
  
 
 
 
 
Demeter Krupka 

Geometric Aspects of the Theory of 
Invariant Lagrange Structures 1 

1  Introduction 

 This work is devoted to the foundations of the geometric theory of invariant 
integral variational problems on fibred manifolds and to exposition of the results, 
published recently in the papers [1] and [2]. The subject belongs to the topics, 
studied by many authors, e.g. by Goldschmidt and Sternberg [3], Hermann [4, 5], 
Palais [6, 7], Sniatycki [8], Trautman [9, 10] and also Eells and Sampson [11], 
Kijowski [12, 13], Komorowski [14-16], Maurin [17]; it has also been motivated 
historically – apart from the beginnings of the variational calculus (see the Polak 
[18]), by the work of Hilbert, Noether, E. Cartan, Lepage and others (see e.g. [19-
22]).  

 An integral variational problem is defined by a function of a section of a 
given fibred manifold, arising by integration of a differential form depending on 
the section (the Lagrangian); this function is usually called the action function. 
We are interested in the study of those sections whose prescribed “small defor-
mations” do not change the value of the action function, and also in the transfor-
mations of the underlying fibred manifold that leave invariant the action function. 
All manifolds and mappings we consider belong to the category C!  of finite-
dimensional real Haudorff paracompact manifolds. We are not interested in ana-
lytical aspects of the theory of variational problems, for instance in the existence 
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and differentiable properties of the minima of the action function (compare e.g. 
with [6, 7, 17]).  
 Our approach to the given class of variational problems is based on a sys-
tematic use of differential forms and vector fields. In this respect we follow more 
closely the classical work of Lepage and also the Hermann’s books [4, 5], con-
taining, however, in some respect a vague exposition. It should be pointed out 
that some authors prefer in formulation of the foundations of the calculus of vari-
ation the “classical” approach, based on the use of the so called Lagrange func-
tion, or, on the contrary, the approach using complicated morphisms of the corre-
sponding fibre bundles (see e.g. [3, 7, 11, 17]); in the author’s opinion, the use of 
differential forms is more adequate, is better adapted to the integral nature of the 
variational problems, and also provides a more precise exposition of the theory. 
Apart from the fact that there exist broad analytic tools for working with forms 
(integration, differentiation, Lie derivatives etc.), that can directly be applied and 
has a clear geometric meaning, further arguments for differential forms can also 
be found in the field theory (as a part of the calculus of variations). Here one 
should often consider integral variational functionals, composed of a unique, say 
a tensor, field, and the integrand cannot be split in an “integrated function” and a 
“volume element”.  
 The second, third and fourth chapters of this work are devoted to the general 
variational theory on fibred manifolds. It includes fundamental definitions of ge-
ometric structures and notions, appearing in the vaariational theory, and also the 
results that can be derived without special hypotheses on the sets, on which the 
action function is considered. In chapter 5 we apply the general theory to a few 
concrete situations that appear in practical variational problems. To complete the 
text and the proofs we refer to the articles [1,2], closest to this dissertation.  
 All objects and morphisms we consider belong to the category C! . Con-
cerning general differential-geometric terminology, we mainly follow Lang [23], 
and in some special cases (differential ideals and distributions, Lie derivatives, 
integration of forms) also Sternberg [24]. Our basic notation is the following: The 
tangent space of a manifold X at a point x is denoted by TxX ; TxX  is the tan-
gent bundle of X. Tf  denotes the tangent mapping of a morphism f and f *  the 
corresponding mapping, induced by f on differential forms (the pull-back). The 
following standard symbols are used: d (exterior derivative of differential forms), 
i(! )  (contraction of a form by a vector ! ), !(" )  (the Lie derivative with re-
spect to a vector field ! , and  !  (the exterior product). The field of real numbers 
ide denote by R , and the real, n-dimensional Euclidean space by Rn . Unless 
otherwise stated, we use in coordinate expressions the standard summation con-
vention, where summation is always supposed when the same index appears in an 
expression twice. In the parts of the work where the theory of jets is used we 
mainly follow Ehresmann [25] and the lectures of Kolar [26]; the r-jet of a map-
ping f at a point x is denoted by jx

r f .  
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2  Lagrange structures  

 Each surjective submersion in the considered category will be called a fibred 
manifold. If ! :Y " X  is a fibred manifold, and V an open subset of Y, then 
every isomorphism  ! :V "! (V )!Y , such that there exists a isomorphism 

 ! 0 :" (V )#! 0 (" (V ))! X , such that  

  !" =" 0! ,  

is called a local automorphism of the fibred manifold ! . If an isomorphism ! 0  
exists, it is unique and is called the ! -projection of the local automorphism ! . 
A vector field !  on Y, whose local 1-parameter group is formed by local auto-
morphisms of the fibred manifold ! , is said to be ! -projectable. A necessary 
and sufficient condition for !  to be ! -projectable is that there exist a vector 
field !  on X, such that for each  y!Y  

   T! "# = $ !! .  

If the vector field !  exists, it is unique and is called the ! -projection of the vec-
tor field ! . A ! -vertical vector field is defined by the condition that its ! -
projection exists and is equal to the zero vector field.  
 The subject of this work is introduced by the following (cf. [9, 27]):  
 
 Definition 1  Each pair (! ,") , where ! :Y " X  is a fibred manifold over 
n-dimensional oriented base X and !  is an n-form on Y, is called a Lagrange 
structure. !  is called the Lagrangian of the Lagrange structure (! ,") .  
 
