ¢ = 0 then ¢ is absolute invariant and the condition ¢ # 0 implies r — s =0
(Theorem 4.1) so we can take k = 0. Suppose that ¢ # 0, and consider condition
(4.3.2). Let k, m be any integers and choose A4 of the form A'j = 53,j # k, m, A} =
= gkt j =k, Al = 6n7**! j=m. Then for any 7, ..., by, jis crsfas

1 1

(4.3.11) G P et = DML @AMt =
=AM A

where k,, ..., k, are some integers. By hypothesis there exist {;, ..., 4, ;s .- sJs
such that £t s 0. This implies that

J1eeads

(4.3.12)  (AY* L = AL |e LA

Singe this relation holds for all non-zero A!, ..., A" Rwe getforeachi, 1 £i < n,
(A¥t = | A'|°. This is possible only if k; is even and k; = ¢. That is, ¢ must be
an even integer, and

(4.3.13) ki=ky,=..=k, =c

n

Since k; is the difference between the number of indices 7, ..., 7,, equal to 7, and
the number of indices j,, ..., j,, equal to i, we have k; + k; + ... + k, =r — s =
=n.c.

Now suppose that ¢ is of weight y, where y(4) = signdet 4. | det 4 |° fo-r some
¢ e R. Using (4.3.2) again and substituting 4 e GL(R) of the form 4; = 53,
J# ok, my A= =k, 4L = 8nTFY, j=m, we get in place of (4.3.11)

, 2 YR . i ,
iy ir Igeade __ 1N\Ky mky gi1dy
ey —_—'...—_—t-___-s—(/!.) (/L) t s =
(4.3.14) Jn T e I Jaed
=signdet A. AL (... [A"[°. ek,
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where k, ..., k, are some integers. By hypothesis there exXist iy, ..., 4y, fis -5 Jr
such that £ # 0. Then, since sign det 4 = (det A)/| det 4| = (AY/| A1 ]) ...
e (A AT D,

@315 (. (= AT e

Since this equality holds for all non-zero 4%, ..., A" € R, we get foreachi, 1 i < m,
(AHk=1 = | A*|=~L. Thus k; must be odd, and k; = c. Similarly as above we get
r—s=n.c

Summarizing both cases we see that if (r — s)/n is not an integer, then 7 =0
as desired.

(b) 1. Condition (1) obviously implies (2).

2. Suppose that (2) holds, To derive (3), we compute the fundamental vector
fields (4.1.16) and find at once that their components coincide with the left sides
of (4.3.10). On the other hand, differentiating the right side expression (4.3.9)
with respect to 4} at the identity element e € GL,(R) we obtain, using (4.2.7),

(4.3.16) {.537 (det A)F. zg;_-;;;;r} = k. 67
j e

Hence (3) holds.

3. To complete the proof, we shall show that (3) implies (1). Let ¢ : GL(R)X
X T'R" - T'R" denote the tensor action of GL,(R),let {{ be the canonical basis
of the Lic algebra g/,(R) and let & = &'({/) be the fundamental vector fields
of this action, associated with the vectors ¢/. Consider also another action
¥ . GL(R) X TiR" — T,R" defined by

(4.3.17) ¥(4, s) = (det A)¥. s,

where k is defined by the condition r — s = k . n. Using (4.2.7) we easily obtain
the fundamental vector fields of this action, associated with the vectors &. With
our standard notation,

Y () = T, .t = k. (det A 5—} (et A)Y(CE . 1 =
(4.3.18) s 1
= k.(detA)"‘IEZj—(detA‘) t=k.(detd)*.Bi.i=k.58 .1,

1

where we have used the fact that {{ is the matrix whose unique non-zero element
stands in the i-th column and j-th row, that is, (lj{){l’ = (3“’5,4 ,and have set A = e
on the right.

With this notation, (4.3.10) can be written in the form
(4319  2'CHO - P& =0.
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Notice that if a tensor ¢ satisfies this equation, then so does any scalar multiple
of £; in particular, for any 4 € GL,(R)

4.320) &' (P4, 1) ~ P& (¥(4, 1) = 0.

Now take in Lemma 3.4, f = idy, P = Q = T'R", and consider the curve
§ = 9{(?) in TR" defined by

(4.3.21)  3,() = Blexp 5L, Y(exp (~s0), 1)),
where { e gl,(R) is any element. By (3.4.29)

d ’ ys!
{d—svs(t)}o= 'O @ —TO O,

4.3.22 d
( ) E?s(t) = T‘I’(exp —s{),r)éexp 5 ((D(C) (T(BXP (—S;), t)) -

— W) (¥(exp (—s0), D).

Applying (4.3.20) we get y(t) =t for all se R. Since the element { € gl,(R) is.
arbitrary we have for each A from a neighborhood of the identity ¢(4, ¥(A™1, 1) =
= { or, which is the same,

(4.3.23)  A.t— (det 4.z =0.

This relation holds, however, for any A4, because the expression A .t — (det A . ¢
(resp. (1/(det A)*) A .t — #) is a polynomial in the components of 4, if k Z O
(resp. k < 0), and (4.3.23) means that ail the coefficients in this polynomial must
vanish.

It remains to show that (4.3.23) holds for all 4 € GL{™)(R). Notice that if for
some Ay GLS R), Ay .t = (det A)*. 1, then for any AeGLI(R), 4.t =
= (det 4)*. t. Clearly, in this case

(A.Ao).t=det(A-Ao).t=Ao.(A.t)=
(4.3.24) = (det A)*(det Ap)*.1=(det A). Ay.t =

= A, . (det A)*¢,
because 4. Ay e GL{Y(R); clearly this implies 4.1 = (det A)*.1. We take A,
of the form A, = (A4)), where

(4.3.25) A= (i) &),

where x(f) = —1 if i =1 and x()) =1 if 2 < i £ n. Then the inverse matrix
Ay ' = (B}) has the same elements, and the components of the tensor 4. ¢ with
respect to the canonical basis of R" satisfy

i “Pr . . + : 1g,00r
Ap o AEBY L BIP P = (i) () %0 ) - x4 =

= (=",

(4.3.26)

[771



where m is the number of indices equal to 1 in (iy, ..., 4, ., ..., ;). If 1 enters
(Pis ., p) m, times and (q,, ..., q,) my, = m, + k times (see part (a) of this
proof), then m = m; + m,; = 2m, + k, and we have

(4.3.27)  Ag.1=(=1F.w

On the other hand, (det 4p)*.f = (—1)*.¢ proving that A,.r = (det Ap)*. 1.
This completes the proof.

Corollary 1. The weight of a relative invariant tensor is always of the form x(A) =
= (det 4)*, where k is an integer. Any other character of the group GL,(R) cannot
be the weight of a relative invariant tensor.

Proof. This has been shown in the proof of Theorem 4.3.

Corollary 2. If'r — s = k. n for some integer kK < 0, and t is a relative invariant
1ensor, then for any componeit 1_‘,‘1']3 # 0, (ji, .-, Js) is a permutation of (i, ..., i,
1,2, ...,0 ..., 1,2, ...,n), where the n-tuple (1,2, ...,n) enters | k| times. An

analogous expression holds for k > 0.

Proof. Suppose that tj‘i'j # 0. By (4.3.13), the difference between the number
of indices m in (i, ..., Ly and in (j;, ..., j,) is equal to k. Since each of the integers

1,2, ..., n should enter (jy, ..., ), otherwise #i% = 0, by (4.3.11), our assertion
follows.

Notice that if 7e T{R" is a relative invariant tensor of weight (det 4)* with
k < 0 then the tensor product t @ ¢ @ ... ® 6€ TLR" of ¢ with k factors the
Levi—Civita tensor ¢ is an absolute invariant tensor; if k& > O then the tensor
product 1 @ 4 @ ... @ ne TLR" with k factors the Levi— Civita tensor 5 is an
absolute invariant tensor. Notice also the relation

(4.328) g, &' =nl

Theorem 4.4. (a) Each relative invarignt tensor t € TO R is a scalar muitiple of the
Levi~Cisita tensor n, t = c¢.n. Each relative invariant tensor t € ToR" is a scalar
multiple of the Levi—Civita tensor &, t = ¢ . &.

(b) Let te TiR" be a relative invariant fensor, let r — s = k . n, where k < O.
Then t is expressible as a complete contraction of an absolute invariant tensor ue T7R"
and the tensory @ ... @ n(—kfactorsn). If k > O then tis expressible as a complete
contraction of an absolute invariant tensor ve T{R" and the tensor ¢ @ ... ® ¢
(k fuctors e).
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Proof. (a) Let ze T)R" be a relative invariant tensor, let y be its weight. By

floml(lj';;’ L to Theorem 4.3, y(4) = (det 4)~*, and for any element 4 e GL,(R),
== 7)s

(4.3.29) Bﬂ 'B?:tlh...q,. = (det A)_l T

where 47" = (B)). Choose 4} = A!6} (no summation). Then B} = (1/4;) &}, and
(4329) gives

1 1 -
(43'30) F “on -I{T tjl---jn = (}»1 s /{ﬂ) lt}x...l.'
Since for each i, A’ # 0 and ' is arbitrary, if (j,, ...,J,) is not a permutation of
(1,2, ..., n), t;,.j, must be equal to 0. Now take 4 of the form

a.if’ j 4" k: m,
4.3.31) Al ={st™" j=k,
5»!—k+i .
m ’ J=m.

‘The matrix (49 has the form

j— j=k j=m
i 1

i=k 0 ... 1

(4.3.32)

| 1
where all the missing non-diagonal elements are zero. From (4.3.32) it is evident
that the inverse matrix 4! = (B}) has the clements

5%, i+k m,
(4.3.33) B_ir = 5£~m+j» i =k,

Om—ri+ 'L i ==m.
Because A differs from the identity matrix by one transposition of rows, det 4 =
= —1. Suppose that in (4.329), (ji,....J,) is a permutation of (1,2,...,n).

Substituting (4.3.31) in (4.3.29) we obtain that the interchange of the integers k
and m in (j,, ..., J,) changes the sign of the component 7, ., that is, 7 ,p..k.. ==
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= —1{ 4 .- Since k and m are arbitrary, ¢, ; must be completely antisymmetric.
This means that ¢, ;, = ¢dy,..;, for some ce R.

In the case te T§R" our assertion can be obtained in the same way.

(b) To prove the second statement, consider a relative invariant tensor 7 € T,R*
such that r — s = kn, where k£ < 0, Denote

(4.3.34) =11 ..9n

(~k factors ). Contracting u and the tensor ¢ ® ... ® ¢ (—k factors ¢) and using
(4.3.28) we obtain (n!)7*.t as desired. The rest is proved in the same way.

Corollary 1. A nontrivial relative invariant tensor te TR exists if and only if
r — s =k .n for some integer k. The weight of t is y(A) = (det A)".

Proof. The existence (resp. non-existence) of ¢ follows from Theorem 4.4 (resp.

Theorem 4.3, (a)). The second assertion has been verified within the last part of the
proof of Theorem 4.3.

We note that Corollary 1 includes absolute invariant tensors for which & = 0.
Relative invariant tensors form a subalgebra of the tensor algebra of the vector
space R'. This subalgebra can be completely characterized as follows.

Corollary 2. The algebra of relative invariant tensors is generated by the Kronecker
tensor 8 and by the Levi— Civita tensor s.

Proof. This is a consequence of Theorem 4.1 and Theorem 4.4,

Theorem 4.4 describes the structure of a relative invariant tensor. We shall
illustrate it by an example.

Example 4.3, Let 1€ T,R" be a relative invariant tensor, and let r — 5 = 2n.
Then, in the canonical basis of R

1100dgP1eee Pt oolin —

(4.3.35) v

— uix...i.m,..p,.ql...q,. skl...k,. My,

Jtoeadakgedenmy.my £ F}

where 1l 35l P@lIn are components of an absolute invariant tensor of type (r, ¥);
the general form of this tensor is determined by Theorem 4.1.

4.4, Multilinear invariants of the general linear group. We now apply the theory
of invariant tensors to linear GL,(R)-equivariant mappings of tensor spaces, and

to multiplinear relative invariants of GL,(R).
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Theorem 4.5, Let & : TXR" —, TiR" be a linear mapping,

(4.4, PilePr _ gHPL-Pritedm

(4.4.1) laviar = Pacaiilije Szj:...i::s

iLs representation relative to a basis of R". Then & is GL(R)-equivariant if and only
if the coefficients Por-Beltim are components of an absolute invariant tensor.

Proof. One can find by a direct computation that the coefficients (P{,’l‘.“"’;’_’j‘l'_‘_'_‘j";
satisfy (4.1.7) if and only if & is a GL,(R)-equivariant mapping.

Theorem 4.5. establishes a one-to-one correspondence between linear GL,(R)-
-equivariant mappings of tensor spaces and absolute invariant tensors.

Corollary 1. A4 non-trivial linear GL,(R)-equivariant mapping & : TER" - T'R"
-exists if and only if and only ifr +m =k 4+ s.

Proof. This follows from Theorem 4.5 and Theorem 4.1.

Covollary 2. Let R be endowed with the trivial action A — 1 of GI(R). Then each
linear GL,(T)-equivariant mapping @ : T{R" — R is of the form (i) - c.4
(summation over i), where ¢ € R is some constant. Each linear GL,(R)-equivariant
mapping @ : R — TiR" is of the forms — (cé} . 8), where c € R is some constant,

Proof. Both parts of this assertion follow immediately from the expression of ¢
in the form (4.4.1).

Remark 4.2. We may paraphraze Theorem 4.5 in such a way that any linear
GL,(R)-equivariant mapping & : TER" — T"R" can be obtained by a sequence
of the following constructions:

(a) contraction in one superscript and one subscript;

(b) tensor multiplication by the Kronecker tensor;

(c) vector operations: addition and scalar multiplication.

Remark 4.3. Theorem 4.5 can be used to find GL,(R)- equivariant decompositions

of tensor spaces into the direct sum. Let for example ¢ € T;R", ¢ = (#7r), be an

absolute invariant tensor, and consider the mapping @ : TPR"—» TJR" defined
by the equations

(4.4.2) Sy = ;ll'.'.'.ij',.sn...fp
By Theorem (4.1, (4), ¢ is of the form
(4.4.3) thied = 3 ¢80 .8

J1eedr Jagry *** Ydatm
6ESy
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for some ¢, € R. It is easily seen that & is a projection, i.e. ® o & = &,if andonly
if for eachve S,

(4.4.4) ¢, — 3. Csla-1,= 0.

Obviously, if ¢ is expressed by (4.4.2) then for any se TYR", s = (s;,..,), P($()¥
is given by

(4-4-5) E,h...j,- = Z cajjc(i)mjc(r)'
Using Corollary 4 to Theorem 4.1 we get

gjc(l)-n]u(r) = Zv:cvslov(uu-lnv(')’
(4.4.6)

Sjl...jr = Z cU Z cvs.,av(l)---ja(\v)r'
a v
On the other hand, ®(s) is expressed by

i iy _
‘§11-..J, = Z ce(sjlo(n o ‘)J'a(r)sh.-.ir =
4.4.7) °

Y. CeStaquyemdeer *
I3

Putting ov = ¢ we obtain v = ¢" ¢ and
(4‘4‘8) §h-.-h = Za Ca z‘; Cv“esjom---la(r)'

The condition @ o & = & is now equivalent to 5, ; =§;,, which is in turm
equivalent to (4.4.4).

We shall now turn to multilinear relative invariants of the group GL,(R).

Let G be a group, () a set endowed with a left action of G. A function f: @ - R
is called a relative invariant of the group G if there exists a function 3y : G - R*
such that foreachge Qand ge G

(44.9)  flg.q) = x(@) - f(@)-

If such a function y exists and for some g € Q, f(g) # 0, then it is unique, and is
a homomorphism of G into the multiplicative group of real numbers. In this case ¥
is called the weight of the relative invariant /.

Our main concern here will be multilinear relative invariants of vectors in R™

-and vectors in R"*. We have the following simple observation, analogous to
Theorem 4.5.

Theorem 4.6. Let [ : (R") X (R"*)" — R be a multilinear mapping,
(4.4.10)  J(&, . & @Y o, ) = AR ED L o) L o,

T1eeds
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its expression for a basis of R". Then f is a relative invariant if and only if % are
components of a relative invariant tensor of type (r, s).

Proof. The proof is analogous to the proof of Theorem 4.5 and is straight-
forward.

Corollary 1. If (r — s)/n is not an integer, there is no relative invariant of s vectors
in R" and r vectors in R"*.

Proof. This follows from Theorem 4.6 and Theorem 4.3, (a).

Corollary 2. If r — s = k. n for some integer k, then the weight of each relative
invariant of s vectors in R" and r vectors in R"* is x(A) = (det A)*.

Proof. This follows from Theorem 4.6 and Corollary 1 to Theorem 4.3.

We shall now formulate a consequence of Theorem 4.1, Theorem 4.4, and
Theorem 4.6 which is known as the main theorem on relative invariants of the
group GL,(R).

Corollary 3. Each relative multilinear invariant of vectors in R* and R** is a linear
combination of products of relative multilinear invariants of the following three
types:

(44.11)  det($y, &ay -vs &) = 8,5, 8087 - &7,
(44.12)  det(o!, 0%, ..., 0" = ¢ "olol .. @],
(4.4.13) o,

where £, &; € R", o, o' € R"*. More precisely, each relative multilinear invariant of s
vectors £; € R and r vectors w' e R™* of weight (det A)*, where k < 0, is expressible
as a linear combination of products of invariants of type (1) and (3); if k > 0, it is
expressible as a linear combination of products of invariants of type (2) and (3);
if k=0, it is expressible as a linear combination of products of invariants of
type (3).

Proof. Let f be a relative multilinear invariant of s vectors ¢; € R" and r vectors
w'e R"*¥,letr — s = k . n, where k > Oisaninteger. Let ¢\ be the components
of a relative invariant tensor of weight k, associated to /by (4.4.10). By Theorem 4.4,
this tensor if of the form

Lo ds(P1pa) .o tpe) —

Jids
(4.4.14) = e B P(PR)(P) (a1 p(a)  plak)
= Uy, jeta1)(92). ax) * ’
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where (,) = (Pmis Pmas - Pmn) denotes n indices with values between 1 and »n
(compare with Example 4.3). Substituting (4.4.14) in (4.4.10) and using Corollary 4
to Theorem 4.1 we obtain that the tensor (4.4.14) is antisymmetric in p,,1 > Pm2s s
ves D fOr €ach m, 1 £ m < k. Hence (4.4.10) contains factors of the form

4.4.15)  det(@, ..,0" = ai"“"""au;l e @,
and factors of the form &‘w,, that is, factors of type (2) and (3).
If k < 0 we proceed in the same way; if kK = 0 we apply Theorem 4.1.

5. PROLONGATIONS OF LIFTINGS

This chapter is devoted to the formal theory of prolongations of those geometric
structures which appear in the theory of differential invariants: Lie groups, smooth
manifolds endowed with Lie group actions, principal and associated fiber bundles.
These geometric prolongation constructions lead naturally to the prolongations
of the r-frame lifting, and the prolongations of liftings, associated with the
prolonged r-frame lifting. To the end of this chapter basic definitions concerning
natual differential operators are given.

5.1, Prolongations of Lie groups. Let G be a Lie group, and denote by TG the
set of r-jets with source at the origin 0 € R” and target in G, T'.G is a subset of the
manifold J'(R", G) of r-jets with source in R" and target in G (Sec. 2.1). More
precisely, T.G is the fiber over the point 0 e R" with respect to the canonical jet
projection of J(R", G) onto R". In particular, TG is a closed submanifold of
J(R", G).

Let S, T e T,G, S = Jyf, T = Jog, be any clements. We define a multiplication
in 7,G by

.11 §.T=Jy(f. 8.

where (f. g) (x) = f(x) . g(x) (the group multiplication in G). It is obvious that
the mapping (S, T) — S'. T'satisfies the associative law; moreover, the element Jo€a,
where e; denotes the identity element of G and the constant mapping of R” onto €6,
is the identity element of this multiplication, and the element J§, f 1, where £~ (x) =
= (f(x))~* (the inversion is taken in the group &), is the inverse element to Jo f
Thus T,,G is a group. Denoting for a moment the group multiplication in G by ‘f’,
we obtain (5.1,1) in the form

(5.1.2) §.T= JEf(O),g(O))W [ Jro(f X g) = J’(‘f(O),g(O))!{I o (S, :l\).
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Since the composition of jets is smooth, the product S.T depends smoothly
on S and T, and we see that the group structure in T.G is compatible with its
smooth structure. Thus T,G is a Lie group.

Let us consider the r-th differential group of R", L. Each element 4 € L, defines
a mapping ¢(4) : T,G — T,G by the formula

(5.13) @A) (S) =Sc A1

Since for any S, Te T,;G and 4, Be L

(5.14) @AES.T)=(.T)od ' =(Sod™ ). (Tod™ D,

0(A.B)(S)=So(4d.B) ' =(§cB Hod ' =

(5.1.5)
= @(4) (¢(B) (S)) = @(A4) o ¢(B) (S),

@(4) is an automorphism of the Lie group TG, and the mapping 4 — @(A4) is
a homomorphism of the Lie group L] into the group Aut T,G of automorphisms
of T;G. The mapping (4, S) = ¢(4) (S) = S o 47" is obviously analytic. Consider
the exterior semi-direct product L, x ,T,G, associated with the homomorphism .
By Theorem 4.4, L, %, T,;G is a Lie group. We call this Lie group the (7, n)-prolonga-
tion, or simply the prolongation of the Lie group G, and denote it by GJ,. By (1.2.1),
the group multiplication in G}, is defined by the formula

(5.1.6) (4,5).(B,T)=(A4.B,S.(To A™Y).

Remark 5.1. We shall give a less formal interpretation of the group G,. Let eg
denote the identity element of G. Let o be an isomorphism of the trivial principal
G-bundle R"X G, ag the projection of «, &g = proj o. Writing

(5_1‘.)7) a(x, g) = a(x, eg) . g = y(oo(x)) . g =
= (2o(x), &'(xo(x))) - &

we obtain a section x — y(x) = (x, &’(x)) of R*x (. Thus « gives rise to the pair
(o, a’). Conversely, each pair (o, o), where oy : R" — R" is an isomorphism
and o' : R" — G is a mapping, defines an isomorphism of the principal G-bundle
R*% G by the same formula (5.1.7). Thus we have a bijection between the set
of isomorphisms o and the set of pairs (o, &’). Consider the composition o o 8
f two isomorophisms « and fi. We get

af(x, €) = a(B(x, €)) = a(Bo(x), f'(Bo(x))) =

= a(fo(x), &) . B'(Bo(x)) =

= (% o fo(x), &'(etg © Bo(x)) - B'(Bo(x)) =

= (g 0 Bo(x), &'(etg © Bo(X)) - Bagt o o o fo(x)),

(5.1.8)
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so that the isomorphism o o § is identified with the pair (ag o Bo, &' . (B 0 ag -
Restrict ourselves to isomorphisms a whose projection aq satisfies 2(0) = 0, and
transfer this bijection to jets. Identifying the r-jet Jio 4o (resp. Jio, of) with the
element (J50, Joo') € Li, X T4G (resp. (JoBo, JoB') € Ly, X T, G, the r-jet J, NCEY)
is identified with the element (Jh(a o o), Jo(@’ . (B o ag)) e L, xT,G. The
arising multiplication law ((Ja%o, Joe"), (JoBo, JoB)) — (Jo(oo o Po)s NACHEE
.(f 0 0ag'))) coincides with (5.1.6).

5.2. Prolongations of left G-manifolds. Let G be a Lie group, P a left G-manifold.
Consider the set TP of r-jets with source 0 € R" and target in P.T,P is a subset
of the manifold of r-jets J'(R", P), and is a closed submanifold of this manifold.
Let (4, S) € G, be any element, 4 = Jha, S = J§f. For each pe T,P, p = Jgt
define

(521 (4,8).p=S.(pod ) =Jif. T oa"b)),

where (f. (z o ¢™1) (%) = f(x) . 1(@~!(x)) (the action of G on P). We shall show

that the mapping ((4, S), p) = (4, S) . p is a left action of the group G}, on T,P.
We have, by (5.1.6),

(5.2.2) (4,8 .B,T).p=UA.B,S.(ToA™)).p=
- =S.(Tod™Y.(po(4d.B)},

where (4, S), (B, T) € G}, are any elements. On the other hand,

523 AS-BT.p=(4S).(T.(poB™) =
' =8.(Tod ). (poB~tod™Y).

Since the expressions (5.2.2) and (5.2.3) coincide, the mapping ((4,S), p) = (4,5) . p
defines the structure of a left Gj-manifold on T4P. With this structure, TP is
called the (r, n)-prolongation, or simply the prolongation of the left G-manifold P.

5.3. Prolongations of a principal G-bundle. Let ¥ be a principal G-bundle over
a manifold X, = its projection, Let F"X (resp. J'Y) be the bundle of -frames over X
(resp. the r-jet prolongation of the fibered manifold = (Sec. 3.1)). Consider the
fiber product V'Y = F'X @ J'Y, i.e. the submanifold in F'Xx JY of pairs ({, Z)
such that { and Z belong to the fiber over the same point of X. We put for each
§,Z)eW'Y, { = Jyu, Z=Jyy, where x = u(0), and each (4,S)eG,, 4=

= Jou, S = Jof
(3.3.1) € 2).(4,8)=(0.4,Z.(Sc{") = Joue, Ji(y . (fop™)),

where (y. (fo ™) (¥) = p(x) . f(u~*(x)) (the action of G on Y). We shall show
that the mapping (({, Z), (4, S)) = ({, Z). (4, S) defines a right action of the
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group G, on W'Y, Using (5.1.6) we get for any (4,S), (B, T)e G, and ({, Z) e
e W'y
¢2).(4.5).B,TH=(2).(4.B,8.(ToA™") =

(5.3.2) _ B
=(.(A.B),Z.(Sol").(Tod ol Y)).

On the other hand,

€2).(4,8). BT =0(.4,Z.(So{™").(B,T)=

(5.3.3) _
= (. A.BZ. (Sol™Y.(To(t.A) ).

Since these two expressions coincide, (5.3.1) defines a right action of the group G7,
on W'Y, and W'Y becomes a right G-manifold.

Theorem 5.1. The group action (5.3.1) defines the structure of a principal Gy-bundle
on W'Y. The base of this bundle is X, and its projection is the projection of the fiber
product.

Proof. We shall show that the action (5.3.1) of G;, on W'Y free. Suppose tha®
for some (¢, Z) and (4, S), ({,2).(4,8)=((,Z). Then { =(.A and Z =
=2Z.(So{™"). Since L} acts freely on F'X, A must be the identity of L], 4 =
= Jpid,,. Let us consider the second condition. If Z = Jiy, S = Jyf, and { =
= Jgu, this condition reads

(5.3.4) Jly =Ty . (fou™h).

Let U be a neighborhood of the point x& X and ¢ : n71(U) - UX G a diffeo-
morphism such that ¢(y . g) = @(y) .gforallyen~'(U)and ge G, and pry o ¢ =
= ¢; since Y is a principal G-bundle, such a diffeomorphism ¢ exists. Denote

(5.3.5) P(y(x)) = (x, Po(y(x))).
Then

536  POMSWTN) = 00 ST () =
= (x, Po(p(x))) . S~ (X)),

and (5.3.4) holds if and only if JXpey) = JA@ey . /u™"). Applying Jou on both
sides we get

(5.3.7 Jolwor) = Jo(@oyn) - Jof

(multiplication in the group T,G). Thus S = Jjf = Jpes, where e; is the identity
element of G, and S is the identity of T.G. This proves that the action (5.3.1)
is free.
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Tt remains to show that two elements ((,, Z,), ({5, Z,) € W'Y belong to the
same fiber over X if and only if there exists an element (4, S) € G, such that
&y, 2Zy) =, Z) . (4,8), and to verify the local triviality of W'Y over X.
The proof of these assertions is straightforward, and will be omitted.

Remark 5.2. A less formal way of obtaining the left action (5.3.1) is the following.
Let B be an isomorphism of the principal G-bundle UxG, where U = R" is
a neighborhood of the origin, onto an open subbundle of the principal G-bundle ¥.
B defines the projection of B, fo = proj §, and a mapping f’ : fo(U) —» Y by the
condition f'(x") = B(Bs1)(x'), eg). Since mP(x, g) = Po(x), we have nf'(x") = x’.
and §’ is a section of = over fo(U). B’ may equivalently be defined by

(53.8)  B(x,8) =P(x,e).2 = B'Bo(x) . 2.

Conversely, a pair (8o, f'), where B, : U — Xis a diffeomorphism and 8 : fo(U) —
— Y is a section, defines an isomorphism f : UXG — ¥ by the same formula.
Let o : UXG — UxG be an isomorphism of principal G-bundles, oy = proj o,
and suppose that 0 € U and o,(0) = 0. Let f be as above. Then f and ¢ are compos-
able, and f o o is an isomorphism of U x G onto an open subbundle of the principal
G-bundle ¥. We have, using the notation of (5.1.6), and (5.3.8),

(539) Ba(x, £) = (o)’ o Botto(x) . & = Bleto(%), a'ate(x) . g) =
- = B'Botto(x) . alate() . g,

which implies
(53.10) (Bx) =B .’ Bg

Thus, the isomorphism f o« is identified with the pair (8 c oo, 8 - 2'flg 1y.
Consider the r-jet Jio, 5y(8 0 ®). (5.3.10) shows that under our identification, this
r<jet is identified with the element (J5(Bo o o), Jpo0y(B’ - @'Bo 1)) € W'Y. Expressing
this element explicitly in terms of the pairs (8,5, 8), (g, &), we get

(To(Bo o %ol Jo0)(B' - &'B5 ™)) =

= (JoBo o To0os Tho(0,8" + (To2' 0 Tpo0yB o)

and we come to (5.3.1).

(5.3.11)

The principal G;-bundle WY is called the r-prolongation, or simply the prolonga-
tion of the principal G-bundle Y.

