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History

Classical Noether’s theorems are well known to treat symmetries of Lagran-

gian systems.

• First Noether’s theorem associates to a Lagrangian symmetry the

conserved symmetry current whose total di↵erential vanishes on-shell.

• Second Noether’s theorems provide the correspondence between the

gauge symmetries of a Lagrangian and the Noether identities which its Euler–

Lagrange operator satisfies.

Let us refer for a rich history of Noether’s theorems to the brilliant book:

Y.Kosmann-Schwarzbach, The Noether Theorems. Invariance and the

Conservation Laws in the Twentieth Century (Springer, 2011).

However, one should go beyond classical Noether’s theorems be-

cause they do not provide a complete analysis of the degeneracy of a generic

Lagrangian system, namely, reducible degenerate Lagrangian systems.

A problem has come from Quantum Field Theory (QFT) where an

analysis of the degeneracy of a field system is a preliminary step towards its

quantization.

J.Fisch, M.Henneaux, Homological perturbation theory and algebraic struc-

ture of the antifield-antibracket formalism for gauge theories, Commun.

Math. Phys. 128 (1990) 627-640.

G.Barnich, F.Brandt, M.Henneaux, Local BRST cohomology in gauge theo-

ries. Phys. Rep. 338 (2000) 439-569.

2



Basic Problem

A problem is that, for any Lagrangian, its Euler–Lagrange operator sat-

isfies Noether identities, which therefore must be separated into the trivial

and non-trivial ones.

Moreover, these Noether identities obey first-stage Noether identities,

which in turn are subject to the second-stage ones, and so on.

Thus, there is a hierarchy of higher-stage Noether identities and,

accordingly, gauge symmetries.

The corresponding higher-stage extension of Noether’s theorems

therefore should be formulated.
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Main Theses

We aim to formulate the generalized Noether theorems in a very general

setting of reducible degenerate Lagrangian systems of graded (even and odd)

variables on graded bundles. This formulation is based on the following.

I.

Treating Noether identities in Lagrangian formalism, we follow the general

notion of Noether identities of di↵erential operators on fibre bundles.

G.Sardanashvily, Noether identities of a di↵erential operator. The Koszul–

Tate complex Int. J. Geom. Methods Mod. Phys. 2 (2005) 873-886;

arXiv: math/0506103.

• A key point is that any di↵erential operator on a fibre bundle sat-

isfies certain di↵erential identities, called the Noether identities, which thus

must be separated into the trivial and non-trivial ones.

• Furthermore, non-trivial Noether identities of a di↵erential operator obey

first stage Noether identities, which in turn are subject to the second-

stage ones, and so on. Thus, there is a hierarchy of higher-stage Noether

identities of a di↵erential operator.
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• This hierarchy is described in terms of chain complexes whose bound-

aries are associated to trivial higher-stage Noether identities, but non-zero

elements of their homology characterize non-trivial Noether identities modulo

the trivial ones.

• As a result, if a certain homology condition holds, one constructs an

exact chain complex, called the Koszul–Tate (KT) complex, with a KT

boundary operator whose nilpotentness is equivalent to all complete non-

trivial Noether and higher-stage Noether identities of a di↵erential operator.

• A di↵erential operator is said to be degenerate if it admits non-

trivial Noether identities, and reducible if there exist non-trivial higher-stage

Noether identities.

• It should be noted that, though a di↵erential operator is defined on a fibre

bundle, the KT complex consists of graded (even and odd) elements, called

antifields in accordance with the QFT terminology, and it is considered on

graded manifolds and bundles.
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II.

Given a Lagrangian system, we apply a general analysis of Noether identi-

ties of di↵erential operators to the corresponding Euler–Lagrange operator.

A result is the associated KT chain complex with the boundary operator

whose nilpotency condition reproduces all non-trivial Noether and higher-

stage Noether identities of an Euler–Lagrange operator. In the case of a

variational Euler–Lagrange operator, we obtain something more.

• The extended inverse and direct second Noether theorems state

the relations between higher-stage Noether identities and gauge symmetries

of a Lagrangian system. Namely, these theorems associate to the above-

mentioned KT complex a certain cochain sequence whose ascent op-

erator consists of gauge and higher-order gauge symmetries of a

Lagrangian system. Therefore, it is called the gauge operator.

• This cochain sequence, as like as the KT complex, consist of graded (even

and odd) elements, called the ghosts in accordance with the QFT terminol-

ogy. A problem is that the gauge operator, unlike the KT boundary

operator, is not nilpotent. Consequently, there is no self-consistent

definition of non-trivial gauge symmetries, and therefore one has start just

with Noether identities.

• Nevertheless, if gauge symmetries are algebraically closed, the gauge op-

erator is extended to the nilpotent BRST operator which brings a cochain

sequence into the BRST complex and provides a BRST extension of an

original Lagrangian system by means of graded antifields and ghosts.
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III.

Since the hierarchy of higher-stage Noether identities and gauge symmetries

is described in the framework of graded homology and cohomology complexes,

Lagrangian theory of graded even and odd variables is considered from the

beginning. In QFT, this is the case of fermion fields, ghosts in gauge theory

and SUSY extensions of Standard Model.

• Lagrangian theory of even variables on a smooth manifold X convention-

ally is formulated in terms of fibre bundles and jet manifolds. A key

point is the classical Serre–Swan theorem which states the categorial

equivalence between the projective modules of finite rank over a ring C1(X)

of smooth real functions on X and the modules of global sections of vector

bundles over X.

G.Giachetta, L.Mangiarotti, G.Sardanashvily, Advanced Classical Field

Theory (World Scientific, 2009).

G.Sardanashvily, Advanced Di↵erential Geometry for Theoreticians.

Fibre bundles, jet manifolds and Lagrangian theory (Lambert Aca-

demic Publishing, 2013); arXiv: 0908.1886.
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• However, di↵erent geometric models of odd variables either on graded

manifolds or supermanifolds are discussed. It should be emphasized the dif-

ference between graded manifolds and supermanifolds. Both graded mani-

folds and supermanifolds are phrased in terms of sheaves of graded commuta-

tive algebras. Graded manifolds are characterized by sheaves on smooth

manifolds, while supermanifolds are constructed by gluing sheaves on su-

pervector spaces.

C.Bartocci, U.Bruzzo, D.Hernández Ruipérez, The Geometry of Super-

manifolds (Kluwer, 1991).

• We follow the graded extension of the Serre–Swan theorem. It

states that, if a graded commutative C1(X)-ring is generated by a projective

C1(X)-module of finite rank, it is isomorphic to the structure ring of graded

functions on a graded manifold whose body is X. Therefore, we develop

graded Lagrangian theory of even and odd variables in terms of graded

manifolds and graded bundles.

• A problem is that no conventional variational principle may be formu-

lated for odd variables because there is no measure on graded manifolds.

Nevertheless, a Lagrangian theory on a fibre bundle Y can be developed

in algebraic terms of a variational bicomplex of di↵erential forms on

an infinite order jet manifold J1Y of Y , without appealing to a varia-

tional principle. This technique has been extended to Lagrangian theory

on graded bundles in terms of a graded variational bicomplex of graded

di↵erential forms on graded jet manifolds.
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IV.

Given a graded Lagrangian L, the cohomology of a variational bicomplex

provides the global variational formula

dL = EL � dH⌅L,

where EL is the graded Euler–Lagrange operator and ⌅L is a Lepage equivalent

of a graded Lagrangian L.

• The extended first Noether theorem is a straightforward corollary of

the above global variational formula in a general case of graded Lagrangians

and their supersymmetries.

• It associates to a supersymmetry � of a graded Lagrangian L the

current J� whose total di↵erential dHJ� vanishes on the shell �L = 0.

• If � is a gauge supersymmetry of a graded Lagrangian L, the correspond-

ing current J� is a total di↵erential on-shell. This statement sometimes is

called the third Noether theorem.
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1 Graded Lagrangian formalism

1.1. Di↵erential calculus over commutative rings

1.2. Lagrangian formalism on smooth fibre bundles

1.3. Di↵erential calculus over graded commutative rings

1.4. Di↵erential calculus on graded manifolds

1.5. Lagrangian theory of even and odd variables on graded bundles

• The di↵erential calculus, including formalism of linear di↵eren-

tial operators and the Chevalley–Eilenberg complex of di↵erential

forms, can be formulated over any ring. A problem is that Euler–Lagrange

operators need not be linear.

• Theory of non-linear di↵erential operators and, in particular, La-

grangian formalism conventionally are formulated on smooth fibre bun-

dles over a smooth manifold X in terms of their jet manifolds.

• In the framework of the di↵erential calculus over graded commutative

rings, Lagrangian formalism has been extended to graded manifolds and

graded bundles over a smooth manifold X.

• In applications, this is the case both of classical field theory on

bundles over X, dim X > 1, and non-relativistic mechanics on fibre

bundles over X = R. Relativistic mechanics and classical string theory can

be formulated as Lagrangian theory of submanifolds.

G.Giachetta, L.Mangiarotti, G.Sardanashvily, Advanced Classical Field

Theory (World Scientific, 2009).
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1.1 Di↵erential calculus over commutative rings

The di↵erential calculus conventionally is defined over commutative rings.

It straightforwardly is generalized to the case of graded commutative rings.

However, this is not a particular case of the di↵erential calculus

over non-commutative rings. A construction of the Chevalley–Eilenberg

complex is generalized to an arbitrary ring, but an extension of the notion

of di↵erential operators to non-commutative rings meets di�culties. A key

point is that multiplication in a non-commutative ring is not a zero-order

di↵erential operator.

I.Krasil’shchik, V.Lychagin, A.Vinogradov, Geometry of Jet Spaces and

Nonlinear Partial Di↵erential Equations (Gordon and Breach, 1985).

G.Sardanashvily, Lectures on Di↵erential Geometry of Modules and

Rings (Lambert Academic Publishing, 2012); arXiv: 0910.1515.

In a case of graded commutative rings, one overcomes this di�culty by

means of reformulating the notion of di↵erential operators. In par-

ticular, derivations both of commutative and non-commutative rings A obey

the Leibniz rule

@(ab) = @(a)b + a@(b), a, b 2 A,

whereas the graded Leibniz rule for a graded commutative ring reads

@(ab) = @(a)b + (�1)[a][@]a@(b), a, b 2 A,

where [a] = 1, [@] = 1 for odd elements a 2 A and derivations @.
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Therefore, supergeometry is not particular non-commutative ge-

ometry.

Remark 1.1: All algebras throughout are associative, unless they are Lie

algebras and Lie superalgebras. By a ring is meant a unital algebra with

a unit element 1 6= 0. Given a commutative ring A, an additive group P

is called the A-module if it is provided with a distributive multiplication

A ⇥ P ! P by elements of A such that ap = pa for all a 2 A, p 2 P . A

module over a field is called the vector space. If a ring A is module over a

commutative ring K, it is said to be the K-ring. A module P is called free

if it admits a basis. A module is said to be of finite rank if it is the quotient

of a free module with a finite basis. One says that a module P is projective

if there exists a module Q such that P �Q is a free module. ⇤

Let K be a commutative ring, A a commutative K-ring, and let P and

Q be A-modules. A K-module Hom K(P, Q) of K-module homomorphisms

� : P ! Q can be endowed with two di↵erent A-module structures

(a�)(p) = a�(p), (� • a)(p) = �(ap), a 2 A, p 2 P.

Let us put �a� = a�� � • a, a 2 A.

DEFINITION 1.1: An element � 2 Hom K(P, Q) is called the linear s-

order Q-valued di↵erential operator on P if (�a0 � · · · � �as
)� = 0 for

any tuple of s + 1 elements a0, . . . , as of A. ⇤
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In particular, linear zero-order di↵erential operators obey conditions

�a�(p) = a�(p)��(ap) = 0, a 2 A, p 2 P,

and, consequently, they coincide with A-module morphisms P ! Q.

A linear first-order di↵erential operator � satisfies a relation

(�b � �a)�(p) = ba�(p)� b�(ap)� a�(bp) + �(abp) = 0, a, b 2 A.

For instance, a first-order di↵erential operator � on P = A obeys a condition

�(ab) = b�(a) + a�(b)� ba�(1), a, b 2 A.

DEFINITION 1.2: It is called a Q-valued derivation of A if �(1) = 0,

i.e., it satisfies the Leibniz rule

�(ab) = �(a)b + a�(b), a, b 2 A.

⇤

If @ is a derivation of A, then a@ is well for any a 2 A. Hence, derivations

of A constitute an A-module d(A, Q), called the derivation module of A.

If Q = A, the derivation module dA = d(A,A) of A also is a Lie algebra

over a ring K with respect to a Lie bracket

[u, u0] = u � u0 � u0 � u, u, u0 2 dA.
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A fact is that a linear s-order di↵erential operator on an A-module P is

represented by a zero-order di↵erential operator on a module of s-order jets

of P (Theorem 1.1 below).