 In this work we suppose we are given a Lagrange structure (! ,") , where 
! :Y " X  is a fibred manifold over an n-dimensional base X.  
 Let !  be a ! -projectable vector field with ! -projection, and denote by 
! t

"  and ! t
"  the local 1-parameter group of !  and ! , respectively. With the 

help of the vector field !  we can assign to any section !  of the fibred manifold 
!  a 1-parameter family of sections  

  ! t =" t
#!"$ t

% .  

From the variational point of view ! t  can be regarded as a “small deformation” 
of the section ! . The 1-parameter family ! t  is called the variation of ! , in-
duced by the vector field ! .  
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 Choose in X a compact, n-dimensional submanifold !  with boundary, and 
denote by !"(# )  the set of all sections of the fibred manifold ! , each defined 
on a neighbourhood of ! . Choose an orientation of X and consider !  with the 
induced orientation. We get a real-valued function  

  
 
!"(# )!$ % &"($ ) = $ *&

"' "R,  

called the action function of the Lagrange function (! ,")  (on the submanifold 
! ). The main subject of the variational calculus is to study the behaviour of the 
action function, restricted to a given subset of the set !"(# ) . The method con-
sists in the study of the changes of the of the value !"(# )  of the action function 
under “small deformations” ! t  of every section ! , belonging to the subset. 
Choose a ! -projectable vector field !  and a section  ! !"#($ ) , and consider 
the variation ! t , induced by the vector field ! . Using the same notation as 
above we see we get a function  

  
 
(!" ," )! t#$

% t
& (')
(% t

()%! t
& ) = (% t

()%! t
& )*$

% t
& (')* "R,  

defined for some ! > 0 . We can suppose without loss of generality that all iso-
morphisms ! t

"  preserve the orientation of the manifold X. Then the change of 
variatles theorem [24] together with basic properties of the pull-back of differen-
tial forms [23] give  

  (! t
"#!$ t

% )*&
! t

% (')( = # *(! t
" )*&

'( .  

Differentiating with respect to t at t = 0  

  
d
dt

!
" t

# ($)
(" t

%&"' t
# ){ }

0
= & *((%)!

$) .  

This expression measures “sensibility” of the action function under the changes 
of ! , generated by the vector field ! . The arising function  

  
 
!"(# )!$ % (&(')()"($ ) = $ *&(')(

") "R  

is called the first variation of the action function, generated on !  by the vector 
field ! . This formula leads to the following definition:  
 
 Definition 2  A section  ! !"#($ )  is said to be a ! -stationary section of 
the Lagrange structure (! ,")  over ! , if it annihilates the first variation of the 
action function generated over !  by the vector field ! , that is,  
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  ! *"(#)$
%& = 0.  

 It follows from Definition 2 that the theory of Lie derivatives will be an im-
portant tool in the study of stationary sections of Lagrange structures. Similar 
situation arises when we investigate symmetry properties of Lagrange structures. 
Nevertheless no work is known to the author in which this geometric theory 
would be systematically applied to the variational theory.  
 Main topic we wish to consider in this work is the study of sections of the 
fibred manifold ! , satisfying a system of partial differential equations, stationary 
with respect to variations, permuting the solutions of these equations. We shall 
consider partial differential equations, admitting a direct geometric interpretation, 
namely equations, given in the form of a differential ideal – an ideal in the exteri-
or algebra of differential forms (see e.g. [4, 5, 24]); we shall not suppose that this 
differential ideal is closed under exterior differentiation of forms.  
 Let  �  be a differential ideal on Y. A section !  of the fibred manifold !  is 
said to be an integral section (integral manifold) of  � , if  

  ! *" = 0  

for all   ! !� . The set of integral sections of the differential ideal  �  will be 
denoted by  !� . Our aim will be to study the action function of the Lagrange 
structure (! ,") , restricted to  !� ; this requires, in particular, that all variations 
of sections, belonging to the set  !� , should again belong to this set.  
 Consider a local automorphism !  of the fibred manifold ! , defined on an 
open set V. !  assigns to the differential ideal  �  a new differential ideal  ! *� , 
constituted of all differential forms ! *" , where   ! !� . We set U = ! (V ) .  
 
 Definition 3  A local automorphism !  of the fibred manifold !  is called 
 � -admissible, if every integral section !  of the differential ideal  � , defined on 
U, is an integral section of the differential ideal  ! *� . We say that a ! -
projectable vector field !  generates  � -admissible variations of the fibred man-
ifold ! , or is  � -admissible, if its local 1-parameter group consists of  � -
admissible local automorphisms of the fibred manifold ! .  
 
 Denoting by ! 0  the ! -projection of the local automorphism !  from Defi-
nition 3, then !  is a  � -admissible local automorphism if and only if 

  !"! 0
#1 !$�  for any   ! !"� . In this sense  � -admissible local automorphisms 

permute sections of the differential ideal  � . The following proposition is an im-
mediate consequence of definitions.  
 
 Proposition 1  A ! -projectable vector field !  generates  � -admissible 
variations of sections of the fibred manifold !  if and only if for any   ! !"� ,  
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  ! *"(#)$ = 0.  

for all   ! !� .  
 
 In a similar way we can introduce “compact” deformations of sections, i.e., 
the deformations, differing from the identity transformation only on compact sub-
sets of the given fibred manifold. Recall that the support of a vector field is de-
fined as the smallest closed set outside of which the vector field is equal to 0.  
 