We note that the r-jet prolongation of the fibered manifold n: Y - X, J"Y¥,
has no natural structure of a principal fiber bundle, even though Y is a principal
G-bundle.
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Let o € Mor 24,(G), and define
(5.3.12) Wi = (Flag, J'a),

where F" is the r-frame lifting, ¢, = proj o, and J'a is the r-jet prolongation of the
homomorphism of fibered manifolds (Sec. 3.1).

Theorem 5.2. The correspondence Y — W'Y, a — W'« is a covariant functor
from the category P%,(G) to the category PR (Gr).

Proof. Let a € Mor 2%,(G), « : Y — Y,. We shall show by a direct calcula-
tion that for each ({, Z) e W'Y, and (4, S) e G,

(5.3.13)  W'a(((,Z).(4,5) = Wa{l, Z). (4, S).

Choose ({, Z) = (Jou, J57), where x = pu(0), (A4, S) = (J§B, Jof), and denote B, =
= proj B. By definition, W'a(({, Z).(4,S)) = (F'ao(l o 4), J'«(Z.(Sol™1)).
Since Fra,e Mor #4,(L;), we have for the first component in this pair,
Frag(l o A) = F'ug(l) o A. For the second component we obtain from (3.1.8)

Ta(Joy - (™M) = Jggm(@ o (v . S ™ o ap ™) =

(5.3.14) ” “ot i RO
=Jlm(@o (gt fu T ag D)) = Jhglovae t . i reg ),

where the last equality follows from the fact that « is a homomorphism of principal
G-bundles. This expression is equal to

JUI) . (Jof o Jaau(W ™ a0 ) =

5.3.15
B3I 1) (S o Fagl)).

Comparing (5.3.15) to (5.3.1) we obtain (5.3.13).
The rest of the assertion is obvious.

5.4. Prolongations of a fiber bundle. Let G be a Lie group, ¥ a principal G-bundle,
and P a left G-manifold. Let ¥ x P be the fiber bundle with fiber P, associated
with the principal G-bundle Y (Sec. 2.3); we write for short ¥ X goP = ¥p. The
projection of Yp is denoted by np, where = is the projection of ¥. Recall that the
equivalence class of a pair (y, p) € ¥ X P with respect to the equivalence relation
defined by the right action of G, is an element of ¥, denoted by [y, p].

Let o € Mor 28,(G), « : Y, — Y,. We put for each z & (¥y)p, z = [», p],

(5.4.1) ap(z) = [a(y), p].

We obtain a morphism op € Mor $#,(G), ap : (¥1)p = (¥,)p which is called
associated with the morphism « of principal G-bundles. It is easily seen that the
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correspondence ¥ — ¥p, & = tp is a covariant functor from the category 2%,(G)
to the category #%,(G).

Theorem 5.3. Let Y € Ob #A,(G). The r-jet prolongation J'Yp has the structure
of a fiber bundle with fiber TP, associated with the principal Gl-bundle W'Y .

Proof. Let us consider the fiber bundle (W*Y)y, where Q = T,P; (W'Y)o is
a fiber bundle with fiber Q, associated with the principal G;-bundle W"Y. To
prove Theorem 5.3 it is enough to show that there exists an isomorphism of mani-
folds ¥ : (W'Y)q — J'¥p, commuting with the projections onto the base X of Y.

With the notation of Remark 5.2 consider an isomorphism  of the trivial
principal G-bundle UXG, where U is a neighborhood of 0 € R", onto an open
subbundle of ¥, and its projection f,. Putting

(5'42) ﬁP(-x’ T) = [BIBO(x)z T]y

we obtain a mapping fp: UXP — ¥p. Let now 1 be a mapping of U into P.
Then the mapping x = Bp(Bs *(x), 785 '(x)) is a local section of ¥p, defined on
Bo(U) = X. Now consider the r-jet Jp 0,(Bp o (idy X t) o B ') of this local section.
To show that this r-jet does not depend on the pair ((J3Bo, J3o(38")> Jot) € W'Y X
X T'P provided this pair runs over an equivalence class in (W'Y)g, we take an
element (4, S) e G,, 4 = Jga, S = Jyf, and construct the pair (JoBs, Jpo0)B”) -
.(4,8), (4,8 JgT). By (5.3.1),

(J3Bo» JaocyB) - (Joo, Jof) =

= (J5(Bo®; T jocor(B’ - (f B3 )))-

Using (5.1.6) we get (4, S) ' = (4™1, §™' o 4), 50 that, by (5.2.1)
(5.4.4) Tha™ Y J5f "o Jha) . Jht = Jh((f "o &) . (T o 1))

(5.4.3)

Denote gy = fo0, 6" = B’ . (fBo!),and ¢ = (f~'a) . (1«). Let o be an isomorphism
of Ux G onto an open subbundle of ¥, defined by the pair (o4, ¢'), and define op
by (5.4.2). Consider the r-jet J o)(op o (idyXx0) o o5 ') and its representative
x - ap(ag (), 005 *(x)). By definition,

ap(05 (%), 005 (¥)) = [¢'(x), @05 ' ()] =
(a5 =GB, (e @) B )] =

= [B'(x). fB5 (), f (B 1(x)) - 1B M (x)] =

= Br(B5 1 (x), oho 1 (x))-

This proves the independence of the r-jet Tpo0y(Bp o (idy x1) 0 Bo1) of the choice
of ((J5Bo»> JjocoyB'), J§7), and we have a well defined mapping
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W'Y)e2 [, 2), p] = P& 2),p]) =
= JZO(O)(ﬂP o(idyx1) o ﬂgl) eJ'Y,,

(5.4.6)

where { = JofBy, Z = J.f', x = B4(0), and p = Jjz. This mapping is a bijection.
Clearly, its inverse is defined by the formula

(5.4.7) YTHI) = [UoBoy T3a0B) Ja(pra o B Bo)],

where (J5B0, Jpq(0yB") is any element of 'Y and pr, : R"xXG — G is the second
projection. The differentiability of both ¥ and ¥~ ! follows from the differentiability
of Bp and the composition of jets and is obvious. The commutativity of the mapp-
ing ¥ with the projection onto X is also obvious. This completes the proof.

Theorem 5.4. The correspondence ¥p — J'Yp, o — J'ap is a covariant functor
Jrom the category P%,(G) to the category F B,(G).

Proof. By (3.1.10) it is enough to verify that if « € Mor 2%,(G), o : ¥y = ¥,,

then J'ap is a morphism of the category #4,(G,). We shall show that Jap is
expressible in the form

(5.4.7a)  J'ap = [FlagXJa,id,],

where oy = proj a, Q = T,P, and ap = [«,idp|. Consider a point Jiy € J'(¥y)p.
With the notation of the proof of Theorem 5.3 we shall determine the element

Yo (Jap(Jhy)) € (W'Y,)y, where ¥ is defined by (4.5.6). Using (4.5.7) and (3.1.6)
we obtain

y'"1(J:m(.:c)"‘}")"i’lt;1) =
= [(J’ﬂo: J;fo(O)ﬂl): Jolpr; o ﬂ;‘apyoz;lﬁo)],

where f is any isomorphism of the trivial principal G-bundle U % G into ¥, , such
that By(0) = ay(x), and f,, f’ are determined as in Remark 5.2, Choose an iso-
morphism y of R"X G into ¥, such that x,(0) = x and take § = «x. Then

(5.4.9) Po = toXo-

(5.4.8)

For each (x,g) from the domain of definition of 8, f(x, g) = B’Bo(x) .g=
= ay(x, g) = a(y'x0(x)) . & which implies ay'yo(x) = B'Bo(x) = B'ooxo(x), i.e.

(5.4.10) B =ayay’.

Then by (5.4.2), Bp(x', ) = [B'Bo(x"), 7] = [axen ‘aoxo(x), 7] = [0 x0(x") <].
Using definition (5.4.1) we obtain

(5.4.11) ﬁp - ap}:p.
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Substituting (5.4.9) —(5.4.11) into (3.1.8) we obtain
P (o ) =

(54.12) = [(T5(doXo)s Tronoy® e ) Jo(Drz © Xp ap Topyatg egxo)] =
= [(Fao(J5%0)s I 401X ))s Jo(pr2 © X;13’Xo)]-

Since

(54.13)  ¥7U) = [Ubtos Jagot)s Jolots o %2 70)]s

formula (5.4.7a) follows on comparing (5.4.12) and (3.1.8).

5,5, Prolongations of the r-frame lifting and of the associated liftings. We shall
now apply the theory of prolongations explained in the previous sections to the

fundles of r-frames.
Let » and s be some positive integers, and consider the Lie groups L,*", and

(Ly)y = Ly x ,ThLy (the semi-direct product of L, and T,L!, defined in Sec. 5.1).
To each A e L,"*, A = J§"*a, we assign an element v(4) of the prolongation (L}),
of L}, as follows. We identify the principal L}-bundle R" x L} with F'R" by putting
Jot = (u(0), Jo(tyoyi)), there 7, denotes the translation of R" sending a point
x € R" to the origin. As in Remark 5.1, we identify the automorphism F°ex of
UxL;, where U is the domain of «, with a pair (¢, F’a), where F'a is a mapping
compossable with «, with values in Lf,. We put

(5.5.1) v(4) = (Jyo, JoFw).
Obviously, v : Lj** — (L}) is a well-defined mapping.
Lemma 5.1. v is a homomorphism of groups and an embedding.
Proof. Firstly, we shall show that v is a homomorphism of groups. Clearly,
for any A, Be L1**, A = Jy"a, B = Ji**p
(552) W5 w0 J5B) = (Jo(@B), JoF (ap)).
Similarly as in Remark 5.1 we obtain JoF*(af) = J5(F'¢. (F*8 o™ 1)) which gives
(5.5.3) V(o o0 JETB) = (Jo o ThB, JoF%a . (JHF*B o Joa 1Y),
On comparing this relation to (5.1.6) we obtain
(5.5.4) v(4 . B) = v(A) . v(B).

Secondly, we shall show that v is an injective homomorphism of Lie groups;
this property of v will imply that v is an embedding. Since v is obviously smooth,
it is enough to verify that it is injective. Let us choose an element 4 e L't 4 =
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— gr+ . .
= J5 %a, and an s-frame e F*X, { = Jyu, from the domain of definition of F'u.
We obtain, using our standard identification,

Fu(Q) = Jo(op) = (@p(0), Jo(tuucores)) =
(5‘55) = (“ﬂ(o): Jg(ta,‘w)“t—u(m tu(O)#)) =
= (al"'(o)i JsO(taﬂ\O)at—'ﬂ(O))) . J%(tﬂ(o)u)'

Writing u(0) = x we obtain Fa(x) = Jo(t, 21 —y). Now suppose that for some
A EL;+3, A= J'[)”a,

(5.5.6) V(A4) = (Jyid,,, Jo(Jo id ),

where Jgidg, stands for the constant mapping of R" into the identity element
of the group Lj,. It follows from this assumption that all partial derivatives of the
mapping x = Féa(x) = J§(Z,)2f-,) up to r-th order, vanish at the point 0 e R".
To see it, notice that for each j and £,

(5.5.7) Dy(tysy, 21 - 2) (0) = Dy (x),

where 1, ; (resp. «;) is the j-the component of the mapping 7, (resp. «). This means
that the mapping F o is precisely the mapping x — (Dyo;(x), ..., Dy, ..., Dy0s(X))-
Now applying our assumption (5.5.6) we obtain for all j, &k, ..., k,

(5.5.8) Dkldj(o) = 0, veey Dlekz see Dk,_“aj(O) = 0,

which implies that 4 = J5**idg,, and the homomorphism v is injective. This
proves Lemma 5.1.

Let Xe Ob 2, and let W'F°X be the r-jet prolongation of the bundle of s-frames.
F*X. To each { € F*'**X, { = Jp**u, we assign an element vy({) € WF°X as follows.
As in Remark 5.2, we identify the isomorphism of principal L}-bundles Fu : UX
% L} - F°X, where U is the domain of definition of u, with the pair (u, Fp),
where F*u is a section of the bundle of s-frames F°X composable with p. We set.

(5.5.9) vx(0) = (Joit, Jp0yS°1))-

Lemma 5.2. The pair (vy,v) is a reduction of the principal (L),-bundleW F*X 1o
the principal L}, *-bundle F'*5X.

Proof. By Lemma 5.1, we may restrict ourselves to examining the mapping vy.
Obviously, proj vy = idy. To show that vy is a v-morphism of principal fiber
bundles choose an element 4 € L%, 4 = Ji a, an r-frame { € F**5X, { = J5* ',
and consider the point vy({ . 4). Using the definition of the action of L], * on F"™°X
we obtain
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(5.10)  vell - A) = (To(), T30yS*(pa)).

Then, since F* is a covariant functor, F*(uo) = F*u.(F'a o p™'), where F'o iS

a mapping with values in L, composable with «, determined by the condition
Fsy = (o, P°a). This expression implies

(5.5.11)  vx(¢. A) = Top 0 Joot, Ty Foli . (JoF 0t 0 Jhoyu™ 1) = vx(0) . v(A)-

Hence vy is a homomorphism of principal fiber bundles aver idy. It remains to,
show that vy is injective. The proof of this fact consists in verifying that over the
domain U of each chart (U, @) on X, W'F*@ o vy = v o F"**¢, and is routine.

The correspondence X — W'F°X, o — W'Fa, where X € Ob &,, may be con-
sidered as the composition of two covariant functors, F* and W', and is therefore
a covariant functor from the category @, to the category 24,((Ly),). We call this
functor the r-jer prolongation of the r-frame lifting.

The following theorem shows that there is a relation of the functor W'F* and
the ( - s)-lifting F"**.

Theorem 5.5. There exists a natural transformation X ~ Ty of the functor F"*°

to W'F* such that for each X € Ob 2,,, Tx is a reduction of the principal (L});-bundle
W'F*X to the principal Lj**-bundle F™*°X.

Proof. For each X Ob 2, put Ty = (vy, v), where vy (resp. v) is defined by
(5.5.9) (resp. (5.1.1)). By Lemma 5.1 and Lemma 5.2 it is sufficient to verify that
for each a € Mor 9, & : X; —» X,

(5.5.12)  W'Faovy = vy, o Fa.

Choose { e F'*°X,, { = J3"*u. We have, by (5.5.9) and Theorem 5.2,
WF% o vy, ({) = WIFa(Jou, ;(O)Fsﬂ) =
5.513) = (FalJow, J'Fa(l0Fp) =

= (Jo(o), Jpuoy(F'a o Fouoa™),
and

61y Vxee FTUUO = v ew) =
= (Je(dﬂ)ﬂ J;,u(O)FS(u,u)).

To prove (5.5.12) it therefore suffices to show that

(5.5.15)  Jouo)(F'eo Fiuoa™) = Jo, 0 F(ap).

Using the functoriality of F* we obtain

(55.16) F(op) (f, g) = (Fi(a) o ap(x)) . g = F'o o Fou(x, g) =
= Fa(Fpop(x). g
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for each x from the domain of definition of y and for each g & G. That is, FS(eep) =
= Fq o Fpoa™ !, which proves (5.5.12).

Let P be a left L-manifold. Theorem 5.4 implies that the correspondence X —»
~ J'FpX, a - J'Fja is a covariant functor from the category 2, to the category

FRB,((Lyr). A natural question arises, as to whether this correspondence is
a lifting.

Theorem 5.6. The correspondence X — J'F3X, « — J'Fpo. is a TyP-lifting, associat-
ed with the (r +- 5)-frame lifting F'**.

Proof. By Theorem 5.5, each fiber bundle J'F3X, where X e Ob 2,, may be

regarded as a fiber bundle with fiber TP, associated with the bundle of (r + s5)-
frames F"+*X. This means that

(55.17) JrF;P - Fr-l-s’i
where J'Fg is the covariant functor from Theorem 5.5, and Q = T,P.
The T P-lifting J'Fy is called the r-jet prolongation of the P-lifting Fp.

5.6. Natural differential operators. Let n, : ¥, » X and =, : ¥, - X be two
fibered manifolds over the same base, let C*(Y;) denote the set of smooth (local)
sections of ny, { = 1, 2. We state the following definition. A mapping D : C*(Y;) »
— C*®(Y,) is said to be a differential operator, if there exist an integer » 2 0 and
a2 homomorphism of fibered manifolds D" : J'Y, —» Y, over idy such that for
every section y e C*(Y,) '

(5.6.1)  D(y) =D oJy.

Clearly, if such an integer r exists, then for every s 2 r there exists a homo-
morphism IF : J°Y, — Y, over idy such that D(y) = D* o J%; it is sufficient to
take D° = D" o n%", where n}" : J°Y, — J'Y, is the canonical jet projection. The
smallest integer r for which there exists a homomorphism D" satisfying (5.6.1)
for every section y € C°(Y)), is called the order of the differential operator D;
we also say that D is of order r.

Every homomorphism of fibered manifolds v :J'Y; — ¥, over idy defines
a differential operator D, : C*(Y¥,) - C®(Y;) by the formula

(5.6.2) D,(y) = v o Jy.

Let 7 : Y — X be a fibered manifold, and let t : Z — Y be a fibered manifold
with base Y. Denote by C7(Y) (resp. C27)) the set of smooth sections of =
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(resp. @ o 7). A differential operator D : C3(Y) — CZ(Z) is said to be a prolongatior
operator, if for every y € C*=(Y)
(5.6.3) T 0 D(y) = ¥.

Let P and Q be two left Lj-manifolds, let X € Ob &, be an n-dimensional mani-
fold, and let FEX (resp. FpX) be the fiber bundle with fiber P (resp. Q) associated
to the bundle of s-frames F*X. A differential operator D : C*(FgX) — C*(FpX)
is said to be natural, if for every open set U — X and every diffeomorphism
o:U-a(l) = X,

(5.6.4) D(Fsoyoa™ ") =FytoD(y)on .

The following theorem says that the natural differential operators can be identifi~
ed with certain differential invariants.

Theorem 5.7. A necessary and sufficient condition for a differential operator
D : C*(F3X) —» C®(FgX) to be a natural differential operator is that there exist
an integer r, a homomorphism D" : J"FpX — FpX overidy, and a diff erential invariant
4 : TP — Q whose realization on X is D, i.e. such that

(5.65)  dy=D".

Proof. Let D be a natural differential operator. There exist an integer r and
a homomorphism D" : J'F3X — F3 X over idy such that for every section y € FpX,
condition (5.6.1) holds. Since D is natural, (5.6.4) is satisfied for every diffeo-
morphism o« : U — «(U) < X. Combining these two relations we obtain

(566) D oJ(Fptoyoa )= FhaoD oJyoua "t

Since by (3.1.8),

(5.6.7) J(FaoJyoa ) =JTFiaoJyoa™t,

where J'Fpu is the r-jet prolongation of Fpx, we get

(5.6.8) D" o JFpo 0 Jy = Foa 0 D" 0 J'y.

The section y being arbitrary, the homomorphism D' satisfies
(5.6.9) D" o J'Fro = Fppt o D".

Therefore, by Theorem 2.2, D' must be of the form (5.6.5) for some differential
invariant 4 : T,P - Q.

To prove the converse, it is sufficient to apply Theorem 2.3.
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6. FUNDAMENTAL VECTOR FIELDS
ON PROLONGATIONS OF GL,(R)-MODULES

Vector fields used in partial differential equations for differential invariants
are constructed explicitly, and their basic properties are studied.

6.1. Projectable vector fields and their prol ongations. Let n : ¥ — X be a fibered
manifold, n=dimX, m=dim ¥ —n, 7n":JY - X its r-jet prolongation,

T JY - JY, where 0 £ s < r, the canonical jet projections. Let & be a vector
field on Y. We say that ¢ is n-projectable, if there exists a vector field £, on X such
that

6.1.1) Tn.é=¢gom

If such a vector field &, exists, it is unique, and is called the =-projection of é.
We say that ¢ is n-vertical, if it is n-projectable and its m-projection is the zero
vector field.

Let £ be a vector field on Y, o, its local one-parameter group. It is easily verified
that £ is n-projectable if and only if each point y € ¥ has a neighborhood V such
that o, is defined on V for any sufficiently small z, and is an isomorphism of the
fibered manifold 7 [, onto 7 |y¢y,.

Let ¢ be a n-projectable vector field on Y, &, its m-projection, o, (resp. j,) the
local one-parameter group of ¢ (resp. &;). Tor each ¢, denote by J'a, the r-jet
prolongation of the isomorphism «, of fibered manifolds (Sec. 3.1). The iso-
morphisms J'a, form a local one-parameter group of transformations of the mani-
fold J'Y. We put for each point Ze J'Y

(6.1.2) J'8(Z) = {—— J'a, r(l)}

This defines a vector field J*¢ on J'Y, called the r-jet prolongation of the n-projectable
vector field {. J'{ is ="*-projectable for any s, 0 < 5 < r (resp. n'-projectable),
and its n”-projection (resp. n"-projection) is equal to JOE (resp. &p).

To obtain the chart expression of the r-jet prolongation of a n-projectable vector
field, we now introduce a notion related to fiber charts. Let (V, ¥), ¥ = (x', °),
be a fiber chart on ¥, (V% V), y* = (x, y%, ¥3,, ..., ¥5,..;.)» the associated fiber
chart on J%Y (Sec. 3.1). Let f: V" » R be a function. We put

af +5 of

(6.1.3) P
m=0 J1SnSJm OV, . jmm

a
yjl---jmk -

4, fis a function on V"**, called the k-th fornial derivarive of the function £, Notice
that

‘(6'1'4) dky_af.l.-.jm = y;;...fmk'
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Lemma 6.1. Let & be a m-projectable vector field on ¥, (V,¥), ¥ = (x', ¥°),
a fiber chart on Y,
(6.1.5 §m {' -+ 8 ge 0

1.5) et
the expression of E in (V, &r). Then the vector field J' has with respect to the associat~
ed chart (V', ") an expression

Ll 4 a
(6.1.6)  J'¢= e'——~+Z Y Elitm ,
m=0 J1§ S Yy im

where &, are functions on V" determined by the recurrent formula

il

(6'1-7) 571-!"1 = d!mE;lmlm-l - y;lmlm-lk axjm .

Proof. Let (U, ), ¢ = (x"), be the chart on X, associfted with the fiber chart
(V, ¥). Since J*¢ is n" °-projectable, the coefficient at §/dx’ (resp. 3/0y°) in the chart
expression of J'¢ is equal to &! (resp. E°). It therefore remains to verify the recurrent.
formula (6.1.7).

Let Ze V', Z = Ty, be an r-jet. Using the definition of J¢ we get

(6. 1 .8) H/l Jm(z) {7:11— y,',"_j_ -} J'd'(Z)} »
0

“where 4, is the local one-parameter group of £. Denote by f, the z-projection, of «,.
By (3.1.8)

Vittm © J'(2) = V5,1 (T3,(x) aiyB ") =

" 04 -1 -1}
L e e A% .
{3:&’ ... 0x'm "o Ph(x)

Differentiating the identity

a aM‘- 4 -1 '1}

o =
{ax!u At axIm-1 Y'airhs "o Y
d am-—i e -1..~1 ~-1

(6.1.10) = { P < axlt .. gxdm-1 Yoy e o 9B o J

k 1 -1
87 } .
{6 Jm T 24

with respect to ¢ at the point 7 = 0 we obtain

(6.1.9)
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Jl Jm(Z)

_{ a 4 ( ! ot B! 5t
fard ot e ettt meeimmsaretert ] ( . —
6.1.11) ox A0\ xlt gy D M0 e @ B8y O
.o
- yj1 vtm-1k ax-’ ‘

In the parentheses, we have the derivative of the mapping
(6.1.12) (4, x' ., X)) -

am—l - _ - _ ,
- ((Wy wyB 1) ° 9fig 1)(Jcl. ey X,

Since the derivative at t = 0 of this mapping is the component & fim-g Of the
vector field J'¢, (6.1.11) leads directly to (6.1.7).

The following lemma concerns the Lie bracket of projectable vector fields.
‘We prove it on induction by means of “non-holonomic” jets (see Sec. 3.1), although

some other proof, using appropriate curves tangent to the Lie bracket of vector
fields, is also available,

Lemma 6.2 Let & and { be two m-projectable vector fields on Y. Then the Lie
bracket [&, (] is also a n-projectable vector field, and

6.1.13) e ] =[rE 0]

Proof. 1. We shall show that (6.1.13) holds for r = 1. Let (¥, ¥), ¥ = (x', %),
be a fiber chart on Y, and let £ and ¢ be with respect to (V, yr) expressed by

(6.1.14) ¢ = :‘——+:° 0 , c=c‘-a—+2“ 0

oy* ox' 8y’

Then

ca-(eLe) 2
(6.1.15) ox ox'

0z’ oz" . 0% , 02"\ 0
(5' L —>—“
ox* Jdy 0x 8y’ /) Oy

By Lemma 6.1, the component of J'[¢, {] at 9/dy; is defined by

0z’ 0z’ 0z ., 0%
d; & + &7 -2z )—
ox* 0" ox 8y

o (,; o0& ,aa">
Ve ox' (f ox’ ¢ ax' )’

(6.1.16)
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and the component of [J'&, JX¢] at 8/3y} is defined by

oZ; 5 oz} 5 oz} o5} . O} . 057
(6.1.17) f" : — gt -2 -Zi=—=,
dy 0yj ox ay° ok
where
(:m aém;
6.1.18 zv = dizv ym s E: = dEv - y’V"______ .
( ) { P ! P
Now substituting the expressions
. Y 2
-3 Z, Dz,
x ay’ ok’
2 (T )Ty
T 2 P
ay; 9y7 \ 9y ay

in (6.1.17) we obtain after some calculation that (6.1.17) is equal to (6.1.16) as

desired.
2. Now suppose that J*™[£, {] = [Jr 1, J7~ 1] and show that (6.1.13) holds.
Let 1:J'Y = JYJ'"'Y) be the canonical embedding Jly — Ji(J""'y). Let
& : ¥V - ¥ be anisomorphism of fibered manifolds, defined on an open set ¥V = ¥
o, its m-projection. For any point Z from the domain of definition of J'a, Z = J 1y,

(6.1.20) 10T (Z) = 1Ly ) = Jan T tayag ).

Let J'(J"~ ') be the 1-jet prolongation of the isomorphism of fibered manifolds
Jr~ 1, We have

6.1.21) I WZ) = ST ) (T =
= Tt oS Ty oagt).

But 'l o J7Tly oagt = J " Yayog ) o0t 0 g ' == J " layag !, so that
(6.1.22) T 'a) ((Z)) = Ty T laya ) =1 0 Ju(2),

that is,

(6.1.23)  JYJ '@ or=10J

Denote by J1J "¢ (resp. J'J 1) the 1-jet prolongation of the n" ~!-projectable
vector figld J*1& (resp. J'~1{). Then (6.1.23) gives

(6.1.24) JU T o1 = T, JE, JAIT o1 = T1. ¢
Let us consider the vector field J'[¢, i,’] on J'Y. By (6.1.24)
G125 ToTE0 =10 G o= LI D er =
— [Jl]r—ie_‘:) J1Jr—1C] o,
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where we applied the first part of this proof. But (6.1.24) implies
(6.1.26)  [J'TrE, U] o1 = Tl [J€, J']

Comparing (6.1.25) and (6.1.26) we get

(6.1.27)  Tu.(J[& (] = [JE, JC]) =0,

and (6.1.13) follows from the fact that T is injective.

6.2. Fundamental vector fields on prolongations of GL (R)-modules. Let G be
a group. A G-module is by definition a finite-dimensional vector space endowed
with a linear representation of the group G. In this section we consider a fixed
GL,.(R)-module E, the E-lifting Fy, associated with the frame lifting F (Sec. 2.3),
and the r-jet prolongation J'Fy of this lifting (Sec. 5.5). We denote m = dim E.
The r-th differential group of R" is denoted by L}, and we identify the general
linear group GL,(R) with L. Let (4, g) - A. g be the left action of GL(R) on E,
defined by the representation of GL(R). Let (g°), | £ ¢ £ m, be some global
coordinates on E, defined by a basis of the vector space E. The action of GL(R)

on E is expressed in these coordinates by a matrix function GL,(R) 3 4 — (@3(4)) €
e GL,(R), where

(6.2.1) 7°(4. q) = @}(4).4"(@)

for each g € E. Since this mapping is a homomorphism of groups, we have for all
A, Be GL(R)

(6.2.2) OA . B) = OXA).OB).

We shall introduce some charts which will be needed in the discussion of funda-
mental vector fields.

Let Xe Ob 9,, and consider the fiber bundle FzX e Ob # 4%, L), associated
with the bundle of frames FX. Let my (resp. mx ) denote the projection of FX
(resp. FgX). Choose a chart (U, ¢), ¢ = (x"), on X. This chart defines a section
of FX over U, x — {(x), where

(6.23) L) = Jobs,
(6.2.4)  Bo=0"" oty

and 7_,(0) =y + @(x). Let Z e ng5x(U) be any point, x = e i(Z), and let
%,(xy : Ty, p(x) = E denote the framing defined by the frame {(x) € FX (Sec. 3.3).
We put

(6.2.5)  §2) =0 o ¥ (D)
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The pair (V, @), where V = 2 5(U), op = (x', §°), is easily seen to be a fiber
chart on FX. This fiber chart is said to be associared with the chart (U, ¢) on X
(and with the coordinates (¢°) on E; the coordinates (x*, 77) are said to be asso-
ciated with the coordinates x* (and with g7).

