
Global Analysis its Applicationsand
EXTENDED ABSTRACT BOOK

Levoèa, Slovakia



EXTENDED ABSTRACT BOOK

18th International Summer School on Global Analysis and its Applications
August 12-17, 2013, Levoča, Slovakia

Scientific Director: Demeter Krupka

Organizing Committee: Ján Brajerčík
University of Prešov in Prešov, Slovakia

Milan Demko
University of Prešov in Prešov, Slovakia

Mária Majherová
University of Prešov in Prešov, Slovakia

Organizers: Department of Physics, Mathematics and Techniques
Faculty of Humanities and Natural Sciences
University of Prešov in Prešov, Slovakia

Lepage Research Institute, Slatinky, Czech Republic

Editors: Demeter Krupka
Lepage Research Institute, Czech Republic
La Trobe University, Melbourne, Australia
University of Ostrava, Czech Republic

Ján Brajerčík
University of Prešov in Prešov, Slovakia

Copyright c© 2013 by University of Prešov in Prešov, Slovakia

ISBN 978-80-555-0792-7



18th International Summer School on Global Analysis 3

Preface

The tradition of the Summer School on Global Analysis and its Applications was
founded by prof. D. Krupka in 1996, in his birthplace, beautiful medieval town
of Levoča, written in the UNESCO list (http://whc.unesco.org/en/list/620).
Since 1996, the Summer School has been organized every year by prof. Krupka
and his collaborators in several Slovak and Czech places, and has become a
well-known scientific event all over the world.

Present Summer School has been again held in Levoča, 12-17 August, 2013. In
past, the 11th Summer School was organized as Satellite Conference of the Inter-
national Congress of Mathematicians, and last year, the 17th Summer School
was included among the Satellite Meetings of the 6th European Congress of
Mathematics.

The programme of this school is devoted to the Local and Global Inverse Prob-
lem of the Calculus of Variations. The main lectures are given by recognized
specialists in the field. Moreover, to support the young participants in their
scientific activity, the commented poster session and short presentations were
organized.

Abstracts of main lecture series and short communications, contained in this
book, summarize theoretical and applied aspects of the topics, considered at
the school. They also provide the reader with basic information on research
interest of participants and further orientation of their work in these fields.

The organizers would like to thank the Faculty of Humanities and Natural
Sciences, University of Prešov, Slovakia, the University of Ostrava, Czech Re-
public, for their support to the Summer School. The organizers also appreciate
the help of Ms. Jana Verešpejová during the Summer School.

Levoča, 16 August 2013 Ján Brajerčík

Chairman of the Organizing Committee
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Programme

A) LECTURES

CONTROLLED LAGRANGIANS AND THE INVERSE PROBLEM OF
THE CALCULUS OF VARIATIONS
Anthony Bloch, Dmitry Zenkov

THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS:
AN INTRODUCTION
Demeter Krupka

HOMOGENEOUS VARIATIONAL PROBLEMS: A MINICOURSE
David J. Saunders

THE GEOMETRYOF VARIATIONAL PRINCIPLES ONGRASSMANN
FIBRATIONS
Zbyněk Urban

B) SHORT PRESENTATIONS

NATURAL LAGRANGIANS OF FRAMES AND OF COFRAMES
Ján Brajerčík, Milan Demko

GLUING FRIEDMANCOSMOLOGICALMODELS IN DIFFERENTIAL
SPACES THEORY
Krzysztof Drachal

PRESYMPLECTIC CURRENT AND THE INVERSE PROBLEM OF
THE CALCULUS OF VARIATIONS
Igor Khavkine

SUPERSTABILITY OF AN EXPONENTIAL EQUATION IN C∗-ALGEBRAS
Gwang Hui Kim, Choonkil Park
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CONTROLLED LAGRANGIANS AND THE INVERSE
PROBLEM OF THE CALCULUS OF VARIATIONS

Anthony Bloch1, Dmitry Zenkov2

1The University of Michigan, USA
2North Carolina State University, USA

E-mail address: dvzenkov@ncsu.edu

Abstract

The inverse problem of calculus of variations, in its simplest setting, studies
when a second order vector field is variational. The answer is given, locally,
by the so-called Helmholtz conditions. A controlled vector field is a vector
field on a manifold (called state space) that depends on parameters. Control
theory studies how to assign these parameters as functions of time and/or state
variables in order to accomplish the desired properties of dynamics. For this
reason, these parameters are referred to as controls. An important special class
of controlled vector fields are mechanical controlled vector fields. These are
second order controlled vector fields that are Lagrangian when the controls
are set to zero. Of course, specifying the controls generically leads to a non-
Lagrangian vector field. It may be, however, interesting and desirable to select
controls in such a way that the controlled dynamics is Lagrangian, too. This
is the idea behind the method of controlled Lagrangians for stabilization of
(relative) equilibria of mechanical systems. For the task to be accomplished,
certain matching conditions should be satisfied. Since the controlled dynamics
is Lagrangian, it is natural to conjecture that there is a connection between the
Helmholtz and matching conditions. We will review the main concepts of the
inverse problem of calculus of variations, matching stabilization technique, and
elucidate the links between the Helmholtz and matching conditions.