 Definition 4  Let !  be a ! -projectable vector field, ! t

"  its local 1-
parameter group, !  a compact n-dimensional submanifold of X with boundary. 
We say that !  generates  � -admissible variations of the fibred manifold !  on 
! , if its support belongs to the set ! "1(#) , and every    ! !"�!"#($ )  satis-
fies    (! t

" )*# !$�!$%(& )  for all sufficiently small t.  
 
 We can prove by a direct computation the following proposition, character-
izing differential ideals with the same sets of  � -admissible vector fields.  
 
 Proposition 2  Let  �  be a differential ideal on Y, !  a local automorphism 
of the fibred manifold ! . Then a ! -projectable vector field !  is  � -admissible 
if and only if it is  ! *� -admissible.  
 
 We now give a basic definition, introducing stationary sections of Lagrange 
structures.  
 
 Definition 5  Let  �  be a differential ideal on Y, let !  be a compact n-
dimensional submanifold of X with boundary. We say that a section 

   ! !"�!"#($ )  is a  � -critical section of the Lagrange structure (! ,")  on 
! , if it is ! -stationary for every vector field ! , generating  � -admissible vari-
ations on the submanifold ! . !  is said to be  � -critical, if it is  � -critical on 
every submanifold !  lying in the domain of definition of ! .  
 
 Thus,  � -critical sections are characterized by the condition that they anni-
hilate the first variation of the action function on every compact submanifold with 
boundary of the same dimension as the basis of the fibred manifold considered; 
the first variation is at the same time generated by vector fields, that in an “ad-
missible” way (that is, inside of ! ) “deform” sections of the fibred manifold on 
compact subsets of the base.  
 
 The notion of an  � -admissible variation induces further concepts of signifi-
cant transformations of the underlying Lagrange structure. Let  �  be a differen-
tial ideal on Y, !  a  � -admissible local automorphism of the fibred manifold ! , 



D. Krupka  7 
 

 

defined on an open set V, and let U = ! (V ) .  
 
 Definition 6  We say that !  is a  � -invariance transformation of the La-
grange structure (! ,") , if  

  ! *" *# = ! *#  

for every section   ! !"� , defined in U. We say that !  is a generalized  � -
invariance transformation of the Lagrange structure (! ,") , if for any compact 
n-dimensional submanifold with boundary  !!U  

  ! *"(#)$ *%
&' = ! *"(#)%

&'  

for all vector fields ! , generating  � -admissible variations on ! , and for all 
sections    ! !"�!"#($ ) . We say that a vector field generates  � -invariance 
transformations (resp. generalized  � -invariance transformations) of the La-
grange structure (! ,") , if its local 1-parameter group is formed by  � -
invariance transformations (resp. generalized  � -invariance transformations).  
 
 The proofs of the following two propositions are immediate.  
 
 Proposition 3  A  � -admissible vector field !  generates  � -invariance 
transformations of the Lagrange structure (! ,")  if and only if  

  ! *"(#)$ = 0  

for all sections   ! !"� .  
 
 Proposition 4  A vector field !  generates generalised  � -invariance trans-
formations if and only if for every compact n-dimensional submanifold  !! X  
with boundary  

  ! *"#"$%&' = 0  

for all vector fields ! , generating  � -admissible variations of sections of the 
fibred manifold !  on !  and for all sections    ! !"�!"#($ ) .  
 
 Consider any ! -projectable vector field !  and the associated Lagrange 
structure (! ,"#$) . If !  generates generalised  � -invariance transformations of 
the Lagrange structure (! ,") , then every integral section of the differential ideal 
 �  is a  � -critical section of (! ,"#$) . It is therefore clear that existence of vec-
tor fields, generating generalised invariance transformations, will be an important 
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characteristic of the properties of Lagrange structures.  
 We finally introduce a broad class of transformations of the Lagrange struc-
ture (! ,") , related to critical sections of (! ,") , contrary to the  � -invariance 
and generalised  � -invariance transformations. In what follows the symbols  � , 
V and U have the same meaning as above.  
 
 Definition 7  A local automorphism !  is said to be a  � -symmetry trans-
formation, or just a  � -symmetry of a  � -critical section !  of the Lagrange 
structure (! ,") , if for every compact n-dimensional submanifold with boundary 
 !! X , lying in the domain of definition of ! ,  

  ! *"(#)$ *%
&' = 0  

for all vector fields ! , generating  � -admissible variations of (! ,")  on ! .  
 
 The following simple assertions hold.  
 
 Proposition 5  Let !  be a  � -critical section of the Lagrange structure 
(! ,") . A  � -admissible vector field !  generates  � -symmetries of !  if and 
only if for every compact n-dimensional submanifold with boundary ! , lying in 
the domain of definition of ! ,  

  ! *"(#)"($)%
&' = 0  

for all vector fields ! , generating  � -admissible variations on ! .  
 
 Proposition 5 shows how to determine  � -critical sections of the given La-
grange structure with prescribed symmetry properties.  
 
 Proposition 6  Let   ! !"�  and let !  be a  � -admissible vector field with 
projection ! . Let ! t

"  and ! t
"  be the corresponding local 1-parameter groups. 

Then the 1-parameter family of sections ! t
"#!$ t

%  is formed by  � -critical sec-
tions of the Lagrange structure (! ,")  if and only if !  satisfies the system  

  ! *"(#)$
%& = 0, ! *"(#)(')$

%& = 0  

for every compact n-dimensional manifold  !! X  with boundary and all vector 
fields ! , generating  � -admissible variations of (! ,")  on ! .  
 