The concept of an associated chart is directly transferred to higher jet spaces.
Let 7}, (resp. myy) denote the projection of the bundle of r-frames F'X (resp..
of the r-jet prolongation J'FgX of FpX). Let (U, ¢) be as above, and put

(6.2.6) rrx) = J5H B

¢r+1(x) is an (r 4 1)-frame at x € U. The framing defined by this (» -- 1)-frame is.
a linear isomorphism .1y : (T p)~ ! (x) > T,E (Sec. 4.5). Let ¢°,4j,, . »
vers 45155, be the coordinates on TrE, associated with the coordinates ¢* on E.
We put for each Z e () ™" (U)

qﬂ(z) = (1“ o x;r+l(x)(Z),
(6.2.7) 47.(Z) = 4],  Hyr10(2D);

05,.5.(2) = g5, s, 0 Kpre1(0(D)s

where x = n}y 5(Z). The pair (n% g) ™' (U), @f), where of = (x), 4% 4], ...»

s gl 1 241 £ ..o £ J £ nyisafiber chart on J'IX. Notice that in introduc~
ing this fiber chart, we used the identification of J"F;X and the fiber bundle F3* ' X,
where Q = T!E, associated with the bundle of (» + 1)-frames Fj"'X (Sec. 5.5,
(5.5.17)). This chart is said to be associated with the chart (U, ¢) on X (and with
the coordinates (¢°) on E); the coordinates (x', 4% gJ,, ..., 4J,...;,) are said to be
associated with the coordinates x' (and with ¢°).

Remark 6.1. According to the above constructions, we have two fiber charts
on the fiber bundle J'F:X, the fiber chart ((n% )~ ! (U), ), and the fiber chart
associated with the fiber chart (V, ¢;) on F X in the sense of Sec. 3.1. It can be
shown, however, that these two fiber charts coincide.

Let aj, be the canonical coordinates on the group L1, let e = (5}) be the identity
element, and let the functions @X(a}) express the action (6.2.1) of the group L1
on E.

Theorem 6.1. (a) Let ¢ be a vector fleld on a manifold X e Ob 2, (U, p), ¢ =
= (x"), a chart on X,
9
oxt’

(6.2.8)  &£=¢
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the expression of & in this chart, Then in the associated coordinates (x', §°), the vector
JSield Fg& has an expression

k
629 Fi=g Tl gl

3
ox ox ag°
where C, are real numbers determined by

(6.2.10)  Cf = {a@;} ,

i
da,,

and

(6.211)  C3.Ch =6}, ¢l

(b) For any two vector fields ¢,y on X,
(6.2.12)  Fp[&, n] = [Fp&, Fen).

Proof. 1. Let Ze nzx(U), x = ny x(Z). Z is expressible in the form
(6.2.13) Z = [¢(x), q],

where {(xX) = J3B, B =0 ' o !,y Let & be the local one-parameter group
of £. For all sufficiently small ¢,

Fro(Z) = [Jo(2, 0 B 9] =

(6.2.14) = I;‘]‘i)("’—l 0 guy(x) © Lomyizy © P © & 0 )y 4] =
= [J0Ba(*) 0 To(tea(X) 92.B,), 41 =
= [J0Ba(*), J5(tee(¥) p:bs) - 4.

Hence with the usual convention

x' o FpalZ) = x'a,(x),

g% o Fpo(Z) = O3(T5(te () 9eBy) . §°(D).

Differentiating both sides with respect to ¢ we obtain

(6.2.15)

{—&11_ xi [} FEat(Z)}o = fi(x)’

(6.2.16) {Edf g° o FEa,(Z)}O= {%},' {—jt- ai‘(Jé(t,,,t(x)(Pd,ﬁx))}oq‘(Z) =

- {"@i} {% D(x*ap™Y) (¢(x))} 7@

dat jo

proving (6.2.9).
2. Next we shall prove relation (6.2.12). Consider two vector fields Lnon X
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and their Lie bracket [¢£, 71]. Let «, (resp. f,, resp. J,) be the local one-parameter
group of & (resp. 1, resp. [ £, 1]). We define a one-parameter family of transforma-

tions &, where f = 0, by
(6.2.17) ¢ = P_joa_sobBsiods

It is known that for each xe X

(6.2.18) {Edr’ a,(x)}oz {% a,(x)}o= [¢, ) (),

where the derivative on the left is the limit of vectors at t = 0. Consider the local
onte-parameter group Fro, (resp. Fgf,, resp. Fzd,) of the lift Fz& (resp. Fgn, resp.

FE[&: Y]]), and put
(6.2.19)  § = FyB_; o Fatt—yi o FgB i o Faus.

Since F, is a covariant functor, we have & = Fie,, and for each z € FgX,

(6.2.20) H_f FEs,(z)}o= [Fet, Fpnl ().

To prove that

(6.2.21) {%:t_ FEe,(z)}o = {_EidT Fsé,(z)}

we shall use a chart (U, @), ¢ = (x'), on X and the associated coordinates x’, §°
on FpX defined above. Let z € ny 5(U), x = 7y, g(2). The components of the vector
on the left of (6.2.21) with respect to these coordinates are expressed by

{é—lt— x'o FEa,(z)}o = {-—(%— xlo c,(x)}o,

{":T 7o FEe,(Z)}D = {%%E-} .D {%— x'ap” 1}o(qo(x)) .34 (2),
i [ ]

’
Y]

(6.2.22)

and analogous expressions are obtained for the components of the vector on the
right. Equality (6.2.21) now follows from (6.2.18). Now since

w2z {5 FEa.(z)}oa F,{1 ),

we obtain (6.2.12) on comparing (6.2.21) and (6.2.20).
3. It remains to prove relation (6.2.11) for the coefficients Ci5; but this relation

follows immediately from (6.2.12).

Let X e Ob 2,, and consider the r-jet prolongation J"FyX of the fiber bundle Fp X
‘We shall consider J'F X as a fiber bundle, associated with the bundle of (» 4 1)-
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fram§S F'*3X. The Projection of this fiber bundle is denoted by ny g, and its
fiber is denoted by T7E, Recall that TLE has the structure of a left L7*!-manifold;

the Lie algebra of fundamental vector fields on this ;¥ -manifold will be denoted
by L(T,E).

Theorem 6.2. Let & be g vector field on X, x € X a point, (U, @), ¢ = (x", a chart
on. X such tha{ xe U. Suppose that &(x) = 0. If £ is expressed by (6.2.8), then the
r-jet prolongation of the lift Fgl, J'Fg, is along the fiber (nk g)™* (x) expressed by

r+1 amg(
(6.2.24) JF=3 TV

@{q...ku
) 1
m=1 " 3x* ... 9xkm

where OFt %= gre some uniquely determined -uéctor fields on (ny g) ™! (x), and we
sum over ky = ... S k,,. These vector fields do not depend on &' and the derivatives
of &' For each (r 4 1)-frame { € (n%y) ™! (x) the vector Sfields @kt dofined by

(6,225) TM; . @;H...km = @:cl..‘k,.. o ¥,

are fundamental vector fields on T,E, and span the vector space L(T.E).

Proof. Using (6.2.9) and Lemma 6.1 we easily see that the vector field J"Fy&
must be of the form (6.2.24), and that the vector fields @ do not depend
on ¢’ and the derivatives of ¢!, To prove the second part of Theorem 6.2 choose
an (r + 1)-frame { & (n%) ™! (x) and consider the vector field &. Using the structure
of a fiber bundle on J'F,X, associated with F"**X, with fiber T}E, and the cor-
responding framing we get by (6.2.25)

v r+1 amei
(6.2.26) Tu, . Fg&= 3%

@fl...lm’
mel ax’“ ae ax""'

where the derivatives of &! are considered at the point x, and we sum over non-
decreasing sequences (k,, k,, ..., k,,). By Theorem 3.2, the vector field on the right
is a fundamental vector field on T)E, i.e., an element of L(T,E). Obviously, (6.2.26)
holds for any ¢ such that &(x) = 0, and the derivatives of &' in (6.2.26) may be
considered as independent parameters. This implies that each of the vector fields
@%1-km ig a fundamental vector field on T'E. Using Theorem 3.2 again we see
that these vector fields must span the vector space L(T,E), and the proof is
complete.

Remark 6.2. It should be pointed out that the vector fields @kk= from
Theorem 6.2 need not be, in general, lineatly independent.
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Remark 6.3, We may use the (» + )-frame { = J5"' (¢~ !1_, ;) is definition
(6.2.25). Then the corresponding framing is expressed by (6.2.7) which implies
that

6.227) T ( i ) 2
e . = p .
: aqzl...km X aqh...k,,.

In this case the fundamental vector fields @¥1= are obtained by simply replacing
the coordinates g°, g5, --+» G#y..x, i the vector fields @f*~ by the coordinates ¢°,
g%+ - ki, TESDECEIVELY. This remark, together with Theorem 6.2 and Lemma 6.1
can be used for a direct computation of fundamental vector fields on the r-jet
prolongation of any GL,(R)-module.

6.3. Lie bracket of fundamental vector fields on prolongations of GL (R)-modules.
Let X be an n-dimensional manifold, E a GL,(R)-module. With the notation of
Sec. 6.2, we shall consider the fiber bundle FpX with fiber E, associated with the
bundle of frames FX, the fiber bundle J'FpX with fiber T'E, associated with the
bundle of (r + 1)-frames F**1X, and the r-jet prolongations J'Fy¢ of vector fields &
on X (Theorem 6.2). Let & and 5 be two vector fields on X. By Lemma 6.2 and
Theorem 6.1,

(6.3.1  [J'Fgt, 'Fan] = J'F[&,1].

Using this formula, we shall obtain some commutation relations for the funda-
mental vector fields @' defined by Theorem 6.2,

To this purpose it will be convenient to rewrite formula (6.2.24) in a form where
summation is taking place over all sequences (ky, k5, ..., k,,), not only over non-
decreasing ones. Let £ be a vector field on X, (U, ¢), ¢ = (x*), acharton X, xe U
a point. Suppose that &(x) = 0. Let (k,, k,, ..., k,,) be any sequence of integers
such that | £ k4, ..., k, < n. We denote by N(k,, ..., k,,) the number of all
different sequences (py, ps, ..., p,y) arising by permuting the sequence (&, k,, .
ey k). Obviously

ey

m!
(6.3.2) Ny, ...,k = m’

where i, is the number of integers s in the sequence (ky, k;, ..., k,,). Then (6.2.24)
can be written as '

6 . r+1 am&i i ik
( .3.3) JFEf = Z _6._7;_____ 9 . m’
X

i
m=1 ...6x""‘ x

where we sum over k,, k,, ..., k, = 1,2, ..., n,and 17{‘"""'" are the unique vector
fields, symmetric in the superscripts, such that
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16.3.4) Plervdem 1 Ot

N, ) bhkis .

A

ky < n.

( X) (" ) n p-1r d p . [

5 U T :
(635) Ty B — ghtoiin o
‘we again ob.tain fundamental vector fields, spanning the vector space L(T'E).

' Before goingon to the main theorem, we want to establish a lemma on differentia-
tiation of the product of functions of many independent variables.

Lemma 6.3. Let fand g be two real functions defined on an open subset of R", let x°,
1 i £ n, be the canonical coordinates on R',s = | aninteger. Let )\, 1 <i < n,
be any system of real nuumbers. Then

(f . g)

—= b=
ax't ... dxt=
aff s 61—1 a

(AN

)6.3.6) dx* ... Ox'" 1) ax't ... gxt=t ax™
§ o7'f g
* A i + ...+
(?‘) axt ... axi"r dxls-r+t axi,

2%g . y
+ f—=—— A" .. A"
/ ox' ... axi’)

Proof. Choose a point x = (x', x?, ..., x") belonging to the domain of defini-
tion of the functions # and g, and any real numbers A', ..., A". Put &(f) = f(x' +
AN, L, X" AT, () = g(xt + Alt, ..., X" 4+ A"F). The functions & and ¥
are defined on an open interval in R, containing the origin 0, and are differentiable
provided fand g are differentiable. By the well-known “Leibniz rule” for different-
iating of the product of two functions of a real variable

DY®.¥) =Dd. ¥+ G)D’“‘cb DY + ...+
6.3.7)
+ (i)p-*"@ DY .+ D DY

Computing the expressions on both sides at the point 7 = 0 we easily obtain
formula (6.3.6) at the point x. Since x is arbitrary, this proves Lemma 6.3

Remark 6.4. Formula (6.3.6) can be rewritten without the auxiliary system A’;
to this aim one should symmetrize the coefficient at A™ ... A'* on the right in the
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subscripts iy, ..., i, and then omit the product of the variables A .. A" on both
sides.

In the following theorem the fundamental vector fields 9f**mon T!E are defined
by (6.3.3) and (6.3.5).

Theorem 6.3. The fundamental vector fields 9¥*" 1 < m < r + 1, obey the
commutation relations

s+t =Dk depa,
[3;‘1...1:.’ 951".?:] _ ( r (5{7 ‘9";1 kspa..pm +
4o 5{.9'}:..-k.p1..-p:—1 . 5-1;1‘91;1.‘*:171.“17: _
(63.8)  —..—okgrheinery i <stsr+l, 22s+1=2r+2,

[Sfl...kl’ ‘9.1;1-..17:] = 0’ 1 é s, t é r+ 1’
FE3<s41< 2+ 1.

Proof. Let us take X = R", and denote by x’ the canonical coordinates on R”
Consider two vector fields & and # on R" such that é(0) = 0, #(0) = 0, and theri
Lie bracket { = [&, n]. If £ and n are expressed by

o , 8
6.3.9 ==, =n—,
(639 ¢=¢ P n=n=s

then
7 v O v 08
(6.3.10 = ‘——,—, Ct= ——— _,
) i=t ox' ¢ ax " ox*
and obviously {(0) = 0. The lifts J"Fg¢, J'Fyn, and J'Fg{ satisfy (6.3.1),
6‘3.11) JrFEC = [JrFEés JrFEﬂ].

Each of the vector fields J'Fg&, J'Fgn, and J"Fy{ is tangent to the fiber (ha z) ' (0)
since it projects onto the zero vector at 0 € R"; consequently, relation (6.3.11)
holds when we replace these vector fields by their restrictions to (7ka z)~" (0).
We shall express both sides of (6.3.11) in terms of the coordinates x’ in the same
way as in (6.3.3).

Let us consider the vector field J'Fz{. We have on (nk. 5) ! (0)

r+1i LI%
(63.12) JFgl=Y {.__._?__C___} Feihs
G

s=1 ( OxP... dxke

By (6.3.10) and (6.3.6)
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JFl ='>til<'i <s>< = "y’

(6.3.13) =1\nZ0 \/ \ 0xM L gt axteemer | gykeget

as—m k am+1£‘i 5
— 9"1...k,
v ’

OxFr ... axkemm pxkmmrr | gycks gyk

where all the derivatives are considered at the point 0. We set in the first term
s'=8§ — m, t = m + 1, substitute these indices in (6.3.13), and then replace s
back by s. Then the first term gives the expression

— set . J
2 s+t 1 f 4 0 n 6{,{9_3,.,.&.“...;.-( =
255 +1Sr+2 t—1 ox* ... axk axPr ... oxP

63.14) (s+t- 1) 1 ¢ &'’
2gsirsrrz\ 11 tooxk . axt gxPr.L ax

. (5:”51;1...1(,}:1...17, 4+ ...+ 5?:5?1...";1’1...}1;-1).

s+1—1\1 s+1—-1)!
1 )T=-(—?l_t_'_)__.lnthesecondterm we sett =g —m,

Notice that (

s' = m -+ 1, substitute in (6.3.13), and then replace s’ by 5. The second term gives,
up to the minus sign,

s+1—1 ¢ a'n!
5 GPt-ombikeay
zs_:+;s_r+2( s—1 ) dx*t ... axF 9xPL... oxP A
s+t—1\1 o't o'y’
assvrsre2\ S—1 s oxk . oxM axPr... gx?

. (5715?1...)&1:1...;« Fo 67.,5{;...&.-:;1...;:,)'

(6.3.15)

where we used the symmetry of 94 in the superscripts. Notice that
(s+r——1 I (41—
s—1 )& = sl
On the other hand, to compute the right-hand side expression in (6.3.11) we use
the representations of the form (6.3.3) for both J'Fg and J"Fgy. We get
r+fr+1 asei at"j

JFoé, JFo] = .
(6.3.16) VP& T Ful = 8 2 ok e o

) [19:‘""!', §5x--.m]’

where the derivatives are considered at the point 0 € R". We divide summation
in this expression into two parts, according to whether s and ¢ satisfy 2 £ 5 -
+rZr+4+2,0rr+3Zs+41=2r+1). Then applying (6.3.11) to (6.3.13),
(6.3.14), (6.3.15) and (6.3.16), and comparing the coefficients at different derivatives
of ¢ and »’ to zero, we obtain (6.3.8).
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Example 6.1, To be explicit, we shall write down the commutation relations (6.3.8)
for the case r = 2, i.e. for the fundamental vector fields 9%, 9%, 9i/" spanning
the Lie algebra L(T2E). In this case we have

[‘9!.’ ‘95] = 51785 - 65 lé”
[9im, 97] = op0i" — 881 — &%,

a7y Lo SFI= 3 (819 o184 — St — T8I,

[94™, 977 = 679%™ — Shomev — 5T9MP — 5igkmr
[si™, 87] =0,
[8im, 9] = 0,

7. THE STRUCTURE OF DIFFERENTIAL GROUPS

It has been shown in the previous sections that the most important notion for
-a systematic study of differential invariants is the notion of a differential group.
In this chapter we determine the structure constants of a differential gioup, and
congider the problem of generating its Lie algebra by its (minimal) vector subspaces.
Further we determine all normal subgroups of the differential group which cor-
respond to the well-known extent with all homomorphisms of this group into
other Lie groups. Finally, we discuss a simple method of determining differential
invariants with values in GL,(R)-manifolds by means of ‘“absolute” invariants
of some of its normal subgroups, the kernel of the canonical homomorphism of L/
onto L!. Basic notions of this chapter are the following: Structure constants,
«differential group, fundamental vector fields, jet prolongation of a projectable
vector field, Lie algebra of a differential group, normal Lie subgroup, ideal of
a Lie algebra.

7.1. Structure constants of a differential group. We shall now apply the results
of Sec. 6.3 to the problem of determining the structure constants of differential
groups.

Let £ be a vector field, defined on a neighborhood of 0 & R, such that £(0) = 0.
& determines the (r + 1)jet J5*'¢ which belongs to the Lie algebra I\ L\ TR",

introduced in Sec. 3.1, isomorphic with the Lie algebra L(L.™!) of the group

H

L.*1; the bracket operation in I's o TR" is defined by (3.2.27), and an iso-
r+1

morphism v : I(p 0, TR" = LL,*Y) is defined by (3.2.11). Let P be a left
L)-manifold, & : L;,"' X T;P — TP the induced left action of L,** on T"P, and
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'd311ro+t1‘3 by @"(J [fll'f) the fundamental vector field on TP, associated with the vector
v(Jo" ¢) € LIL™) (Sec. 1.3). Recall that for any g € TLP, &'(J51E) (¢) is defined by

(7-1.D) P8 (@) = T.2, . v(JI58),

and is an element of the tangent space T,T;P.
Let X be an n-dimensional manifold, x e X a point, (U, @) a chart on X such

that x e U, 9(x) = 0. Restricting U if necessary we may suppose that there exists
a vector field £, on U such that & and £, are g-related,

(7.1.2) =T " . Hoo.
Put
(7.1.3) = T tp ",

H

{eF'tlX is an (r + 1)-frame at the point x. Fix a point ge TP and put Z =
= [{, g]; Z is an r-jet from the space J'FpX over the point x. Let J'Fp, be the
r-jet prolongation of the lift Fp¢, of the vector field £,, and let »; be the framing
.defined by the (r -+ 1)-frame {.

Lemma 7.1. The fundamental vector field ®'(J5*'E) admits the representation
(7.1.4) D'(THTIE) = (To . J'Fpdy) 0w .

Proof. It is enough to show that
(7.1.5) Toy . JFpE(2) — TP, v(Jo 18 = 0

for any g € TP and Z = [{, g] = »~(g). Since Ty, is a linear isomorphism, this
relation is equivalent to

(7.1.6) T (2) — Tp; o 1.8, . W(JI518) = 0.

Let o, be the local one-parameter group of . Then Jh¥iE = Jo*1(de,/dl)q and,
by (3.2.11),

(7.1.7) VI5T12) = {diJ:,“a,} .
t o
This implies
d ,
(7.1.8) Tx, ' T.®, VIR = {"T %7 Lo By(J “a,)}

Denote Q = T,P. Then
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uc_l o @q(-]8+ ldg) = [C: ‘154(J6”d:)] = [Ca J:)+1d1 . Q] =
(7.1.9) =[{.Ja ) =[N o 'ae) o S5t 07 q] =
= [F* (o™ '%0) (1), 4] = Fg (¢~ '20) (D),

where x = ¢~ 1(0). Since «, is the one-parameter group of ¢, ¢~ e, is the one-
parameter group of the vector field £,. Using (5.5.16) we now get

(7.1.10)  Fo''(o ™ ug) (2) = J'Fp(o ™ a0) (2),

and
d

(7.1.11) {‘J? #; to sp,,(J:,“a,)}o= {Ti— I Fp(p ™ e, 0) (Z)}(): JFpd,(2).

This proves (7.1.6) and at the same time Lemma 7.1.
Let us consider the tangent space T,L.*! to the group L,*' at the identity

element. Let a,dl,,,, ..., a},},.;.,, be the canonical coordinates on L,**; the
vectors (8/da})., (8/0d;,;)es ..\ (81081, 10, e, Where 1 SiZn, 1 Sj; £ ...

ey £ jrs1 £ n, form a basis of T,LI*L, We put
1 d

7.1.12 e = - - < ) .

7L A N(jy --J) \d’,_, Je

" The vectors A{*J*, where 1 Signlgs<r+ 1,18/, ..,2j, € nform
a basis of T,L.*!, called the canonical basis. One can easily find vector fields
&JtJa on R such that &'*/+(0) = 0, and

(7-1.13) l{‘l"'j’ = Y J6+le{lv--11).

Clearly, it is sufficient to put in the canonical coordinates x' on R”

Jteda a
Ef == :i axl ’

(7114) tr 1 " o 1 Ji,Ja Ja
x, ..., X" m]\"(jl...j,)xx e X,

ek(xl7'-‘)x’l)=0. k#i

(no summation in the second formula). Then &' = (dy,/df),, where

. 1
x' xt o x) =l xSy xS,
(1.1.15) ° 1l ) NG: 79
x* oy (xt, ..oy x") = Xb, k # i,

and the curve 1 —+ Jy*'y, in LJ*! is given by the equations
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d;(]8+ IZ:) e 6}»
1
(1.1.16) a0 ) =
( ) ] ]( 0 Xr) N(./l

RYA)
a:x...p.(Ja+ 1Xt) b Ov

where the last equation holds in all cases when the ordered system of integers

L

(k5 pys vy by differs from (i3, ..., j,). Thus, by (3.2.11),
d
AL I = {d‘: I 1xr}o-= o

as required.
In particular, the vectors Jo" t&/'!* form a basis of the vector space I'is o, TR".
Let E denote the vector space R" with its canonical L}-module structure. Recall
that in the canonical coordinates a/, (resp. &%) on L} (resp. R") the left action (4, p) —
- A.pof Lf on R"is defined by the formula

(1.1.18) ¢4, p) = aj(4). E(q).

‘We shall apply Lemma 7.1 and the above remarks to the case when X = R", P = E,
and { = Ji*p~*t, where ¢ = id,,. Since in this case &, = £, (7.1.4) gives
(7.1.19)  ®'(JGT1E) 0 %, = Tu, . J'Fié,

and we see that the vector fields @"(J5*'&) and J"Fg¢ are x,-related. In fact, (7.1.19)

can be used as the natural identification of these vector fields. In the following
lemma we successively choose for & the vector fields &'/ (7.1.14).

Lemma 7.2. For any integers i, s, and any sequence of integers (jy, ..., J,) such
that 1 Sign lsssr+ 1,185, 2...5,2n
(7.20)  @'(JLFAESI) = s,

Proof. Let ¢ be a vector field on a neighborhood of 0 € R" such that £(0) = 0.
By (7.3.3) and (7.3.5) we have along the fiber in J"FyR" over the point 0

+1 al:l ol
r Jieoda
(12D T TEeb =3, {TT‘} e

Substituting in this relation & = &/t/» and using (7.1.19) we get (7.1.20).
Let E be as above, an counsider the prolongation T,E of E. T, E is endowed with
the structure of a left (L}).-manifold (Sec. 5.2), and can also be viewed as an

L;*'.-module (Theorem 5.1). Let &, & , ..., &/t denote the coordinates on TjE
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associated with the canonical coordinates ¢ on £ = R”, and let the mapping
(A, ) = ®(A, q) denote the action of L;*! on TE. It is directly seen that the left
action of L} on E (7.1.18) is effective; we shall show that the same is true for &.

Lemma 7.3. The action @ of L,*! on TIE is effective.

Proof. Let us rewrite the action (7.1.18) of L! on E in the form
(7.1.22) &' =il

and define functions b} on Lj** by the formula a,b} = § (see (2.2.3)). Differentiat~
ing formally (7.1.22) we obtain the coordinate expressions for the action ¢ in the-
form

&P == all’,

EP wm albi¥ 4 alb L',

Eqm = arﬂb! qc ana:ububub él

~ (abbgbr. + al,bibt — alal,bibaby) & + afbhbits,,

(7.1.23)

etc. Requiring &' = &, Ej =&, ..., &, ,, =&}, for all points g of THE we
immediately obtain

(7.1.29) a;l = 6;0 a}x}: =0,.., aJx -;;1 =0

Since the only point satisfying these equations is the identity element J5™ " idgn
e L'*1, the action @ of L*! on TIE is effective.

In the following theorem we determine the structure comstants of the Lie
algebra L(L}) in the canonical basis (7.1.12).

Theorem 7.1. Let (M), 1 £2ign, 1 €5, 15j,

SHsE...2),En be the
canonical basis of the Lie algebra L(L}). Then

(s+1t—

[/1’{""’", '151'"“} = e l ) (5;xlkz Kaproops’ +

siel
(7.1.25) _*_5 " ékulkl vRg=1P1oPe 5{:1;‘;1...?;?“-1’:”_
= A ), 1Ss,tSn 2Ss+isSr+1,
[k, P] =0, 1ZstSr, r+2ss+152r

Proof. Since v : Iy, TR" - L(L}) is a linear isomorphism (Lemma 3.2), the
elements of the canonical basis of L(L}) obey the same commutation relations as.

the vectors Jo&/'J* in I'fy o, T'R". Let us consider the L}-module E and the action -
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of LI, on T, E expressed by (7.1.23). By Lemma 7.3 this action is effective which
implies that the mapping Jpé — ~ &'(Jp¢) of F?o,mTR" onto the Lie algebra of
fundamental vector fields on T. 'E is an isomorphism of Lie algebras
(Theorem 1.13, Corollary 2). Using (1.3.36) and Lemma 7.2 we get

qj’({JGéfL"k', J:)éflm}) =
(7.1.26) - _[gpl(Jl(') fi-..h)’ d)'(Joc'jll...Ft)] =
— _[Slic“..k:, 9;‘1---91]_

Now we apply Theorem 6.3, substitute @'(J5&/47%) instead of 9{*"%, and apply
(®)"! on both sides; we obtain some commutation relations for the elements
JhEiv-ts Writing Af14 instead of Jh&t-Js which is possible because of the
existence of the isomorphism v, we obtain (7.1.25) as desired.

Example 7.1. If r = 1 then (7.1.25) are the well-known commutation relations
for elements of the canonical basis of the Lie algebra g/,(R) of the general linear
group GL,(R),

(7.1.27)  [AF, 5] = 8%, — ofAL.

Example 7.2. Let us consider the case n = 1, and denote
(7,1,28) A = jitt
(p superscripts equal to 1), Relations (7.1.25) become

ORRI0) _(S+t+1)'
(4%, 251 = sitl

(7129) 2=s+t=r+1,
[A9,197=0, 1Zst<r, r+2sSs-+t£2n

(s—1.A%"""Y,  1gs12n

If, moreover, ¥ = 4, we get
[1(1)’ /1(2)] — _)'(2), [).‘U, /1“(3)] — _2/{(3),
(7.1.30) (A, ).(4)] = —3)®) [A®, 2087 = —2®)
[lm, AT =0, [AB, 29 = Q.

= r, be the canonical homomorphism of

Corollary 1. Let ny° : L~ L, 1 S5 £
= ker n," is a normal nilpotent subgroup L.

groups. For each s, the kernel K;*
Proof. Let k!* denote the Lie algebra of K}'*; it is sufficient to show that the

Lie algebra k!, = k7 © is nilpotent, for then all its subalgebras are nilpotent. The
Lie algebra kJ, is spanned by the vectors (0/6(15-1._,,”)&, where2 <m<rnl=zj =..
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.. S jn & n Using the vectors MrIm (7.1.12) instead of these vectors, and
Theorem 7.1, (7.1.25), we can see at once that

(7131 [k, K] < ket [k ket e ket L [k, kT < k= {0}

This implies that the Lie algebra «], is nilpotent.

7.2. Vector spaces generating the Lie algebra of a differential group. We shall
apply the commutation relations from Theorem 7.1 to the problem of finding
minimal vector subspaces of the Lie algebra L(L}) generating the whole Lic algebra.

Consider the canonical basis A%, %1% k=% of the Lie algebra L(Ly), and
denote

(7.2.1) AP = A

where p denotes the number of the superscripts i; for n = 1 we denote, as iTL
Example 7.2,

(7.2.2) AP = ),

We have the following result.

Theorem 7.2. (@) Let n = 1. Then the Lie algebra L(L?) is generated by the vectors
AW AD . For r = 3 the Lic algebra L(L}) is generated by the vectors AV, AP, 2637,
(b) Let n 2 2, and let s be any integer such that 1 £ s < n. Then for any integer
r = 2 the Lie algebra I(L) is generated by the vectors A%, 1 < i, k £ n, and A$*’.