DEFINITION 1.3: Given an A-module P , let A⌦K P be a tensor product

of K-modules A and P . We put

�b(a⌦ p) = (ba)⌦ p� a⌦ (bp), p 2 P, a, b 2 A.

Let us denote by µk+1 a submodule of A⌦K P generated by elements

�b0 � · · · � �bk(a⌦ p) = a�b0 � · · · � �bk(1⌦ p).

A k-order jet module J k(P ) of a module P is defined as the quotient of a

K-module A⌦K P by µk+1. Its elements c⌦k p are called the jets. ⇤

There exists a module morphism

Jk : P 3 p! 1⌦k p 2 J k(P ) (1.1)

such that J k(P ), seen as an A-module, is generated by jets Jkp, p 2 P .

THEOREM 1.1: Any linear k-order Q-valued di↵erential operator � on an

A-module P uniquely factorizes as

� : P
Jk�!J k(P )

f��!Q

through the morphism Jk (1.1) and some A-module homomorphism f� :

J k(P )! Q. ⇤

In view of this fact, one says that jet modules J k(P ) of a module P play

a role of the representative objects of linear di↵erential operators on P .
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Since the derivation module dA of a commutative K-ring A is a Lie K-

algebra, one can associate to A the Chevalley–Eilenberg complex O⇤[dA]

of di↵erential forms over A.

D.Fuks, Cohomology of Infinite-Dimensional Lie Algebras (Consul-

tants Bureau, 1986)

It consists of A-modules Ok[dA] of A-multilinear skew-symmetric maps

Ok[dA] = Hom A(
k⇥ dA,A) 3 � :

k⇥ dA! A, (1.2)

provided both with the Chevalley–Eilenberg coboundary operator

d�(u0, . . . , uk) =
kX

i=0

(�1)iui(�(u0, . . . , bui, . . . , uk)) + (1.3)

X

i<j

(�1)i+j�([ui, uj], u0, . . . , bui, . . . , buj, . . . , uk),

and the exterior product

� ^ �0(u1, ..., ur+s) = (1.4)
X

i1<···<ir;j1<···<js

sgni1···irj1···js

1···r+s �(ui1, . . . , uir)�
0(uj1, . . . , ujs

),

� 2 Or[dA], �0 2 Os[dA], uk 2 dA,

where sgn...
... denotes the sign of a permutation. They obey relations

� ^ �0 = (�1)|�||�
0|�0 ^ �,

d(� ^ �0) = d(�) ^ �0 + (�1)|�|� ^ d(�0), �, �0 2 O⇤[dA], (1.5)

and bring O⇤[dA] into a di↵erential graded ring (DGR).
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We also have the interior product uc� = �(u), u 2 dA, � 2 O1[dA]. It

is extended as

(uc�)(u1, . . . , uk�1) = k�(u, u1, . . . , uk�1), u 2 dA, � 2 O⇤[dA], (1.6)

to a DGR O⇤[dA], and obeys a relation

uc(� ^ �) = uc� ^ � + (�1)|�|� ^ uc�.

With the interior product (1.6), one defines a derivation (a Lie derivative)

Lu(�) = d(uc�) + ucd�, � 2 O⇤[dA],

Lu(� ^ �) = Lu(�) ^ � + � ^ Lu�,

of a graded ring O⇤[dA] for any u 2 dA. Then one can think of elements of

O⇤[dA] as being di↵erential forms over A.

The minimal Chevalley–Eilenberg complex O⇤A over a ring A consists of

the monomials a0da1^ · · ·^dak, ai 2 A. It is called the de Rham complex

of a K-ring A.
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1.2 Lagrangian formalism on smooth fibre bundles

In order to formulate Lagrangian formalism on smooth fibre bundles, let us

start with the di↵erential calculus on smooth manifolds.

Let X be a smooth manifold and C1(X) an R-ring of real smooth functions

on X. The di↵erential calculus on a smooth manifold X is defined

as that over a real commutative ring C1(X).

Remark 1.2: A smooth manifold throughout is a finite-dimensional real

manifold. It customarily is assumed to be a Hausdor↵ and second-countable

topological space. Consequently, it is a locally compact countable at infin-

ity space and paracompact space, which admits the partition of unity by

smooth real functions. Let us emphasize that the paracompactness is very

essential for a number of theorems in the sequel. ⇤

In a general setting, we follow the conventional definition of manifolds as

local-ringed spaces, i.e., sheaves in local rings. This is the case both of

smooth manifolds and graded manifolds in the sequel.

Let C1X be a sheaf of germs of smooth real functions on a smooth ma-

nifold X, i.e., smooth functions are identified if they coincide on an open

neighborhood of a point x 2 X. Its stalk C1x of germs at x 2 X has a unique

maximal ideal of germs of functions vanishing at x. Therefore, (X, C1X ) is a

local-ringed space. Though a sheaf C1X exists on a topological space X, it

fixes a unique smooth manifold structure on X as follows.
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THEOREM 1.2: Let X be a paracompact topological space and (X,A)

a local-ringed space. Let X admit an open cover {Ui} such that a sheaf A

restricted to each Ui is isomorphic to a local-ringed space (Rn, C1Rn). Then X

is an n-dimensional smooth manifold together with a natural isomorphism of

local-ringed spaces (X, A) and (X, C1X ). ⇤

One can think of this result as being an equivalent definition of smooth

real manifolds in terms of local-ringed spaces. A smooth manifold X also

is algebraically reproduced as a certain subspace of the spectrum of a real

ring C1(X) of smooth real functions on X.

Furthermore, the classical Serre–Swan theorem states the categorial

equivalence between vector bundles over a smooth manifold X and projective

modules of finite rank over the ring C1(X) of smooth real functions on X.

THEOREM 1.3: Let X be a smooth manifold. A C1(X)-module P is a

projective module of finite rank i↵ it is isomorphic to the structure module

Y (X) of global sections of some vector bundle Y ! X over X. ⇤

The following are COROLLARIES of this theorem.

• The derivation module of a real ring C1(X) coincides with a C1(X)-

module T1(X) of vector fields on X.

• Its C1(X)-dual O1(X) = T1(X)⇤ is the structure module O1(X) of the

cotangent bundle T ⇤X of X, i.e., a module of one-forms on X and, conversely,

T1(X) = O1(X)⇤.

• It follows that the Chevalley–Eilenberg complex of a real ring C1(X) is

exactly the de Rham complex (O⇤(X), d) of exterior forms on X.
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• Let Y ! X be a vector bundle and Y (X) its structure module. An

r-order jet module J r(Y (X)) of a C1(X)-module Y (X) is the structure

module JrY (X) of sections of an r-order jet bundle JrY ! X.

• Then by virtue of Theorem 1.1, a liner k-order di↵erential operator on a

projective C1(X)-module P of finite rank with values in a projective C1(X)-

module Q of finite rank is represented by a linear bundle morphism JkY ! E

of a jet bundle JkY ! X to a vector bundle E ! X where Y ! X and

E ! X are smooth vector bundles with structure modules Y (X) = P and

E(X) = Q in accordance with Serre–Swan Theorem 1.3.

Thus, the di↵erential calculus on a smooth manifold X leads to a Lie

algebra of vector fields on X, a DGR of exterior forms on X, jet manifolds of a

vector bundle over X as representative objects of linear di↵erential operators

on this vector bundle.

A key point is that the construction of jet manifolds as representative

objects of di↵erential operators is generalized to a case of non-linear

di↵erential operators on fibre bundles.
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Let Y ! X be a smooth fibre bundle provided with bundle coordinates

(x�, yi). An r-order jet manifold JrY of sections of a fibre bundle Y ! X is

defined as the disjoint union of equivalence classes jr
xs of sections s of Y ! X

which are identified by r + 1 terms of their Taylor series at points of X.

D.Saunders, The Geometry of Jet Bundles (Cambridge Univ. Press,

1989).

G.Sardanashvily, Advanced Di↵erential Geometry for Theoreticians.

Fibre bundles, jet manifolds and Lagrangian theory (Lambert Aca-

demic Publishing, 2013); arXiv: 0908.1886.

A set JrY is endowed with an atlas of adapted coordinates

(x�, yi
⇤), yi

⇤ � s = @⇤si(x), y0i�+⇤ =
@xµ

@0x�
dµy

0i
⇤, 0  |⇤|  r, (1.7)

where the symbol d� stands for the higher order total derivative

d� = @� +
X

0|⇤|r�1

yi
⇤+�@

⇤
i , d0� =

@xµ

@x0�
dµ.

We use the compact notation d⇤ = d�r
� · · · � d�1, ⇤ = (�r...�1). The coordi-

nates (1.7) brings a set JrY into a smooth manifold.

Given fibre bundles Y and Y 0 over X, every bundle morphism � : Y ! Y 0

over a di↵eomorphism f of X admits the r-order jet prolongation to a

morphism of r-order jet manifolds

Jr� : JrY 3 jr
xs! jr

f(x)(� � s � f�1) 2 JrY 0.

Every section s of a fibre bundle Y ! X has the r-order jet prolongation

to a section (Jrs)(x) = jr
xs of a jet bundle JrY ! X.
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There are natural surjections of jet manifolds

⇡r
r�1 : JrY ! Jr�1Y,

which form the inverse sequence of finite order jet manifolds

Y
⇡ � J1Y  � · · · Jr�1Y

⇡r
r�1 � JrY  � · · · . (1.8)

Its inverse limit J1Y is a minimal set so that there exist surjections

⇡1 : J1Y ! X, ⇡10 : J1Y ! Y, ⇡1k : J1Y ! JkY,

obeying the relations ⇡1r = ⇡k
r � ⇡1k , r < k. It consists of those elements

(. . . , zr, . . . , zk, . . .), zr 2 JrY, zk 2 JkY,

of the Cartesian product
Q
k

JkY which satisfy the relations zr = ⇡k
r (zk),

r < k. One can think of elements of J1Y as being infinite order jets of

sections of Y ! X identified by their Taylor series at points of X.

A set J1Y is provided with the inverse limit topology. This is the coarsest

topology such that the surjections ⇡1r are continuous. Its base consists of

inverse images of open subsets of JrY , r = 0, . . ., under the maps ⇡1r . With

the inverse limit topology, J1Y is a paracompact Fréchet manifold. A bundle

coordinate atlas {UY , (x�, yi)} of Y ! X provides J1Y with a manifold

coordinate atlas

{(⇡10 )�1(UY ), (x�, yi
⇤)}0|⇤|, y0i�+⇤ =

@xµ

@x0�
dµy

0i
⇤.

One calls J1Y the infinite order jet manifold.

F.Takens, A global version of the inverse problem of the calculus of variations,

J. Di↵. Geom. 14 (1979) 543.
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DEFINITION 1.4: Let Y ! X and E ! X be smooth fibre bundles.

A bundle morphism � : JkY ! E over X is called the E-valued k-order

di↵erential operator on Y . This di↵erential operator sends each section

s of Y ! X to the section � � Jks of E ! X. ⇤

Jet manifolds JkY of a fibre bundle Y ! X constitute the inverse sequence

(1.8) whose inverse limit is an infinite order jet manifold J1Y . Then any k-

order E-valued di↵erential operator � on a fibre bundle Y is defined by a

continuous bundle map

� � ⇡1r : J1Y �!
X

E.

In particular, di↵erential operators in Lagrangian theory on fibre bundles,

e.g., Euler–Lagrange and Helmholtz–Sonin operators are represented by cer-

tain exterior forms on finite order jet manifolds and, consequently, on J1Y .

The inverse sequence (1.8) of jet manifolds yields the direct sequence of

DGRs O⇤r = O⇤(JrY ) of exterior forms on finite order jet manifolds

O⇤(X)
⇡⇤�!O⇤(Y )

⇡1
0
⇤

�!O⇤1 �! · · · O⇤r�1
⇡r

r�1
⇤

�!O⇤r �! · · · , (1.9)

where ⇡r
r�1
⇤ are the pull-back monomorphisms. Its direct limit O⇤1Y con-

sists of all exterior forms on finite order jet manifolds modulo the pull-back

identification. It is a DGR which inherits operations of the exterior di↵eren-

tial d and the exterior product ^ of DGRs O⇤r .
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A DGR O⇤1Y is split into a variational bicomplex O⇤,⇤1 Y . Lagrangians L,

Euler–Lagrange operators EL = �L and the variational operator � are defined

as elements L 2 O0,n
1 , EL 2 O1,n

1 Y , n = dim X, and the coboundary operator

of this bicomplex. Its cohomology provides the global variational formula

dL = EL � dH⌅L,

where EL is an Euler–Lagrange operator and ⌅L is a Lepage equivalent of L.

G.Sardanashvily, Cohomology of the variational complex in the class of ex-

terior forms of finite jet order, Int. J. Math. & Math. Sci. 30 (2002)

39.