 The classes of transformations, associated with the given Lagrange structure, 
we have introduced, are not mutually independent.  
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 Proposition 7  Every  � -invariance transformation is a generalized  � -
invariance transformation. Every generalized  � -invariance transformation is a 
 � -symmetry of each  � -critical section of the Lagrange structure (! ,") .  
 
 For simplicity, we call each of the transformations from Proposition 7 simp-
ly a  � -symmetry of (! ,") .  
 In the next section we pass on a more detailed study of  � -critical sections 
and  � -symmetries of the given Lagrange structure.  

3  First variation formula 

 Let ! :Y " X  be a fibred manifold. We shall denote by J rY  the set of r-
jets of (local) sections of the fibred manifold !  with natural differentiable struc-
ture, and by ! r : J

rY " X  and ! rs : J
rY " J sY  ( 0 ! s ! r ) the fibred mani-

folds defined by natural jet projections. The r-jet prolongation of a section !  of 
!  is denoted by j r! ; j r!  is a section of the fibred manifold ! r .  
 Recall that a differential form on Y is said t be ! -horizontal, it it vanishes 
whenever at least one of its arguments is a ! -vertical vector. A differential form 
!  on J rY  is said to be pseudovertical, if  

  j r! *" = 0  

for every section !  of the fibred manifold ! . We denote by !n (J rY )  the space 
of n-forms on J rY , and !X

n (J rY )  the space of ! r -horizontal n-forms.  
 
 Proposition 8 1)  For any n-form  ! !"

n (Y )  there exists exactly one n-form 

 h(!)!"X
n (J1Y )  such that for all sections !  of the fibred manifold !  

  j1! *h" = ! *".  

The mapping  

   !
n (Y )! " # h(")"!X

n (J1Y )  

is linear over the ring of functions and bijective.  
 
 For proofs and further properties of the mapping h, which can be defined for 
arbitrary p-forms, as well as for coordinate formulas in Proposition 9 and Propo-
                                                             
 
1) An error in the source document has been corrected: J rY  in Proposition 8 has been 
    replaced with J 1Y . 
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sition 10, we refer to [1].  
 Consider a coordinate neighbourhood on Y with fibred coordinates (xi , y! ) , 
1! i ! n , 1!" ! m , where n = dim X , m = dimY ! dim X , and denote by 
(xi , y! ,zi! )  the associated fibred coordinates on the manifold J1Y . If the n-form 
!  is expressed by  

  

  

! = f0dx1!dx2 !…!dxn

+ 1
r!"1," 2 ,…," r

#
s1<s2<…<sr
#

r=1

n

# f"1
s1

" 2
s2…" r

sr dx1!…!dxs1$1!dy"1 !dxs1+1

!…!dxsr$1!dy" r
!dxsr+1!…!dxn ,

 

then  

  

  

h(!) = f0 + 1
r!
f"1
s1

" 2
s2…" r

sr zs1"1zs2" 3…zsr" r
"1," 2 ,…," r

#
s1<s2<…<sr
#

r=1

n

#$
%&

'
()

*dx1!dx2 !…!dxn .
 

In these formulas (and also everywhere in the following text) the Latin indices 
run through the values  1,2,…,n , and the Greek indices through  1,2,…,m . In 
many computations it is suitable to use the form !10"#  instead of ! , where !1,0  
is the natural projection J1Y ! J 0Y = Y . On the given coordinate neighbour-
hood !10"#  can be represented as  

  

   

!10"# = �dx1!dx2 !…!dxn

+ g$1
s1

$ 2
s2…$ r

sr dx1!…!dxs1%1!&$1
!dxs1+1

$1,$ 2 ,…,$ r

'
s1<s2<…<sr
'

r=1

n

'
!…!dxsr%1!&$ r

!dxsr+1!…!dxn ,

 

where  

  !" = dy" # zk"dxk  

are pseudovertical 1-forms. When we substitute form this expression into the 
above coordinate representation of !10"# , we get the following formula:  
 
 Proposition 9  The functions  � and g!

s  satisfy  

  
  
� = f0 + f!1

s1
! 2
s2…! r

sr zs1!1zs2! 2…zsr! r
!1,! 2 ,…,! r

"
s1<s2<…<sr
"

r=1

n

" ,  
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and 

  
 
g!
s = !�

!zs!
.  

 It is now obvious that the n-form !10"#  is decomposed, in an invariant way, 
as the sum of a !1 -horizontal and a pseudovertical forms. Note that a more gen-
eral assertion holds:  
 
 Proposition 10  To each n-form  ! !"

n (J rY )  there exists a unique n-form 

 h(!)!"X
n (J r+1Y )  and a unique pseudovertical n-form p(!) , defined on 

J r+1Y , such that  

  (! r+1,r )*" = h(")+ p(").  

 
 Applying these considerations to the Lagrange structures we see that the 
action function of the Lagrange structure (! ,")  over any compact n-dimensional 
manifold with boundary  !! X  can be written as  

  !"(# ) = j1# *$10%!"& = j1# *h(!)
"& .  

We can now use this this expression in order to determine a formula for the first 
variation (!!")#  of the action function.  
 Consider the fibred coordinates (xi , y! )  and the associated fibred coordi-
nates (xi , y! ,zi! ,zij! )  on J 2Y  ( i ! j ). Denote for any function f of the variables 
(xi , y! ,zi! )   

  di f =
! f
!xi

+ ! f
!y!

zi! + ! f
!yj!

zij! .  