Proof. (2) If n =1, the vectors A¥, ..., A obey (7.1.29). For r = 2 we get
[A1, 4] = —1® proving the first assertion. For » = 3 we take in (7.1.29)
t =2 and obtain forany s 2 3, s = r - 1,

2
\ a(s+1) _ (5 1(2)
(7.2.3) A =~ I G=D LA, A4
proving the second assertion.,

(b) The proof of part (b) of Theorem 7.2 is divided into four steps. Suppose
thatn = 2,

L. Consider the case » = 2. In this case (7.1.25) gives, for s =2 and ¢ = 1,
(7.2.4) [Af% A7 ] = SR + 6IAFP — SPAX.
Fix an integer ¢, 1 £ ¢ £ n. Since n = 2, there exists an integer j # ¢ such that
lSj<n Take i =k = p=g. Then (7.2.4) gives [1%, 1% = —A%; we shall
say that Af? is generated by Al and AX. If p # ¢, = k = j = g, we get [4%, AP] =
= 2, and A%, p # ¢, is generated by A5 and 2% Now take j = k =¢. Then
(7.2.4) becomes [4{%, AZ] = 241" — 67AY. In view of the above results this means
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that AZ? is generated by A%, 13, and A or, since A{%is generated by Af and 23", by A7
and AZ%. Finally consider (7.2.4) with j = g. We obtain A¥ = [A%, AZ] — S0 +
+ P2k, Since all the vectors on the right contain the index g they are gencrated
by A7 and Af, and so must be A;“. This proves that the vectors A", 1 £ m,j £ 1, 4§,
generate the Lie algebra L(L2).

2. Let rz3 We shall show that the Lie algebra L(L}) is generated by the vectors

A, A¥*, and M, where 1 <14, j, k < n. Take in (7.1.25) t = 2. Then for any s,
3 s =r—landanyi 1 £7 < n,

2.5 D=L g

This implies that 2+ 1 is generated by 4* and A{®.
Fix anintegeri, | < i £ n. Since n = 2, there exists an integer p # 7,1 < p £ n.
Take in (7.125) t = 2 ky = ..=lki=p =j=1i p, =p We get

(s + !

(7.2.6) [V ] = S5q—(s - DA-P

(s superscripts i on the right). Since by (7.2.5) A® is generated by A and A,
the vector A", where p # i, is generated by AP, A%, and A{® or, which is the
same, by A and 4.

Similarly take in (7.1.25) t = 2, p,, p, # i, and k, = j. We obtain

[A,‘n...k.-lj’ )"x;lpz] = (S ;;!1)' (5!;%7:..&.-1!3!15: s

TR 55--%’&;.--7«.-:”1;’: + /11;1-..k.-xpmz)'

(7.2.7)

Summing over j =1, 2, ..., n on both sides we get
(7.2.8) 3 [k, g2 © + 1) S (s — 1+ m) Aiteapen,
=1 .

This shows that the vectors ,lf""""””", where p,, p, # [, are generated by the
vectors AP, Mk n other words this says that whenever two of the super-
scripts in A#%* differ from the subscript 7, Af*"¥*t is generated by A?'** and
AZt2= Now summarizing all the results of this part of the proof we see that the
Lie algebra L(L) is generated by the vectors A, A%, A, 1 <4, j, k S n.

3. Let us fix an integer g, | £ ¢ < n. It is easily seen that the vectors ft{" are
generated by A and 2. Taking s = 2 and ¢ = 1 in (7.1.25) we obtain, as in the
case r =2, the commutators (7.2.4). Thus our assertion can be obtained in the
same way as the analogous assertion proved in the fitst step of part (b) of this
proof,

4. Let q be a fixed integer, 1 < ¢ < n. It remains to show that the vectors A,
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1 <i £ n, are generated by A and /132). Consider relation (7.1.25) for s = 2,
2 and k= ky=j=1i py=p;=p i We obtain [, 7] = 327"
hence by part 3 of this proof, A’ is generated by 4, 4. Putting ky = py = p2 =¥,
k, =j+# i we obtain (A7, 2] = (G2 A — 324 Since 4 is generated by
)k, A@, the same is true for the vector A®. This completes the proof of
Theorem 7.2.

n.3. The semi-direct product structure of a differential group and normal sub-
groups. Let r 2 2 be an integer, and consider the differential group L. As before,

denote
(7.3.1) Ko? = ker 7"’

where 7™ : I, = L%, 1 £ s < r, is the canonical jet projection. We also write
KI = K@ Leti™" : Ly~ L} be a mapping defined, in the coordinates b}, , byigas oo
cery b,‘h]zmjr (2.2-3) on L; by

(732)  #%4) = (b}(4), b}, (A ...\ blygy.. s (A, O, .., O).

If s = 1, we denote 1" = 1".

Remark 7.1. If s = 1, 1**7 = /" is a homomorphism of groups. This immediately
follows from the definition of " and of the group multiplication in L}. On the other
hand, if s = 1, 1" * is not a homomorphism for by Theorem 7.2 the set 1%7(L}) = L
is not closed with respect to the group multiplication in L.

Theorem 7.3. The differential group L, is the interior semi-direct product of its
Lie subgroups v(L}) and K.

Proof. We apply Theorem 1.10 with p = n"! and s = 1",

Obviously, each of the groups K7 is a normal Lie subgroup of L},. Our aim
now will be to describe all normal Lie subgroups of L},. We begin by proving some
lemmas. ' ‘

Lemma 7.4. Let HX K be the exterior semi-direct product of Lie groups H and K,
associated with a homomorphism ¢ : H - Aut K, let K, < K be a subset. Then the
set {eg} X Ky X K has the structure of a normal Lie subgroup of the Lie group H X oK
if and only if the following two conditions are satisfied.

(1) K, is a normal Lie subgroup of K,
(2) for each he H and kq € Ky, @(h) (ko) € K,.

Proof. 1. Let {ez} XK, be a normal Lie subgroup of Hx K. Since for any
(hs k)’ (hOs kO) € -HX¢I{:
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733 ROk ()T =
= (hhoh"l’ k. (p(h) (ko) . (go(hhoh—l) (k)-l)’

Putho = ep (theidentity of H). Then (h, k) . (ey, ko) . (h, k)™ = (e, k. o(h) (ko) -
- k™) and by hypothesis, k. o(h) (ko) . k™ € Ky. If h = ey we get k. ko . k™1 &
€ Ko, and K, must be a normal subgroup of K. Since K is a submanifold, condi-
tion (1) is satisfied. Now putting ho = ey, k = e (the identity of K) we get at
once that ¢(h) (k,) € K,, and (2) also holds.

2. If conditions (1) and (2) hold, then for any k, € K, and (h, k) € Hx K (7.3.3)

gives k. @(h) (ko). k™! € K,. Thus {ey} XK, is a normal subgroup of Hx K.
Since K, is a submanifold of K, it is a normal Lie subgroup.

Let us return to the differential group L. This group can naturally be considered
with the structure of the exterior semi-direct product of Lie groups L} and Kj
associated with the homomorphism ¢ : L! — Aut k! defined by

(134) (A (K) = 1(4) o K o ()7,

(Theorem 1.6, Theorem 1.7), where o means the composition of jets. Let bjt,
biisas +++» blyya..,, be the global coordinates on L, defined by (2.2.3). We shall

determine the homomorphism ¢ in these coordinates. The subgroup K} of L7 is
defined by the equations

(1.3.5) bt = 5!,

Notice that the expression on the right of (7.3.4) may be regarded. as Jj(ada™1),
where « is subject to the condition Jha = 1"(Jax) = 1'(4), and K = J45. We get,
using the definition of the coordinates b},;,, ..., b}, ;.

b}, 1(0(4) (K)) = bi(A™") bt,,(K) bi(4) bIA(A),
(736  Dhasan(@( (K) = B(A47) b}p,p,(K) BT(A) BI(A) BT(A),

bY112..0(0(A) (K)) = b(A™") B, . (K) BJI(A) BEI(A) ... BT (A)
or, with the obvious convention,
]
Bjxh = a;b:w:bﬁbﬁ»
(7.3 5;1131: = a:b;‘,,,,bﬂbf,’bﬁ,
5;;]»-4; = a:b;w:---hbﬁbﬁ R bi:‘
Let Jhe — Ad Jhx be the adjoint representation of the Lie group L in its Lie

algebra L(L%). Recall that for each element Jja € L}, Ad Joa = T, Int J5a, where e
is the identity element of L], and Int Jja : L}, — L} is a mapping defined by
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(7.38)  (IntJye) (JpB) = Jox o JoB o (Joa) ™" = Jo(afa™).

Since K/ is a normal subgroup of L7, its Lie algebra K}, is invariant with respect
to the adjoint representation If 756 € K, then (Int Joo) (J50) € K forany Jpa e L,
hence 7T, Int J5e is a mapping of kj, into itself. Hence there is the induced representa-
tion of L, on k%, and the induced representation of its subgroup 1'(L, 1y on kI,
Since the mapping ¢(A4) (7.3.4) coincides with the restriction of Ing Jox to K,
under the condition that Jja = 1"(Jgw), the induced. representation of L,} on ki,
still denoted by Ad, may be obtained by differentiating the functions (7.3.6), or
(7.3.7), with respect to b, ,,(K), ..., by, P,(K)

Let &, s & pppe 1 SiSEn 15 £/, S ... £, £n, be the coordinates
on Kk, assocmted with the coordinates bh,bhh, ...,bj'lh___jr on L7. In these
coordinates

chh ° AdA bq(A) émpzbm(A) b (A)-
(1.3.9)
g o AdA = bYATYEL, L BENA) ... bi(A)

for any 4 € L. It follows from these formulas that the Lie algebra kj,, considered
as the L,f-module with respect to the adjoint representation, is isomorphic with
the Ll-module

(7.3.10) (R"®@S*R"™) @ (R" @ S°R™) @ ... ® (R" ® S'R"¥),

where S*R** < R"* ® ... ® R"* (k factors R"*) denotes the submodule of sym-
metric tensors.

Lemma 7.5. Let K, be a Lie subgroup of K, k, the Lie algebra of K. The following
two conditions are equivalent,

(1) K, is a normal subgroup of K}, and for each AeL! and K¢ K,, it holds
{Int r(A))K) e K,.

(2) ko is an ideal of k,, and for each A e L and £ e k,, (Ad A) (&) € k.

Proof, Since K is simply connected, there exists a bijective correspondence
between normal Lie subgroups of Kj and ideals of kj. Suppose that (1) holds.
Since Ad A = T, Int 1"(4) and by assumption Int /"(4) maps K, into K,, Ad 4
maps T K, into T, K, which proves (2). Conversely, let Ad 1"(4) maps k, into k.
Since Ad1"(A) is an automorphism of k,, there exists 2 unique homomorphism
of Lie groups f : K, —» K, such that 7,8 = Ad 1"(4); from the uniqueness argu-
ments it follows that § = Int 1*(4).

We shall determine the Lie subalgebras k, of &}, satisfying the second condition
of Lemma 7.5. We start with determining the vector subspaces k, invariant with
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respect to the action (4, £) — (Ad 4) (¢) (7.3.9) of L} on k7. Since this action
coincides, in our coordinates, with the standard tensor representation of L} on
the vector space (7.3.10), our problem consists in decomposing this tensor space
into irreducible components which may be done by means of the classical Young—
Kronecker theory of representations of the symmetric group. We shall apply,
however, a different method based on invariant tensors and linear mappings
associated with these tensors (Sec. 4.4).

Lemma 7.6. Let E be a G-module, and let @ : E — E be a linear mapping. The
Sfollowing two conditions are equivalent:

(1) & is G-equivariant, i.e., P(g.q) = g. ®(q) for each g€ G and g E.

(2) The vector subspace D{E) = E, and its complementary vector subspace ker @,
are G-invariant.

Proof. 1. For each g € E define an element /(g) € E by the formula
(1.3.11) g = ®(q) + ¥(9).

Suppose that @ is G-equivariant. Then for any ¢"e ®(E) and g€ G, g. 9(¢") =
= &(g . q") € B(E), and &(E) is G-invariant. To show that the same is true for Y/(E)
it is enough to verify that ¥ is G-equivariant. For anyge Eand g€ G, P(g.q) =
=g.9q— ®(g.q9) =g.(q — ®() =g. ¥(q proving the G-equivariance of ¥.

2. To prove the converse, take any element ¢ € E and write it in the form (7.3.11).
Then for any g€ G, g.9q=g.9(q) +g. ¥(g) = ®(g.q) + P(g.q) and, since
g.9(q) — ®(g.q) = ¥Y(g.q) — g. ¥(q) and this vector belongs to the comple-
mentary subspaces, it must be the zero vector. This proves that @ is G-equivariant.

Our first aim is to investigate the simple (i.e. irreducible) Li-submodules of the
Li-module k},, and a decomposition of &}, into the direct sum of simple L:-modules.
Since an invariant decomposition is given by (7.3.10), we shall study each of its
summands; we shall thus be looking for proper vector subspaces ko = R" ® S ‘RM*,
where 2 < i £ r, invariant with respect to the tensor representation of L}, and
such that there exists a complementary to Ky, L 1 invariant vector subspace of k.
In fact, we shall be looking for all L,‘,-equivariant projections (Lemma 7.6).

Lemma 7.7. Each Ll-equivariant projection m : R @ S*R** — R" ® S‘R"* is
expressed by the equations

(7312) E:l...qk = tzll...mc :u...pk . ;1...pk’

where

(7.3.13) !! qnam P = A(S"'é(m, 6“)
B(émb(m&l’:“ ‘sqh) 5”5(!1 ‘ 5:: 11641:))’
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{symmetrization in the indices in parentheses), and the coefficients A, Be R obey
one of the following four possibilities: (@) A = 0,B = 0,(b) A = 0, B = 1/(n+k—1),
(&)A=1,B=0,(d)A=1,B=—-1/(n+ k - 1).

Proof. 1. Let z: R* @ S*R"* —» R" ® S*R™* be an Ll-equivariant projection,
{7.3.12) its expression in the canonical basis of R" ® S*R"*. Then by the same
arguments as in the proof of Theorem 4.5 t = (#5,, .. 7'"%) is an absolute invariant
tensor; we may suppose that this tensor is symmetric in the superscripts p,...,p,
and in the subscripts ¢, ..., q¢,. Theorem 4.1 implies that ¢ must have the form
(7.3.13). We now apply the equality
(71.3.19

q‘,_q.t'l Pa 4E th win __ =™

th iy
'Piepr’) [T (N

expressing that # o n = =, i.e., that 7 is a projection. This equality reads, since
the symmetrization sign in one factor on the left may be omitted,

[AS7SES, ... 2% + B(6F'8R 883 ... 825 + ... +
+ 8]0, - ST 16G)) . [AB3Ey, . B +
(71.3.15) 4 B(3) 85,85, ... 8% + ... + 560, ... 571 50) =

= Aa}”"(m by + 3(53'5(415" A N
&Gy, -+ O rOms)-

Q=

After some calculation we obtain for the left-hand side the expression

A% (,,, .. Oy + 2AB(5} 5080 ... 5k, + ... +
(1.3.16)  + 5 G - 5;';-;5,,_)) + Bz(n +k—1).
(00,8 .. Oy + .. SO, . B2 5T Y.

Comparing this expression with the right-hand side of (7.3.15) we get the equations

(7.317) A*=d, 24B+(n+k—1)B* —B=0.

These equations have precisely the solutions (a) —(d) of Lemma 7.7.

2. To prove the converse we are to check that each of the mappings (7.3.15),
where the coefficients are defined by (7.3.16) and A, B satisfy one of the possibilities
(a)—(d), is an Ll-equivariant projection. By Theorem 4.1 and Theorem 7.5 all
of these mappings are L}-equivariant. Since the possibilities (a) and (c) obviously
give projections and the sum of mappings (b) and (d) is the identity mapping of
R* @ S*R** it is sufficient to verify that (b) defines a projection. In this case we
have the mapping expressed by
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1

$tiae = =T Olads - O T+
(7318) + filx 5::-1‘5;) g‘l‘---?&—lpk) =

1 . .
= n -+ k -1 (6"1"1 ;i---!hl + ..+ 6:'. é;...qk-lj)‘

This implies that

(7.3.19)

T __ zm
cql---h—:" = bqi.ge-1m-

Now we apply this mapping to the point E(’Inx---qu‘ Using (7.3.19) we get

= 1 . -
it = =T Coin  ooe + s =

L m m -
= n+k-—-1 (6}1511'"“"’ +..t 5}kffh--]t-l’“) = g};...j.-

(7.3.20)

Thus the coefficients 4, B € R satisfying (b) define a projection. This completes
the proof.

Lemma 7.7 says that there are precisely four L!-equivariant projections of
R" ® S*R"* into itself. The first one, defined by the choice (a) 4 =0, B =0, is
the projection onto the zero vector subspace, and the third one, () 4 =1, B= 0,
is the identity mapping of R* ® S*R"*. We denote by n; (resp. x;) the projection
defined by the choice (d) 4=1, B= —1/n+k — 1) (resp. (b) A=0, B =
= 1/(n + k — 1)), and we set

(7.321) Ef =7n,(R"® S'R™), E: =m,(R"® S'R™).

Corollary 1. E¥ and EX are simple complementary submodules of the Ly-module
R" @ S*R™, i.e.

73.22) R'Q@S'R™=E,®E;, E,nEj=0.
Proof. This follows from Lemma 7.7.

We know that the Lie algebra k. is isomorphic, as the Li-module, with the
Li-module (R" ® S*R™) @ ... ® (R" @ S'R"*) (7.3.10). The linear isomorphism
constructed above assighs to the vector (6/6b}1,,_j'),e k7, the element (0, ..., 0,
¢ ®<Z%e’""’ 8.8 efvm), 0, ...,0) of (R" @ S’R"™) ® ... @ (R' @ S'R"™),

where e, are vectors of the canonical basis of the vector space R, e' are vectors
of the dual basis or R"*, and we sum over all permutations o of the set (1,2, ..., k).
To simplify the notation we shall identify those two vectors and denote both of

[123]



them by (3/8b],. ;,).. We shall also identify (0/0b}, . ;). with an element of the
vector space R" @ S*R'*.

Let us consider the decomposition (7.3.22) of R" ® S¥R™*, Let £ € R" @ SER"*
be any vector., We have

(= 3 621...455( 2 )-

i
q1+...tax 6bt11---le

=t m aa.lil.--ﬂc} ( d ) —
—ql+?.'.'+qk§q""qkjl+;+j,,{Bbg'lmqk e\daj,. ;. /e
o d .
A
e

m
qit..tac 30,“‘_‘,”‘

B SR S ,( 9 >=
a1y o0 Oic N(Ql"'qk) el aa"' e

g1
= - 2 é:l-..qklﬁ:"fcﬂ: - m--.qkl‘rlnlmq*r
[ JPRRIPY: !
where we have used the transformation equations for the change of coordinates
at the point e e L, (compare with (2.2.5)), i.e. we have taken af = &, bl =],
and the definition of the vectors A7 (7.1.12).

Corollary 2. (a) The vector space E¥ is generated by the vectors

T T (P o P

(1.324) Ao~

(b) The vector space EX is generated by the vectors
(7.3.25) Aj""“""’.

Proof. (a) By (7.3.22) a vector £ e R* @ S*R"* belongs to Ef if and only if
7,(€) = 0, that is, by (7.3.18),

(7.326)  On&L Ly +oee + O0ES ;=0.

a1 Qr—1J
Contracting the left side in m and g, we see that this equality is equivalent to

(7'3'27) ﬁil---!lc—lj1= 0.
Using this equality we obtain

s T
§ = —qu...q,'lm s

1
m(ag‘%}:mn} oo+ 5:“;;}'51...1,,_,1) +

- Rt (ludr_
- E!lu-!r A"“ Rs

7.3.28 . ;
( ) + s l]'c — l (53'1252'”41;1 + ...+ 5::'1;1...4&-1])] =

1
n+ k—

= _ém rlh...q:- _
q1.0.40 m
e

: (6#},5""'“‘1' 4o+ 621?"‘*""’)].
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Thus if £ € Ef then £ is expressible as a linear combination of the vectors (7.3.24).
Conversely, suppose that £ is expressed by

Then
(7.3.30) &= =& AL
where

1
2t . pm "
(7.3.31) {fql‘..qk = Sqpeqe m"”" (5 qu: ax bk 5ng41...“-1])'
This expression obviously satisfies (7.3.27) so that ¢ e E¥.
(b) By (7.3.18) a vector &€ R* @ S*R"* belongs to E¥ if and only if its com-
ponents satisfy

1

(7.3.32) é(’[ul.an = m(&e’; !{:-.-qkj + aen + 5"";‘£:ln-qk—1j)’

Substituting this expression into (7.3.23) we get

k
n+k 641 - U

gL tItc—li

(7.333) E=-—

Thus if ¢ € E¥ then ¢ is expressible as a linear combination of A7, Conversely,
suppose that & is expressed by

(13.34) &=

Q1. Gre— 1i
qu i J;{'

Then ¢ is expressed by (7.3.30), where

m 1 m
(7'3'35) Qreetie 'E(a:ltgq:“.qk + ..k 5 Ctn " 1)

We have to show that (7.3.32) holds. By a direct calculation

-—-—-———-—-—-(5,11 PER 1%} + . +5MC¢1 qt—ﬂ)
(1336 "tk

k(6 Cq: q..'*' -+ émzm Q- 1) = :---vk
as desired.

The first main result of this section is formulated in the following theorem.
Theorem 7.4. (a) Let n = 1. Then every ideal of the Lie algebra ki, invariant with
respect to the adjoing action of the group L} is one of the ideals 0, k1°, wherel S s £

=r-—-1
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(b) Let n = 2. Then every ideal of the Lie algebra k;,, invariant with respect to the
adjoint action of the group LY, is one of the following:

(Do,

QEQR QSR ® ...OR"QSR™, 255
(3) E; @ (R" ® Ss+1Rn*) @ (‘B (R" ® S'R"*), 2 é s
@ k152 r—1.

A A

Proof. (a) Let us consider the commutation relations (7.1.29). These commuta-
tion relations imply that the ideal, generated by an element A, is precisely the
ideal k7%; to see this, one should consider (7.1.29) for ¢ = 2. Since Ky * in an
Ll-invariant ideal, this proves (a).

(b) The proof of the second assertion is divided into three steps.

1. Let s be any integer, 2 < s £r — 1, and let k be the smallest ideal in k]
containing Ef. We shall show that k coincides with the ideal (2) of Theorem 7.4.
To this purpose we use commutators (7.1.25) for f = 2,

s+1
2

+ 51;.;.1;1‘..k.-1mpz — 5{:111;1-«"-“ - 5}»:3';1"-'«.111)‘

[l’:lmh, &lj’tpz] - (5";‘,1:‘2‘“,"’”” + ...+

(7.3.37)

It is enough to verify that for any integer i, 1 £ i £ n, and anysequence (k, k,, ...,

o k), where 1 < ki, ky, ..., Ky, y £ n, the vector A¥%+1 belongs to k.
The vector space EJ is spanned by the elements

(73.38) xfl..,k. _ 1{51..,"._ - +1:s — 1 (551/1;;..&.“! + oo+ 6:,){1:...1._11").

We easily obtain from (7.3.37)

Szlw—mmJM—&mw“W

(1.3.39) At dped] =
Using this formula we get
it 2ot = (s + D) (s — D Aebent =

1 P,
(7.340) T Z DA~

1 ) '
T n+s-—1 @A ™ 2]
. - 5?.[21;‘...k.-1m’ Ajz.#xj])_

Contracting (7.3.39) and (7.3.40) we obtain
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Db, 2] = [akbe 247 -
1
(7.3.41) - m([z’:...km’ AJJHJ] o+
+ [/l',‘,,‘""""”"’ A_';‘j]),
(1.342)  [ahed ag] = '%'(s + 1) (s = 2) Ak,
Substituting (7.3.42) into (7.3.41) we obtain

7.3.43 Kiunks At s+ DA - n?) keokad .
( ) [ A 2(s—1+4n) Ayt

l_n particular, Af*"*/ e k. Now relations (7.3.43) and (7.3.42) together with (7.3.40)
Imply that AF~*+1 belongs to the ideal k as required.

2. Let s be any integer, 2 £ s £ ¥ — 1, and let k be the smallest ideal in &, con-
taining E%. We shall show that k coincides with the ideal (3) of Theorem 7.4. It is
sufficient to show that for any integer i, 1 £ i £ n, and any sequence (k,, k,, .

v, kyy 1), where 1 £ ky, ky, ..., ky 1 < n, the vector Af***! belongs to k.

The vector space E} is spanned by the elements AP*P-*. We easily obtain

from (7.3.37)

sy

[i’,‘l“'k'-ﬂ, ;L;'k"l] - $ '; 1 (6’;’17“""'“' b

+ 53.-11?1---".-2"-"-“‘ - l’;l"'k'“).

(7.3.44)

Expressing ,1,""""'“ from this equality and using the formula
. 1 .
(71.345) A ] = 2 (s + D +n - HAY,

we can see at once that %%+t belongs to the ideal k as required.

3. If § = r, the commutation relations (7.1.25) guarantee that both Ej and Ej
are ideals of kj,.

This completes part (b) of the proof.

Corollary 1. Let K = K be a Lie subgroup, k the Lie algebra of K. Then K is
a normal Lie subgroup of L', if and only if k is equal to one of the ideals (1)—(4) of
Theorem 7.4.

Proof. This follows from Theorem 7.4 and Lemma 7.5.

Remark 7.2. Obviously, there exist ideals of &}, which are not invariant with
respect to the adjoint action of the group L} on kI,. For example, if n 2 2 then any
non-zero element & € k7, generates such an ideal.
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Let us now consider the Lie algebra L(L]) of the differential group L. We
shall write with the obvious convention

(7.346) LY=L ®(R" QSR @ ... ® (" @ SR"),

(identification of Ll-modules via the adjoint action). Notice that for n = I, the
module R @ S*R* is canonically identified with R. The second main result of this.
section can now be formulated as follows.

Theorem 7.5. (a) Every ideal of the Lie algebra L(L}) is one of the ideals 0, kK7°»
where 1 £ 5 < r — 1, and L(L}).
(b) Let n = 2. Every ideal of the Lie algebra L(L}) is one of the following:
(1) o,
2 E SR QSR @ ... d(R" @SR, 1
(3) Ei ® (Rn ® Ss+1Rn*) ® .0 (Rn ® S’R"*), 1
@ ks, 1252y -1,
) 1@ ki,
where 1 is an ideal of the Lie algebra L(L}).

Ss=v,
Sssv,

IA HIA

Proof. (a) By (7.1.29), if an ideal of L(L}) contains an element A%, then it also
contains the element A¢+1), This implies that (2) holds.

(b) Let g e L(L}) be an ideal. We distinguish two cases.

1. Suppose that g < k}. Since g is an ideal of L(L}), it is an ideal of kJ,, which is.
invariant with respect to the adjoint action of the group L}, and Theorem 7.4
implies that g is one of the ideals (1)—(4). _

2. Consider L(L}) expressed by (7.3.46) and suppose that g e k. Then there:
exists an element & e g n L(LL), ¢ # 0. Denote by [&] the ideal in L(L}) generated.
by ¢, i.e., the smallest ideal in L(L]) containing £&. We want to show that [.f] =
=5 @ ki, where 7 is an ideal in L}(L). Commutation relations (7.1.25) ensure
that [¢] = n @ k, where # is the ideal in L(L}) generated by £. It is thus enough
to show that to each integer s, 2 £ 5 £ r, there exist non-zero vectors £, € Ej ..
¢, € Ej such that &;, &, e [L(L}), £], where [L(L}), ¢] denotes the vector subspace
of L(L}) generated by vectors of the form [{, ¢], where {eL(L}): obviously,
k must be Li-invariant so that conditions k N Ej # @, k n E; # @ imply k = k|,
(see (7.3.10), (7.3.22)).

Let & e L(LY) be a non-zero vector. We express ¢ by

(7.347)  &=¢&05.

Choose any integer s such that 2 £ 5 £ ». We know that the vectors

3
(7.348) = At - +ls ~ @A L St

[128]



form a basis of the vector space Ej (Corollary 2 to Lemma 7.7). Using the relation

kl k.’ E]_ ‘Ej(ajllk:mk'p .+

7.3.49
( ) 5k.ﬂk1 kg~ 1]’_6{1";1 k.),

(see (7.1.25)) we obtain by a straightforward calculation

[t &] = & (Shylater 4, 4
(T350) 4 8Fyfmep — gty = ghiyhdor 4

+ ... E’;l ‘hx wkamtp fi’l}‘"'k'-

It is easily seen that this is a non-zero vector. For supposing it is zero and puiting
i = k; and contracting in i we get

(7-3«51) f’;‘xf""k'—lfp + . + f}k’n—lxlkl.uk'-tzip: 0.

Since there exist j and p such that & s 0, (7.3.51) means that the vectors y** -1
are linearly dependent, contradicting Corollary 2 to Lemma 7.7. Thus putting

(1.3.52) & =[f*, &,

we obtain the desired non-zero vector belonging to Ej.

Similarly, the vectors A%'*=1" form a basis of Ej (Corollary 2 to Lemma 7.7).
We get from (7.3.49)

[Abi-koam & glghagbabastp 4
(7.3.53) o SemsafeRacaiy o ghighabecily o

cad e « el
[ 750 TTT . I
c =14 ( 1. 12

50 that £, = [Afske-am ¢] e E5, and we prove as above that £, % 0. This ends
the proof of Theorem 7.5.

Theorem 7.5 classifies all connected normal Lie subgroups of the differential
group L. These are precisely the subgroups whose Lie algebras are the Lie algebras

(1}~ (5) from Theorem. 7.5.

Corollary 1. The smallest ideal in L(L) containing a non-zero vector & € L(L}),
is the ideal [£] = n @ ki, where n is the smallest ideal in L(Ly) containing &.

Proof. This refers to case (5) in Theorem 7.5.
7.4. Differential invariants with values in GL (R)-manifolds. Let us consider the
differential group L;. Since this group can be regarded as the interior semi-direct

product of its Lie subgroup 1(L}), canonically isomorphic with the Lie group
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GL,(R), and its normal Lie subgroup K, (Theorem 7.3), we can apply Lemma 1.6
and Theorem 1.12 to it. In the following theorem we consider a left GL,(R)-manifold
as an I/-manifold, with the canonically extended group action. This allows us
to speak of differential invariants with values in left GL,(R)-manifolds.