We reproduce these results below in the framework of a graded Lagrangian

formalism

It should be emphasized that we deal with a variational bicomplex of the

DGR O⇤1Y of di↵erential forms of bounded jet order on an infinite order

jet manifold J1Y . They are exterior forms on finite order jet manifolds

JrY modulo the pull-back identification. One also considers a variational

bicomplex of a DGR Q⇤1Y of di↵erential forms of locally finite jet order

on J1Y , which are di↵erential forms on finite order jet manifolds only locally

on an open neighborhood of each point of J1Y .

I.Anderson, Introduction to the variational bicomplex. Contemp. Math.

132, 51-73 (1992)
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A fact is that J1Y is a paracompact topological space which admits the

partition of unity by elements of a ring Q0
1Y , but not O0

1Y . Therefore, one

can apply the abstract de Rham theorem in order to find the cohomology of

Q⇤1Y . Then we proved that the cohomology of O⇤1Y equals that of Q⇤1Y .

In a di↵erent way, variational sequences of finite jet order are considered.

D.Krupka, Introduction to Global Variational Geometry (Springer,

2015).

M.Palese, O.Rossi, E.Winterroth, J.Musilová, Variational Sequences, Repre-

sentation Sequences and Applications in Physics, SIGMA 12 (2016) 045.
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1.3 Di↵erential calculus over graded commutative rings

If there is no danger of confusion, by the term graded throughout is meant

Z2-graded.

Let K be a commutative ring. A K-module Q is called graded (i.e., Z2-

graded) if it is decomposed into a direct sum Q = Q⇤ = Q0�Q1 of modules Q0

and Q1, called the even and odd parts of Q⇤, respectively. A Z2-graded K-

module is said to be free if it has a basis composed by homogeneous elements.

A morphism � : P⇤ ! Q⇤ of graded K-modules is said to be an even

(resp. odd) morphism if � preserves (resp. changes) the Z2-parity of all

homogeneous elements. A morphism � : P⇤ ! Q⇤ of graded K-modules is

called graded if it is represented by a sum of even and odd morphisms. A

set Hom K(P, Q) of these graded morphisms is a graded K-module.

DEFINITION 1.5: A K-ring A is called graded (i.e., Z2-graded) if it is

a graded K-module A⇤, and a product of its homogeneous elements ↵↵0 is a

homogeneous element of degree ([a] + [a0])mod 2. In particular, [1] = 0. Its

even part A0 is a K-ring, and the odd one A1 is an A0-module. ⇤

DEFINITION 1.6: A graded ring A⇤ is called graded commutative if

aa0 = (�1)[a][a0]a0a, a, a0 2 A⇤.

⇤

A graded commutative ring can admit di↵erent graded commutative struc-

tures A⇤ in general.
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By automorphisms of a graded commutative ring A⇤ are meant au-

tomorphisms of a K-ring A which are graded K-module morphisms of A⇤.
Obviously, they are even, and they preserve a graded structure of A. How-

ever, there exist automorphisms � of a K-ring A which do not possess this

property in general. Then A⇤ and �(A⇤) are isomorphic, but di↵erent graded

commutative structures of a ring A. Moreover, it may happen that a K-ring

A admits non-isomorphic graded commutative structures.

Example 1.3: Given a graded commutative ring A⇤ and its odd element

, an automorphism

� : A0 3 a! a, A1 3 a! a(1 + ),

of a K-ring A does not preserve its original graded structure A⇤. ⇤

Given a graded commutative ring A⇤, a graded A⇤-module Q⇤ is defined

as an (A�A)-bimodule which is a graded K-module such that

[aq] = ([a] + [q])mod 2, qa = (�1)[a][q]aq, a 2 A⇤, q 2 Q⇤.

The following are constructions of new graded modules from the old ones.

• A direct sum of graded modules and a graded factor module are

defined just as those of modules over a commutative ring.

• A tensor product P⇤ ⌦ Q⇤ of graded A⇤-modules P⇤ and Q⇤ is their

tensor product as A-modules such that

[p⌦ q] = ([p] + [q]) mod 2, p 2 P⇤, q 2 Q⇤,

ap⌦ q = (�1)[p][a]pa⌦ q = (�1)[p][a]p⌦ aq, a 2 A⇤.
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• In particular, the tensor algebra

⌦P = A� P � · · ·� (
k⌦
A

P )� · · ·

of an A⇤-module P⇤ is defined just as that of a module over a commutative

ring. Its quotient ^P⇤ with respect to the ideal generated by elements

p⌦ p0 + (�1)[p][p0]p0 ⌦ p, p, p0 2 P⇤,

is the exterior algebra of a graded module P⇤ with respect to the graded

exterior product

p ^ p0 = �(�1)[p][p0]p0 ^ p. (1.10)

• A graded morphism � : P⇤ ! Q⇤ of graded A⇤-modules is their

graded morphism as graded K-modules which obeys the relations

�(ap) = (�1)[�][a]a�(p), p 2 P⇤, a 2 A⇤. (1.11)

These morphisms form a graded A⇤-module Hom A(P⇤, Q⇤). A graded A⇤-
module P ⇤ = Hom A(P⇤,A⇤) is called the dual of a graded A⇤-module P⇤.

In the sequel, we are concerned with graded manifolds. They are sheaves

in Grassmann algebras, whose derivations form a Lie superalgebra. They are

defined as follows.

A graded commutative K-ring ⇤⇤ is said to be the Grassmann algebra

if the following hold.

• It is finitely generated in degree 1, i.e., it is a free K-module of finite

rank so that ⇤0 = K � ⇤2
1 and, consequently,

⇤ = K �R, R = ⇤1 � (⇤1)
2,
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where R is the ideal of nilpotents of a ring ⇤. A surjection � : ⇤ ! K is

called the body map.

• It is isomorphic to the exterior algebra ^(R/R2) of a K-module R/R2

where R is the ideal of nilpotents of ⇤⇤.

An exterior algebra ^Q of a free K-module Q of finite rank is a Grassmann

algebra. Conversely, a Grassmann algebra admits a structure of an exterior

algebra ^Q by a choice of its minimal generating K-module Q ⇢ ⇤1, and all

these structures are mutually isomorphic if K is a field.

Let A⇤ be a graded commutative ring. A graded A⇤-algebra g⇤ is called

the Lie A⇤-superalgebra if its product [., .], called the Lie superbracket,

obeys the rules

[", "0] = �(�1)["]["0]["0, "],

(�1)["]["00][", ["0, "00]] + (�1)["0]["]["0, ["00, "]] + (�1)["00]["0]["00, [", "0]] = 0.

Clearly, an even part g0 of a Lie superalgebra g⇤ is a Lie A0-algebra. Given

an A⇤-superalgebra, a graded A⇤-module P⇤ is called a g⇤-module if it is

provided with an A⇤-bilinear map

g⇤ ⇥ P⇤ 3 (", p)! "p 2 P⇤, ["p] = (["] + [p])mod 2,

[", "0]p = (" � "0 � (�1)["]["0]"0 � ")p.
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The di↵erential calculus over graded commutative rings is defined similarly

to that over commutative rings, but it di↵ers from the di↵erential calculus

over non-commutative rings.

G.Sardanashvily, Advanced Di↵erential Geometry for Theoreticians.

Fibre bundles, jet manifolds and Lagrangian theory (Lambert Aca-

demic Publishing, 2013); arXiv: 0908.1886.

Let K be a commutative ring and A a graded commutative K-ring. Let P

and Q be graded A-modules. A graded K-module Hom K(P, Q) of graded K-

module homomorphisms � : P ! Q admits two graded A-module structures

(a�)(p) = a�(p), (� • a)(p) = �(ap), a 2 A, p 2 P.

Let us put

�a� = a�� (�1)[a][�]� • a, a 2 A.

DEFINITION 1.7: An element � 2 Hom K(P, Q) is said to be the Q-valued

graded di↵erential operator of order s on P if

�a0 � · · · � �as
� = 0

for any tuple of s + 1 elements a0, . . . , as of A. A set Di↵ s(P, Q) of these

operators is a graded A-module. ⇤

In particular, zero-order graded di↵erential operators coincide with

graded A-module morphisms P ! Q.
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A first-order graded di↵erential operator � satisfies a relation

�a � �b �(p) = ab�(p)� (�1)([b]+[�])[a]b�(ap)� (�1)[b][�]a�(bp) +

(�1)[b][�]+([�]+[b])[a]�(bap) = 0, a, b 2 A, p 2 P.

For instance, a first-order graded di↵erential operator � on P = A fulfils a

condition

�(ab) = �(a)b + (�1)[a][�]a�(b)� (�1)([b]+[a])[�]ab�(1), a, b 2 A.

DEFINITION 1.8: It is called the Q-valued graded derivation of A if

�(1) = 0, i.e., if it obeys the graded Leibniz rule

�(ab) = �(a)b + (�1)[a][�]a�(b), a, b 2 A.

⇤

If @ is a graded derivation of A, then a@ is so for any a 2 A. Hence, graded

derivations of A constitute a graded A-module d(A, Q), called the graded

derivation module.

If Q = A, the graded derivation module dA = d(A,A) also is a Lie K-

superalgebra with respect to the superbracket

[u, u0] = u � u0 � (�1)[u][u0]u0 � u, u, u0 2 A.
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Since the graded derivation module dA of a graded commutative ring A
is a Lie K-superalgebra, one can consider the Chevalley–Eilenberg complex

O⇤[dA] whose cochains are graded A-modules

Ck[dA;A] = Hom A(
k^ dA,A)

of A-linear graded morphisms of graded exterior products
k^ dA of a graded

A-module dA to A, seen as a dA-module.

Let us bring homogeneous elements of
k^ dA into a form

"1 ^ · · · "r ^ ✏r+1 ^ · · · ^ ✏k, "i 2 dA0, ✏j 2 dA1.

Then a Chevalley–Eilenberg coboundary operator d of a complex O⇤[dA],

called the graded exterior di↵erential reads

dc("1 ^ · · · ^ "r ^ ✏1 ^ · · · ^ ✏s) =
rX

i=1

(�1)i�1"ic("1 ^ · · · b"i · · · ^ "r ^ ✏1 ^ · · · ✏s) +

sX

j=1

(�1)r✏jc("1 ^ · · · ^ "r ^ ✏1 ^ · · ·b✏j · · · ^ ✏s) +

X

1i<jr

(�1)i+jc(["i, "j] ^ "1 ^ · · · b"i · · · b"j · · · ^ "r ^ ✏1 ^ · · · ^ ✏s) +

X

1i<js

c([✏i, ✏j] ^ "1 ^ · · · ^ "r ^ ✏1 ^ · · ·b✏i · · ·b✏j · · · ^ ✏s) +

X

1i<r,1js

(�1)i+r+1c(["i, ✏j] ^ "1 ^ · · · b"i · · · ^ "r ^ ✏1 ^ · · ·b✏j · · · ^ ✏s),

where the caret b denotes omission.
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A graded module O⇤[dA] is provided with the graded exterior product

� ^ �0(u1, ..., ur+s) =
X

i1<···<ir;j1<···<js

Sgni1···irj1···js

1···r+s �(ui1, . . . , uir)�
0(uj1, . . . , ujs

),

� 2 Or[dA], �0 2 Os[dA], uk 2 dA,

where u1, . . . , ur+s are graded-homogeneous elements of dA and

u1 ^ · · · ^ ur+s = Sgni1···irj1···js

1···r+s ui1 ^ · · · ^ uir ^ uj1 ^ · · · ^ ujs
.

A graded di↵erential d and a graded exterior product ^ bring O⇤[dA] into

a di↵erential bigraded ring (DBGR) whose elements obey relations

� ^ �0 = (�1)|�||�
0|+[�][�0]�0 ^ �, d(� ^ �0) = d� ^ �0 + (�1)|�|� ^ d�0.

It is called the graded Chevalley–Eilenberg di↵erential calculus over

a graded commutative K-ring A.

In particular, O1[dA] = Hom A(dA,A) = dA⇤ is the dual of the derivation

module dA⇤. One can extend this duality relation to the graded interior

product of u 2 dA with any element � 2 O⇤[dA] by the rules

uc(bda) = (�1)[u][b]bu(a), a, b 2 A,

uc(� ^ �0) = (uc�) ^ �0 + (�1)|�|+[�][u]� ^ (uc�0).

As a consequence, a graded derivation u 2 dA of A yields a graded derivation

Lu� = ucd� + d(uc�), � 2 O⇤[dA], u 2 dA,

Lu(� ^ �0) = Lu(�) ^ �0 + (�1)[u][�]� ^ Lu(�
0),

termed the graded Lie derivative of a DBGR O⇤[dA].
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The minimal graded Chevalley–Eilenberg di↵erential calculus

O⇤A ⇢ O⇤[dA] over a graded commutative ring A consists of monomials

a0da1 ^ · · · ^ dak, ai 2 A. The corresponding complex

0! K �!A d�!O1A d�! · · · OkA d�! · · ·

is called the de Rham complex of a graded commutative K-ring A.