Expression di f  defines a function of the variables (xi , y! ,zi! ,zij! ) , called the 
formal derivative of the function f with respect to the variable xi  [28]. Let !  be 
any ! -projectable vector field, !  its ! -projection, and ! t

"  and ! t
"  the corre-

sponding local 1-parameter groups. Then the formula  

  j r! t
"( jx

r# ) = j
! t

$ (x )
r ! t

"#!% t
$  

defines a local 1-parameter group j r! t
"  of automorphisms of the fibred manifold 

! r . It is generated by the vector field  
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  j r!( jx
r" ) = d

dt
j
# t

$ (x )
r # t

!"#% t
${ }

0
,  

called the r-jet prolongation of the ! -projectable vector field !  [1]. One can 
easily derive the chart representation of the vector field j r! . Restricting our-
selves to the case r = 1 we get  

  j1! = "i
!
!xi

+!#
!
!y#

+ di!# $ zk#
!"k
!xi

%
&'

(
)*
!
!zi#

.  

The first variation (!(")#)$  of the action function will now be determined by 
the following proposition. 
 
 Proposition 11  To each n-form  ! !"

n (J1Y )  and each ! -projectable 
vector field ! ,  

  h(!(")#) =!( j1")h(#).  

 
 Applying classical variational procedures one can easily determine the chart 
expression for the Lie derivative !( j1")h(#) . We introduce a function  �  in 
the local coordinates (xi , y! ,zi! )  by  

     h(!) = �dx1!dx2 !…!dxn ,  

and functions  �! (⇥) , where 1!" ! m , the Euler expressions, associated (in 
the given local coordinates) with the Lagrangian ! , by  

  
 
�! (⇥) =

!⇥
!y!

" di
!⇥
!zi!

#
$%

&
'(
.  

Using the function  �  and the Euler expressions  �! (⇥) , we get the following 
first variation formula in “infinitesimal” form [1]:  
 
 Proposition 12  The n-form ! 21

"#( j1$)h(%)  has the chart representation  

     ! 21
"#( j1$)h(%) = � $dx1!dx2 !…!dxn ,  

where the function  � !  is given by  

  
 
⇥ ! = �" (⇥)(!" # zi"$i )+ dk ⇥$k +

!⇥
!zk"

(!" # zi"$i )
%
&'

(
)*
.  
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The decomposition of the n-form ! 21
"#( j1$)h(%)  in two summands is independ-

ent of the choice of fibred coordinates.  
 
 In order to better understand the geometric meaning of the first variation 
formula (Proposition 12), consider a distribution !2  on j2Y , generated on the 
coordinate neighbourhood, covered by the coordinates (xi , y! ,zi! ,zij! ) , by the 
vector fields  

  
!
!xi

+ zi!
!
!y!

, !
!zi!

, !
!zij!

.  

Choose a point  jx
2! ! j2Y  in the given coordinate neighbourhood and an arbi-

trary tangent vector to j2Y  at this point,  

  
 

!! = "i
!
!xi

+!#
!
!y#

+!i#
!
!zi#

+ !ij#
i$ j
% !

!zij#
,  

where the components !i , !" , !i" , !ij"  are real numbers. Then we have a 
unique decomposition  

   
!! = h( !!)+ v( !!),  

where  

  
 
h( !!) = "i

!
!xi

+ zi#
!
!y#

$
%&

'
()
+!i#

!
!zi#

+ !ij#
i* j
+ !

!zij#
 

belongs to the distribution !2 , and  

  
 
v( !!) = (!" # zi"$i )

!
!y"

 

to the complementary distribution. We introduce the Euler-form, associated with 
the Lagrangian ! , by  

     E(!) = �" (⇥)dy" !dx1!dx2 !…!dxn .  

The independence of the expression on the right-hand side on the fibred charts 
can be proved by a direct computation. Applying this decomposition to the 2-jet 
prolongation of a ! -projectable vector field, we can prove the first variation 
formula in the following form.  
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 Theorem 1  For any ! -projectable vector field !  and any n-form 

 ! !"
n (Y ) ,  

  ! 21
"h(#($)%) = i(v( j2$)E(%)+ h(di( j1$)!10"%).  

 
 One can prove Theorem 1 by a direct computation, with the help of Proposi-
tions 9, 11, and 12.  

4  Critical sections  

 Choose in X a compact, n-dimensional submanifold !  with boundary !! . 
From Theorem 1 and from the Stokes’ theorem on integration of differential 
forms on manifolds with boundary it follows that for any ! -projectable vector 
field !  

  
(!(")#)$ = j2% *& 21

'h(("#)$)
= j2% * i(v( j2"))E(#)

$) + j1% * i( j1")&10'#!$) .
 

Restricting ourselves to ! -projectable vector fields !  with support in ! "1(#) , 
the boundary integral vanishes and we have:  
 
 Proposition 13  A section  ! !"#($ )  is ! -stationary if and only if  

  j2! * i(v( j2"))E(#)
$% = 0.  

 
 Let now  �  be a differential ideal on Y. It is easily seen that for every ! -
vertical vector field !  the following identity holds  

  i(v( j2!))E(") = i( j2!)E(").  

In view of the definition of  � -critical sections we can therefore give a basic con-
sequence of the first variation formula as follows.  
 