Theorem 7.6. Let Q be a left L' -manifold, n : Q - Q[K], the canonical projection
onto the orbit space, and let P be an Li-manifold. Each differential invariant F : Q —
— P is of the form

(7.41) F=fom,

where f: QIK, - P is a uniquely determined Li-equivariant mapping. If Q/K’, has
the structure of the orbit manifold and F is smooth, then f is also smooth.

Proof, This assertion is a direct consequence of Lemma 1.6 and Theorem 1.12.

* Remark 7.3, Theorem 7.6 says that each differential invariant with values in
a GL,(R)-manifold is uniquely determined by a GL,(R)-equivariant mapping, i.e.,
by a differential invariant of “order” zero. With the notation of this theorem, the
correspondence F — f (reducing the “order” of F, equal to 7, to the ““order” of f,
equal to 1) is prescribed by the canonical projection = : @ - Q/K}, and is in-
dependent of F. The problem of finding all differential invariants from a left
L;-manifold to a left GL,(R)-manifold is thus reduced to the problem of finding
all GL,(R)-equivariant mappings between certain left GL(R)-manifolds. This
method of finding differential invariants can be applied, in particular, to the case

of differential invariants with values in GL,(R)-modules (tensor spaces), in the
bundles of linear frames, ete.

Remark 7.4, If in Theorem 7.6, Q = T,S, where S is a left GL,(R)-manifold, we
obtain as a consequence of (7.4.1) that the “derivatives” among the coordinates
on T;S enter each differential invariant with values in a GL,(R)-manifold in
a “canonical” way, independent of the differential invariant. It can be proved
in this way that in certain cases, every such a differential invariant depends poly-
nomially on the derivatives. For example, every invariant tensor, depending on

a linear connection and its derivatives up to a certain order r, is a polynomial
in the derivatives.
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PART 2

NATURAL GEOMETRIC OPERATIONS:
EXAMPLES

8. NATURAL DIFFERENTIAL OPERATORS BETWEEN
TENSOR BUNDLES

In this chapter we deal with natural differential operators between tensor
bundles. We describe the method allowing to find all polynomial natural differential
operators which are in some cases all globally defined operators. Our method
does not give general theorems but is very simple for concrete calculations,

In Section 8.1 we deal with globally defined homogeneous functions. Theorem 8.2
allows us to find polynomial solutions of systems of partial differential equations
which appear with finding differential invarjants.

In Section 8.2 we describe natural differential operators of order zero between
tensor bundles. These operators are closely connected with invariant tensors.

In Section 8.3 we discuss general method of finding natural differential operators.
of order greater than or equal to one. This method is based on Theorem 7.6 and
on the use of formal connections.

Using the method of Section 8.3 we shall prove in Section 8.4 the uniqueness
of exterior derivative under some very weak assumptions.

In Section 8.5 we describe some bilincar natural differential operations with
TX-valued forms which are of the same type as the Frélicher — Nijenhuis bracket.
As a special case we obtain the uniqueness of the Lie bracket.

8.1. Globally defined homogencous functions. Let (x!), i =1,...,n, be the
canonical coordinates on R". By a global solution of the equation

(8.1.1) gf-x* = kf,

xi

where k€ R, we understand a smooth function f* which is defined on whole R"
and satisfies this equation. The function f = 0 is the solution of (8.1.1) for
arbitrary k. The solutions different from f = 0 will be called non-zero solutions.
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From the Euler theorem it follows, that a polynomial of n variables satisfies (8.1.1)
if and only if it is a homogeneous polynomial of degree k.
First let n = 1. Then (8.1.1) reduces to the gquation

8.1.2) x g;—’- = ky,

and using separation of variables we obtain
(8.1.3) y = cxk, ®

where x = y(1). If &£ < 0 and ¢ # 0, (8.1.3) is not defined at the origin. If ke
e(p — 1, p) for some natural p then the derivatives of y of order = p are not
defined at the origin (if ¢ # 0). So we have proved

Lemma 8.1. The equation (8.1.2) has non-zero global solutions only if k is a natural
number.
Now let us suppose that fis a solution of equation (8.1.1) and let us put

(8.1.4) F(t, X2, o, X = fex!y o, 2x7).
Then we have

BF _ af(txt, .., 1x")
ot ax'

For fixed (x') € R* we have equation (8.1.2) and from (8.1.3)
(8.1.6) flxt, ..., ") = F(, xb, ..., XM = (3, L, X,

(hus fis a homogeneous function of degree k.

(8.1.5) t tx' = kf (tx!, ..., tx") = kF.

Lemma 8.2, If k < O there does not exist a non-zero global solution of equation
'T8.1.1).

Proof. Let f(x}, ..., x3) # 0. From (8.1.6)

®LD  f0,..,0) =lin t"f(xé,---,xS)=f(xé,-...x8)tiilgn+

=0+

T

but this limit is improper which is a contradiction.
Let us denote g = §f/6x’. If we differentiate (8.1.1) with respect to x/ we obtain

818 B (k-1g
0x

Consequently, g is a homogeneous function of degree (k — 1). Let p be a natural
number such that k < (p + 1). Then every partial derivative of f of order greater
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than p satisfies equation (8.1.1) with a negative coefficient and has to be identically
zero. From the Taylor’s formula we obtain that fis a polynomial of degree at
most p and from the Euler theorem f has to be a homogeneous polynomial of
degree k. Thus we have the following assertion.

Th?orem 8.1. Egquation (8f/0x").x' = kf has a non-zero global solution only
of k is a natural number. Every global solution of this equation is a homogeneous
polynomial of degree k.

Now let us suppose that we have several groups of variables x', y%, ..., 2" of
total number V. Let us consider an equation

6
619 Xy v Py v Ly
6 ay oz

where a, b, ..., ¢ are positive real numbers and k is an arbitrary real number. We

want to find a non-zero function f(x!, y*, ..., z*) defined on the whole RY, satisfying
(8.1.9).

Let us suppose that fis a solution of (8.1.9) and let us put
(8.1.10)  F(z, x', y7, ..., 2%) = f(£°x*, tByP, ..., °2°).
Then
(8.1.11) t—a;i- o t°%' + b—— o "yP + ...+ c—a—f—t°z'= kF.
s ayP 0z’

For fixed (x%, ¥?, ..., z*) € RY we have from (3.1.3)

(8.1.12)  f(z%x!, By?, ..., 1°2°) = F = (', y?, ..., 2°).
Lemma 8.3. If k < O there does not exist non-zero global solution of (8.1.9).

Proof. Let f(x, 8, .., 23) # 0. From (8.1.12) we have

(8.1.13)  Lim f(t%b, 18, ..., t28) = [ (X0, ¥§, -5 20) . lim —}-hl—
t-=0+ t=0+ 1
Because of a, b, ..., c are positive numbers the limit on the right hand side is
equal to (0, O, ..., 0) while the limit on the left hand side is improper; this is
a contradiction.
If we differentiate (8.1.9) with respect to x/ we obtain for g = af jox!

8g dg

8.1.14
(8.1.14) 2

x+b "+...+c~§%z’=(k—a)g.
z
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Similarly for 8f/8y?, ..., 8f/0z° we obtain the equations of the type (8.1.9) with
coeficients (k — b), ..., (k ~ ¢) on the right hand side. By Lemma 8.3 every partial
derivative of a sufficiently high order vanishes, and this implies that f is a poly-
nomial. Let f be a polynomial solution of (8.1.9). Then every its monomial is also
a solution. Let us consider a monomial P which is of degrees « in variables x’, §
in variables y®, ... and 9 in variables z*. Then (9P{dx') . x' = aP, (3P/0y") . y* =
= fP, ..., (0P[82°) . 2 = yP and P satisfies (8.1.9) if and only if

(8.1.15) ae +bf + ... + ¢y =k,

So we have proved
Theorem 8.2. Global solutions of the equation

a

@116 aLxrps Ly el ooy
ax! ay? oz*

where a, b, ..., ¢ are positive real numbers and k is an arbitrary real number, are

sums of homogeneous polynomials of degrees (o, B, ....y) such that the equation

ac + bff + ... + ¢y = k is satisfied. If this equation has no solution (o, B, ..., 9),

where o, 8, ..., y are natural numbers, then the system of partial differential equations
(8.1.16) has no non-zero global solution.

Example 8.1. Let us consider the equation

(8.1.17) af Yoy 2 afv Y
Then condition (8.1.15) &« + 2§ = 3 is satisfied for two values of («, ), (e, f) ==

= (3,0) or («, B) = (1,1). Hence every global solution of (8.1.17) is of the form
f = cipx'xdx* + ¢ x'yP, where ¢y, ¢, € R and ¢y, is symmetric.

Remark 8.1. The assumption of Theorem 8.2, that a, b, ..., ¢ are positive numbers,
is necessary. Namely if

or .. ¥,
(8.118)  ——x ~ a5 Y =0

thatisa =1, b= -1, k = 0, is an equation on R* and h(?) is an arbitrary (not
necessarily polynomial) smooth function of one variable defined on the whole R,
the function f(x, y) = h(xy) is the solution of (8.1.18).

8.2. Natural differential operators of order zero. Let Xe Ob @,. Let T/ DX
and T"9)X be the tensor bundles of the type (p, g) and (r, 5) over X. T2 is the
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. . P q .

P-lifting Fp with type fiber P = ® R" @ ® R"*, where n == dim X, on which the
tensor action of L} is given. In the canonical global coordinates (15:5) on P this
action has the coordinate expression

(2.1 iyh=al. bl bl

Frowdqg — ny..mg*

R . r s
Similarly 7% is the S-lifting F. with type fiber § = ® R" ® ® R™, with the

tensor action of L} given in the canonical global coordinates (uj-‘l'jjf_',‘_) on S by

(8'22) ﬂ.iilli;. = a;(lx b a;t:-b;": bm:ul;ll1k;|,

From Theorem 5.7 it follows that a natural differential operator of order zero
of T?? to T determines a unique L}-equivariant mapping (differential invariant
of L}) of Pto S. Theorem 3.4 implies that a mapping f : P — S, with the coordinate
expression wf = fit-¥ (ke ) s a differential invariant of Ly if and only if
for any & e L(L}) the Lie derivative 8;f = 0 and there exist g, & L;(™) such that
fagh) = ag f(f), t € P. We have

% f() = Es(f(1)) — T f(&p(1)),

where ép and &5 are fundamental vector fields on P and S, respectively, relative
to £ So if fis a differential invariant of L. then the fundamental vector fields £p
and &g are f-related.

Let us denote by ¢ or ¥ the action (8.2.1) or (8.2.2) of the group L! on P or S.
We define @, : L — P by &,(a) = ®(a, 1) for every teP, aeL}. Similarly we
define ¥, : L} — S, ue S. Then from (1.3.31) the fundamental vector fields on P
or S relative to ¢ € L(L}) are expressed by the equations

(8.2.3) Ep(t) = (T,2,) (©),

where t € P, or

(8.2.4) Es(u) = (T, (D),

where z€ S and e € L} is the unity, i.e. e = J§ idga.

A vector field &e L(LY) has coordinate expression & = £(0/dd}), where (a})
are the canonical global coordinates on L}.

Then on P there exist vector fields &p such that &u(f) = Fle(2) €. Similarly
on S there exist vector fields ZJ; such that &(u) = Sfsu) &. If f: P> 8 is
a differential invariant of the group L} then the vector fields Ffp and Es are
Jf-related, i.e.

825  E(/() = (T.f) Gk,

where e P. From (8.2.3) and 6b,’1’/6af, = —b{’b;I’, the vector field EJ, has the co-
ordinate expression
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Ix]

{P=(ai}ﬁ tf:.) o _
oa’ il

(8.2.6) = (3ftide 4 55,{1 dpetd 5 ghtds
j I ol
fq Jt Jl;—xi) atil i
Similarly
Tj — (aﬁ.ill!.‘.:f;l ) a —
~ix T ~ 1 a i =
(8.2.7) 0ay Je QU
fy di2.ip . 0
= (5 lujlz ,; -+ . J'lujl l_l,_li) a o
uj;...j,

(5 1tj“,g wkp 4. 5] tk[ 'tp aji!ll‘::.ir!! .
(8.2.8) e " -+) B

= Sl = S
If i =j (no summation) then

i1 o
(82.9) ( )_‘{I-c!i_l—ka t:“”lI ’::Irq = (r _ S) fh i.-
my.mg

Every equation in the system of partial differential eciuations (8.2.9) is of the type
(8.1.1), and we have

Theorem 8.3. If p =gq, r # s, then the unique natural differential operator of
order zero of T 9 to T s the zero operator. If p # q then every zero-order
natural differential operator of T®® to T™* is given by a homogeneous mapping
of degree (v — s)/(p — q) of P to S.

Theorem 8.1 implies that non-zero giobal solutions of (8.2.9) exist only if k =
= (r — 5)/(p — ¢) is a natural number and all such solutions are homogeneous
polynomials of degree k. So a global differential invariant has the coordinate
expression

ituip Bondrbia. gt bk bgk pet1.Cpt Ot Cple
(8.2.10) “!1 Ju Ajl JuC11e0-CptanCikes cpktbu...bq; ".tblk-ubqk’

where 4 h 5«: are real coefficients symmetric with respect to the change of groups
of indices (c“ bay i=1, ..,k Li-equivariancy of (8.2.10) implies that the
coefficients A1 2% satisfy condition (4.1.7) for an absolute invariant tensor and

from Theorem 4.1

@211) A = T, -

J1eCpx T a(cpb) H
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where o runs over all permutations of (r -+ kg) indices and ¢, € R. (4.1.11) implies
that every polynomial solution (8.2.10) of (8.2.9) is also a solution of (8.2.8). X

Now we have to prove the existence of age L") such that f(agl) = aof (),
where f is given by (8.2.10). Let a, be given by ao = x(i) 5], where x(1) = —1
and »(i) = 1 for i > 1. Then a;* = a, and from (8.2.10)

iy
Flaot) = Apgtioe(byy) o 2(boe) #(C1q) o 2(Cpe) toit b2t o Lot

and
aof (1) = (i) - %(iy) %(jy) ... (jj) Aok gpainiet | ok gok
The required assertion now follows from (4.1.15).

Remark 8.2. From the symmetry of A}}j:;?g,’: it follows that there are (r + kg)l/k!
independent coefficients in (8.2.11).

Remark 8.3. The degree of a linear natural differential operator has to be k = 1¢
ie.p—g=r—s

Remark 8.4. If p = g, r = s then the system of equations (8.2.9) is satisfied
identically. It is easy to see that the polynomial mapping

Bodr _ giteedpDyg.. B 4C1.0Ep1 Ciler - Cpk
u’_ﬁ...j, - Aj],an-jpcllin.c,ktbli-..bpl LR thun.bpk

is a solution of (8.2.8) for any natural & if A;ﬂ'.'.'.t’;t is an absolute invariant tensor.

Example 8.2. A global zero-order natural differential operator of T1+? to T:3)
2 3

corresponds to a quadraiic differential invariant of L of R* @ ® R"* to R* @ @ R"*
given in the canonical coordinates by

i — Aiq1q2m1824p g _ 1 82 4P o
Wjijajs = jnjzjaprtqlqztmz - (Zsl)cu‘sa(jx) 5n(r)tqmztmz -
o

(8.2.12) Lo <
= €10, 1),jstpr + -+ Coolyyyitpsye

Example 8.3. As an example of a natural differential operator of order zero
we describe the generalized volume element depending on a tensor field. By
a generalized volume element on a manifold X e Ob 2, we mean an n-form w
on X. An invariant generalized volume element depending on a tensor field of type
(p, g) is a natural differential operator of order zero of T7'? to A"T*. The type
fiber of the functor A"T* is the set of real numbers R with the action of L}
given by

(82.13) i =(deta)~tz,
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where 1€ R, aeL!. We have to find differential invariants of L} of P=

r q
= ® R" ® ® R"* to R equivariant with respect to the actions (8.2.1) and (8.2.13).
Such an mvarlant is glven by a mapping w : P - R, t = w(r}: 'f), such that the
vector fields &/, and Efy are w-related. The vector field E/, is given by (8.2.6) and

from (8.2.13) we obtain

i ot d ] _ d
8.2.14 E" = —] —— = 1 _
E2 - S ( od ) & ( 2a @t ),t dt

Since

ai (det @) = bi(det a) we have ——‘—3—- (deta) "' = —bj(deta)™".
daj daj;
Hence

(8.2.15)  Eh= —sht-S.

So for i = j we have the system of partial differential equations

Ptadp

LS 1. dq
atjl fq

(8.2.16) (-9 —no,
which is a special case of system (8.2.9).

Thus we have arrived to the following result: If p = g there exists only zero
generalized volume element depending invariantly on a vector field of type (p, p).
If p # g then invariant generalized volume element depending on a vector field
of type (p,q) is given by an Ll-equlvarlani homogeneous mapping of degree
n/(q — p) of Pto R.

Let us consider for instance an invariant generalized volume element depending
2

on a tensor field of type (0,2). Then w : ® R** —» R has to be a homogeneous
mapping of degree n/2. Theorem 8.1 implies that (8.2.16) has global solutions
only if # is an even natural number and such solutions are polynomials. Let us
consider n = 2, then @ has a form

(8.2.17) 1= Ay,

and the L;-equivariancy condition iniplies that real coefficients 4" satisfy the
condition

(8.2.18)  (deta) A" = alald™

for all aeLl. Hence A7 is a relative invariant tensor of the weight (det a)
(Section 4.3). So that 4" = ce¥, where ¢ is a real constant and ¢" is the Levi—
Civita tensor described in Example 4.2. This implies

(8.2.19) { = C(t12 et tZI)'
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It is easy to verify that (8.2.19) is really an invariant generalized volume element.
As a consequence of Theorem 4.3 we obtain that other invariant generalized
volume clements defined globally on 7Y do not exist for any .

Now let us consider zero-order natural differential operators from the Whitney’s
sum of m tensor bundles TP*WY @ ... @ TPm™Y to T"IY, The type fiber
of the functor T+ @ ... @ T~ is the Cartesian product P = P, X... X P,,,

Pi qt
where P, = ® R" @ ® R"*, with the tensor action of the group L} on every
component. An element ¢ e L(L!) generates on P the fundamental vector field

N s 1
(8.2.20) 5{,,:(3‘_@) I +(an:,) o
daj /e 9ty daj /e 0t

where I, = (i1, ..., {,)s Jy = (Jis ooy Joo)» @ =1, ..., m, are the multiindices. If
a mapping f: P — 8, uph = flebf 0, K, = (ky, o, k), Ly =
= (s ..o, )y =1, ..., m, is a differential invariant of L,l, then the vector fields
(8.2.20) and (8.2.7) are f-related. If i = j (no summation over i) we obtain the

system of partial differential equations

a {1..dp afil...lp

8220 (= q) —HE ] 4 e+ (o — Q) g 1= (= ) S0
Ly Lm

It is difficult to find all solutions of system (8.2.21). The following theorem enables
us to find all polynomial solutions of (8.2.21).

Theorem 8.4. A non-zero polynomial differential invariant of L. from P to S is
a sum of homogeneous polynomials of degrees a, in variables from P, such that

m

(8.2.22) Yoalp—q)=r—s.

Proof. It is obvious that every polynomial solution of (8.2.22) is a sum of homo-
geneous polynomials. First we prove

Lemma 8.4. Every homogeneous polynomial differential invariant of L} from P
to S is expressible as a combination of tensor products of tensors from P, and a linear
differential invariant of L} from some tensor space to S. The converse is also true.

Proof of the lemma. Let

i1 i1 L) Li@) Ernlam) K1(1) K@) KT(aw)
(8223)  uy, g = Aj 1 KN0. Kiay Ko LLELY o TLNa) 0 LT am) 0

Where K:(ﬁ) = (ki[]a 1y k;a[])3 L:(ﬁ) = (‘:p’ ;"’ l;,p): o = 13 ey I, ﬂ = 19 ey Sy
be a homogeneous polynomial solution of (8.2.21) of degrees g, in variables from P,
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.o . wLii(am) .
i=1,..., m From the Ll-equivariancy of (8.2.23) it follows that Aij‘b‘_x;;gfa:) is

an absolute invariant tensor and (4.1.12) implies that (8.2.23) has the required
form.

Conversely, it is easy to see that the combination of the tensor product and
a linear differential invariant F

ay am ® ay am F
(8.2.24) XKPyX . XXP,—> QP ®...QP,—S

m

is a homogeneous polynomial differential invariant of L} from P to S which is of
degrees a, in variables from P,.

Lemma 8.4 and Remark 8.3 now imply Theorem 8.4.

The finding of an element a, € L:(7) such that (8.2.23) is equivariant with respect
to a, is technical and is the same as in the case of polynomial solutions of (8.2.9).
Further if a differential invariant will be expressed via absolute invariant tensors
we shall omit the proof of existence of an element a, € L}~ such that this differen-
tial invariant is equivariant with respect to a,.

Corollary 1. If (p; — q,) have the same sign for all i = 1, ..., m, then all global
solutions of (8.2.21) are polynomial.

Proof. This corollary immediately follows from1 Theorem 8.2.

Therefore, if the condition of Corollary 1 is satisfied we are able to find all
global differential invariants of L} from P to S.

Example 8.4. If (p; — ¢;) have not the same sign, there exist global solutions
of (8.2.21) which are not polynomial. Let us consider for instance differential
invariants from R*X R"* to R, where R is considered as the space of (0,0)-tensors
with the trivial action of L}. Then f: R" X R"* — R is a differential invariant of L}
if fhas a form f(x', p;) = h(x'p,), where (x’) are the canonical global coordinates
on R", (y;) are the canonical global coordinates on R"* and h : R = R is an
arbitrary smooth globally defined mapping. The differential invariant x'y, forms
the functional basis of differential invariants from R"x R"* to R.

Remark 8.5, If p; = ¢,for some i = 1, ..., mthe degree of a polynomial different-
ial invariant of L} from P to S in variables from P; is arbitrary.

Remark 8.6, If there does not exist any natural solution of equation (8.2.22)
then there does not exist any non-zero polynomial differential invarjant from Pto S.

Remark 8.7. Homogeneous polynomial differential invariants of degrees a; in
variables from P; are symmetric with respect to the change of variables from P,
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i=1,...,m Thus such differential invariant has (» + Za,q,)'/al ceayt in-
dependent monomials.

8.3. Natural differential operators of higher orders. Theorem 5.7 implies that
every natural differential operator of order r from T®¥? to T* ! determines
a unique differential invariant of the group L,*! from T,P to S, where P and S
are the type fibers of the functors 7% and 7*:”, The action (8.2.1) of L} on P
implies the action of L,*' on TP given by (5.2.1) and by Lemma 5.1. In the
canonical coordinates (zj‘l 'j s o t'j‘l ‘jq,ml .m) on T.P this action is given by the
formal differentiation of (8.2. 1) up to order r. For instance, if »r = 1 we obtain,
together with (8.2.1),

1 B i1 .5 0 ip 1.1 I
Jll JZ (ah, ,,,aki ak’;bj‘l e bﬂ] .+
i 1
(8.3.1) + ajt .. a}g; lla;;;sb’b bR+ a ,‘pb;l,,, BE + ... +
i ki...k i 1 s Jki.k,
+a - ak,, qu) el + al . ak',’,b,;l, ﬁ,bmtu...zq‘.’a-

Differential invariants from 77P to S have values in an L}-space. Using
Theorem 7.6 the problem of finding differential invariants of the group L,*! is
reduced to the problem of finding differential invariants of the group L!.
Theorem 7.6 says that every differential invariant f : TP — S determines a unique
differential invariant F: T,P/KI** — S of the group L} such that the diagram

T'P -8
(8.3.2) AN AF
T;P/K;*

commutes, where K,*! is the kernel of the canonical homomorphism of L[*!
on L} and 7" is the projection on the quotient space. Usually it is difficult to use
Theorem 7.6 in the direct form becanse the projection n” has not a simple coordinate
expression. But this obstruction can be cancelled using formal connections.

2

Let us consider the vector space Qg = R" ® © R'*, where © denotes the
symmetric tensor product. Let (If), 1 £i<n, 1 Sj<k<n denote the
canonical global coordinates on Q. Let us consider on Qg the action of the group 2
given by

(8.3.3) I, = a2 bk, + b%y).

It is easy to verify that (8.3.3) determines the left action of LZon Q. Then Qg lifting,
F} X is the fiber bundle of linear symmetric connections on X. We shall call the
elements of Qg formal connections.
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Let us consider the r-jet prolongation T;Qs of Qg. Let
3'4) F = ([ Jk* Jk myo ot ‘r_]k,,m; mp)s

where 1 SisnmlSjEsksEnlsm £...sm<ns=1,..,r be the
canonical coordinates on T5Qs. The action of L,*? on T7Qs may be easily de-
scribed in these canonical coordinates by the formal differentiation of (8.3.3) up to
order r. For r = | we obtain, together with (8.3.3),

i

ij,m = “aiazbfm(bqb FS, + b ) +
ab (%D} + b3be) Thy + BIBIBLTZ, , + bE),

The action of L! on T2Qs is obtained by the formal differentiation of (8.3.5), etc.
We set in the canonical coordinates

(8.3.5)

(83.6)  Riyw = Them— Dimp + Dol B — [l

The system of function R}kn, defined on T} Qg will be called the formal curvature
tensor. The first formal covariant derivative of the formal curvature tensor is the
system of functions
i i i
(8'3'7) Rj‘kl;m = Rz‘kl,m + Fmej'kl - FrtrlajRpkl - F,ﬁkRJvP, - Tﬁ,lekp,
where
OR!, 8RR,
R = (—-—-—-—L— re 4. K e
JKkl, m ,és 61’5’, rs,m aff,,q rs, qm
‘Thus Rj',,,‘, . is a function defined on T2Qg. In general, the s-th formal covariant

derivative of the formal curvature tensor is the system of functions Rj-,‘,,,,.h.__,,.,,,,,

s S 1~ 1, defined on Ti*'Qs. These functions are induced formally in the same
way as the s-th covariant derivative of the curvature tensor field on a manifold
endowed with a linear connection and are transformed under the action of L:*?
as a (1, s + 3) tensor.
We put for every s, L S s < r

i i
(8‘3‘8) F_lkml...m, = F(jk,nu...m,):
where the symbol (jk, m; ... m) on the right hand side denotes the symmetriza-

tion in the indices j, k, m,, ..., m,.

Lemma 8.5, The system of funciions
(8 3 9) (ijs F_ykml 9 v kal m,-)’
r—1 = (Rjkh Rjkl;nua ey Rjkl;rnl;...;m,_l)a

contains a subsystem defining a global chart on T;Qg, r = 1.
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Proof. Foreach s, 1 £ s =< r, consider the canonical coordinates I', on T, Qs.

We have the decomposition
(8310) F;k,ml...m, = F;kml‘..m, + (Fg'k,ml,..m. - F;kml...m,)'

The expression in the brackets may be written in a unique way as a linear combina-
tion (with real coefficients) of terms of the form
; . .
Ajklml.,.m,..l = F}k, Imy..mg—1 Fljl,kml...m,-l .

Let us denote the systems F,,I_"L, A, = Uy, B> s Bameom,.)- Then
(8.3.10) gives an injection of I', into (I',, 4,_,). If we denote this injective mapping
by a, it is clear that the system of functions al', defines a global chart on T,Qs.

Now if we consider the s-th formal covariant derivative of R}, we have from
«definition

i o4t i
Rjkl;ml;...;m,..l = Ajklml...m,_l + ijlml...m,-ls

where P}k,,,u__l,,,‘_l is a polynomial in the canonical coordinates on TS~ !Qg. Hence
replacing 4, ., in the global chart oI, by R,_; we obtain the subsystem of (8.3.9)
required.

Each global chart on T;,Qg defined by Lemma 8.5 will be called an adapted chart.
‘The functions (8.3.9) belonging to an adapted chart will be called adapted co-
.ordinates. Relations (8.3.10) imply that the functions I }k,,.l,__m,, 0 < s <r, belong
to each adapted chart.

It is easy to see that in the canonical coordinates on K,*2 and adapted coordinates
on T4Qs, the action of K.*2 on T!Qy is expressed by the formulas

o i i
ij——rjk+b_,k, .
i i ol {
(8'3'1 1) ijml.,.ms =1 jkmy..oms + 'sjknu...m, + bjkml...m,:
i _pl
Jklymyy . ome—1 " Rjkl:m;;...;m,__;s

where 1 £ s S r, and Sj;,,..m, 1S @ polynomial in the canonical coordinates on
K:*! and in the adapted coordinates on 79 !Qg. (8.3.11) implies that the action
of KI*2 on T!Q; is free. Applying Theorem 1.11 we can see that the orbit space
TiQs/K; % has the manifold structure such that the canonical projection =n":
T.Qs — TiQs/K5*? is a submersion. Then any system of independent functions
Rittimi: imeys 1 S8 <1, form a global chart on T;0s/K;*? Using this fact
and Theorem 7.6 we immediately obtain

Theorem 8.5. Each L1, *-equivariant mapping from T5Qg, ¥ = 1, to any L}-manifold
depends only on the formal curvature tensor and its formal covariant derivatives up
1o (¥ — 1)-th order.

In the sense of Theorem 8.5 the formal curvature tensor and its formal covariant
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derivatives form a base of differential invariants of a formal connection with values
in an Ll-manifold.

Let E be a finite-dimensional vector space endowed with a linear representation
of the group L!. Let us consider some global coordinates (z,) on E. Then the
functions 1, = (ts, by 15 s toypp)> 1 £ 4 £ .. 21,2, =1, ..., 1, form the
canonical coordinates on TjE. Using a formal connection we can define, in the
same manner as for the formal curvature tensor, the formal covariant derivatives
;= (tu';h;...;ia)’ s=1..r

Lemma 8.6. The system of functions

Fooy = Thomes s Thome o+ mn_s)s
(8.3.12) R..,= (R;‘kl, R;‘k[;mn i R}kl;ml;...;m,-;)s
f, = (tus tu;mu voos bamy s mids
contains a subsystem defining a global chart on Ty 'Qs X TIE, r 2 2.