Let us note that, if A = A0 is a commutative ring, graded di↵erential op-

erators and the graded Chevalley–Eilenberg di↵erential calculus are reduced

to the familiar commutative di↵erential calculus.
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1.4 Di↵erential calculus on graded manifolds

As was mentioned above, we follow the Serre – Swan theorem extended

to graded manifolds. It states that, if a graded commutative C1(X)-ring is

generated by a projective C1(X)-module of finite rank, it is isomorphic to a

ring of graded functions on a graded manifold whose body is X. Therefore,

we aim to develop Lagrangian formalism of graded (even and odd)

variables in terms just of graded manifolds.

Accordingly to a general concept of a manifold as a local-ringed space, a

graded manifold has been defined as a sheaf on a smooth body manifold

in local graded commutative algebras which are real Grassmann algebras.

C. Bartocci, U.Bruzzo, D.Hernández Ruipérez, The Geometry of Super-

manifolds (Kluwer Academic Publ., 1991).

We start with the conventional notion of a Z2-graded manifold. It is a

local-ringed space (Z,A) where Z is an n-dimensional smooth manifold, and

A = A0 � A1 is a sheaf in real Grassmann algebras ⇤ such that:

• there is the exact sequence of sheaves

0! R! A
�!C1Z ! 0, R = A1 + (A1)

2,

where C1Z is the sheaf of smooth real functions on Z;

• R/R2 is a locally free sheaf of C1Z -modules of finite rank (with respect

to pointwise operations), and the sheaf A is locally isomorphic to the exterior

product ^C1
Z

(R/R2).
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A sheaf A is called the structure sheaf of a graded manifold (Z,A), its

stalk (a fibre) at a point z 2 Z is the tensor product C1z ⌦R ⇤. A manifold

Z is said to be the body of (Z,A). Sections of the sheaf A are termed the

graded functions on a graded manifold (Z,A). They make up a graded

commutative C1(Z)-ring A(Z) called the structure ring of (Z,A).

By virtue of the well-known Batchelor theorem, graded manifolds pos-

sess the following structure.

THEOREM 1.4: Let (Z,A) be a graded manifold. There exists a vector

bundle E ! Z with an m-dimensional typical fibre V such that the structure

sheaf A of (Z,A) as a sheaf in real rings is isomorphic to the structure sheaf

AE = ^E⇤Z of germs of sections of the exterior bundle

^E⇤ = (Z ⇥ R)�
Z

E⇤ �
Z
^E⇤ �

Z

2^E⇤ · · · ,

whose typical fibre is the Grassmann algebra ⇤ = ^V ⇤. ⇤

Note that Batchelor’s isomorphism in Theorem 1.4 is not canoni-

cal.

Combining Batchelor Theorem 1.4 and classical Serre–Swan Theorem, we

come to the above mentioned Serre–Swan theorem for graded mani-

folds.

THEOREM 1.5: Let Z be a smooth manifold. A graded commutative

C1(Z)-ring A is isomorphic to the structure ring of a graded manifold with

a body Z if and only if it is the exterior algebra of some projective C1(Z)-

module of finite rank. ⇤
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In fact, the structure sheaf AE of a Z2-graded manifold (Z,A) in Theorem

1.4 is a sheaf in N-graded commutative rings ⇤⇤ = ^V whose N-graded

structure is fixed.

Remark 1.4: Let K be a commutative ring. A direct sum of K-modules

P = P ⇤ = �
i2N

P i (1.12)

is called the N-graded K-module. A K-ring A is called N-graded if it is

an N-graded K-module A⇤ (1.12) so that a product of homogeneous elements

↵↵0 is a homogeneous element of degree [↵] + [↵0]. Any N-graded K-module

P (1.12) admits the associated Z2-graded structure

P = P0 � P1, P0 = �
i2N

P 2i, P1 = �
i2N

P 2i+1.

Accordingly, an N-graded ring A⇤ also is the Z2-graded one A⇤. The con-

verse is not true. An N-graded K-ring A⇤ is said to be graded commu-

tative if

↵� = (�1)[↵][�]�↵, ↵, � 2 A⇤.

An N-graded commutative ringA⇤ possesses an associated Z2-graded com-

mutative structure

A0 = �
k
A2k, A1 = �

k
A2k+1, k 2 N,

↵� = (�1)[↵][�]�↵, ↵, � 2 A⇤.

The converse need not be true. However, a Grassmann algebra ⇤ possess

an associated N-graded structure of an exterior algebra ⇤ = ⇤⇤ = ^⇤1, which

is not unique. ⇤
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Hereafter, we consider a Z2-graded manifold (Z,A) when its Batchelor’s

isomorphism (Z,A = AE) holds. Why?

• Though Batchelor’s isomorphism is not canonical, in applications it is

fixed from the beginning as a rule.

• From the mathematical viewpoint, we restrict our considerations to mor-

phisms which preserve a fixed N-graded structure.

Example 1.5: Let ⇤ be a real Grassmann algebra. Its associated N-graded

structure is defined by a choice of a minimal generating vector space ⇤1 ⇢ ⇤1.

Given a basis {ci} for ⇤1, elements of a Grassmann algebra ⇤ take a form

a =
X

k=0,1,...

X
ai1···ikc

i1 · · · cik, ai1···ikc
i1 2 R.

We call {ci} the generating basis for a Grassmann algebra ⇤. Then one can

show that any ring automorphism of ⇤ is a compositions of automorphisms

ci ! c0i = ⇢i
jc

j + bi, (1.13)

where ⇢ is an automorphism of a vector space ⇤1 and bi are odd elements of

⇤>2, and of morphisms

ci ! c0i = ci(1 + ),  2 ⇤1. (1.14)

Automorphisms (1.13), where bi = 0, preserve the N-graded structure ⇤⇤. If

bi 6= 0, they keep a Z2-graded structure of ⇤, but not the N-graded one ⇤⇤.

Automorphisms (1.14) preserve an even sector ⇤0 of ⇤, but not the odd one

⇤1. However, one can show that di↵erent N- and Z2-graded structures of a

real Grassmann algebra are mutually isomorphic. ⇤
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Thus, we further deal with graded manifolds (Z,AE) which are N-

graded.

A graded manifold (Z,AE) is said to be modelled over a vector bundle

E ! Z, and E is called its characteristic vector bundle. Its structure

ring AE is the structure module AE = ^E⇤(Z) of sections of the exterior

bundle ^E⇤.

A key point is that automorphisms of an N-graded manifold (Z,AE)

are restricted to those induced by automorphisms of its characteristic vector

bundle E ! Z.

Remark 1.6: One can treat a local-ringed space (Z,A0 = C1Z ) as a trivial

graded manifold whose characteristic vector bundle is E = Z ⇥ {0}. Its

structure module is a ring C1(Z) of smooth real functions on Z. ⇤

Given a graded manifold (Z,AE), every trivialization chart (U ; zA, ya) of

its characteristic vector bundle E ! Z yields a splitting domain (U ; zA, ca)

of (Z,AE). Graded functions on such a chart are ⇤-valued functions

f =
mX

k=0

1

k!
fa1...ak

(z)ca1 · · · cak, (1.15)

where fa1···ak
(z) are smooth functions on U and {ca} is the fibre basis for E⇤.

One calls {zA, ca} the local basis for a graded manifold (Z,AE). Transition

functions y0a = ⇢a
b(z

A)yb of bundle coordinates on E ! Z induce the cor-

responding transformation c0a = ⇢a
b(z

A)cb of the associated local basis for a

graded manifold (Z,AE) and the according coordinate transformation law of

graded functions (1.15).
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The following is an essential peculiarity of an N-graded manifold (Z,AE)

in comparison with the Z2-graded ones.

THEOREM 1.6: Derivations of the structure module AE of a graded ma-

nifold (Z,AE) are represented by sections of a vector bundle

VE = ^E⇤ ⌦
E

TE ! Z. (1.16)

⇤

Due to the canonical splitting V E = E⇥E, the vertical tangent bundle V E

of E ! Z can be provided with fibre bases {@a}, which are the duals of bases

{ca}. Then graded derivations of AE on a splitting domain (U ; zA, ca) of

(Z,AE) read

u = uA@A + ua@a, [@A] = 0, [@a] = 1, (1.17)

@A@B = @B@A, @A@a = @a@A, @a@b = �@b@a,

where u�, ua are local graded functions on U possessing a transformation law

u0A = uA, u0a = ⇢a
ju

j + uA@A(⇢a
j )c

j.

The graded derivations (1.17) are called graded vector fields on a graded

manifold (Z,AE). They act on graded functions f 2 AE(U) by a rule

u(fa...bc
a · · · cb) = uA@A(fa...b)c

a · · · cb + ukfa...b@kc(ca · · · cb).

In accordance with Theorem 1.6, the graded derivation module dAE

is isomorphic to the structure module VE(Z) of global sections of the vector

bundle VE ! Z (1.16). It is a real Lie superalgebra.
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Given the structure ring AE of graded functions on a graded manifold

(Z,AE) and the real Lie superalgebra dAE of its graded derivations, we con-

sider the graded Chevalley–Eilenberg di↵erential calculus S⇤[E; Z] = O⇤[dAE]:

0! R! AE
d�!S1[E; Z]

d�! · · · Sk[E; Z]
d�! · · · , (1.18)

over S0[E; Z] = AE. Since a graded derivation module dAE is the structure

module of sections of a vector bundle VE ! Z, elements of S⇤[E; Z] are

represented by sections of the exterior bundle ^VE of the AE-dual

VE = ^E⇤ ⌦
E

T ⇤E ! Z (1.19)

of VE. With respect to the dual fibre bases {dzA} for T ⇤Z and {dcb} for E⇤,

sections of VE (1.19) take a local form

� = �AdzA + �adca, �0a = ⇢�1b
a�b, �0A = �A + ⇢�1b

a@A(⇢a
j )�bc

j.

The duality relation S1[E; Z] = dA⇤E is given by a graded interior product

uc� = uA�A + (�1)[�a]ua�a.

The graded exterior di↵erential reads

d� = dzA ^ @A� + dca ^ @a�.

Elements of a DBGR S⇤[E; Z] are called the graded di↵erential forms

on a graded manifold (Z,AE). Seen as an AE-ring, S⇤[E; Z] on a splitting

domain (zA, ca) is locally generated by even and odd one-forms dzA and dci.
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Cohomology of the DBGR S⇤[E; Z] (1.18) is called the de Rham coho-

mology of a graded manifold (Z,AE). It equals the de Rham cohomol-

ogy of its body Z. In particular, there exist both a cochain monomorphism

O⇤(Z)! S⇤[E; Z] and a cochain body epimorphism S⇤[E; Z]! O⇤(Z).

G.Sardanashvily, Graded infinite order jet manifolds, Int. J. Geom. Meth-

ods Mod. Phys. 4 (2007) 1335-1362.

A morphism of graded manifolds (Z,A)! (Z 0, A0) is defined as that

of local-ringed spaces � : Z ! Z 0, b� : A0 ! �⇤A, where � is a manifold

morphism and b� is a sheaf morphism of A0 to the direct image �⇤A of A onto

Z 0. This morphism of graded manifolds is said to be:

• a monomorphism if � is an injection and b� is an epimorphism, and

• an epimorphism if � is a surjection and b� is a monomorphism.

An epimorphism of graded manifolds (Z,A) ! (Z 0, A0) where Z ! Z 0 is

a fibre bundle is called the graded bundle.

D.Hernández Ruipérez, J.Muñoz Masqué, Global variational calculus on graded

manifolds. J. Math. Pures Appl. 63 (1984) 283-309.

T.Stavracou, Theory of connections on graded principal bundles, Rev. Math.

Phys. 10 (1998) 47-79.
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In particular, let (Y, A) be a graded manifold whose body is a fibre bundle

Y ! X. Let us consider a trivial graded manifold (X, A0 = C1X ). Then we

have a graded bundle

(Y,A)! (X, C1X ). (1.20)

Let us denote it by (X,Y, A). Given a graded bundle (X, Y, A), the local

basis for a graded manifold (Y, A) can take a form (x�, yi, ca) where (x�, yi)

are bundle coordinates of Y ! X. Therefore, we agree to call the graded

bundle (1.20) over a trivial graded manifold (X, C1X ) the graded bundle

over a smooth manifold.

Note that a graded manifold (X, A) itself can be treated as the graded

bundle (X, X, A) (1.20) associated to the identity smooth bundle X ! X.