 Theorem 2  A section    ! !"�!"#($ )  is a  � -critical section of the La-
grange structure (! ,")  on the submanifold !  if and only if  

  j2! * i( j2")E(#)
$% = 0  
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for all vector fields ! , generating  � -admissible variations of the Lagrange 
structure (! ,")  on ! . !  is  � -critical if and only if this condition holds inde-
pendently of the choice of the submanifold ! .  

5  Invariance  

 Consider our Lagrange structure (! ,")  and the differential ideal  �  on Y. 
Having introduced the mapping h, assigning to n-forms on Y !1 -horizontal n-
forms on J1Y , and the Euler form E(!) , appearing in the first variation formula 
(Theorem 1), we can further specify characteristics of local 1-parameter groups of 
 � -symmetries of (! ,") .  
 
 Theorem 3  (Noether’s equation)  A  � -admissible vector field !  gener-
ates  � -nvariance transformations of the Lagrange structure (! ,")  if and only 
if  

  !( j1")h(#) = 0.  

 
 This assertion follows from Proposition 11.  
 
 Theorem 4  A ! -projectable vector field !  generates generalised  � -
invariance transformations of the Lagrange structure (! ,")  if and only if for 
every n-dimensional compact submanifold with boundary  !! X  

  j2! * i( j2")E(#($)%)
&' = 0  

for all vector fields ! , generating  � -admissible variations of the Lagrange 
structure (! ,")  on !  and all sections    ! !"�!"#($ ) .  
 
 This assertion follows from Proposition 4 and Theorem 2, in which we re-
place the n-form !  by the n-form !(")# .  
 
 The following modification of Theorem 4 gives us a relation between  � -
critical sections and their local 1-parameter groups of symmetries.  
 
 Theorem 5  Let !  be a  � -critical section of the Lagrange structure 
(! ,") . A  � -admissible vector field !  generates  � -symmetries of the section 
!  if and only if for every compact, n-dimensional submanifold with boundary 
 !! X , lying in the domain of definition of ! ,  
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  j2! * i( j2")E(#($)%)
&' = 0  

for all vector fields ! , generating  � -admissible variations of the Lagrange 
structure (! ,")  on ! .  

6  Examples 

 Many applications of the calculus of variations and field theory consist in 
finding  � -critical sections and  � -invariance of a given Lagrange structure. In 
case when the differential ideals  �  induce sufficiently rich spaces of  � -
admissible vector fields (that is, sufficiently large sets of “admissible defor-
mations” of sections) one can characterize  � -critical sections in terms of partial 
differential equations. The same is true for the vector fields, generating  � -
symmetry transformations.  
 We now give examples of Lagrange structures and differential ideals that 
obey this property.  
 
 A)  Ordinary first order variational problems.  Suppose we are given a La-
grange structure (! ,") , where ! :Y " X  is a fibred manifold with n-
dimensional base X. We describe the theory of  � -critical sections and  � -
invariance for the case of the trivial differential ideal on Y,  � = {0} . In this case 
every section of the fibred manifold Y belongs to the set !" . Thus we can speak 
of critical sections of the Lagrange structure (! ,")  instead of  � -critical sec-
tions, and of invariance instead of  � -invariance. The results given below are 
contained, with minor modifications, in the papers [1,2].  
 
 Theorem  A section !  of the fibred manifold ! , defined on an open set 
 U ! X , is a critical section of the Lagrange structure (! ,")  on a compact, n-
dimensional submanifold with boundary  !!U if and only if the Euler form 
E(!)  vanishes on the submanifold  j

2! (")! J 2Y ,  

   E(!)! j
2" = 0  

on ! . !  is a critical section of (! ,")  if and only if condition  

   E(!)! j
2" = 0  

holds on U.  
 
 There exists a natural equivalence relation on the set of Lagrange structures 
on a given fibred manifold. We say that two Lagrange structures (! ,"1) , (! ,"2 )  
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are equivalent, if the corresponding Euler forms coincide,  

  E(!1) = E(!2 ).  

It is a trivial consequence of the definition of the Euler form that two Lagrangians 
!1 , !2 , satisfying  

  h(!1) = h(!2 ),  

define equivalent Lagrange structures. Since E(!)  depends on !  R -linearly, 
the equivalence problem is solved by the following assertion.  
 
 Theorem  E(!) = 0  if and only if d! = 0 .  
 
 This theorem states more precisely some classical assertions on the structure 
of the Lagrangians annihilated by the Euler form; some of these results appearing 
in the literature are not complete or correct. It can also serve for adequate descrip-
tion of generators of generalised invariance transformations.  
 
 Theorem  Let !  be a ! -projectable vector field. The following four condi-
tions are equivalent:  
 (1)  !  generates generalised invariance transformations of the Lagrange 
structure (! ,"1) .  
 (2)  The Lie derivative of the Euler form E(!)  with respect to the 2-jet pro-
longation j2!  of the vector field !  vanishes,  

  !(")E(#) = 0.  

 (3)  There exists an n-form  ! !"
n (Y ) , such that the generalised Noether-

Bessel-hagen equation  

  h(!(")# $ %) = 0, d% = 0  

is satisfied.  
 (4)  Condition  

  E(!(")#) = 0  

holds.  
 