Proof. Using the same notation as in Lemma 8.5 we have the canonical global
chart I',_y, £, on T""*Qsx T7E. Then we can replace these coordinates by a new
global chart al',_, #, and Lemma 8.5 implies Lemma 8.6.

Remark 8.8, If r = 1 then (I}, t,, t,,,,) form a global chart on QsxX TE.

Each global chart on T,~!QsX T;E defined by Lemma 8.6 or by Remark 8.8
will be called an adapted chart. The function (8.3.12) belonging to an adapted
chart will be called adapted coordinates. In the canonmical coordinates on K,**
and adapted coordinates on 77~ !Qgx TLE the action of K™ on T, ' Qs X TIE is
expressed by (8.3.11)if s =1, ...,r — 1 and by

(8.3.13) I

aily; ity — tc'; 13ie?

where s =0, ..., r.
This means that the system

- i
Ra—l = (Rjkl;ml;...:m,_z)s I, = (1,, Lasmys »»vs ta;m,;...;m,)s

where 5 = 2, ..., 7, r 2 2, contains a subsystem which forms a global chart on the
quotient space (T4~ Qs x TIE)/K™* . If r = 1 then (1, {,.,) form a global chart on
(Qs X T'E)/K?. Consequently, we obtain from Theorem 7.6

Theorem 8.6. Each L.*'-equivariant mapping of T, *QsxTiE, ¥ = 2, to any
L}-manifold depends on the formal curvature tensor, its formal covariant derivatives
up to (r — 2)-nd order and on the formal covariant derivatives of elements of E up
to order r. If ¥ = 1 each L2-equivariant mapping from Qsx TAE to any Li-manifold
dependens on elements of E and its first-order formal covariant derivatives.

[144]




Now let E = P be a (p, q)-tensor space. We want to find L., l-equivariant mapp-
ings from T,P to a (k, /)-tensor space S. We replace TP by U= T, Qs X TP
and we shall find differential invariants of Z*! from U to S. Then by Theorem 7.6
every differential invariant g : U - S of L,*! determines a unique differential
invariant G : U/K:*! - § of L} such that g = G o #". If we consider only such
differential invariants g which do not depend on the coordinates on T~ *Qs,
ie. g=fop,, where p, : To"'Qsx ToP — T'P is the canonical projection on the
second component and f: TP — S is a differential invariant of L,*!, we obtain
the folowing commutative diagram

r=1 P2 ey 4
77710, % T'P TIP S

b

(8.3.14) N\ AF
(Tr 1Qx % TrP)/Kr+1

where Fis uniquely determined differential invariant of L}. Because of Theorem 8.6
a differential invariant F has a coordinate expression

1o loik ol
(8.3.15)  ufl = FAuiRiws s Riggmy

itedp
gt oiMe—32 th-.-.i ’ ’tn Jai M. .m,)

Applying Theorem 8.4 we are able to find all polynomial differential invariants
(8.3.15) (in many cases they will be all global differential invariants). Such an
invariant has to be a sum of homogeneous polynomials of degrees g, in Rit:
and b, in £ CFiimiz v me SUCh that

S aees My

r—2

(8.3.16) Za,( 2-—s)+2b,(p—q—s)—-k—-l

But we consider only differential invariants wich do not depend on the formal
connection, i.e. a, = 0 for all s. Then F is a polynomial in the formal covariant
derivatives of 7!~ 'f If we put this part of the differential invariant which contains
the formal connection equal to zero, we obtain some system of linear homogeneous
equations for coefficients. Solving this system we obtain the needed differential

invariant f.

Example 8.5. We shall describe all global natural differential operators of finite
order from 7® to 7¢1-3, Each natural differential operator of order r determines

a differential invariant f/: T7(R" ® ® R'*) > R" ® ® R"*, Using the above
method we get that all global differential invariants F are sums of homogeneous
polynomials of degrees b, in # ;.. m,:..:m, SUch that

(183.17) Y b(—1—s)= 2.
=0
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(8.3.17) has only two natural solutions: 1. by =2, 0, =0,/ =1, ...,r. 2. by = 0,
b, =1,b=0i= 2,...,+ Then F has an expression

1 !q:rlznn Iflxlhqs
(8.3.18)  t),5,5, = Ajiihsr laiaz tosss T Bii2ispttiasian-

The quadratic part of (8.3.18) we have determined in Example 8.2. The L}-equi-

variancy implies that Bz"l‘j“zf,";p 1s an absolute invariant tensor, i.e.

. 1 q3
Bty = a%)c,&,(m v 85ty

where o runs over all permutations of four indices. F does not depend on the formal
connection, i.e.

(8'3'19) B!Jrixjgzjﬁ’(tqm:y% gmz,qa) = 0.

(8.3.19) gives for coefficients c, a system of homogeneous equations which has six
independent variables. Denoting them by A4;, i =1, ..., 6, we obtain the linear
part of (8.3.18) in the form

i 1

ujthjz =4 51101{1’1,!3 - pj;hjz) + Azah(t;’zp.f: - t}’al’,]z) +
(&3-20) + Aaéjz(tml,.h p!a,jx) + A45.iz(tfw.1: - tfal'.fl) +

+ A58t 12 = i) + A685,(Hip,sa = thp, 1.)-

Thus all global natural differential operators of a finite order from T2 to T7(1+3>
are of order less than or equal to one. The operators of order one which are not
of order zero are given by contractions, the exterior derivative and a linear natural
differential operator of order zero of A 2 T* to T*+3),

8.4, The uniqueness of exterior derivative. It is well known that the exzerior
derivative d is a linear globally defined natural differential operator of order one
fromA? T*toA?"1 T# which corresponds to differential invariant from T1(A ” R"#)
toa?*! R"* given in the canonical global coordinates Wil S <. <ip =n
onA?R"* by

(8'4'1) wil...ipn =

D, ..ip,ip+11?

where [11 Ipsips 1] means the antisymmetrization in the indices 7y, ..., 7,44-
Using the methods described in Section 8.3 we shall prove the uniqueness of
exterior derivative. First we shall prove a more general

Theorem 8.7, (i) All global natural differential operators (of any finite order) from
T 10 T2 gre linear combinations (with real coefficients) of the exterior derivative-
and the tensor product.

(#) All global natural differential operators (of any finite order) from T©°-P to-
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T P*D where 2 < p, are constant multiples of d o Alt, where Alt : TP 5 AP T*

is the linear natural differential operator (of order zero) given by the antisymmetriza-
tion of indices.

-

Proof. Let / be a global natural differential operator of order » from TP
r

to T®?*D Then fis given by a global differential invariant from T5(® R"*) to

r+i1

® R"*, Using Theorems 8.4. and 8.6 we obtain that such a global differentiai

invariant is a sum of homogeneous polynomials of degrees a; in i-th formal co-

variant derivatives of w;  ;, such that

r

842  Ya(p+i=p+1

i=

(i) Let p = 1 then (8.4.2) has two possible natural solutions. 1. @, = 2, a; = 0,
i=1,.,r2.a,=0,a, =1,a,=0,i=2, .., r Then the differential invariants.
are in the form

Jija2
Wy, = Aluz ;0 + Blliz w!h]z’

where A7 and Bj}/? are absolute invariant tensors. Thus A{}? = ¢,d/!5]7 +

$1i2
+ ¢, 67611, {1‘,’,2 = ¢,6]16{ + &,6{*6]!. Ali/* has to satisfy the symmetry condi-
tion A{l‘iff = {f,“ Wthh 1mp11es c1 = ¢, = /2. B,’l‘,’: has to satisfy the condition
Bi¥¥w,,.;, — @, ;,) = 0 which implies ¢, = —¢, = /2. Then

Wy i, = Bwilwiz + &Yy, 1575

where a, f are real numbers, is the differential invariant corresponding to the natural
differential operator @ ~ S & o -« dw. This proves the first part of Theorem 8.7..

(i) Let 1 < p. Then (8.4.2) has the unique natural solution g, =0, a; = 1,
a,=0,i=2,..,r Then

Jieedp+i
wi1...ip+1 Al: 1p+1a)jl~-'jp:jp+l’

where AJ%7/7+" is an absolute invariant teasor satisfying

(8.4.3) Ajl---jp+1

froadpet (a)jl...j’);jp-l-l - a)jl...jp;fp+1) = O‘
From (8.4.3) we get

Au...Jk..Jpqu +A11 Jp+1 .Ika=0’

p+1
. L]
for all k=1, ...,p. Because Al jr+i =% ¢, 8= ... §{=t+1 we obtain for any
permutation o of (1, ..., p + 1) “
(844) Cla(1), s (Y, ey a(p+1)) + Clo(1),no(p+1), . o(k)) = 0

[147]



for any k=1, ...,p. Hence we have (p + 1)!p/2 homogeneous equations of
(p -+ 1)1 variables. This system of homogeneous equations has a unique independent
variable. Let us choose for this independent variable ¢y, p+1) = &¢/(p + 1)1,
where « € R. Then from (8.4.4), ¢, = (sign o) &/(p + 1)! and

wl;...l,ﬂ-: = am[h...l,,, tpe1]

which proves (i) in our theorem.
Now we immediately obtain

Theorem 8.8. The exterior derivative is a unique, up to a multiplicative constant
factor, global natural differential operator (of any finite order) fromna® T* toAP*1 T¥,
where p = 1.

Proof. Theorem 8.8 is the direct consequence of Theorem 8.7 because of
wAw = 0.

Remark 8.9. The linearity condition is not necessary in the proof of Theorem 8.8,
This condition follows from naturality but only if p = 1. If p = 0 Theorem 8.8
is not true. Itis easy to see that f + fdfis an example of a global natural differential
operator of order one from A° T* to A * T* which is not a constant multiple of
the exterior derivative,

8.5, Bilinear natural differential operators on vector valued forms. Let us denote
the space of TX-valued p-forms on X by QF(X; TX); an element of Q°(X; TX) is
by definition & section of the vector bundle TX @ A? T*X over X. On QX; TX) =
= @ QP(X; TX) we can define the so-called Frdolicher— Nijenhuis bracket as

14
follows: let ¢ € @(X; TX) and y € Q%(X; TX) then there is a unique [¢, ¥ ] e
€ @'**(X; TX) such that for any vector fields &, ..., &, on X

[0, U] 1y s Erng) =
= r“ls' E sign U{[Q”(Eaa), ceey f,(,)), ‘.I’(fq(r-o- 1) *ves f,(,_“))] —_

- rq)(fd(l)’ e éa‘(r—l)s [éa‘(r): l/’(ﬁc(r-&-l)a (LS ] 6u(r+s))]) -
‘(8'5'1) - Sl,lf([([?('f,(l) LR ga(r))= ’fa(r+1)], ’fa(r+2) LIRARE éa‘(r-ﬂ)) +

rs
+ s O(&sctys v s Sotr1)0 Y((Eatrys Catrr13)s Satriays ) +

Ps
+ T‘l’((P(fa(x)s voos Earm1ys [atns Soer 4 0015 o nys b

where o runs over all permutations of the set (1, ..., » -+ §) and [,] on the right
hand side denotes the standard Lie bracket.

[148]



Let (U, @) be a chart on X, @ = (x) the corresponding local coordinates. Then
on TX @A?T*X we have the induced coordinates (x/, wjl...j,): l1=2j, < ...
. < j, < n Recall that if we T.X @ AP T4 X, where x ¢ U, then

852 w=d,. Jpg‘li @dx/1 A ... Adx'n,
X

'Let 0 eF(X, TX), e (X, TX) be two TX-valued forms, let (Pjil...j,(x) (resp.
¥j,...;,(x)) be the components of ¢ (resp. ) with respect to the chart (U, ). Then
the TX-valued (r - s)-form [¢, ] defined by (8.5.1) is expressed in the chart
(U, 9) by

fo. 0] (x) = (qo;ﬁ,,,j,(x) Wpsrotre

axm
" a0}, (x our . (x
(8'5'3) - I'Djr+l"'jr+-(x) P a”x‘pi,:( ) - rgpffl--vjr—lm(x) W_l +

+ Sl[/inj,.+z...jr+.(x) 'a‘(%j*;fgx-)”) EZT@ dxta ... adxire,

From the definition it immediately follows that the Frolicher ~ Nijenhuis bracket
extends the Lie bracket of vector fields (T X-valued 0-forms) to arbitrary TX-valued
forms.

From the coordinate expression (8.5.3) it follows that the Frélicher — Nijenhuis
bracket [,] defines a bilinear natural differential operator of order one of the
functor (T @ A" T*) @ (T' ® A° T*) to the functor T ® A"+ T*. The correspond-
ing differential invariant of L} from TE((R" @ A"R™)X (R" @ A® R"¥)) to R" ®
QAT R* is given by (8.5.3).

Let us consider more general case of finding bilinear natural differential operators
of any finite order & from 7" @ T to T+,

Theorem 8.9. All bilinear natural differential operators of any finite order k of
T @ TW® 1o T gre of order one.

Proof. Let 4, be a bilinear natural differential operator of order k& from
TN @ T to T+, Let (), ;,» ¥),..,,) be the canonical global coordinates
on the type fiber E = (R" ® ® R"™)x(R" @ ®° R'¥) of T™" @ T, The
associated differential invariant of L’,‘,+1 is a bilinear mapping 4, : T*E - R" ®
® ®** R"*. Using Theorem 8.6 each such a differential invariant of Z£*? de-
termines a unique differential invariant A, of L} depending on the formal covariant
derivatives of ¢, and gh}l_,_ ;. up to order k. A, has to be bilinear and hence
polynomial. Theorem 8.4 implics that 4, is a sum of homogeneous polynomials
of degrees @ in @}, | .my:oim 80d Byin Wi o0 4, 0 S 1S K, such that
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(8.5.4) i(a,(l—r-—l)+b,(1—s—l))=1—r—s
1=0

is satisfied. Only two solutions of (8.5.4) correspond to bilinear mappings:a) g, = 1,
b; = 1, and the other «,, b, are equal to zero; b) a; = 1, by = 1, and the other
a;, b, are equal to zero. This means that A, is defined on Qgx THE only and our
theorem is proved.

The components Aj, , ., of A4, are given by

f'n e 10U

i
(8-5.5) Ajl dres ™ A seoJr4ept (pqlﬂ-'qﬁqp-t lll/ltl[-..ll.v +

m Gyl sitin 1 ¢
B ceefrrabt qoqi...qupxu...u,;uu-l’

where Aj;", BY;“** are absolute invariant tensors, i.e. A5 = Z c 850 .. 5,
Biust = Z d,6® ... 57+, where ¢ runs over all permutatmns of (r+s+2)

indices and c,, 4, are real numbers. We consider onty such differential invariants
(8.5.5) which do not depend on the formal connection, i.e.

(8.5.6) A'“ t(q’q‘ Arigr 1 (p‘;,l qr.qr+1) ]l/ntu...u_q +
-+ Bl "u;(p,n q,.(wul igitg ey ll/'t‘l---"n“ﬁ-) =0,

(8.5.6) gives a system of homogeneous linear equations for ¢, and d4,. Solving
this system and substituting the solution into (8.5.5) where we replace the formal
covariant derivatives by (ordinary) formal derivatives we obtain the required
differential invariants of L2 from T:E to R" @ Q"% R**.

Corollary 1. All bilinear natural differential operators of finite order from (I’ @
QAT (T RATH) to T QAT T* are of order one.

Now we shall find all bilinear natural differential operators described above
for same special cases.

A. Let n = 1. Let (¢) be a local coordinate on X € Ob 2,. Then a (1, r)-tensor
field ¢ on X has the coordinate expression ¢(f) d/dt @ di ® ... ® d¢, (r factors d1).

Theorem 8.10. Let ¢ be a (1, r)-tensor field and \f a (1, s)-tensor field on X e
€ Ob @,. Then all bilinear natural differential operators from TW" @ T to
T8+ gre given by

(8.5.7) ( ¢+B?;f )—-—@dt@ . ®d¢,

(r + s) factors dt, where A, B are real numbers satisfying
(3.5.8) r-—DA+(E—1)B=0,

fe.if r =1, s = 1 there are two independent bilinear natural differential operators
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and in the other cases there is a unique bilinear natural differential operator from
TN @ TWs) jp pllirts) ’

Proof. Let us denote the type fiber of T” by R™"_ Let (w) be the canonical
coordinate on R". A differential invariant corresponding to a bilinear natural

differential operator from T(:" @ TW® to TU:r+9 is given by (8.5.5) which
reduces to

(8.5.9) 4= Agiy + Boy’,

where 4, B are real numbers and ¢* denotes the formal covariant derivative of ¢.
Then the condition (8.5.6) reduces to the equation (8.5.8).

If r=1, s=1 (8.5.8) is satisfied identically and there are two independent
differential invariants and any differential invariant from R x R(:1 to R(1:2)
can be expressed by

(8.5.10) 1= A¢'y + Boy',

where @' denotes the (ordinary) formal derivative.

Ifr=1,5s %1 (orr # 1, s = 1) (8.5.8) implies B =0 (or 4 = 0) and there is
the unique bilinear differential invariant A"y (or Bey’) from RDy RG+9
(or R RILDY tg RIS+ (o RU-rHD),

If r # 1,5 % 1 then from (8.5.8) B = —A(r ~ 1)/(s — 1) and we get the unique
differential invariant A(e'y — o'(r — 1)/(s — 1)) from R x R*»%) to R 7+9),

Thus all bilinear differential invariants from RM" x R to R*+**9 are given
by (8.5.10) where A, B are real numbers satisfying (8.5.8). We shall verify that
(8.5.10) is really a differential invariant of L2. On T{R™'™ we have the canonical
global coordinates (w, »’). The action of L2 on T1R!!:? is given by

8.511) @ =wal"", & =w'a"+ ol —r)da T,

where (a, d) are the canonical global coordinates on L%, i.e. a s 0. Then (8.5.10)
is a differential invariant of L? if

(A9Y + Boy) @ =" = A(@'a™ + o1 = 1) da™ ) Ya* = +

+ Boal ~r(y'a 4+ y(l — 5) da~'7),

It is easy to see that (8.5 12) is satisfied if and only if (8.5.8) is satisfied.
B. Let n = 2.

1. Let r = 0, s == 0. In this case the Frolicher — Nijenhuis bracket coincides with
the Lie bracket.

(8.5.12)

Theorem 8.11. The Lie bracket is a unique, up to a multiplicative constant, bilinear
natural differential operator from T™® @ T™9 to T,
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Proof. Let (€% n%) be the canonical global coordinates on the type fiber R"x R"
of TWO @ 719, All differential invariants corresponding to required operators
have the expression (8.5.5), i.e.

(8.5.13) AP = AZErn' + Bt}
But 4'4, Bl are absolute invariant tensors, i.e. A = 5551+ ¢, 007, Bt = d, 846 +-
+ d,616%. (8.5.6) then implies ¢; 4 d, = 0, ¢, = 0 and d; = 0. Thus

@.5.14) A= " — 1wl

which proves our theorem.
II.Letr =0, 5= 1.

Theorem 8.12. There is a 3-parameter family of bilinear natural differential
operators from TH%) @ TDro TUY, This family associates to each vector field &
and to each (1,1)-tensor field ¢ on X the (1,1)-tensor field

(8.5.15) Al @tr (¢ @ d(tr 9)) + B @ d(tr ¢) + C[£, ],

where A, B, C are real numbers, [,] is the Frélicher — Nijenhuis bracket, ir is the
contraction of (1,1)-tensors, d is the exterior derivative, and I is the absolute invariant
tensor field I = (6}).

Proof. Let (&, cp_i,) be the canonical global coordinates on the type fiber P =
= R"%(R* @ R"*) of T'? @ T, Theorem 8.9 implies that all bilinear natural
differential operators from T @ 71 to T have corresponding bilinear
differential invariants expressed by (8.5.5), i.e.

(8.5.16) Al = ATzE'ol  + BiE of,

where A’ , Bl are absolute invariant tensors, i.e.. A =c,8,0105 4 ... 445876455,
B =d,8/8,85 + ... + dg0}6;5,,. From the condition (8.5.6) we obtain ¢;= c; =
=cg=4d, = d, =dy = dg =0;¢,, cyare arbitrary,and d, + ¢5 =0,d; — c5 =

= 0. Then
B.517) i) = A8E%E , + BEQ! ; + C(EPp), , — & 07 + E00L).
The expression at C is by (8.5.3) the differential invariant corresponding to the
Frélicher —Nijenhuis bracket [,], and (8.5.17) is then the differential invariant
corresponding to (8.5.15). This proves our theorem.

Il Let = 1,5 = 1.

Theorem 8.13. There is a 15-parameter family of bilinear natural diﬁ‘erential
operators from T™D @ TMY 1o TM2). All operators belonging to this family are
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linear combinations (with real coefficients) of the Frélicher — Nijenhuis bracket and
operators which can be expressed by means of tensor product, the contraction of
tensors, the exterior derivative and the tensor product with I = (5)).

Proof. Let (¢, ;) be the canonical global coordinates on the type fiber
(R" @ R"™ )X (R" ® R"*) of 71 @ TW1), Theorem 8.9 implies that all bilinear
natural differential operators from T @ 71 to T2 have corresponding
differential invariants expressed by (8.5.5), i.e.

(8.5.18) A, = A%oF Wt + BP0,

where ARD" — ¢ §I01T8Y 4 ... + cp,0U0LUS,, Bl = d,5i016480 + ... +
+ 46787818, (8.5.6) gives for the coefficients c¢;, d;, i =1, ..., 24, a system
of linear homogeneous equations which has 15 independent variables 4,. Then
’Uk =4 5J(pp Wy + Azaj'l/p o, + A 5k¢’p,j¢r + A4-6kl»bp,j¢r

+4 51((Pr W+ Yie) + A 5u(§0r Wy YL 00 +

+ A751‘Pp, Ak + Aaéﬂh, 5+ AQ‘SR(:D;, A+

+ AoOWE 0] + Ay b W) + AUDxp] + Aisph, U +

+ Ay b joi + Ars(OVh e — Vo0 e — Ok +

+ 0k + O, + VB, , — 0Tk — V0L, )

(8.5.19)

The expression at A4, is by (8.5.3) the differential invariant corresponding to the
Frélicher — Nijenhuis bracket of two TX-valued 1-forms. If @, ¥ € 2'(X; TX) then
the differential invariant (8.5.19) corresponds to the (1,2)-tensor field

A I @dtro) @trp+ A, Qd(tr ) @ tr o+ A5 d(tr 0) Qtry @ I+
+ A d(tr ) @ tr o @ 1 + AsI @ d(tr (Cile ® ¥)) +

+ Ag d(tr (CLlo @ V) ® 1 + 4,1 @ CHd (tr ) @ Y) +

+ Ay @ CH{d (tr ) @ @) + A Ci(d (tr @) @ Y1) @1 +

+ A CHA (tr ) @ 0) @ I + Ay @ dlir @) + 410 ® d(tr ¥) +
+ A d(tr o) @ Y + A1, d (tr V) ® @+ Als[(f’a lﬁ],

(8.5.20)

where C} means the contraction of tensors in the i-th superscript and the j-th
subscript. This proves our theorem,

The Frélicher — Nijenhuis bracket is the unique operator from the list of
15 operators given by (8.5.20) the values of which are in 7X @ A 2 T*X. Using
the antisymmetrization we get immediately
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Theorem 8.14. There is an 8-parameter family of bilinear natural differential
operators from THD @ T8 yo T QA% T*. This family associates to any two
TX-valued I-forms ¢ and Y the TX-valued 2-form

B, IA d(tr @) tr ¥ +ByIA d(tr ) tr o+ B3I A d(tr (C3(e Q@ ¥))) +
(8.521)  + BuJa Cid(tr @) ® ¥) + BsIA Ci(d (tr y)) @ @) +
+ BgW A d(tr @) + Bso A d(tr §) 4 Byl o, ¥].

Remark 8.10. The finding of the complete list of bilinear natural differential
operators from T @ T to T"*9, where r = 2 or 5 2 2, is similar but
technically more complicated. However, in the case of TX-valued forms, if we
find all bilinear natural differential operators of the type considered for r, s = 2,
we get at the same time the complete list of bilinear natural differential operators
for arbitrary r, s = 2. This follows from the skew-symmetry of the TX-valued
forms in the subscripts.

9. GEOMETRIC OBJECTS NATURALLY INDUCED
FROM METRIC

In this chapter we describe several natural differential operators defined on the
bundle of metrics on X. In Section 9.1 we prove the classical result that the Levi —
|Civita connection is a unique linear connection depending naturally on a metric
tensor and its first order derivatives. In Section 9.2 we give an example of a linear
connection depending naturally on a metric tensor and its 3rd-order derivatives.

In Section 9.3 we describe natural lifts of Riemannian metrics on X to metrics
on the tangent bundle T'X. This result generalizes the classical diagonal, horizontal
and vertical lifts of Riemannian metrics.

9.1, The uniqueness of the Levi—Civita connection. Let Met X denotes the bundle
of metrics on Xe Ob @,, i.e. Met X is the subbundle in T®?X formed by all

2
symmetric regular tensors. The type fibre of Met X is P = 0O R"*, n = dim X,
with the canonical global coordinates g,;, det (g,;) # 0,1 £ 7 < j £ n. The action
of L} on P is given by the formula

(9-1-1) Eu = bfb}g,,q.

Let CX — X be the fiber bundle of linear connections on X. C is a Q-lifting F3
with the type fiber @ = R* ® ® R"*, with the action of Z? given in the canonical
global coordinates (I';), 1 <1, j, k < n, on Q by the formula
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(9.1.2) I = aiT2bib, + abbh,.

A natural connection of order r is a natural differential operator of order » from
Met to C. The Levi—Civita connection is a well known example of a natural
connection of order one. The Lewi— Civita connection determines the differential
invariant of L? from T1P to Q given by

1 im
(9.1.3) ij = 5 g (gmj,k + Sk, — gjk,m)»

where g'/ is the inverse matrix of g, i.e. g™g,,; = &/.

Theorem 9.1. The Levi—Civita connection is a unique natural counection of
order one.

Proof. To prove Theorem 9.1 we have to prove the uniqueness of the differential
invariant (9.1.3). The action of L2 on TP is expressed in the canonical coordinates
(15, &i5,1) on ThP by (9.1.1) and by

(9.1.4) Zij,m = (Dub] + BIblm) 8pq + biD}bg g, r-

The fundamental vector fields on TLP, relative to this action, are

Hp = (3gu> 0 L < agij,m) 0 -
Pln obg /e 0g;; oby Je ogi,m
o

= (0fg,; + 0F gip) + (378, m + 09810, m + 5mgij,p) Fra

i,m
0z, 0 ( 0 ) )
—ar ij.m
fiad — = e
pTIP ( 6b;’, >¢ agij,m glp agiq,r agir,q

and the fundamental vector fields on Q, relative to (9.1.2), are

T
Bl = (____ar,,,)_al = (=8 + S + S —2
obl Je ary 0

£ (af;,,) 0 1(6 a)
o= \—"TFT "] =5 + ]
r by, Je ory, 2 \ar: = ory
where e € L2 is the unity, i.e. ¢ = J3 idg.. Theorem 3.4 implies that if a mapping

F:TIP — @ is an L2-equivariant mapping then F satisfies the following system
of partial differential equations

(9.1.5)

(9.1.6)

(6ggpb + 6 gap) Jk + (5agpb ™ + 5bgap m + 6mgab, p)

9.1.7) 0g.. bym

= =56, F% + 5"F + 6,‘{F,p,
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oY, OF 1 icqer rsa
(9.[.8) gllp (—éé‘ﬂ—q:"_‘ + 6g_m,,_q - 2 5P(515k + 5_/57{)’
Contracting both sides of {9.1.8) by g™ and rewriting the system for cyclic permuta-
tion of the lower indices of the independent variables we get
oF', 1

OFj_
agsq, r ag.!r, q
OFj | _OFp
. agrs,q agﬂl: *

g (676% + 8107,

(9.1.9) = — g"(856% + 6369,

p|= = )

i i .
oy T = o 0530, + 559
gqr,s agfn'sn"

and from (9.1.9) we obtain

©:110) 2T — (g + 015 + 851 + 815D — 8%E30L + A5,
wq
Hence
|
Fly = T(gls(gsk,j + g0 + gh‘(gjr,k + 8, 1) —
©.1.11)

1 4, i
- 8”(&1,4 + g, 9) T ij =3 g (&sjx + Bst5 — B s) + Vs

where yjk does not depend on g, ,. Substituting (9.1.11) into (9.1.2) we obtain
that yjk is a (1,2)-tensor and from the assumption or our theorem 7y} is a differential
invariant from P to @. Then y); has to satisfy the following system of differential
equations

(9.1.12) 2gps—g%’: = — Ok + o + 60,
Multiplying both sides of (9.1.12) by g”" and using the symmetry of g, we get
O-L13) g7 (= &y + e + Ofl) = &%= S5y + Vv + S3¥jo)-
Contracting (9.1.13) with respect to 7, j and r, k£ we obtain
O.L14) g%, = ngn,.
Similarly using the contraction of (9.1.13) with respect to 7, k and r, j we get
(9.1.15) gy, = ng™%i,.
A. Let n > 1. From (9.1.14) and (9.1.15) we have
(9116  y,=0, gy, =0.
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Contracting (9.1.13) with respect to j, ¢ and using (9.1.16) we get

OLI7) (1~ D g™y + g™, = & + 8700,

Multiplying both sides of (9.1.17) by gy we obtain

(O.L18)  (n — D e”gli + e7ghy = — Vi + 8850,

Using the contraction of (9.1.18) with respect to r, s and (9.1.16) we obtain
(9.1.19) gpqgkly;;q =0,

which implies !, = 0.

B. Let n = 1. Then (9.1.12) has the form

dy
9.1.20 Bl S

( ) 2g dg Y
hence

0.121) y=cigl.