Let E ! Z and E 0 ! Z 0 be vector bundles and � : E ! E 0 their bundle

morphism over a morphism � : Z ! Z 0. A bundle morphism (�, �) induces

a morphism of graded manifolds

(Z,AE)! (Z 0, AE0). (1.21)

It is a monomorphism (resp. epimorphism) if � is a bundle injection (resp.

surjection). In particular, the graded manifold morphism (1.21) is a graded

bundle if � is a fibre bundle. Let AE0 ! AE be the corresponding pull-

back monomorphism of the structure rings. It yields a monomorphism of the

DBGRs

S⇤[E 0; Z 0]! S⇤[E; Z].
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In order to formulate Lagrangian theory both of even and odd variables,

let us consider graded manifolds whose body is a fibre bundle Y ! X.

Let (Y,AF ) be a graded manifold modelled over a vector bundle F ! Y .

This is a graded bundle (X, Y, AF ):

(Y, AF )! (X, C1X ), (1.22)

modelled over a composite bundle

F ! Y ! X. (1.23)

The structure ring of graded functions on a graded manifold (Y,AF ) is the

graded commutative C1(X)-ring AF = ^F ⇤(Y ). Let the composite bundle

(1.23) be provided with adapted bundle coordinates (x�, yi, qa) possessing

transition functions

x0�(xµ), y0i(xµ, yj), q0a = ⇢a
b(x

µ, yj)qb.

Then the corresponding basis for a graded manifold (Y,AF ) is (x�, yi, ca)

together with transition functions c0a = ⇢a
b(x

µ, jj)cb. We call it the local

basis for a graded bundle (X, Y, AF ) (1.22).

As was shown above, the di↵erential calculus on a fibre bundle Y ! X is

formulated in terms of jet manifolds J⇤Y of Y . Being fibre bundles over X,

they can be regarded as trivial graded bundles (X, JkY,C1JkY ). We describe

their partners in a case of graded bundles as follows.
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Let us note that, given a graded manifold (X, AE) and its structure ring

AE, one can define the jet module J1AE of a C1(X)-ring AE. It is a module

of global sections of the jet bundle J1(^E⇤). A problem is that J1AE fails

to be a structure ring of some graded manifold. By this reason, we have

suggested a di↵erent construction of jets of graded manifolds (Definition 1.9),

though it is applied only to N-graded manifolds.

Let (X,AE) be a graded manifold modelled over a vector bundle E ! X.

Let us consider a k-order jet manifold JkE of E. It is a vector bundle over

X. Then let (X,AJkE) be a graded manifold modelled over JkE ! X.

DEFINITION 1.9: We call (X,AJkE) the graded jet manifold of a

graded manifold (X,AE). ⇤

Given a splitting domain (U ; x�, ca) of a graded manifold (Z,AE), the

adapted splitting domain of a graded jet manifold (X,AJkE) reads

(U ; x�, ca, ca
�, c

a
�1�2

, . . . ca
�1...�k

), c0a��1...�r
= ⇢a

b(x)ca
��1...�r

+ @�⇢
a
b(x)ca

�1...�r
.

As was mentioned above, a graded manifold is a particular graded bundle

over its body. Then Definition 1.9 of graded jet manifolds is generalized to

graded bundles over smooth manifolds as follows.

Let (X, Y, AF ) be the graded bundle (1.22) modelled over the composite

bundle F ! Y ! X (1.23). It is readily observed that the jet manifold

JrF of F ! X is a vector bundle JrF ! JrY coordinated by (x�, yi
⇤, qa

⇤),

0  |⇤|  r. Let (JrY,AJrF ) be a graded manifold modelled over this vector

bundle. Its local generating basis is (x�, yi
⇤, ca

⇤), 0  |⇤|  r.
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DEFINITION 1.10: We call (JrY, AJrF ) the graded jet manifold of a

graded bundle (X, Y, AF ). ⇤

In particular, let Y ! X be a smooth bundle seen as a trivial graded

bundle (X, Y, C1Y ) modelled over a composite bundle Y ⇥ {0} ! Y ! X.

Then its graded jet manifold is a trivial graded bundle (X, JrY, C1JrY ), i.e.,

the jet manifold JrY of Y . Thus, Definition 1.10 of graded jet manifolds of

graded bundles is compatible with the definition of jets of fibre bundles.

The a�ne bundles Jr+1Y ! JrY and the corresponding fibre bundles

Jr+1F ! JrF also yield the graded bundles

(Jr+1Y,AJr+1F )! (JrY,AJrF ).

As a consequence, we have the inverse sequence of graded manifolds

(Y,AF )  �(J1Y,AJ1F ) � · · · (Jr�1Y,AJr�1F )  �(JrY,AJrF ) · · · . (1.24)

One can think of its inverse limit (J1Y, AJ1F ) as being the graded infi-

nite order jet manifold whose body is an infinite order jet manifold J1Y

and whose structure sheaf AJ1F is a sheaf of germs of graded functions on

graded manifolds (J⇤Y,AJ⇤F ). However (J1Y,AJ1F ) is not a graded mani-

fold in a strict sense because J1Y is not a smooth manifold.

The inverse system of graded jet manifolds (1.24) yields a direct system

S⇤[F ; Y ]
⇡⇤�!S⇤1 [F ; Y ] �! · · · S⇤r�1[F ; Y ]

⇡r⇤
r�1�!S⇤r [F ; Y ] �! · · · ,(1.25)

⇡r+1⇤
r : S⇤r [F ; Y ]! S⇤r+1[F ; Y ], S⇤k [F ; Y ] = S⇤[JkF ; JkY ],

where ⇡r+1⇤
r are the pull-back monomorphisms of DBGRs.
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The DBGR S⇤1[F ; Y ] associated to a graded bundle (X, Y, AF ) is defined

as the direct limit of the direct system (1.25). It include all graded dif-

ferential forms � 2 S⇤r [F ; Y ] on graded manifolds (JrY,AJrF ) modulo the

monomorphisms ⇡r+1⇤
r .

THEOREM 1.7: There is an isomorphism H⇤(S⇤1[F ; Y ]) = H⇤DR(Y ) of the

cohomology H⇤(S⇤1[F ; Y ]) of the de Rham complex

0! R �!S0
1[F ; Y ]

d�!S1
1[F ; Y ] · · · d�!Sk

1[F ; Y ] �! · · ·

of a DBGR S⇤1[F ; Y ] to the de Rham cohomology H⇤DR(Y ) of Y . ⇤

In particular, monomorphismsO⇤(JrY )! S⇤r [F ; Y ] yield a cochain monomor-

phism of complexes O⇤1Y ! S⇤1[F ; Y ], and body epimorphisms S⇤r [F ; Y ]!
O⇤rY define a cochain epimorphism S⇤1[F ; Y ]! O⇤1Y .

One can think of elements of S⇤1[F ; Y ] as being graded di↵erential

forms on an infinite order jet manifold J1Y in the sense that S⇤1[F ; Y ]

is a submodule of the structure module of sections of some sheaf on J1Y . In

particular, one can restrict S⇤1[F ; Y ] to a coordinate chart of J1Y so that

S⇤1[F ; Y ] as an O0
1Y -algebra is locally generated by the elements

(ca
⇤, dx�, ✓a

⇤ = dca
⇤ � ca

�+⇤dx�, ✓i
⇤ = dyi

⇤ � yi
�+⇤dx�), 0  |⇤|,

where ca
⇤, ✓a

⇤ are odd and dx�, ✓i
⇤ are even. We agree to call (yi, ca) the

local generating basis for S⇤1[F ; Y ]. Let the collective symbol sA stand for

its elements. We further denote [A] = [sA].
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1.5 Lagrangian theory of even and odd variables on graded bun-

dles

Similarly to DGR O⇤1Y of di↵erential forms on jet manifolds JrY in La-

grangian formalism on a fibre bundle Y ! X, a DBGR S⇤1[F ; Y ] of graded

di↵erential forms is split into a graded variational bicomplex which provides

Lagrangian theory of graded (even and odd) variables.

Let (X, Y, AF ) be a graded bundle modelled over a composite bundle

F ! Y ! X over an n-dimensional smooth manifold X, and let S⇤1[F ; Y ]

be the associated DBGA of graded exterior forms on graded jet manifolds

of (X, Y, AF ). A DBGA S⇤1[F ; Y ] is decomposed into S0
1[F ; Y ]-modules

Sk,r
1 [F ; Y ] of k-contact and r-horizontal graded forms together with the cor-

responding projections

hk : S⇤1[F ; Y ]! Sk,⇤
1 [F ; Y ], hm : S⇤1[F ; Y ]! S⇤,m1 [F ; Y ].

Accordingly, the graded exterior di↵erential d on S⇤1[F ; Y ] falls into a sum

d = dV + dH of the vertical and total graded di↵erentials

dV � hm = hm � d � hm, dV (�) = ✓A
⇤ ^ @⇤

A�, � 2 S⇤1[F ; Y ],

dH � hk = hk � d � hk, dH � h0 = h0 � d, dH(�) = dx� ^ d�(�),

d� = @� +
X

sA
�+⇤@⇤

A,

where d� are graded total derivatives. These di↵erentials obey the nilpo-

tent relations

dH � dH = 0, dV � dV = 0, dH � dV + dV � dH = 0.
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A DBGA S⇤1[F ; Y ] also is provided with the graded projection morphism

% =
X

k>0

1

k
% � hk � hn : S⇤>0,n

1 [F ; Y ]! S⇤>0,n
1 [F ; Y ],

%(�) =
X

(�1)|⇤|✓A ^ [d⇤(@⇤
Ac�)], � 2 S>0,n

1 [F ; Y ],

such that %�dH = 0, and with the nilpotent graded variational operator

� = % � d : S⇤,n1 [F ; Y ]! S⇤+1,n
1 [F ; Y ].

With these operators a DBGA S⇤,1[F ; Y ] is decomposed into the graded

variational bicomplex

...
...

...
...

dV 6 dV 6 dV 6 �� 6

0! S1,0
1

dH! S1,1
1

dH! · · · S1,n
1

%! E1 ! 0

dV 6 dV 6 dV 6 �� 6

0!R! S0
1

dH! S0,1
1

dH! · · · S0,n
1 ⌘ S0,n

1

6 6 6

0!R! O0(X)
d! O1(X)

d! · · · On(X)
d! 0

6 6 6

0 0 0

where S⇤1 = S⇤1[F ; Y ] and Ek = %(Sk,n
1 [F ; Y ]).
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We restrict our consideration to a short variational subcomplex

0! R! S0
1[F ; Y ]

dH�!S0,1
1 [F ; Y ] · · · dH�!S0,n

1 [F ; Y ]
��!E1 (1.26)

of this bicomplex and its subcomplex of one-contact graded forms

0! S1,0
1 [F ; Y ]

dH�!S1,1
1 [F ; Y ] · · · dH�!S1,n

1 [F ; Y ]
%�!E1 ! 0. (1.27)

They possess the following cohomology.

THEOREM 1.8: Cohomology of the complex (1.26) equals the de Rham

cohomology of Y . The complex (1.27) is exact. ⇤

Decomposed into a variational bicomplex, the DBGA S⇤1[F ; Y ] describes

graded Lagrangian theory on a graded bundle (X, Y, AF ). Its graded

Lagrangian is defined as an element

L = L! 2 S0,n
1 [F ; Y ], ! = dx1 ^ · · · ^ dxn, (1.28)

of the graded variational complex (1.26). Accordingly, a graded exterior form

�L = ✓A ^ EA! =
X

(�1)|⇤|✓A ^ d⇤(@⇤
AL)! 2 %(S1,n

1 [F ; Y ]) (1.29)

is said to be its graded Euler–Lagrange operator. Its kernel yields an

Euler–Lagrange equation

�L = 0, EA =
X

(�1)|⇤|✓A ^ d⇤(@⇤
AL) = 0. (1.30)

We call a pair (S0,n
1 [F ; Y ], L) the graded Lagrangian system and S⇤1[F ; Y ]

its structure algebra.

The following are corollaries of Theorem 1.8.
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COROLLARY 1.9: Any �-closed (i.e., variationally trivial) graded La-

grangian L 2 S0,n
1 [F ; Y ] is a sum

L = h0� + dH⇠, ⇠ 2 S0,n�1
1 [F ; Y ],

where � is a closed form on Y . ⇤

COROLLARY 1.10: Given a graded Lagrangian L, there is the global

variational formula

dL = �L� dH⌅L, ⌅ 2 Sn�1
1 [F ; Y ], (1.31)

⌅L = L +
X

s=0

✓A
⌫s...⌫1

^ F �⌫s...⌫1
A !�, (1.32)

F ⌫k...⌫1
A = @⌫k...⌫1

A L� d�F
�⌫k...⌫1
A + �⌫k...⌫1

A , k = 1, 2, . . . ,

where local graded functions � obey relations �⌫
A = 0, �

(⌫k⌫k�1)...⌫1

A = 0. ⇤

The form ⌅L (1.32) provides a global Lepage equivalent of a graded

Lagrangian L. In particular, one can locally choose ⌅L (1.32) where all graded

functions � vanish.
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2 First Noether theorem

Given a graded Lagrangian system (S⇤1[F ; Y ], L), by its infinitesimal trans-

formations are meant contact graded derivations of a real graded commu-

tative ring S0
1[F ; Y ]. They constitute a S0

1[F ; Y ]-module dS0
1[F ; Y ] which

is a real Lie superalgebra relative to a Lie superbracket. The following holds.