 Theorem  The set of all ! -projectable vector fields, generating generalised 
invariance transformations of the Lagrange structure (! ,") , has the Lie algebra 
structure.  
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 We get the following result on symmetry transformations of critical sections:  
 
 Theorem  Let !  be a section of the fibred manifold ! , !  a ! -projectable 
vector field. The variation of ! , generated by ! , is constituted by critical sec-
tions of the Lagrange structure (! ,")  if and only if  

   E(!)! j
2" = 0, E(#($)!)! j2" = 0.  

 
 This theorem shows that the critical sections with prescribed symmetry 
properties are solutions to the system of the Euler-Lagrange equations, given by 
the Lagrangian !  and the Lagrangian !(")# .  
 
 B)  Ordinary second order problems.  Critical sections. Let ! :Y " X  be a 
fibred manifold with n-dimensional orientable base X, !1 : J

1Y " X  its 1-jet 
prolongation. Suppose we have a Lagrange structure (!1,")  and consider the 
differential ideal  �  on J1Y , generated by the pseudovertical 1-forms  

  !" = dy" # zk"dxk .  

We determine the set  !�  and the vector fields, generating  � -admissible varia-
tions.  
 
 Proposition  A section !  of the fibred manifold !1  is an integral section of 
the differential ideal  �  if and only if there exists a section !  of the fibred mani-
fold Y, such that  

  ! = j1" .  

 
 Proposition  A !1 -projectable vector field  !!  generates  � -admissible var-
iations of the Lagrange structure (!1,")  if and only if it coincides with the 1-jet 
prolongation of some ! -projectable vector filed ! ,  

   
!! = j1!.  

 
 The general Lagrange theory shows that for a description of  � -critical sec-
tions it is necessary to consider the n-form h(!) , defined on the manifold 
J1(J1Y ) , and the corresponding Euler form E(!) , defined on the manifold 
J 2 (J1Y ) . Consider some fibred coordinates (xi , y! )  on Y, where 1! i ! n , 
n = dim X , n = dim X , m = dimY ! dim X , the associated fibred coordinates 
(xi , y! ,zi! )  on J1Y  and the fibred coordinates (xi , y! ,zi! ,wi! ,wij! )  on 
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J1(J1Y ) . In these local coordinates  

     h(!) = �dx1!dx2 !…!dxn ,  

and 

     E(!) = (�" (⇥)dy" + � i" (⇥)dzi" )!dx1!dx2 !…!dxn ,  

where  

  
 
�! (⇥) =

!⇥
!y!

" dk
!⇥
!wk!

#
$%

&
'(
, � i! (⇥) =

!⇥
!zi!

" dk
!⇥
!wki!

#
$%

&
'(
.  

 
 Writing now Theorem 2 in our situation, we see that the section !  of the 
fibred manifold !1  is a  � -critical section of the Lagrange structure (!1,")  if 
and only if there exists a section !  of the fibred manifold !  such that ! = j1"  
and  

  j1! * i( j1( j1"))E(#)
$% = 0  

for each n-dimensional compact submanifold with boundary  !! X  and all ! -
vertical vector fields !  with support in ! "1(#) .  
 Using condition ! = j1" , expression under the integral can be further sim-
plified. To this purpose we need a generalisation of the definition of formal de-
rivative, introduced in Chapter 3. Considered the fibred coordinates (xi , y! )  on Y 
and the associated coordinates 

 
(xi , y! ,zi! ,…,zi1i2…ir"1ir!

,zi1i2…irir+1!
)  on J r+1Y . Let 

f be a function of the local coordinates 
 
(xi , y! ,zi! ,…,zi1i2…ir"1ir!

) . By the formal 
derivative of the function f with respect to the variable xi  we mean the function  

  
 
f = ! f

!xi
+ ! f
!y!

zi! + ! f
!z j!

zij! +…+ ! f
!zi1i2…ir!

zi1i2…iri!
,

i1"i2"…"ir
#  

defined on the corresponding coordinate neighbourhood in J r+1Y .  
 Next consider our Lagrange structure (!1,") , and denote by 

     
!h(!) = !�dx1!dx2 !…!dxn  

the restriction of the n-form h(!)  to the submanifold J 2Y  of J1(J1Y ) . Intro-
duce an (n +1) -form   

!�(!)  on J 4Y  by  

     
!�(!) = !�" (!)dy" !dx1!dx2 !…!dxn ,  
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where  

  
  

!�! (") =
! !⇥
!y!

# di
! !⇥
!zi!

$
%&

'
()
+ did j

! !⇥
!zij!

$
%&

'
()i* j

+ .  

One can verify that the form   
!�(!)  is defined independently of the fibred coordi-

nates. With these concepts we can prove the following theorem on  � -critical 
sections of the Lagrange structure (!1,") , connecting the abstract theory of La-
grange structures with the classical variational approach.  
 
 Theorem  A section !  is a  � -critical section of the Lagrange structure 
(!1,")  if and only if there exists a section !  of the fibred manifold ! , satisfy-
ing the system of partial differential equations  

    
!�! (")" j

4# = 0  

and ! = j1" .  
 
 The proof is based on a quite tedious coordinate computation, based on 
equations of the submanifold J 2Y  in J1(J1Y ) .  
 Since the  � -critical sections are uniquely determined in the considered case 
by the n-form  

!h(!)  (or in coordinates by the function   !� ), we call the corre-
sponding variational problems ordinary second order variational problems.  
 