(9.1.21) is_ Li-equivariant iff ¢ = 0 and we have y = 0,
Thus yj, is the zero tensor which proves our Theorem 9.1.

Remark 9.1. We note that the part of the proof beginning at (9.1.12) is a genera-
lization of a proof given by Krupka to non-symmetric connections.

9.2. Natural connections of higher orders. Using the notation of Section 9.1, we
describe some examples of natural connection, depending on a metric, of order
higher than one. Such a natural connection of order r corresponds to a differential
invariant

(921) F_‘lk = F_']k(gpq’ gpq,ms verd gpq,ml...m,-)

from T, P to Q. The direct calculation of (9.2.1) leads to a éystem of partial
differential equations which is difficult to solve. From (9.1.2) it immediately follows

Lemma 9.1. Let I and A be two linear connections on X, i.e. I and 4 are two sections
of CX, then the difference 4 — I' is a (1,2)-tensor field on X.

Now let 4 be a natural connection of order r given by (9.2.1) and I" be the Levi—
Civita connection given by (9.1.3). Then 4 — I' is a natural differential operator
of order r from Met to T2, This implies

Lemma 9.2. Every natural connection of order v is the sum of the Levi—Civita
connection and a (1,2)-tensor field which is naturally induced from the metric 1ensor
Sfield and its derivatives up to order r.
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Lemma 9.2 restricts our problem of determining of natural connections of order r
to determining of natural differential operators of order 7 from Met to 7! Such

operators correspond to differential invariants of L/*! from T,Pto S = R" ® ® R'*
which is con51de1ed with the tensor action of L}.

2
If reg ® R" denotes the space of all regular (2,0)-tensors and reg @ R" denotes
the space of all regular (0,2)-tensors, we have

Lemma 9.3. The inverse matrix t" of a marrix tU € reg ® R'* is a (rational)

differential invariant of L} from reg ® R"* to reg ® R".
2 2
Proof. Because of Theorem 8.3 a differentialinvariant h : reg @ R"* ->reg ® R
of L} has to satisfy

i
oh ;

Bty P 2
P

(9.2.2) -2

IF hid(1,,) = ", where 17 is the inverse matrix of ¢, i.e. £,/ = 6], then (9.2.2)
is satlsﬁed because of drV/at,, = — 111,

2
Remark 9.2. Lemma 9.3 is true also for the opposite direction from reg ® R"

2
to reg @ R'*,

If we restrict Lemma 9.3 on symmetric tensors we obtain the rational differential
invariant of L} from Pto P*, where P* denotes the type fiber of the space of inverse
metrics on X. Lemma 9.3 now implies that every differential invariant f of L/*!
from TP to S determines a unique differential invariant g of L** from P* x TP
to S such that /= g o h. If gis polynomial then the corresponding differential
invariant / from T,P to S is rational.

Let us denote by U, = P*x T,P. We want to determine auxiliary differential

invariants from U, to S. Such differential invariants have coordinate expressions
of the form

9.2.3) t.illfz = fj-lj,(gpq, Epqr o gpq,nn...m,),
where
(9.2.4) (gpq, Epga +ovs gpq,nu...m,)i

I1spggsnl£m £..5m £ n, are the canonical coordinates on U, .
Let us consider the following system of functions on U, : ij gomes 8 =0,
,r — 1, where I“Jk is given by (9.1.3), Riyy.mysoime> $ =0, ..., ¥ — 2, where Rjk,
s given by (8.3.6) and *“;” denotes the formal covariant derivative with respect
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to Ij,. Hence I}, determine the formal Levi— Civita connection and Rl is its
formal curvature tensor. Let us denote I, ., = I éik,"u' s§=1,..,r—1,
the symmetrization.

NS

Lemma 9.4. The system of functions

8“: 8ijs
.25 I,..r

v 4 jkmy..mpe-q

R;kls LA R;kl;m‘;...;m,..;

contains a subsystem which forms a global chart on U,, where r = 2.

Proof. Let us consider the following system of functions on U,
(926) gij, gljs rjln LR ] F:‘k,mx...m,.-l'

Then (9.2.6) forms a global chart on U, . The transformation relation (9.2.4) ~(9.2.6)
is given by (9.1.3) and the formal derivatives of (9.1.3) up to the order (» — 1).
The inverse transformation is given by

.27 gk = Emlik + Giml

and the formal derivatives of this relation up to the order ( — 1.) Lemma 9.4
now follows from Lemma 8.5.

Every global chart on U, defined by Lemma 9.4 will be called an adapted chart.
The functions (9.2.5) belonging to an adapted chart will be called adapted co-
ordinates. The action of K;*! on U, in the adapted coordinates has the expression

—i i . i i
g =g, Ziy=8y  Tp=TIp+ b,
—. : . .

‘(9.2.8) ;’knu...m, = rjkml...m, + Sjkl'u..-lﬂ. + b;kml...mr’
Rr/”;m;...;m.—i = R!jkl;m;;,_,;m,-‘!

where s = 1, ...,# — 1 and §j,,,,.., is @ polynomial in the canonical coordinates
on K:*! and in the adapted coordinates on U,_;. (9.2.8) implies that the action
of K,*1 on U, is free and applying Theorem 1.11 we can see that the orbit space
U,/K:*! has the manifold structure such that the canonical projection #n" : U, —
— U,JK.*! is a submersion. Then any system of independent functions (g, g;;,
Ris ooy Ritimes osmo_a)s 7 = 2, forms a global chart on U,/K;**.

According to Theorem 7.6 a differential invariant f from U, to & determines
a unique differential invariant F : U,/K*! — S of L} such that f = F o n". Hence
we have

(929) tjilj; = Fjisz(gu: gij: Rjkl’ ety R.iikl:mﬁ---;m’-z)'
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Our considerations do not depend on the type of the tensor space S. S0 we have
by Theorem 7.6 and Lemma 9.3 a more general result

Theorem 9.2. Every natural differential operator of finite order r 2 2 from Met
to any S-lifting F L depends naturally on the metric tensor, the inverse metric tenso¥
and the formal covariant derivatives of the formal curvature tensor of the formerl
Levi —Civita connection up to the order (r — 2).

If r=1, then on U, there are coordinates (g", g,;,I}) and on U;/K2 co~
ordinates (g%, g;;). It implies

Theorem 9.3. Every natural differential operator of arder one from Met to any

S-lifting F§ is either zero operator or is of order zero.

According to Theorem 8.4 polynomial differential invariants (9.2.9) are sums
of homogeneous polynomials of degrees @ in g¥, b in g;; and ¢, in Rj'k,,.,,,“ ims
§=0,...,r— 2,r 2 2, such that

r—2

(9.210) 2a—2b—) ¢(—2—3) = —1.

=0

If r = 2, (9.2.10) has no natural solution which nmplies

Corollary 2. There is no polynomial (i.e. polynowial in the metric, the inverse
metric and the formal curvature tensor of the formal Levi — Civita connection) natural
connection of order 2 which is not of order 1.

If r = 3, (9.2.10) has the form 2a — 2b — 2¢q — 3¢; = —1 and this has, for
instance, the solution a == 1, b == ¢4 = 0, ¢; = 1. Then (9.2.9) has the form

1 . 4isis28s4 _papr
Lie = A.ikpqr g Rmm;u'

where A5 ig an absolute invariant tensor. Let, for example, c(jF*5) = 1
and let all the other coefficients vanish. Then we obtain an example of the 3rd-order

natural connection
9.211) 4L =Th + g7R%yq-

It is obvious that in this way we can obtain many examples of natural connections.
of order greater than or equal to 3. All such connections are rational because the
dependence between the metric tensor and the inverse metric tensor is rational.

9.3. Natural prolongations of Riemannian metrics on manifolds to metrics on
tangent bundles. Let ¥ e Ob &, and let ¢ denote a Riemannian metric on X.

Let (x), 1 £ < n, be local coordinates on X and (x*, u') the induced coordinates.
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on the tangent bundle py : TX — X. Let 8/dx", 8/0u’ be the local coordinate vector
fields on T'X. Then passing to new local coordinates () we have the vector fields
B8/8x', 881, where

—3_7=bf 9 + blaiu’ 9 ,
9.3.1) ox ax? ou?
2y
ait ou?
Let now

0 d s, 7] 0 d
(9'3'2) Gll = G(——’ —"—_)’ Gz = G("—_: '_"—) ] G3 = G(—-—, '—_"T> s
/ ox' ox! Y axt ou’ Y gu'” aul

be the local coordinates of a symmetric (0,2)-tensor field G on TX. Then using
(9.3.1) we obtain the transformation relations

5,1,- = bf’b?G,i,q + bfbY,a'u" Gf,,, + b}bgnal”u'Gﬁq + bﬁ,,af’u'b‘}saiu'Gﬁq,
9.3.3) G} = bIbiGL, + bLalwbiGh,,

Gy = bIbIGy,.

We shall describe shortly tree classical prolongations of a Riemannian metric g
onto X to a metric (or pseudo-metric), i.e. to a symmetric (0,2)-tensor field, on TX.
Let I' be the Levi—Civita connection determined by g, i.e. the components I jk
of I are given by (9.1.3). Then the tangent space T(TX), at every point u of TX, is
splitted into the horizontal and the vertical subspaces with respect to I',i.e. T,TX =
= H, @ V,. On the other hand 7, 7X is isomorphic with 7. X ® T, X, x = px(u),
andso H, @V, ~ T,X ® T.X.

If &€ = &(x) 6/dx" is a vector field on X we can define the horizontal lift &% of ¢
with respect to I' by

, H __ xi _2___ i pem i
(0.34) ¢ ) P aat) %) 457(x) wE

The mapping ¢ » ¥ gives the linear isomorphism of 7', X and H, for any u over x,
ie. py(w) = x.

Let 5 be a vector field on X and o a 1-form on X. Then u = w(u) is the function
on TX. If we denote this function by ic we can define the vertical lift n¥ of n by
7" (o) = @) o px. If n = n'(x) 6/6x', then

N
(9.3.5) 1" = pix) —.
du

The mapping 7 +~ n* defines the linear isomorphism of T, X and V,, u = py(w).
In Section 10.2 we shall prove that the vertical lift is a natural operator.
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Thus for any projectable vector field & on TX there exist two vector fields &
and  on X such that E(u) = £¥(w) + 1" (w).
Then we can define for any Riemannian metric g on X three classical lifts to the

metrics on TX.
a) The diagonal lift g% (called also the Sasaki metric) of g is a Riemannian metric

on TX defined by
g =gl ), BEL =0, g n") =g,

where x = py(u) and &, 5 are arbitrary vector fields on X. In coordinates we obtain
from (9.3.1), (9.3.4) and (9.3.5) the coordinate expression of the diagonal lift
in the form

(9.3.6) (8‘)11 =u pq[';irqjgrs + 8ijs (ga)i}z = u’l"ﬁigq;, (8").'31 = 8ij-

b) The horizontal lift g" (called also the complete lift) of g is a pseudo-Riemannian
metric of signature (n, n) defined by

gt =0, g =g, & nH)=0,

where x = py(u) and ¢,  are arbitrary vector ﬁelds on X. Then the coordinate
expression of the horizontal lift is

(9.3.7 (8" = uTigy + ulYg,, & = gy, (&) = 0.
c) The vertical lift g° of g is a degenerate metric on TX defined by

g D =gl n, N =0 gt =0

where x = py(u) and ¢, n are arbitrary vector fields on X. Then the coordinate
expression of the vertical lift is

©38 @@=, =0 (=0

All classical lifts are natural differential operators from TX @ Mety X to the
space of all symmetric (0,2)-tensors on 7X which induce the identity on TX with
respect to the projections p; : TX @ Metg X - TX and T®TX - TX, where
Metg X denotes the space of Riemannian metrics on X, From the coordinate
expressions of these operators it follows that the diagonal and horizontal lifts are
Ist-order operators and the vertical lift is a zero-order operator. Now we shall
describe all first order natural operators of this type. Differential invariants
corresponding to such operators are LZ-equivariant mappings from P = R"X

2

2 2 2
><T‘(o R}t §=R'X(0 R"™* @ @ R"™* @ O R") given in global coordinates
(Zl glj’glj,k)$1 s1 .]’k S n’gij '—‘gﬂ: det (g{_y) 7& 0 on P and (U Gistizj; Gi3j)3
151_]5"G'J—-ng,63= ﬁ,ODSby

(8.3.9) o) = 1, G;‘, =GP, g oes &par)y  A=12,3
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Let { € L(L?). Then the fundamental vector fields on P associated to { are
given by

0 .
Zop = u'—— —~ (6{g,; + 6]8)) = —
(9.3.10) ou” 81y
- (6?gpj,m + 6}gip.m + (Sglgu,p)
J J
©9.3.11) 2% =g (__.+ _9 )
»r gp agiq,r agir-

24

7}
08y

By (9.3.3), the fundamental vector fields on § associated to { are of the form

0312 zig=v-2_ 26,0 620 _62 0 _a53 0

oor  "ach  "aGk Teck  "eGy’
0
2Z%5 = (S0°GY, + 6W'GE, + SpG), + 51 G}) — +
0G;.
(9.3.13) P
r 3 re~3
+ (5iqupj + 5qu Gpj)-a-ag .
Thus the induced system of differential equations for (9.2.9) is expressed by
oG 3G}
2g1p——i + (6{gpj,x + 078ipx + 5I?gij.p) "a—‘b' -
0814 Zijx
(9.3.14) G
- au;b = G;,00 + G:,,(Sg ,

where A =1, 2, 3,

0Gy 96,
(9.3.15) gap(ag,qb, * _07;“'3{) B

2 2
(9.3.16) g,,(—a-gﬂi+ aG"b)

giq, r agir-, q

G, G,
3. i u —=)=0.
(9 3 17) glp(agiq.r + aglr.q

Let (g?) denotes the inverse matrix of (g,,), i.e. g,,g™" = 07. Contracting both
sides of (9.3.15), (9.3.16) and (9.3.17) by g** and using cyclic permutations of the
indices p, g, ¥ we obtain

(G20}, + GEU'8L + GLu'8% + Giu'sy),

NI'—‘ N"—‘

(G,u"d; + Gopti"6D),

aG? w OI% ars,,
(9.3.18) G _ Giy" —t + GLu™ 5 ma
Epa,r 08 pg,r Bpa,r
a2 s
(9.3.19) 9Gn fbu’"——,%"—,
08pq,r Y8pq,r

»
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ang o 0.

gl’(l» r

9.3.20)

To deduce (9.3.18) and (9.3.19) we have used (9.1.10). Integrating both sides of
(9.3.19) with respect to g,, , we obtain

(9.321) G = Gou'Th, + Fiy,

: - 3
where 2, do not depend on g, .. Hence if we denote G, = F2, we have

F).
(9.3.22) ._?__sll_ =0,
agp‘b
where 4 == 2,3, Substituting F, b into (9.3.21) and (9.3.21) into (9.3.18) we obtain
aGab — m tI-\l;:m a tb 1:'3 mutl-m’:’ arta F3
9323  9Bmr 8pa,r Zpa, v
. + ut arfb FZ Ty 4 6Ftn Fb
agpq:" “ agl”h *

Integrating both sides of (9.3.23) with respect to g,, , we obtain
9.324)  GY = u"w' TR, IS Fa + u'ThF2 + w'lFy + Fly,

where Fj; do not depend on g,, , and hence satisfy (9.3.22). After some routine
calculations we obtain that Fl, 1 = 1,2, 3, satisfy

A
(9.3.25)  2g, ‘;F A Fi68 + Fo8.

ou? (

It is obvious that F, and F>, are symmetric in the subscripts. So we have proved

Theorem 9.4. Any differential invariant of L2 from P to § such that v\ = u' is
.expressed in the form {

Gy = u"uThIGFa + w'IFY + w'ThF;, + Fiy,
9.3.26)  GI = u"I'F3 + F},

Glj = Fj, ijs
where T}y, are the formal Christoffel symbols and F. F}, A =1,2,3, are functions on P
satisfying the system of partial differential equations

OF5 _,
08pq, r -
9.3.27 A ,j 6F7 N
ngp 6 - l —‘a"i—"— = Flp()j + ijb?.
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Moreover F}; = I}, Fi = Fj,.

Hence all lst-order natural lifts of Riemannian metrics on a manifold X to
metrics on the tangent bundle TX correspond to the differential invariants described
by Theorem 9.4 and it implies that for the classification of natural liftings of
a Riemannian metric it is sufficient to classify all solutions of (9.3.27). Now let
us consider only polynomial Ist-order natural lifts of a Riemannian metric in the
sense that a lifted metric on 7Y depends polynomially on a point «e TX, the
given Riemannian metric tensor field g;;(x), its first order derivatives and the
inverse metric tensor field g"/(x).

Theorem 9.5. All polynomial 1st-order natural lifts of a Riemannian metric on
a manifold X to metrics on the tangent bundle TX are given by

Gu&", ™) = Co(l w112 8(& m) + Du(ll 1 12) 8, ) gsln, ),
(9.328)  G,&"1") = Coll u 1) L& m) + Dy(l 1 1D £(&, u) g:ln, w),
Gu(&', ") = Calll u 112) 8. n) + Ds(ll 4 1) g, ) g:(n, ),

where py(u) = x, &, n are arbitrary vector fields on X, || u |2 = g.(u, u) and C,, D,,
A =1,2,3, are arbitrary polynomials of one variable.

Proof. Differential invariants corresponding to polynomial natural lifts are
given by Theorem 9.4 where I}, 1 = 1, 2, 3, are polynomial solutions of (9.3.27).
Putting p = ¢ (no summation) we get because of Theorem 8.4 that such poly-
nomial solutions of (9.3.27) have to be sums of homogeneous polynomials of
degrees a in g;; and b in u' such that 2a — b = 2, i.e. b =2(a — 1) where a = 1
is a natural number. Thus Fj are sums over all a 2 1 of the expressions

(9.3.29)  APidt-Pede

my Ma(a=1)
iimimya-n8piar - Epugb oo U y

where AZ\%i-Pda . are absolute invariant tensors. From the form of absolute
invariant tensors we obtain that (9.3.29) has the form

(9330) Ca(gpquplﬂ)tl B lgij + da(gpqupuq)n —2 gtmumgjkuks

where ¢,, d, are real numbers and d; = 0. If we denote g;,,u" = u; and g,u'u" =
= || u ||® then summing over a = 1 we obtain differential invariants corresponding
to polynomial natural lifts in the form

(9331)  GL = I Ti(Ca(l u |12) 8, + Dl u 1% w,u,) +
+ w5 #12) g + Dol 1%) uinsy) +
A+ wTC (0 u 1) gy + Dall w1 ue)) +
+ C(l u1® gy + D1(ll u %) ua;,
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Gy = u"T(C(ll u 1) go; + Dalll u 12) ugu)) +
+ Cy(l u %) g + Do(ll u 1% U},
G = Cy(l ull®) gy + D3 w ) wuy,

where C,, D,, A = 1,2,3, are arbitrary polynomials of one variable. It is easy
to verify that (9.3.31) is just the differential invariant corresponding to (9.3.28).

Example 9.1. As an example of non-polynomial natural lift of a Riemannian
metric we mention the Cheeger — Gromoll metric g% on TX defined by

O ) = g & m), g N =0,

gSG( V: nV) = m (gx(fﬁ ’7) + gx(fs u) gx(n: u))a

(9.3.32)

where py(1) = x and £, 7n are arbitrary vector fields on X. Then the coordinate:
expression of the Cheeger — Gromoll metric is given by

. 8ps T Uplis
(gC 1 _ umutl p.I-.“
G)i_] mit 1 1 + ” u "2

s uu
9.3.33) (g% = umrr, ST Ul
O3 @ 1 u]?

+ gljs

(gCG);?_', o Bt UM, _

T+ ul?
Hence the differential invariant corresponding to the Cheeger — Gromoll metric
is such differential invariant (9.3.26) where Fj; = g;;, F; =0 and F;j = (g;; +
+ ua)/(1 + || u||?). It is easy to verify that F}; satisfies the equation (9.3.27).

Remark 9.3. It is easy to see that all classical lifts are polynomial with D, = 0,
A =1,2,3. The diagonal lift is given by C; =1, C, =0 and C, = 1. The hori-
zontal lift is given by C; =0, C, =1 and C; = 0. The vertical lift is given by
Cy,=1,C,=0and C; =0.

10. OTHER NATURAL DIFFERENTIAL OPERATORS

In Section 10.1 we describe all natural transformations of the second tangent
functor TT into itself.

In Section 10.2 we consider natural lifts of vector fields on X to vector fields.
on TX or TiX. Our results generalize the classical complete and vertical lifts.
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In alufiliary Section 10.3 we introduce principal connections on the semi-
holonom:lc second order frame bundle which will be needed later. In Section 10.4
we describe all natural prolongations of linear connections to principal connec-
tions on the semi-holonomic second order frame bundle.

10.1. Natural transformations of the second tangent functor. Let X € Ob 9,.
We remind that the tangent bundle py : TX — X is defined as TX = Ji(R, X).
The second tangent bundle is defined by TTX = T(T'X). TT is an S-lifting F2
with the type fiber S = R®. The global coordinates on S will be denoted by
(o, v', w!). The action of the group L2 on S is then given by

=i __ i.p R O i 1,0 LoyP
(10.1.1) @ =au’, 0 =ap’, B =a,u?+aw

On TTX there is a well-known canonical involutive automorphism iy : TTX —
— TTX. i:TT - TT is a natural differential operator of order zero (we shall
call it ratural transformation of TT). The coordinate expression of the associated
differential invariant of L2 is given by the interchange of coordinates u' and v'.
Our aim now will be to determine all natural transformations of T7.

Theorem 10.1. There are four families each of four real parameters of natural
transformations of TT. The associated differential invariants of L2 are given by

a) ut = k!,  o'=k',  wh= k' -+ ket + kikyw!,
(10.1.2) b) ut = llvi, v = lzui, wh = l3uf -+ l4vi l‘*‘ lilZWiI’
) ut =0, vl=mu +mp’, w=mu + m',

d) ut =nut +nt, P =0, w'=nu + ny,

where Kk, 1;, m, n;, i =1, ..., 4, are arbitrary real numbers.

Proof. Let ¢ e L(L}). Then the fundamental vector fields on S associated to &
are given by

o'\ o 80’ \ 8 aw'\ @
5 () () ()
(10.1.3) day /e 0u dag /e 0v al /e ow".

2 e d
= ut + v* + wt R
“ ou? o’ ow?
aw'\ @ i 9
Eqr = —_——= u"v’ -+ u"v"
(10.1.4) 2 (8(1}1’,)e 2 ( ) P

where e € L2 is the unity. A differential invariant corresponding to a natural trans-
formation of TT is a mapping F : § — § given by

(10.1.5) W= fiu, v, w), o =g nw), w=h(y0w.
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Theorem 3.4 implies that the mappings (10.1.5) have to satisfy the following
systems of partial differential equations

i i i

uf :fp + :fp + w? :fp = f%,,
u v w

ag' ag' og' ;
q q q - o1

(10.1.6) u 07 + v P +w P g'0,,
i i i

u? aahp + e ghp + w? aahp = hq(s;,
u ) w

(10.1.7) 9 U + uvh) =0,
ow?
]

10.1.8) 2Bt 4+ wony = o,
ow?

(10.1.9) % W + w0 = 5,(f7¢ + 29

Putting p = g (no summation) in (10.1.6) we obtain

af af! aoft
(10.1.10) u* + y? + wP — 1l
) ou? on? owP 4

and the same equation we obtain for g' and h'. Theorem 8.4 implies that global
solutions of (10.1.10) are polynomials of degrees k in *, [ in v* and m in w? such
that

10.111) k+Il+m=1.

(10.1.11) has three possible solutions in natural numbers, (k, [, m)} = (1,0, 0) or
(0,1,0) or (0,0, 1), and hence £, g, h are linear in all variables. Thus
fi = alui —I' azui —I— a3wi,
(10.1.12)  g' = au’ + asv' + agw',
h = au' + agv' + agw',
where &', i = 1, ..., 9 are real numbers.

Let us put p = ¢ = r in (10.1.7) —(10.1.9) (no summation). Then from (10.1.7)
and (10.1.12) we have a; = 0; similarly from (10.1.8) and (10.1.12) we have ag = 0.
From (10.1.9) and (10.1.12) we obtain aguPv? = (a,u’ + a,v*) (a,u” + asv?) which
implies

ala4 - 0,
(10.1.13) a,as =0,
asds + Q04 = Qg
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(10.1.13) has four different solutions

a) a, =a, =0, ay = a,as,

(10.1.14y D @ =a5=0,0=aa,,
C) a1=az=ag=0,

d)d4=a5=a9=O.

Denoting free variables in the case a) as k, in the case b) as /;, in the case c) as my
and in the case d) as n;, i = 1, ..., 4, we obtain (10.1.2). It is very easy to verify
that (10.1.2) defines LZ-equivariant mappings and this ends our proof.

Remark 10.1. The canonical involution corresponds to the case b) where I, =
=L=1L=1I0=0

10.2. Natural lifts of vector fields. Let X & Ob 9, and & be a vector field on X
and af its local one-parameter group. Let T be the tangent functor. T is a 1st-order
lifting, and hence we can construct the rangent lift T¢ of ¢ using the flow by

(10.2.1) o= Tof.

If (x') are some local coordinates on X and ¢ = ¢¥(x) 8/dx’, then from (10.2.1) it
follows that
i __‘z_ 0¢'(x) J _5_

(1022)  TE=g=+ =Tl o
where (x’, u) are the induced coordinates on the tangent bundie py : TX — X.
From (10.2.2) it is easy to see that the operator which associates to each vector
field £ on X and to any point u of TX the vector T¢(u) from T,TX defines a Ist-order
natural differential operator from 77X @ TX to TTX which induces the identity
on TX with respect to the projections p; : TX @ TX - TX and pyy : TTX — TX,
We shall describe all such lst-order natural differential operators which give all
1st-order natural lifts of a vector field on X to vector fields on TX.

The functor T @ T is a P-lifting F} with the type fiber P = R"x R". The global
coordinates on P will be denoted by (v, ¢'). The action of L! on P is given by

(102.3)  @'=alu™, F=d"

TT is an S-lifting FZ with the type fiber .S == R*. The global coordinates on §
will be denoted by (i, v’, w). The action of L} on § is then given by

(102.4) d@=du", #=do", w=auv"+ aw"

The differential invariant of L? corresponding to the operator (10.2.2) is the
mapping from P, = R"xTR" to S given by

102.5) di=ul, oi=gi  wi=g%W
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Theorem 10.2. There is a 3 parameter family of natural lifts of order one of vector
fields an X to vector fields on TX. A vector field & = £¥(x) 8/3x" on X is lifted to
vector fields

£ -2 55(35) ) 1,]5
(10.2.6) ( () i e P 6 + f(x) u_‘ auJ’

where b, ¢, d are real numbers.

Proof. Let f: P — § be a differential invariant of L2 corresponding to a required
natural lift. Then its coordinate expression is given by
(1027  u'=4d, o' = fi(u’, &, &7, w! = gl(u?, &7, &%)
Let us recall that the action of L2 on T,‘, R" is expressed by the equations
(1028) ' =aldm ¥, = al,bR" + alEnbh

(10.2.7) has to be LZ-equivariant mapping with respect to the actions (10.2.3),
(10.2.4) and (10.2.8).

Let ¢ € L(L2). The fundamental vector fields on P, = R"XT1R" relative to {
are cxpressed by

ad'\ @ s\ 8 a&,\ @
Z:=( )—T+( p)__l-+( v ) o =
daf Je ou 0ag J« 08 dag J« 0%,
3

Fij a
=t 4 & 4 & I 1 .
P ¢ a¢? L a&?, ""’ae,'.

. aE‘) d 1(, d a)
10.2. q a7V A I 4 )
(10.2.10) Z¢¥ (aaq, 38, =2 Eafff’.H %

Similarly the fundamental vector fields on § relative to { are expressed by

o' '\ @ ow'\ @
Zs = (a:P).Ef?Jr(aaP) % (afv)' ow
(10.2.11) « /! e/

(10.2.9)

= ut? + 0* i + wl 9 ,
u? o’ ow?
aw\ 8 1 @
10,212) Z% = = + W’ s
( ) S ( ) aw 2 ( ) 6w’

where ¢ € L? is the unity.
Theorem 3.4 implies that the differential invariant (10.2.7) has to satisfy (if
= q) the following systems of partial differential equations

6f‘ 6f !
(10.2.13) ’ =
( Y 5 &=r,
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581 58i i
(10.2.14) —=—y? 4 2 ¥F = ¢*,
ouP o&F §

Theorem 8.4 implies that f* and g’ are sums of linear functions of variables u
and &' where coeficients depend on éi- ie

(10.2.15)  fi(u?, &, &) = fYEPI U + FiEm) &,
(10.2.16)  gi(u”, &, €7) = gi(er)u! + gi(2%) &,

The vector fields (16.2.10) and (10.2.12) are f-related which gives the system of
partial differential equations for (10.2.15)

f,<af§(e: L Tk ~j> N

(10.2.17) &l e 66’1
q(af}(é af‘ (40) ,)
+ ¢ ¢
8%, 0%,

This system has to be satisfied for all u, £’ and this implies
A o AUED _
3 937,
Hence f} is constant and f} is also constant. From the invariance condition
a(fid* + fi&H) = fralu* + flaie* we have a)f] = ja,,, a f i = fjal which means
that f}, f} are absolute invariant tensors and then f} = a8}, f} = b8}, where a, b
are real numbers. Then

(10.2.18) v’ = au® + bE.
Since (10.2.16) and (10.2.12) are g-related we get for (10.2.16)
NE G 7G4 ,) ,(ag,@ ARNENR: £(56) ,)
(10.2.19) ¢ ( 65" BE 4 ¢ aE? + 8&P, ¢
= 8 ((au + bE) ut + (au? + bE) u).