THEOREM 2.1: The derivation module dS0
1[F ; Y ] is isomorphic to the

S0
1[F ; Y ]-dual (S1

1[F ; Y ])⇤ of the module of graded one-forms S1
1[F ; Y ]. ⇤

COROLLARY 2.2: A DBGA S⇤1[F ; Y ] is the Chevalley–Eilenberg minimal

di↵erential calculus over a real graded commutative ring S0
1[F ; Y ]. ⇤

Let #c�, # 2 dS0
1[F ; Y ], � 2 S1

1[F ; Y ], denote the corresponding interior

product in accordance with Theorem 2.1. Extended to a DBGR S⇤1[F ; Y ],

it obeys the rule

#c(� ^ �) = (#c�) ^ � + (�1)|�|+[�][#]� ^ (#c�), �,� 2 S⇤1[F ; Y ].

Restricted to a coordinate chart of J1Y , a DBGR S⇤1[F ; Y ] is a free

S0
1[F ; Y ]-module generated by graded one-forms dx� and ✓A

⇤ , [✓A
⇤ ] = [A].

Due to the isomorphism stated in Theorem 2.1, any graded derivation # 2
dS0
1[F ; Y ] reads

# = #�@� + #A@A +
X

0<|⇤|
#A

⇤@⇤
A, (2.1)

where the graded derivations @⇤
A, [@⇤

A] = [A], obey the relations

@⇤
A(sB

⌃) = @⇤
AcdsB

⌃ = �B
A�⇤

⌃.
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Every graded derivation # (2.1) of a graded commutative ring S0
1[F ; Y ]

yields a graded derivation (called the graded Lie derivative) L# of a DBGA

S⇤1[F ; Y ] given by the relations

L#� = #cd� + d(#c�), � 2 S⇤1[F ; Y ],

L#(� ^ �) = L#(�) ^ � + (�1)[#][�]� ^ L#(�).

The graded derivation # (2.1) is called contact if the graded Lie deriva-

tive L# preserves the ideal of contact graded forms of the DBGA S⇤1[F ; Y ]

generated by contact graded one-forms ✓A.

THEOREM 2.3: With respect to the local generating basis (sA) for a

DBGA S⇤1[F ; Y ], any its contact graded derivation takes a form

# = #H + #V = ��d� + [�A@A +
X

|⇤|>0

d⇤(�A � sA
µ�µ)@⇤

A], (2.2)

where #H and #V denotes the horizontal and vertical parts of #. ⇤

A glance at the expression (2.2) shows that a contact graded derivation #

is the infinite order jet prolongation # = J1� of its restriction

� = ��@� + �A@A = �H + �V = ��d� + (uA@A � sA
� @�

A) (2.3)

to a graded commutative ring S0[F ; Y ]. We call � (2.3) the generalized

graded vector field on a graded manifold (Y, AF ). This fails to be a graded

vector field on (Y,AF ) because its component depends on jets of elements of

the local generating basis for (Y,AF ) in general. At the same time, any

graded vector field u on (Y,AF ) is the generalized graded vector field (2.3)

generating the contact graded derivation J1u.
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In particular, the vertical contact graded derivation (2.3) reads

# = �A@A +
X

|⇤|>0

d⇤�A@⇤
A. (2.4)

THEOREM 2.4: Any vertical contact graded derivation (2.4) obeys the

relations

#cdH� = �dH(#c�), L#(dH�) = dH(L#�), � 2 S⇤1[F ; Y ].

⇤

The vertical contact graded derivation # (2.4) is said to be nilpotent if

L#(L#�) =
X

0|⌃|,0|⇤|
(�B

⌃@⌃
B(�A

⇤)@⇤
A + (�1)[sB ][�A]�B

⌃�A
⇤@⌃

B@⇤
A)� = 0

for any horizontal graded form � 2 S0,⇤
1 [F, Y ].

THEOREM 2.5: The vertical contact graded derivation (2.4) is nilpotent

only if it is odd. ⇤

Remark 2.1: If there is no danger of confusion, the common symbol �

further stands for a generalized graded vector field � (2.3), the contact graded

derivation # = J1� determined by �, and the Lie derivative L#. We call all

these operators, in brief, a graded derivation of the structure algebra of a

graded Lagrangian system. ⇤
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Remark 2.2: For the sake of convenience, right graded derivations

 
� = @A�A also are considered. They act on graded di↵erential forms � on

the right by the rules

 
�(�) = d�b � +d(�b �), ✓⇤Ab@⌃B = �A

B�⌃
⇤ ,

 
�(� ^ �0) = (�1)[�0] �(�) ^ �0 + � ^  �(�0).

⇤

DEFINITION 2.1: Let (S⇤1[F ; Y ], L) be a graded Lagrangian system. A

generalized graded vector field � is called the supersymmetry (or, simply,

symmetry) of a graded Lagrangian L if a graded Lie derivative L#L of L

along the contact graded derivation # = J1� is dH-exact, i.e., L#L = dH�.

⇤

A corollary of the graded variational formula (1.31) is the graded first

variational formula for a graded Lagrangian.

THEOREM 2.6: The graded Lie derivative of a graded Lagrangian along

any contact graded derivation # fulfils the graded first variational formula

L#L = �V c�L + dH(h0(#c⌅L)) + dV (�Hc!)L, (2.5)

where ⌅L is a Lepage equivalent of a graded Lagrangian L. ⇤

A glance at the expression (2.5) shows the following.
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THEOREM 2.7: (i) A generalized graded vector field � is a symmetry

only if it is projected onto X.

(ii) Any projectable generalized graded vector field is a symmetry of a

variationally trivial graded Lagrangian.

(iii) A generalized graded vector field � is a symmetry if and only if its

vertical part �V is well.

(iv) It is a symmetry if and only if the graded density �V c�L is dH-exact.

⇤

Symmetries of a graded Lagrangian L constitute a real vector subspace

SGL of the graded derivation module dS0
1[F ; Y ]. By virtue of item (ii)

of Theorem 2.7, the Lie superbracket

L[#,#0] = [L#,L#0]

of symmetries is a symmetry, and their vector space is a real Lie superalgebra.

An immediate corollary of the graded first variational formula (2.5) is the

first Noether theorem.

THEOREM 2.8: If the generalized graded vector field � is a symmetry of

a graded Lagrangian L, the first variational formula (2.5) leads to a weak

conservation law

0 ⇡ �dH(�h0(#c⌅L) + �) (2.6)

of the symmetry current

J� = J µ
# !µ = �h0(#c⌅L) + � (2.7)

on-shell. ⇤
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3 Gauge symmetries

Treating gauge symmetries of Lagrangian theory, one traditionally is based

on gauge theory of principal connections on principal bundles.

This notion of gauge symmetries has been generalized to Lagrangian the-

ory on an arbitrary fibre bundle Y ! X. Gauge symmetry is defined as a

di↵erential operator on sections of some vector bundle E ! X as gauge

parameters with values in a space of symmetries of a Lagrangian L.

Let us generalize this construction of gauge symmetries to Lagrangian

theory on graded bundles.

• Let (S⇤1[F ; Y ], L) be a graded Lagrangian system on a graded bundle

(X, Y, AF ) modelled over a composite bundle F ! Y ! X, and let (sA)

be its local generating basis. To define gauge symmetries of this Lagrangian

system, one extends a graded manifold (X, Y, AF ) as follows. Let us consider

a composite bundle

E = E1�
X

E0 ! E0 ! X

and a graded bundle (X,E0, AE) modelled over it, and let (cr) be its local

generating basis. Then we define the product (X, E0⇥
X

Y,AE⇥
X

F ) of graded

bundles (X, Y, AF ) and (X, E0, AE) which is modelled over the product

F ⇥
X

E ! Y ⇥
X

E0 ! X

of composite bundles E and F , and which possesses a generating basis (sA, cr).
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• Let us consider the corresponding DBGR S⇤1[E⇥
X

F ; E0⇥
X

Y ] together

with the monomorphisms of DBGRs

S⇤1[F ; Y ]! S⇤1[E⇥
X

F ; E0⇥
X

Y ], S⇤1[E; E0]! S⇤1[E⇥
X

F ; E0⇥
X

Y ].

Given a graded Lagrangian L 2 S0,n
1 [F ; Y ], let us define its pull-back

L 2 S0,n
1 [F ; Y ] ⇢ S⇤1[E⇥

X
F ; E0⇥

X
Y ], (3.1)

and consider an extended Lagrangian system

(S⇤1[E⇥
X

F ; E0⇥
X

Y ], L) (3.2)

provided with the local generating basis (sA, cr).

DEFINITION 3.1: A gauge transformation of the Lagrangian L (3.1)

is defined to be a contact graded derivation # of the ring S0
1[E⇥

X
F ; E0⇥

X
Y ]

such that a derivation # equals zero on a subring

S0
1[E; E0] ⇢ S0

1[E⇥
X

F ; E0⇥
X

Y ].

A gauge transformation # is called the gauge symmetry if it is a symmetry

of the Lagrangian L (3.1). ⇤

• In view of the condition in Definition 3.1, the variables cr of the ex-

tended Lagrangian system (3.2) are treated as graded gauge parameters

of a gauge symmetry #. Furthermore, we additionally assume that a gauge

symmetry is linear in gauge parameters cr and their jets cr
⇤. Then its gener-

alized graded vector field � reads

� =

0

@
X

0|⇤|m

��⇤
r (xµ)cr

⇤

1

A @� +

0

@
X

0|⇤|m

�A⇤
r (xµ, sB

⌃)cr
⇤

1

A @A. (3.3)
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Remark 3.1: In a general setting, one can define gauge symmetries which

are non-linear in gauge parameters. However, the direct second Noether

theorem is not relevant for them because Euler–Lagrange operator in this

case satisfies the identities depending on gauge parameters. ⇤

• If a gauge transformation � (3.3) is a symmetry, it defines a weak con-

servation law in accordance with the first Noether theorem. The peculiarity

of this conservation law is that the symmetry current J� (3.4) is the total

di↵erential on-shell, i.e., it is reduced to a superpotential.

THEOREM 3.1: If u (3.3) is a gauge symmetry of a graded Lagrangian

L, the corresponding symmetry current Ju (up to a dH-closed term) takes a

form

Ju = W + dHU = (W µ + d⌫U
⌫µ)!µ, (3.4)

where a term W vanishes on-shell and U ⌫µ = �Uµ⌫ is a superpotential

which reads

J µ
u = (

X

1<kN

ui
V

µµk...µN
r cr

µk...µN
+ uA

V
µ
r c

r)EA �

(
X

1<kM

d⌫J
(⌫µ)µk...µMcr

µk...µM
+ d⌫J

(⌫µ)
r cr)�

d⌫(
X

1<kM

J [⌫µ]µk...µMcr
µk...µM

+ J [⌫µ]
r cr).

⇤

G.Sardanashvily, Gauge conservation laws in a general setting. Superpoten-

tial, Int. J. Geom. Methods Mod. Phys. 6(2009) 1047-1056

One sometimes treats Theorem 3.1 as the third Noether theorem.
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4 Noether identities

We follow the general analysis of Noether identities (NI) and higher-stage NI

of di↵erential operators on fibre bundles when trivial and non-trivial NI

are represented by boundaries and cycles of a chain complex.

It should be noted that the notion of higher-stage Noether identities came

from that of reducible constraints. The Koszul–Tate complex of Noether

identities has been invented similarly to that of constraints under the reg-

ularity condition that Noether identities are locally separated into the

independent and dependent ones.

J.Fisch, M.Henneaux, Homological perturbation theory and algebraic struc-

ture of the antifield-antibracket formalism for gauge theories, Commun.

Math. Phys. 128 (1990) 627-640.

G.Barnich, F.Brandt, M.Henneaux, Local BRST cohomology in gauge theo-

ries. Phys. Rep. 338 (2000) 439-569.

This condition is relevant for constraints, defined by a finite set of func-

tions which the inverse mapping theorem is applied to. However, Noether

identities of di↵erential operators, unlike constraints, are di↵erential

equations. They are given by an infinite set of functions on a Fréchet ma-

nifold of infinite order jets where the inverse mapping theorem fails to be

valid. Therefore, the regularity condition for the Koszul–Tate complex of

constraints is replaced with a certain homology regularity condition.
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Let (S⇤1[F ; Y ], L) be a graded Lagrangian system on a graded bundle

(X, Y, AF ), modelled over a composite bundle F ! Y ! X.