 C)  Many examples of Lagrange structures are provided by the literature on 
the calculus of variations. Concrete examples can also be found in mathematical 
foundations of the general relativity theory. Consider at least one typical example. 
The fibred manifold is in this case usually a vector bundle, the base is a 4-
dimensional manifold, admitting the hyperbolic structure, that is, a global covari-
ant tensor field of degree 2, defining at every point a regular symmetric bilinear 
form with signature (1,3) , a spacetime manifold. Denote by !  the 2-jet prolon-
gation of the bundle of covariant tensors over a spacetime, and choose some local 
coordinates xi  on this basis. A Lagrangian ! , defined in the induced coordinates 
by  

    ! = R " | det !g | dx1!dx2 !…!dxn ,  

where  !g  is the matrix of the covariant tensor g = (gij ) , and 

  R = R gij ,
!gij
!xk

,
!2gij
!xk !xl

!
"#

$
%&
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is the scalar curvature, associated with every pseudoriemannian structure, defines 
a Lagrange structure (! ,") . Choosing the differential ideal  �  in a similar way 
as in part B) of this chapter, the  � -critical sections will become solutions of the 
vacuum Einstein equations; these are hyperbolic metric fields, extremizing the 
action function, associated with the Lagrange structure (! ,") .  
  
 
 References 
 
 [1] D. Krupka, A geometric theory of ordinary first order variational prob-

lems in fibred manifolds. I. Critical sections, J. Math. Anal. Appl. 49 
(1975), 180-206 

 [2] D. Krupka, A geometric theory of ordinary first order variational prob-
lems in fibred manifolds. II. Invariance J. Math. Anal. Appl. 49 (1975), 
469-476 

 [3] H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the 
calculus of variations, Ann. Inst. Fourier, Grenoble, 23 (1973), 203-267 

 [4] R. Hermann, Differential Geometry and the Calculus of Variations, Aca-
demic Press, New York, 1968 

 [5] R. Hermann, Geometry, Physics and Systems, Dekker, New York, 1973 
 [6] R. S. Palais, Foundations of Global Nonlinear Analysis, Benjamin, New 

York 1968 
 [7] R. S. Palais, Manifolds of sections of fiber bundles and the calculus of 

variations, Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill, 
(1968) 195-205, Amer. Math. Soc., Providence, R.I (1970) 

 [8] J. Sniatycki, On the geometric structure of classical field theory in La-
grangian formulation, Proc. Cambridge Phil. Soc. 68 (1970), 475-484 

 [9] A. Trautman, Invariance of Lagrangian systems, in “General Relativity, 
Papers in Honour of J.L. Synge”, Clarendon Press, Oxford, 1972 

 [10] A. Trautman, Noether equations and conservation laws, Commun. Math. 
Phys. 6 (1967), 248-261 

 [11] J. Eels, Jr., H.H. Sampson, Variational theory in fiber bundles, Proc. U.S. 
– Japan Seminar in Differential Geometry, Tokyo, 1965 

 [12] J. Kijowski, Existence of differentiable structure in the set of submani-
folds, an attempt of geometrization of calculus of variations, Studia Math. 
XXXIII (1969), 93-108 

 [13] J. Kijowski, On representations of functionals of local type by differential 
forms, Colloquium Math. XXVI (1972), 293-312 

 [14] J. Komorowski, A modern version of the E. Noether’s theorems in the 
calculus of variations, I., Studia Math. 29 (1968), 261-273 

 [15] J. Komorowski, A modern version of the E. Noether’s theorems in the 
calculus of variations, II., Studia Math. 29 (1969), 181-190 

 [16] J. Komorowski, A geometric formulation of the general free boundary 
problems in the calculus of variations and the theorems of E. Noether 
connected with them, Rep. Math. Phys 1 (1970), 105-133 

 [17] K. Maurin, Calculus of Variations and Classical Field Theory, Part I, 
Lecture Notes Series, Aarhus University, Matematisk Institut (1972) 

 [18] L. S. Polak, Ed., Variational Principles of Mechanics (Russian), Moscow, 
1959 



22   Geometric Aspects of the Theory of Invariant Lagrange structures 
 

 

 [19] D. Hilbert, Grundlagen der Physik, Math. Ann. 92 (1924), 1-32 
 [20] E. Noether, Invariante Variationsprobleme, Nachr. Ges. Wiss. Gottingen 

(1918), 235-258 
 [21] E. Cartan, Lecons sur les Invariants integraux, Hermann, Paris, 1922 
 [22] Th. H. J. Lepage, Sur les champs geodesiques du Calcul des Variations, 

Bull. Acad. Roy. Belg., Cl. Sci. V, Ser. 22 (1936), 716-729, 1036-1046 
 [23] S. Lang, Introduction to Differentiable Manifolds, Interscience, New 

York, 1962 
 [24] S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Eng-

lewood Cliffs, NJ, 1964 
 [25] C. Ehresmann, Introduction a la theorie des structures infinitesimales et 

des pseudogroupes de Lie, Coll. Intern. Du CNRS, Geometrie differen-
tielle, Strasbourg (1953), 97-110 

 [26] I.Kolar, Introduction to the Theory of Jets (Czech), mimeographed notes, 
CSAV Brno, 1972 

 [27] D. Krupka and A. Trautman, General invariance of Lagrangian structures, 
Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., XXII (1974), 
207-211 

 [28] M. Kuranishi, Lectures on Involutive Systems of Partial Differential 
Equations, Publicacoes da Sociedade de Matematica de Sao Paulo, Sao 
Paulo, 1967 

 
 
 
 