(10.2.19) has to be satisfied for all %, ¢? and if we put ¢ = r (no summation) we
obtain

=lrep
20220 =0, 8D = &b, ZiIED _o
e &%y

{10.2.20) implies that g‘} is constant and the invariance condition condition leads
to gi= cch, where ¢ is a real number. Further let us put i = p and j = q. Then
2gh/6&%, = b and hence gf = b¢¥, + dY, where dj is a constant. Then

(10.2.21)  w'= (b€, + d)u + &'

J171]



and from the invariance condition we obtain d} = déj. (10 2.18), together with
10.2.21), gives the differential invariant of L? from R"><T R" to S expressed by

(10222) v =u', v =5, w' = b¢ ul + du’ + &,

where b, ¢, d are real numbers. (10.2.22) corresponds to natural lifts given by
(10.2.6) which ends the proof.

Remark 10.2. The first vector field in (10.2.6) is a multiple of the tangent lift
T¢ of & called also the complete lift of &. The second vector field is a multiple of the
vertical lift of ¢ defined in Section 9.3. The third vector field is a multiple of the
Liouville vector field; notice that this vector field does not depend on the choice
of the vector field &, The last two vector fields in (10.2.6) define zero order natural
lifts of &.

Now let T1X = JL(R, X) be the space of k'-velocities on X. Let (x') be some
Jocal coordinates on X. We have the induced coordinates (x’, ), 1 £ A £ &,
on T1X. Via flow we can lift a vector field & on X into a vector field TLE on T X by

(10.2.23) a,ka T,
In the induced coordinates we get

. ) d
10.2.24) Ti = ¥x)— + —~u} .
( ) =@ ox' o du

TL1¢ is sometimes called the complete lift (or the natural lift) of & on T}X. This
lift is a natural differential operator of order one from T @ T to TT} which
induces the identity of T X with respect to the projections p, : TAX @ TX - T X
and ppy : T TiX — T}X. The natural question is whether there exist another
natural lifts of this type. We restrict ourselves only to the case of the first order
operators.

Theorem 10.3. Each vector field & = ¢'(x) 8/0x' on X can be naturally lifted to the
system of vector fields on TLX

(10.2.25) a(e’(x)f—. 08 —) €&
ox'

ox’ uy

(5}

,

where a,c;, db, A, u=1, ..., k, are real constants.

Proof. The type fiber of the functor T @ T is (R* @ R**) x R" with global
coordinates (1}, ¢ and the action of L! given by

(102.26) @y =alu}, E=glgm
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The type fiber of the functor TTj is § = (R" @ R**) X R"x(R" ® R*¥), with global
coordinates (}, v', v}) and the action of the group L2 expressed by

- i _i .
(10.2.27) @ =alu?, o' =alo™ Bl=alo? + al o™},

Differential invariants of L? corresponding to operators of our type are LZ-map-
pings from P = (R" @ R**)x T4R" to S given by

(10.2.28) ui = u},
(10.2.29) o' = fiu}, &7, &%),
(10.2.30) o} = fi(u}, &7, &%).

Let { € L(L?). The fundamental vector fields on P relative to { are expressed by

0 0 i, d

(10231)  Z8p= e 4 Ei 4 80, & T

T e T e e, e,

i 0 7}

(10.2.32) Z% = __(g' + g«.__)_

T2\ e a7y
Similarly the fundamental vector fields on S associated to { are expressed by
(10.2.33)  Zls=u] g +v? 0 + v} 9 s

aul av? ov}

+ v'uf ) .
ovl vt
The differential invariant (10.2.29) has to satisfy the following systems of partial
differential equations
i i i ¥
10235 L yg 1 P o Y = S Se=1%
ou? akr a4r, ofl,

(10.234) 28 = _;_ (v"u;

of! oft
10.2.36 Pl 4 E =,
( ) & 2, + ¢ o

Putting p = ¢q (no summation) in (10.2.35) we obtain because of Theorem 8.2
that f* has to be a sum of linear functions in variables uf and £? where coefficients
depend on &7, i.e.

(102.37) i, £%,8%) = £ & + F1CR) ul.

Substituting (10.2.37) into (10.2.36) we get 8f}/0&F, = 0, af}/8&P, =0 which
implies that f]are constant and /}* are constant for all = 1, ..., k. The invariance
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. N i ik _ pAs . o o
condition then implies f} = ad}, fi* = b"6;, where a, b, A=1, ..., k, are real

numbers. Then
(10.2.38) o = a' - bl

Using similar methods for (10.2.30) we obtain f} = fj"l(ff’q) . f/“i &) u‘f‘.
where the following system of partial differential equations

(10.2.39) —*’—M (&) & + aféﬁ 2) &) = ol(aéu] + brulud

,q

is satisfied. (10.2.39) implies that b* = 0 for all p =1, ..., k, and

i P inegp .
(10'2.40) af zl(:.q) = 0’ f (c q) 5;01‘.

aftp( acn
The first condition implies that fj’ ,are constant for all A =1, ..., k, and the second
condition gives

(10.241)  f§ = aole!, + dfi,
where dj“i are constant for all 4, i == 1, ..., k. Hence we have
(10.2.42) l);' = fﬂ'fj + aé‘iju,, + dﬂ'u“

The invariance condition then implies f1, = ¢,8), dji = d%3], where c,, d%, 2,
i =1, ..., k, are real numbers. This together with (10.2.38) give the Z2-equivariant
mappings from Pto § in the form

(10243) =4, v'=a¥, o =c '+ alljuf+ diul

(10.2.43) are just the differential invariants of L2 which correspond to natural
lifts given by (10.2.25). This ends the proof. ¥

Remark 10.3. The first vector field in (10.2.25) is a multiple of the complete
lift T}¢ of & The second vector field is some vertical lift and the third vector field
is a constant vector field which does not depend on a given vector field & on X.
The last two vector fields in (10.2.25) define zero order natural lifts of vector
fields on X to vector fields on T X, !

10.3. Principal connections on frame bundles. Let = : ¥ — X be a fibered mani-
fold. A (generalized) connection on Y is a section I' : ¥ — J'Y. Let Y(X, G, n)
be a principal fiber bundle with a structure group G. Then a connection I’ : ¥ —
— J'Y is called principal connection if I is G-invariant where the right action of G
on J'Y is given by (Jiy) g = Ji(vg), y : X > Y is a section. Let a connection I’
on Y be given by I'(y) = JLy(r) where y : X - Y is a section such that y(x) = y,
v e Y,. I'is a principal connection if I'(yg) = JL(3(?) g).
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Let E be a fibered bundle with fiber F associated with the principal G-bundle Y,
i.e. E = Y X gF. Then a connection I on ¥, given by I'(y) = Jiy,y e Y, determines
a connection 4 : E — J'E on E defined by d([y, u]) = JX[»(0), u]), ue F. The
section 4 is well defined because 4([yg, g™ ' u) = JLU[y(1) g, g™ *u]) = TY[y(®), u]) =
= A([y, u])

Now let ¥ be the principal bundle of linear frames on X. Let (U, @) be a chart
on X and ¢ = (x') the corresponding local coordinates. Let ((z)~! (U), @) be
the induced chart on F'X and (x', 4j) the induced local coordinates. F*X can be
locally identified with the trivial principal bundle UxL}. Let xe Uand y : U —
— UxL; be a section such that g(x) = (x, ¢) where ee L} is the unity. In the
‘coordinates y is given by (1) — (', ¥/(#)) where y)(x) = §]. Then the group multi-
plication in L} implies that a principal connection I' can be expressed by I'(x', u}) =
= Ji(h(O) u)). If we denote I'j,(x) = —~(dyL(x))/dx' the coordinate expression of
the principal connection I' is given by

(103.1)  u},= =Tl ul,

where (x', 4, uj ;) are the induced local coordinates on J'F'X. The lifting (we
shall denote it by the same symbol I') I': F'X @ TX — TF'X associated with the
principal connection I' has the coordinate expression

(10.3.2)  dud = —Tp(x)u]dx".

The functions I'j,(x) defined locally on X will be called components of principal
connections on F1X, Let (U, §) be another chart on Xaund ¢ = (%) the correspond-
ing local coordinates. Let ((n§)~" (T), @") be the induced chart on F'X and (%', i)
the induced local coordinates. Then the transformation law on (n})™* (U n U)
is given by

=t
(1033) #=xen) a=2ym
ox™

which implies

%! 2 2%
dxu? + —— duf.
ox?

=t
(1034)  dei=-Z gy dit= 27
ox™ ox¥ 6x°

The connection I' has in the coordinates (5, z?,‘) expression
(10.3.5)  di} = —Th,(x)alrds"
Then substituting (10.3.3), (10.3.4) into (10.3.5) and using (10.3.2) we obtain the
transformation relation
ox axt oax" | ax' %P

103.6) Tlx) =2 o) 2. 92 22 22
( ) #(x) ax? ) ox? ax*  ax? oxlax"
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. ox! oxt : 8%x!
Denoting —— = aj-, —_ b —
ax’ oxt 7" 8%l ox

= = bj.k we obtain the relation (9.1.2).
Let TX be the tangent bundle of X. Local coordinates (x') on X induce the
local coordinates (x', v') on T'X. By a linear connection on X we understand a linear
section A : TX — J'TX. Let A be a connection on TX given by v} = Al(x, v),
where (x, v, v}) are the induced coordinates on J'TX. Then A is a linear connection
“if and only if A}(x, v) are linear function with respect to v, i.e. A}(x, v) = Aj'k(x) ok,

Lemma 10.1. The rule which associates to each principal connection I' on F'X,
I'(u) = JLy(9), ue FiX, the connection A on TX, A([u, v]) = JL[y@), v]), ve R",
n = dim X, is a bijective mapping of principal connections on F'X to linear connec-
tions on X.

Proof. In the induced coordinates (x?, uji) on F'X a principal connection I
on F'X is given by I'(x', 1)) = J'(y.,(?) ¥"). A vector v*e R" is mapped by the
section y}(7) into yi(2) v/ e T,X. The connection 4 on TX is then given by A(x’, v%) =
= J1(y4(?) v/). The coordinate expression of the corresponding lifting 4 : TX @
@® TX —» T(TX) is given by

(10.3.7)  do'= —T}i(x)o"dx’,

which implies that A is a linear connection on X. On the other hand if a linear
connection on X with equation (10.3.7) is given there is the unique principal
connection on F'X with the coordinate expression (10.3.2).

Further we shall identify linear connections on X with principal connections
on F1X and denote them by the same symbol. Components of principal connections

on F'X satisfy the same transformation law as components of linear connections
ton X. Hence we can identify the space of components of principal connections
on F'X with FZX = CX defined in Section 9.1.

Let X, Y be two smooth manifolds. Let J(X, ¥) denotes the space of all 1-jets
from X to Y. Let us denote the source projection by & : J(X, Y) — X and the
target projection by 8 : JY(X, Y) — Y. As a non-holonomic 2-jet with source in X
and target in Y we define a 1-jet of 2 mapping ¢ : X — J*(X, Y) which is a section
with respect to o, i.e. ap = idy. The space of all non-holonomic 2-jets with source
in X and target in Y will be denoted J2(X, Y). Let us remark that ordinary (holo-
nomic) 2-jets J2(X, Y) form a subspace in J2(X, Y). The inclusion mapping is given
by Jif = JL(J'f), xe X. A non-holonomic 2-jet is semi-holonomic if it is given
by ¢ : X = JUX, Y) satisfying ¢(x) = JL(Bp). The space of all semi-holonomic
2-jets from X to ¥ will be denoted by J*(X, 7).

LetdeJE (X, ¥), 4d=J,0: X > J'(X,Y),a(p(x)) = x,and Be J4(7, Z),

x )

B=JYW, ¢y :Y > JYY, Z), a(y(»)) = y. Then ay(Bo(x)) = fo(x). Hence 1-jets
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o(x) an.d Y(Bo(x)) are composable and the mapping x & Y(Be(x)) o p(x) is
a maptpl'llng from X to J'(X, Z) such that a(y(Bp(x)) o @(x)) = x. Then we can
G e o s e 02 1)
_ eson Y. OnJY (X, Y)
there are the 1qduced coordinates (x', y?, y¥) and on J2(X, Y) there are the induced
coordlnfltes (', Y2, yP, vE,, ¥i)) (no symmetry in subscripts). From the condition
for semi-holonomic 2-jets it follows that yF = y§,. Thus on J*(X, ¥) there are the
induc'ed. coordinates (x', y?, yP, yF). A semi-holonomic 2-jet is holonomic if and
only if its 2nd-order coordinate is symmetric in subscripts, i.e. b= i
Let (2%) be local coordinates on Z. Then on J2(X, Z) there are tljle induced
coordinates (x', 2, 7}, 23, z])) and on J(¥, Z) there are the induced coordinates
O, 2 2p» 2o, 7,,)- Let A€ J3(X, Y) with coordinate expression 4 = (x, /7(x), af,
a5, ai)and Be f,z,(Y, Z) with the coordinate expression B = (37, g'(y), by, byy, by
A an_d B are composable if y? = f?(x) and the composition C =B o Ap:
= (x% g(*(x), ¢f, ci;, cf;) where

3
(10.3.8) o =byaf, cy=Dbgal, ¢ =bjafal; + biaf.

Let X e Ob 2,. The principal bundle of non-holonomic second order frames F2X
on X is the space of all invertible non-holonomic 2-jets from R" to X with source
in the origin of R", i.e. F?X = inv J3(R", X). By definition of non-holonomic
2-jets, amny local coordinates (x') on X induce the coordinates (x', 1}, uf, uj) (no
symmetry in subscripts) on F2X. The structure group of F2X is the group L2 =
= inv J% (R, R"). The action of 12 on £2X is given by the composition of non-
holonomic 2-jets (10.3.8).

The principal bundle of semi-holonomic second order frames on X is defined
by F2X = inv J3(R", X). Local coordinates (x’) on X induce the coordinates
(x', 1, uf) (no symmetry in subscripts) on F2X. The structure group of F?X is
the group L? = inv J§ (R", R"). The group multiplication in L} and the action
of L2 on F2X are given by the composition of semi-holonomic 2-jets. On L? there
given by the composition of semi-holonomic 2-jets. On L? there are the canonical
global coordinates (), a,) (no symmetry in subscripts) where det (@) # 0. If
a= (aj‘, aj",‘) and a = (@}, a},) are two elements of L then from the composition

of semi-holonomic 2-jets
(10.3.9) a.a= (at,a}, al,a%as + ayah).

Similarly the action of L2 on F2X is given by the composition of semi-holonomic
2-jets. If u = (x', 1, u}y) € F2X then u. a has the coordinate expression

(10.3.10) u.a = (x', ula?, u} alaf + uyah).
F2X can be locally identified with the trivial principal bundle Ux L3. Let xe U
and y : U—> UxL? be a section such that y(x) = (x, ) where e L2 is the unity
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ie. p is given by 1f (¢, 9@, (), te U, where (%) = &, )’fk(-‘j) = 0. By
(10.3.9) a principal connection I' F2X — J'F?X can be defined by I'(x’, Uy, ) =
= T0m0) 4 q(7) fsf + (D) utf)- If we put

i) Do o)
(103.11)  Thlx) = == 5> Iu(x) = P
we obtain the coordinate expression of the corresponding lifting I' : F2X @ T.X —
- TF*X

du) = =) u} dx*,

10.3.12) . .
( duly = — (T pim(x) u;-u;," +r ;,,,(x) ujy) dx¥.

The functions (I},(x), I}y(x)) will be called the components of the principal
connection I' on F2X.

The space of ordinary (holonomic) second order frames on X is a subbundle
in F2X. A semi-holonomic frame (x', %, ) is holonomic iff uj, = u};. Then
a connection I' on F2X defines a connection on F2X if its components I'},(x) are
symmetric with respect to the subscripts k, [, i.e. I'ju(x) = [y (x).

Using transformation law for a change of local coordinates on X we can deduce
after some routine calculation that components of principal connections on F2X
satisfy the transformation relations with respect to the group L} given by

T = alIBbiby + abbh,
(10.3.13) Ty = al, I, bIbEb] + ahInbibg + abu bbb} +
+ Gy 5 DIBEb] — QpembiBEBT — amybbi-

Thus the space of components of principal connections on F?X can be identified

2 3
with P-lift F;X where P= QxS§, 0=R"® @ R"™, S=R"® @ R"*, and the
left action of L on P is given by (10.3.13).

Remark 10.4. The canonical projection F?X — F'X induces the projection from
the space of components of principal connections on F2X to the space of com-
ponents of principal connections on F*X. Each principal connection on F>X with

components (I'},(x), I'jy(x)) induces the principal connection on F'X with the
components I, (x).

10.4. Natural operations with linear conmections. By Lemma 10.1 a linear
connection on X € Ob @, can be identified with a principal connection on F1X.
Such a conmnection is given as a section of the space of components of principal
connections of FLX. This space is the Q-lift F3X defined in Section 9.1. The space
of components of principal connections on the semi-holonomic second order
frame bundle F2X is the P-lift FpX defined in Section 10.3.
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In this section we shall solve the problem how to construct a principal connection
on F2X which depends naturally only on finite order derivatives of a given linear
connection on X. Hence we shall solve the problem how to find all finite order
natural differential operators from £3 to Fj.

There are two classical geometrical constructions of the prolongation of a linear
connection on X to a principal connection on F2X. We mention here only the
corresponding differential invariants of these operators. The differential invariant
associated to Oproiw’s prolongation operator is an L3-equivariant mapping,from
T1Q to P given by Fj(F? I ), Fi(I®,, I, ) where

qr? .
Fj, = I';, (the prolongation condition),

(104.1) o
ijz = ij,z e rmkrjl’

The differential invariant associated to KoldF's prolongation operator is an
L2-equivariant mapping F : T1Q — P given by

Fj, = I'j, (the prolongation condition),

(1042) i i i pm i pm i
Fra=Tn;+ Tyl — Do 3 = Dyl ke

Thus both classical operators are of order one and they a~z prolongation opera-
tors in the sense that the prolonged connection on F2X is over the given principal
connection on F'X,

Every natural differential operator of order » from Fg to Ff, determines a unique
differential invariant F : T;Q — P of the group L, s = max (2 + r, 3). Coordinate
expressions of such a differential invariant are of the form

(1043) I‘j,, = ij(r:u veny r;r,m;...m, ’
(10.4.4) Ty = Fi(I%, ..., I?

gt,my..m.0»

where Fj,, Fy, are the components of F respective to the canonical global co-
ordinates on P.

Lemma 10.2. In the canonical coordinates (I, Iy s ooy Tt mym,) 01 ThQ the
action of the group L2*" is given by
(104.5)  I'lemyom = arl?h bIbIBE ... ble? + S}

P’ 192,93 Gs +2 jkmy..mgs
where s =0, ..., r, and Si, ., I @ polynomial of the coordinates on 710 and

of the canonical coordinates on L*2, and each monomial of §;_,, contains non-
trivially at least one of the coordinates a; j,, ..., a§1_"].”.

Proof. The coordinate expression of the action of L*? on T;Q is given by the
formal differentiation of the action (9.1.2) up to order r. It is easy to see that this
action has the required form.
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Now let us consider ¢ e L(L!*?). The first fundamental vector fields on T.0
and P associated to ¢ are expressed by

anQ =

9
(1046) Sty =3 <5T m)

50 Baf . arj‘k,ml...m.
and
oty = (k) +<azm) .
P dal /s or’, dal /e 0Ly
(10.4.7) = (84T% — 8 — 54[“,,) -
Jk
+ (O 8y = 8 — S5 — 5"1",q,)

jkl

where e € L7+ 2 is the unity. Puiting p = ¢ (no summation) and using Lemma 10.2
we get

d i)
(10'4'8) pT Q= Z (S + 1) F‘ifk,ml...m, .
=0 arjk,ml...ms
By the Theorem 3.4 a differential invariant (10.4.3) has to satisfy the following
system of partial differential equations

(1049) T (s + nr,. ,.__.gfﬂc_ = Fl,.

=0 qf,my... Mg

Because of Theorem 8.4 all global solutions of (10.4.9) are sums of homogeneous

polynomials of degrees a, in variables I, . ., Such that

(10410) (s + D)a, = 1.
=0
(10.4.10) has a unique solution ¢y =1, ¢, =0, i = 1, ..., r, in natural numbers.
Hence F}, is linear in I}, and does not depend on Iy ., I = 1, i.c.
(10.4.11)  Fiy = Al 17,

where A%, is an absolute invariant tensor.

Corollary 1. All global differential invariants of L.** from T.Q to Q depend only

on coordinates on Q, i.e. all natural differential operators of finite order from Fj
into itself are of order zero.

Similarly for (10.4.4) we obtain the system of partial differential equations

r aF‘ .
(104.12) T (s + D I8 g =2 — = 2F,.

b
=0 arqt,ml...ms
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All global solutions of (10.4.12) are sums of homogeneous polynomials of degrees a,

in variables I, . . such that
r
(10.4.13) Y (s+1a,=2.
s=0

(10.4.13) has two possible solutions: a) a,=2,a,=0,i=1,..,rbaq =0,
a, =1, a0,=0,i=2,...,r. Hence Fj',, is a sum of a linear polynomial in
I m and a quadratic polynomlal in I, ie.

(10.4.14) ijl = A'q”" e+ qulqzsuz r

jklp qt,m Jklpr q:qz 51519

where A%}, and B{}%2*2 are absolute invariant tensors and B o Bjiamdz,

Corollary 2. All global differential invariants of L% from T,Q to S depend only
on the coordinates on T:Q.

Because of Corollaries 1 and 2 we get that all global natural differential operators
of finite order from F3 to Fp are of order less than or equal to one. Thus we can
restrict ourselves only to the case r = 1,

Now we shall determine all differential invariants of L, from T1Q to P=QxS.
The action of L,3, on TQ is given by (9.2.1) and its formal derivative

T o= ayT}E bbb} + TEbY D, + IhbIb, + bl +

(10.4.15)
a' (UITRbI, + Dibh).

The other fundamental vector fields on 7'} Q and P related to & € L(L?) are express-
ed by
car (afj,,) o . <afjk,,) _
SpTng = P i » 1 =
aaq, € aij . 6aq, [ al’jk,;

1 d )
10.4.16) =—|{~
( ) 2( are, ar"

+ (64T 401 + 8, 'ydf — Idis; —
— I L3568 — I',8881 — I'i,0:89) )
a Jk, 1
an - ( af;,,) o, (af;,,,) o _
F éal, Je I, daf, Je oIy,
1 )

0 0
(10.4.17) = _2—(_81“ an + (5 F 161\' + 5 Fﬂaq + 5 ij(sf

+ 8T8 — T',8%5% — T'y8ish = )
Jki
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‘;vqll‘l — (,_a,_:f_-i_]i'_‘..) ,_....._a_... =

Seme dag, /e ar;t,x
(10.4.18) (0 8 . b, . )
=~%\oers, " ory, e, orh, orh, ori,
oatr . (ﬁ&‘.’.) ___2__ =
SpP T i
aa:" e 51"_,1,
(104.19) 1/ 8 ] d i ] ]
=—= + + ot ]
6 \arz, or:, ory orh, I, Iy,

where e € L is the unity.

Now we have an L2-equivariant mapping (10.4.11) from Q to Q. Then the
fundamental vector fields (10.4.16) and (10.4.17) have to be related with respect
to this mapping. [t implies that (10.4.11) has to satisfy the system of partial
differential equations

10.4.20
( ) ors, ory,

= 84(8%% + 616%).

From the form of an absolute invariant tensor we obtain
10.421)  Fh= ¢, 84 + ¢,05Im, + 304l fn + c40tlmy + csT + €6l ky

Substituting (10.4.21) into (10.4.20) we get the system of homogeneous equations
1+, =0, ¢34+ ci=0, cs+cs=0. If we put ¢c; = 4, ¢ = 43, ¢5 = 4,
we get

(10.4.22) Fo= ALY + (1 — ATk + A8 — T + AT — T
Denoting Tj, = I'l, — I'};, (10.4.22) implies
Theorem 10.4. All natural transformations of F} into itself form a three parameter

family and every linear connection I' : X ~ FZX on X with components I'j(x) is
transformed into connections with components

(10.423) A T5u%) + (1 — A Tiy(x) + A8 Tin(x) + AadyTnlx),

where T}(x) is the torsion tensor field of I and A;e R, i = 1,2, 3.

Now let us consider the differential invariant from 7.0 to P given by (10.4.14)
and (10.4.22). If (10.4.14) is a differential invariant of L: then the fundamental

vector fields (10.4.18) and (10.4.19) are F}k,-related and we get the sysiem of partial
differential equations
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OF 'y . oFy + oF!y, + OF'y, . OF + OFjm _
(10.424) ory, ers, ore, or,, are, i,
= 8L(89510] + 83010} + 81010] + 510107 + &518! + &,5169).

From the form of absolute invariant tensors we have
(10.4.25) Fj" =) 6jrtl.P . b24ru ] + cléjr I.;,- wt Csor:krjv.

Substituting (10.4.25) into (10.4.24) we obtain the system of linear equations
(10.4.26) 2b|=0 Zb,—-O Zb.-—o Zb;—l
=19

Denoting free variables in (10.4.26) as B, i = 1, ..., 20, we get the linear part
of (10.4.14) in the form

5}(3 Tyim + Bal'imi + BTy + Balim i + Bslup; —

- ZBIF 1) + Oi(BeT i + Byl + Bal'f} m +

10
+ Byl w + Byol'mj1 —~ 3. Bilmy ) + 51‘(311F3"|:,m +
(10.4.27) i=6

13
+ B2l jmx + Bislij,m + Bialim,; + BisTmys -_ZuBlr:h,J) +
+ Byslps + Bﬂr;l,k + B1aﬂj,1 + B'IQF;I.} + BZOF;J,k +

20
+(1~ Y B)I} .
i=18

Since the fundamental vector fields (10.4.16) and (10.4.17) are also Fj,,,-related,
and using (10.4.22), we obtain

OFs _ OFiw | (5irest 1 80t 58 — I'5%1 -
ars,  or,
4 qa_ g5t I steq ancd’
- F k5}5 rjptsk(s, - I"”,(ské )’5“—""‘ =
k1

(10.4.28) = 85(8A1THy + (1 — A Toy + A 05T Gm — Tmd)) +
+ 8HA Ty + (1 — Ay) Tip + A28,(Tim — ') +
+ 0y(A TE. + (4 = A) Tl + Ay05(Ton — T'me) + 436Ul — I'yp)) +
+ 83(A.Th + (1 — A) Ty + ApSy(Tom — I'ne) + 438l — T'iy)) —
= 8y AT 5, + (L = AT + 430,(Tpm — T'mp)) —
~ 8.0UA 5, + (1 = A) Ty + A28, — Tp))-
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Substituting (10.4.25) to (10.4.29), where the linear pa‘rt of (10.4.?5) is given by
(10.4.27), we obtain for ¢, I = 1, ..., 60, a system of hn‘ear.e.qua.u‘ons with para-
meters By, i = 1, ...,20,and 4, = 1, 2, 3. This system 1s d1.v1ded into 15 systems
each for four variables ¢; and each of these systems has one independent variable.
If we denote the independent variables as C,,i=1,..,15 we can write

(10.4.25) in the form
F}u = 8)(BTim + Byliw,i + Balig,m + Bl +

5
+ BsTmer — 3, Bilmin + CyTIT,,. + (Ay — By — By — B) Tpl i, +
i=1
+ (B, + B, + B3 + By — 43) rore, + BTl + Ca T 10, +
+ C3TPT — Bi Tl — Bal i) +
+ 4B, m + Byl j1 + Bel(} w + Bol'lm,j + Biol'mj,1—
10
~ Y, Bl + CyTjiTh — (B7 + By + By) i, +
=6

(10.4.29) + (Bg + B; + Bg + Bo) 'l + BgI' iy + CsTin Tl + CsThT 1w —

— BgI'jiy — Bel'pilim) + 5i(B11 i m + Bial s +
13

+ Byalg),m + B1alkm,; + By sTmyx —‘_zl:lBiF::k,j +

+ C;T}Tn — (Bys + Bys + B1y) Il +

+(Byy + Bys + Bys + By Il 1 + Bisligyl e + CaTjuTr, +
+ CoThTim — ByaTjlok — Byl T + Blﬁrj'k,l +

+ By,liy + Blar:u,t + ByoTyy,; + B20rlij,k +

20
+ —‘EMB,) T}, + (A =1+ Byg + By + Byo) Tjulls +

20
+( "!leBi)r}mrm—(Bm + Byo + Ay — 1) I ~

~ (Bys + Byo + Bag + Ay — D) Tiul'jy — (1 — Ay — Bio) w1y +

+ (By7 + Big + Byg + By — 1)ankr'j"1 + (Big + Bi7 + Byy — 4,) -
Th T 4 (A + Byg — DILIR — (Byy + Byg) Tl + CioTHT i+
+ C1 TyTim + Cy3TuTjm + Ci3TinTit + CraTinTh +

+ CysTh T + AT T + IaTm) + AsTuT,

where T =TI — I, and A4, i=1,2,3, B;, i=1,..,20, C,, i =1, ..., 15,
are arbitrary real numbers. Thus we get
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Theorem 10.5. All natural differential operators of order one from F} to F} form
a 38-parameter family. The corresponding differential invariants have the coordinate
expression given by (10.4.22) and (10.4.29).

Remark 10.5. (10.4.23) implies that the prolonged conpection is over a given
connection if and only if 4y =1, 4, = 4, = 0. Thus we have a 35-parameter
family of first order prolongation natural differential operators from Fg to F,3

To find all natural prolongations of a given linear connection on X to principal
connections on the holonomic second order frame bundle F2X it is enough to
put Fiy, = Fi, in (10.4.29). Then we get 18 independent coefficients and we have

Theorem 10.6. There exist an 18-parameter family of first order natural differential
operators which prolong a linear connection on X to principal connections on F*X.

Remark 10.6. It is easy to see that Oproiu’s operator corresponds to the
differential invariants (10.4.22) and (10.4.29) where 4; = 1, B;s = 1 and the other
coefficients vanish. Kolaf’s operator corresponds to the choice 4; = 1 and the
other coefficients vanish.
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