• One can associate to a graded Lagrangian system (S⇤1[F ; Y ], L) the

chain complex (4.1) whose one-boundaries vanish on the shell �L = 0. Let

us consider the density-dual

V F = V ⇤F ⌦
F

n^T ⇤X ! F

of the vertical tangent bundle V F ! F , and let us enlarge an original DBGR

S⇤1[F ; Y ] with the generating basis (sA) to P⇤1[V F ; Y ] with the generat-

ing basis (sA, sA), [sA] = [A]+1. Following the terminology of BRST theory,

we call its elements sA the antifields of antifield number Ant[sA] = 1.

A DBGR P⇤1[V F ; Y ] is endowed with the nilpotent right graded derivation

� =
 
@ AEA, where EA = �AL are the variational derivatives. Then we have a

chain complex

0 Im �
� �P0,n

1 [V F ; Y ]1
� �P0,n

1 [V F ; Y ]2 (4.1)

of graded densities of antifield number  2. Its one-boundaries ��, � 2
P0,n
1 [V F ; Y ]2, by very definition, vanish on-shell. Any one-cycle � of the

complex (4.1) is a di↵erential operator on a bundle V F such that its kernel

contains the graded Euler–Lagrange operator �L, i.e.,

�� = 0,
X

0|⇤|
�A,⇤d⇤EA! = 0. (4.2)

Refereing to a notion of NI of a di↵erential operator, we say that one-cycles

� define the Noether identities (4.2) of an Euler–Lagrange operator �L.
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• One-chains � are necessarily NI if they are boundaries. Therefore, these

NI are called trivial. They are of the form

� =
X

0|⇤|,|⌃|
T (A⇤)(B⌃)d⌃EBs⇤A!, T (A⇤)(B⌃) = �(�1)[A][B]T (B⌃)(A⇤).

Accordingly, non-trivial NI modulo trivial ones are associated to elements

of the first homology H1(�) of the complex (4.1).

A Lagrangian L is called degenerate if there exist non-trivial NI.

• Non-trivial NI can obey first-stage NI. To describe them, let us assume

that a module H1(�) is finitely generated. Namely, there exists a graded

projective C1(X)-module C(0) ⇢ H1(�) of finite rank possessing a local basis

{�r!} such that any element � 2 H1(�) factorizes as

� =
X

0|⌅|
�r,⌅d⌅�r!, �r,⌅ 2 S0

1[F ; Y ], (4.3)

through elements �r! of C(0). Thus, all non-trivial NI (4.2) result from the

NI

��r =
X

0|⇤|
�A,⇤

r d⇤EA = 0, (4.4)

called the complete NI. Then the complex (4.1) can be extended to the

chain complex (4.5) with a boundary operator whose nilpotency is

equivalent to the complete NI (4.4) as follows.
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By virtue of the Serre–Swan theorem, a graded module C(0) is isomorphic to

that of sections of the density-dual E0 of some graded vector bundle E0 ! X.

Let us enlarge P⇤1[V F ; Y ] to a DBGR

P⇤1{0} = P⇤1[V F ⇥
X

E0; Y ]

with the generating basis (sA, sA, cr) where cr are antifields such that [cr] =

[�r] + 1 and Ant[cr] = 2. This DBGR admits a derivation

�0 = �+
 
@

r�r

which is nilpotent if and only if the complete NI (4.4) hold. Then �0 is a

boundary operator of a chain complex

0 Im �
� P0,n

1 [V F ; Y ]1
�0 P0,n

1 {0}2
�0 P0,n

1 {0}3 (4.5)

of graded densities of antifield number  3. One can show that its homology

H1(�0) vanishes, i.e., the complex (4.5) is one-exact.

• Let us consider the second homology H2(�0) of the complex (4.5). Its

two-cycles define the first-stage NI

�0� = 0,
X

0|⇤|
Gr,⇤d⇤�r! = ��H. (4.6)

Conversely, let the equality (4.6) hold. Then it is a cycle condition. The first-

stage NI (4.6) are trivial either if the two-cycle � is a �0-boundary or its

summand G vanishes on-shell. Therefore, non-trivial first-stage NI fails

to exhaust the second homology H2(�0) of the complex (4.5) in general.

One can show that non-trivial first-stage NI modulo trivial ones are identified

with elements of H2(�0) i↵ any �-cycle � 2 P0,n
1 {0}2 is a �0-boundary.
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A degenerate Lagrangian is called reducible if it admits non-trivial first-

stage NI.

• Non-trivial first-stage NI can obey second-stage NI, and so on. It-

erating the arguments, we say that a degenerate graded Lagrangian system

(S⇤1[F ; Y ], L) is N-stage reducible if it admits non-trivial N -stage NI, but

no non-trivial (N + 1)-stage ones. It is characterized as follows.

(i) There are graded vector bundles E0, . . . , EN over X, and P⇤1[V F ; Y ] is

enlarged to a DBGR

P⇤1{N} = P⇤1[V F ⇥
X

E0⇥
X
· · ·⇥

X
EN ; Y ] (4.7)

with a local generating basis (sA, sA, cr, cr1, . . . , crN
) where crk

are k-stage

antifields of antifield number Ant[crk
] = k + 2.

(ii) The DBGR (4.7) is provided with a nilpotent right graded derivation

�KT = �N = � +
X

0|⇤|

 
@

r�A,⇤
r s⇤A +

X

1kN

 
@

rk�rk
, (4.8)

�rk
! =

X

0|⇤|
�rk�1,⇤

rk
c⇤rk�1! + (4.9)

X

0|⌃|,|⌅|
(h(rk�2,⌃)(A,⌅)

rk
c⌃rk�2s⌅A + ...)! 2 P0,n

1 {k � 1}k+1,

of antifield number �1. The index k = �1 here stands for sA. The nilpotent

derivation �KT (4.8) is called the Koszul–Tate (KT) operator.
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(iii) With this KT operator, a module P0,n
1 {N}N+3 of densities of anti-

field number  (N + 3) is split into the exact Koszul–Tate (KT) chain

complex

0 Im �
� �P0,n

1 [V F ; Y ]1
�0 �P0,n

1 {0}2
�1 �P0,n

1 {1}3 · · · (4.10)
�N�1 �P0,n

1 {N � 1}N+1
�KT �P0,n

1 {N}N+2
�KT �P0,n

1 {N}N+3

which satisfies the following homology regularity condition.

CONDITION 4.1: Any �k<N -cycle � 2 P0,n
1 {k}k+3 ⇢ P0,n

1 {k + 1}k+3 is

a �k+1-boundary.

(iv) The nilpotentness of the KT operator (4.8) is equivalent to complete

non-trivial NI (4.4) and complete non-trivial (k  N)-stage NI

X

0|⇤|
�rk�1,⇤

rk
d⇤(

X

0|⌃|
�rk�2,⌃

rk�1
c⌃rk�2) = ��(

X

0|⌃|,|⌅|
h(rk�2,⌃)(A,⌅)

rk
c⌃rk�2s⌅A). (4.11)

It may happen that a graded Lagrangian system possesses non-trivial NI of

any stage. However, we restrict our consideration to N -reducible Lagrangians

for a finite integer N . In this case, the KT operator (4.8) and the gauge

operator (5.4) below contain a finite number of terms.

It also should be emphasized that, in order to describe a hierarchy of

NI, we suppose that NI and higher-stage NI are finitely generated (i.e., they

form projective modules of finite rank) and that homology Condition 3.1 is

satisfied. These are not true for any Lagrangian.
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5 Second Noether theorems

Di↵erent variants of the second Noether theorem have been suggested in order

to relate reducible NI and gauge symmetries.

G.Barnich, F.Brandt, M.Henneaux, Local BRST cohomology in gauge theo-

ries, Phys. Rep. 338 (2000) 439.

R.Fulp, T.Lada, J. Stashe↵, Noether variational Theorem II and the BV

formalism, Rend. Circ. Mat. Palermo (2) Suppl. No. 71 (2003) 115.

The extended inverse second Noether theorem, that we formulate in

homology terms, associates to the KT complex (4.10) of non-trivial NI the

cochain sequence (5.3) with the ascent operator u (5.4) whose components

are gauge and higher-stage gauge symmetries of a Lagrangian system.

Given a DBGR P⇤1{N} (4.7), let us consider the DBGRs

P ⇤1{N} = P ⇤1[F ⇥
X

E0⇥
X
· · ·⇥

X
EN ; Y ], (5.1)

possessing the generating bases (sA, cr, cr1, . . . , crN ), [crk] = [crk
] + 1, and

the DBGRs

P⇤1{N} = P⇤1[V F ⇥
X

E0⇥
X
· · ·⇥

X
EN ⇥

X
E0⇥

X
· · ·⇥

X
EN ; Y ] (5.2)

with the generating bases (sA, sA, cr, cr1, . . . , crN , cr, cr1, . . . , crN
). Their el-

ements crk are called the k-stage ghosts of ghost number gh[crk] = k+1 and

antifield number Ant[crk] = �(k + 1). The KT operator �KT (4.8) naturally

is extended to a graded derivation of a DBGR P⇤1{N}.
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THEOREM 5.1: Given the KT complex (4.10), a module of graded densi-

ties P 0,n
1 {N} is decomposed into a cochain sequence

0! S0,n
1 [F ; Y ]

u�!P 0,n
1 {N}1 u�!P 0,n

1 {N}2 u�! · · · (5.3)

graded in ghost number. Its ascent operator

u = u + u(1) + · · ·+ u(N) = uA @

@sA
+ ur @

@cr
+ · · ·+ urN�1

@

@crN�1
, (5.4)

is an odd graded derivation of ghost number 1 where

u = uA @

@sA
, uA =

X

0|⇤|
cr
⇤⌘(�A

r )⇤, (5.5)

 
� (cr�r)

�sA
EA! = uAEA! = dH�0, (5.6)

is a symmetry of a graded Lagrangian L and the derivations

u(k) = urk�1
@

@crk�1
=
X

0|⇤|
crk

⇤ ⌘(�rk�1
rk

)⇤ @

@crk�1
, k = 1, . . . , N, (5.7)

obey the relations

X
crkh(rk�2,⌃)(A,⌅)

rk
c⌃rk�2d⌅EA! + urk�1

X
�rk�2,⌅

rk�1
c⌅rk�2! = dH�0k. (5.8)

⇤

A glance at the symmetry u (5.5) shows that it is a derivation of a ring

P 0
1[0] which satisfies Definition 3.1 of gauge transformations. Consequently,

u (5.5) is a gauge symmetry of a graded Lagrangian L associated to the

complete non-trivial NI (4.4). Therefore, it is a non-trivial gauge sym-

metry.
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Turn now to the relation (5.8). The variational derivative of both its sides

with respect to crk�2 leads to the equality

X
d⌃urk�1

@

@c
rk�1

⌃
urk�2 = �(↵rk�2), (5.9)

↵rk�2 = �
X

⌘(h(rk�2)(A,⌅)
rk

)⌃d⌃(crks⌅A),

For k = 1, it takes a form

X
d⌃ur@⌃

r uA = �(↵A)

of a first-stage gauge symmetry condition on-shell which the non-trivial

gauge symmetry u (5.5) satisfies. Therefore, one can treat the odd graded

derivation

u(1) = ur@r, ur =
X

cr1
⇤ ⌘(�r

r1
)⇤,

as a first-stage gauge symmetry associated to a complete first-stage NI

X
�r,⇤

r1
d⇤(
X

�A,⌃
r s⌃A) = ��(

X
h(B,⌃)(A,⌅)

r1
s⌃Bs⌅A).

Iterating the arguments, one comes to the relation (5.9) providing a k-

stage gauge symmetry condition which is associated to the complete

non-trivial k-stage NI (4.11). The odd graded derivation u(k) (5.7) is called

the k-stage gauge symmetry.

Thus, components of the ascent operator u (5.4) in Theorem 5.1 are non-

trivial gauge and higher-stage gauge symmetries. Therefore, we agree to call

it the gauge operator.
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The correspondence of gauge and higher-stage gauge symmetries to NI

and higher-stage NI in Theorem 5.1 is unique due to the following direct

second Noether theorem.

THEOREM 5.2:

• If u (5.5) is a gauge symmetry, the variational derivative of the dH-exact

density uAEA! (5.6) with respect to ghosts cr leads to the equality

�r(u
AEA!) =

X
(�1)|⇤|d⇤[uA⇤

r EA] = (5.10)
X

(�1)|⇤|d⇤(⌘(�A
r )⇤EA) =

X
(�1)|⇤|⌘(⌘(�A

r ))⇤d⇤EA = 0,

which reproduces the complete NI (4.4).

•Given the k-stage gauge symmetry condition (5.9), the variational deriva-

tive of the equality (5.8) with respect to ghosts crk leads to the equality,

reproducing the k-stage NI (4.11). ⇤
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6 Lagrangian BRST theory

In contrast with the KT operator (4.8), the gauge operator u (5.3) need not

be nilpotent.

Let us study its extension to a nilpotent graded derivation

b = u + � = u +
X

1kN+1

�(k) = u +
X

1kN+1

�rk�1
@

@crk�1
(6.1)

=

✓
uA @

@sA
+ �r @

@cr

◆
+

X

0kN�1

✓
urk

@

@crk
+ �rk+1

@

@crk+1

◆

of ghost number 1 by means of antifield-free terms �(k) of higher polynomial

degree in ghosts cri and their jets cri

⇤ , 0  i < k.

One calls b (6.1) the BRST operator, where k-stage gauge symmetries

are extended to k-stage BRST transformations acting both on (k � 1)-

stage and k-stage ghosts.

If a BRST operator exists, the cochain sequence (5.3) is brought into a

BRST complex

0! S0,n
1 [F ; Y ]

b�!P 0,n
1 {N}1 b�!P 0,n

1 {N}2 b�! · · · . (6.2)

One can show the following.

• The gauge operator (5.3) admits the BRST extension (6.1) only if the

gauge symmetry conditions (5.8) and the higher-stage NI (4.11) are satisfied

o↵-shell.

• Gauge symmetries need not form an algebra. Therefore, we replace the

notion of the algebra of gauge symmetries with some conditions on the gauge
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operator. Gauge symmetries are said to be algebraically closed if the

gauge operator admits the nilpotent BRST extension (6.1).

J.Gomis, J.Paŕıs, S.Samuel, Antibracket, antifields and gauge theory quanti-

zation, Phys. Rep. 295 (1995) 1.

• A nilpotent BRST operator provides a BRST extension of an original

Lagrangian system by means of graded antifields and ghosts as follows.

The DBGR P ⇤1{N} (5.2) is a particular field-antifield theory of the fol-

lowing type. Let us consider a pull-back composite bundle

W = Z ⇥
X

Z 0 ! Z ! X

where Z 0 ! X is a vector bundle. Let us regard it as an odd graded vector

bundle over Z. The density-dual V W of the vertical tangent bundle V W of

W ! X is a graded vector bundle

V W = ((Z
0 �

Z
V ⇤Z)⌦

Z

n^T ⇤X)�
Y

Z 0

over Z. Let us consider the DBGR P⇤1[V W ; Z] with the local generating

basis (za, za), [za] = [za] + 1. Its elements za and za are called fields and

antifields, respectively. Graded densities of this DBGR are endowed with the

antibracket

{L!,L0!} =

2

4
 
� L

�za

�L0

�za
+ (�1)[L0]([L0]+1)

 
� L0

�za

�L

�za

3

5!. (6.3)
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Then one associates to any even Lagrangian L! the odd vertical graded

derivations

�L =
 
E a@a =

 
� L

�za

@

@za
, �L =

 
@

aEa =

 
@

@za

�L

�za
, (6.4)

#L = �L + �l
L = (�1)[a]+1

✓
�L

�za

@

@za
+

�L

�za

@

@za

◆
, (6.5)

such that #L(L0!) = {L!,L0!}.

THEOREM 6.1: The following conditions are equivalent.

(i) The antibracket of a Lagrangian L! is dH-exact, i.e.,

{L!,L!} = 2

 
� L

�za

�L

�za
! = dH�. (6.6)

(ii) The graded derivation #L (6.5) is nilpotent. ⇤

The equality (6.6) is called the classical master equation. A solution

of the master equation (6.6) is called non-trivial if both the derivations

(6.4) do not vanish.

Being an element of the DBGA P⇤1{N} (5.2), an original Lagrangian L

obeys the master equation (6.6) and yields the graded derivations �L = 0,

�L = � (6.4), i.e., it is a trivial solution of the master equation. Therefore,

let us consider its extension

LE = L + L1 + L2 + · · ·

by means of even densities Li, i � 2, of zero antifield number and polynomial

degree i in ghosts. Then the following is a corollary of Theorem 6.1.
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COROLLARY 6.2: A Lagrangian L is extended to a non-trivial solution

LE of the master equation only if the gauge operator u (5.3) admits the

nilpotent extension #E (6.5). ⇤

However, one can say something more.

THEOREM 6.3: If the gauge operator u (5.3) can be extended to the BRST

operator b (6.1), then the master equation has a non-trivial proper solution

LE = L + b

 
X

0kN

crk�1crk�1

!
! + dH�, (6.7)

such that b = �E is the graded derivation defined by the Lagrangian LE

(6.7). ⇤

The Lagrangian LE (6.7) is said to be the BRST extension of an original

Lagrangian L.

This extension is a preliminary step towards quantization of reducible

degenerate Lagrangian theories.
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7 Applications. Topological BF the-

ory

The most of basic Lagrangian models in field theory and mechanics are ir-

reducible degenerate.

G.Sardanashvily, Noether’s Theorems. Applications in Mechanics

and Field Theory (Springer, 2016).

G.Giachetta, L.Mangiarotti, G.Sardanashvily, Advanced Classical Field

Theory (World Scientific, 2009).

G.Giachetta, L.Mangiarotti, G.Sardanashvily, Geometric Formulation of

Classical and Quantum Mechanics (World Scientific, 2010).

G.Sardanashvily, Classical field theory. Advanced mathematical formulation,

Int. J. Geom. Methods Mod. Phys. 5 (2008) 1163-1189; arXiv:

0811.0331

• Gauge theory of principal connections on principal bundles (irreducible

degenerate Lagrangian system)

• Gauge gravitation theory on natural bundles (irreducible degenerate

Lagrangian system whose gauge symmetries are general covariant trans-

formations)

G.Sardanashvily, Gauge gravitation theory. Gravity as a Higgs field, Int. J.

Geom. Methods Mod. Phys. 13 (2016) 1650086
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• Topological Chern–Simons gauge theory (irreducible degenerate Lagran-

gian system, whose gauge symmetries are variational, but not exact)

• Topological BF theory (reducible degenerate Lagrangian system)

G.Sardanashvily, Higher-stage Noether identities and second Noether theo-

rems, Adv. Math. Phys. 2015 (2015) 127481

• SUSY gauge theory on principal graded bundles (irreducible degenerate

graded Lagrangian system)

• Covariant (polysymplectic) Hamiltonian field theory, formulated as par-

ticular Lagrangian theory on a phase space

G.Sardanashvily, Polysymplectic Hamiltonian field theory, arXiv: 1505.01444

• Lagrangian and Hamiltonian non-autonomous mechanics on fibre bun-

dles over R

G.Sardanashvily, Noether’s first theorem in Hamiltonian mechanics, arXiv:

1510.03760

• Relativistic mechanics as a Lagrangian theory of one-dimensional sub-

manifolds

G.Sardanashvily, Lagrangian dynamics of submanifolds. Relativistic mechan-

ics, J. Geom. Mech. 4 (2012) 99-110
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We address topological BF theory of two exterior forms A and B of

form degree |A| + |B| = dim X � 1 on a smooth manifold X because it

exemplifies reducible degenerate Lagrangian theory which satisfies homology

regularity Condition 4.1.

D.Birmingham, M.Blau, Topological field theory, Phys. Rep. 209 (1991)

129.

Its dynamic variables A and B are sections of a fibre bundle

Y =
p^T ⇤X � q^T ⇤X, p + q = n� 1 > 1,

coordinated by (x�, Aµ1...µp
, B⌫1...⌫q

). Without a loss of generality, let q be

even and q � p. The corresponding DGR is O⇤1Y .

There are the canonical p- and q-forms

A = Aµ1...µp
dxµ1 ^ · · · ^ dxµp, B = B⌫1...⌫q

dx⌫1 ^ · · · ^ dx⌫q

on Y . A Lagrangian of topological BF theory reads

LBF = A ^ dHB = ✏µ1...µnAµ1...µp
dµp+1Bµp+2...µn

!, (7.1)

where ✏ is the Levi–Civita symbol. It is a reduced first order Lagrangian. Its

first order Euler–Lagrange operator

�L = Eµ1...µp

A dAµ1...µp
^ ! + E⌫p+2...⌫n

B dB⌫p+2...⌫n
^ !,

Eµ1...µp

A = ✏µ1...µndµp+1Bµp+2...µn
, Eµp+2...µn

B = �✏µ1...µndµp+1Aµ1...µp
,

satisfies the Noether identities

dµ1Eµ1...µp

A = 0, d⌫1E⌫1...⌫q

B = 0. (7.2)
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Given a family of vector bundles

Ek =
p�k�1^ T ⇤X ⇥

X

q�k�1^ T ⇤X, 0  k < p� 1,

Ek = R⇥
X

q�p^ T ⇤X, k = p� 1,

Ek =
q�k�1^ T ⇤X, p� 1 < k < q � 1,

Eq�1 = X ⇥ R,

let us enlarge an original DGR O⇤1 to the DBGR P⇤1{q � 1} (5.2) which is

P⇤1{q � 1} = P⇤1[V Y �
Y

E0 � · · ·�
Y

Eq�1�
Y

E0�
Y
· · ·�

Y
Eq�1; Y ]. (7.3)

It possesses a local generating basis

{Aµ1...µp
, B⌫1...⌫q

, "µ2...µp
, . . . , "µp

, ", ⇠⌫2...⌫q
, . . . , ⇠⌫q

, ⇠,

A
µ1...µp

, B
⌫1...⌫q

, "µ2...µp, . . . , "µp, ", ⇠
⌫2...⌫q

, . . . , ⇠
⌫q

, ⇠}

of Grassmann parity

["µk...µp
] = [⇠⌫k...⌫q

] = (k + 1)mod 2, ["] = p mod 2, [⇠] = 0,

["µk...µp] = [⇠
⌫k...⌫q ] = k mod 2, ["] = (p + 1)mod 2, [⇠] = 1,

of ghost number

gh["µk...µp
] = gh[⇠⌫k...⌫q

] = k, gh["] = p + 1, gh[⇠] = q + 1,

and of antifield number

Ant[A
µ1...µp] = Ant[B

⌫p+1...⌫q ] = 1,

Ant["µk...µp] = Ant[⇠
⌫k...⌫q ] = k + 1,

Ant["] = p, Ant["] = q.
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One can show that homology regularity Condition 4.1 holds, and the

DBGR P⇤1{q � 1} (7.3) is endowed with the KT operator

�KT =

 
@

@A
µ1...µp

Eµ1...µp

A +

 
@

@B
⌫1...⌫q

E⌫1...⌫q

B +
X

2kp

 
@

@"µk...µp
�

µk...µp

A +

 
@

@"
dµp

"µp +
X

2kq

 
@

@⇠
⌫k...⌫q

�
⌫k...⌫q

B +

 
@

@⇠
d⌫q

⇠
⌫q

,

�
µ2...µp

A = dµ1A
µ1...µp

, �
µk+1...µp

A = dµk
"µkµk+1...µp, 2  k < p,

�
⌫2...⌫q

B = d⌫1B
⌫1...⌫q

, �
⌫k+1...⌫q

B = d⌫k
⇠

⌫k⌫k+1...⌫q
, 2  k < q.

Its nilpotentness provides the complete Noether identities (7.2) and the (k�
1)-stage ones

dµk
�

µk...µp

A = 0, k = 2, . . . , p,

d⌫k
�

⌫k...⌫q

B = 0, k = 2, . . . , q.

It follows that topological BF theory is (q � 1)-reducible.

Applying inverse second Noether Theorem 5.1, one obtains the gauge op-

erator (5.4) which reads

u = dµ1"µ2...µp

@

@Aµ1µ2...µp

+ d⌫1⇠⌫2...⌫q

@

@B⌫1⌫2...⌫q

+ (7.4)


dµ2"µ3...µp

@

@"µ2µ3...µp

+ · · ·+ dµp
"

@

@"µp

�
+


d⌫2⇠⌫3...⌫q

@

@⇠⌫2⌫3...⌫q

+ · · ·+ d⌫q
⇠

@

@⇠⌫q

�
.

In particular, a gauge symmetry of the Lagrangian LBF (7.1) is

u = dµ1"µ2...µp

@

@Aµ1µ2...µp

+ d⌫1⇠⌫2...⌫q

@

@B⌫1⌫2...⌫q

.
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It also is readily observed that the gauge operator u (7.4) is nilpotent.

Thus, it is the BRST operator b = u. As a result, the Lagrangian LBF is

extended to the non-trivial solution of the master equation LE (6.7)

which reads

LE = LBF + "µ2...µp
dµ1A

µ1...µp +
X

1<k<p

"µk+1...µp
dµk

"µk...µp + "dµp
"µp +

⇠⌫2...⌫q
d⌫1B

⌫1...⌫q +
X

1<k<q

⇠⌫k+1...⌫q
d⌫k

⇠
⌫k...µq + ⇠d⌫q

⇠
⌫q

.
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