MSC2010: 49N45, 70Q05, 70H03, 93D15
Keywords: inverse problem, calculus of variations, controlled Lagrangians,
feedback stabilization.
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THE INVERSE PROBLEM OF THE CALCULUS OF
VARIATIONS: AN INTRODUCTION

Demeter Krupka

Lepage Research Institute, Slatinky, CZECH REPUBLIC

Department of Mathematics La Trobe University, Melbourne, AUSTRALIA

University of Ostrava, CZECH REPUBLIC

E-mail address: demeter.krupka@lepageri.eu

Abstract

The inverse problem of the calculus of variations is the problem of finding
conditions, ensuring that a given system of (ordinary or partial) differential
equations coincides with the system of Euler-Lagrange equations of an integral
variational functional. Its origin, dated 1886, is connected with the names of
Sonin and Helmholtz; a newer modified version of the inverse problem for sys-
tems of ordinary second order equations, using variational integrating factors,
was presented by Douglas in 1941. Since then the problem, lying on the border
of the calculus of variations, mathematical analysis of differential equations,
differential geometry, and topology of manifolds was studied by many authors.
However, in its generality it still belongs to mathematical problems that wait
for a complete solution. The aim of this lecture series is to give an introduction
to the local and global inverse problem.

First we consider the variationality problem for systems of ordinary second
order differential equations. We derive the Helmholtz variationality conditions
and find integrability conditions for the Douglas’s problem.

The global inverse problem is then formulated within the global variational
theory, extending the classical calculus of variations from Euclidean spaces to
smooth manifolds. The problem is to find conditions when a system of equations
on a manifold, which is locally variational, admits a global Lagrangian. We
introduce underlying variational concepts in terms of differential forms, and
study the theory of variational sequences, in which one arrow represents the
Euler-Lagrange mapping of the calculus of variations. The sequence relates
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properties of the Euler-Lagrange mapping with the De Rham cohomology of
the underlying manifold.

In these lectures we do not consider the inverse problem for vector fields on
tangent bundles (sprays), which is related with the Douglas’s problem.

Contents

Part 1 The inverse problem for systems of second order ordinary
diferential equations

1. The inverse problems of Sonin, Helmholtz and Douglas
2. Energy Lagrangians
3. Integrability conditions
4. Variational systems of differential equations and the Helmholtz

conditions
5. The Sonin-Douglas’s problem
6. The Helmholtz conditions for systems of homogeneous equations

Part 2 The global inverse problem in fibred manifolds
1. Jet structures and differential forms on jet manifolds
2. Variational calculus on fibred manifolds
3. Invariant variational principles
4. Variational sequences: The structure of the Euler-Lagrange mapping

and the inverse problem
5. The global inverse problem for higher-order fibred mechanics
6. Invariance of the Helmholtz form and the inverse problem

References

The following list includes selected titles, in which further references can
be found. It is restricted to sources of mathematical character. Reference [1]
contains relatively complete bibliography.

A. Handbook
1. D. Krupka, D. Saunders, Eds., Handbook of Global Analysis, Elsevier,

2008
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B. Historical sources
2. J. Douglas, Solution of the inverse problem of the calculus of

variations, Transactions AMS 50 (1941), 71-128
3. H. von Helmholtz, Ueber die physikalische Bedeutung des Princips

der kleinsten Wirkung, Journal fur die reine und angewandte
Mathematik 100 (1887), 137-166, 213-222

4. N.J. Sonin, About determining maximal and minimal properties of
plane curves (in Russian), Warsawskye Universitetskye Izvestiya
(1886) (1-2), 1-68

C. The inverse problem for systems of differential equations
5. I. Anderson, G. Thompson, The inverse problem of the calculus of

variations for ordinary differential equations, Mem. Amer. Math.
Soc. 98, 1992, 1-110

6. D. Krupka, On the local structure of the Euler-Lagrange mapping
of the calculus of variations, Proc. Conf., Charles Univ., Prague,
1981; arXiv:math-ph/0203034

7. O. Krupkova, The Geometry of Ordinary Differential Equations,
Lecture Notes in Math. 1678, Springer, 1997

8. E. Tonti, Variational formulation of nonlinear differential equations,
I, II, Bull. Acad. Roy. Belg. C. Sci 55 (1969), 137-165, 262-278

9. W. Sarlet, M. Crampin, E. Martinez, The integrability conditions in
the inverse problem of the calculus of variations for second-order
ordinary differential equations, Acta Appl. Math. 54 (1998), 233-273

10. Z. Urban, D. Krupka, The Helmholtz conditions for systems of
second-order homogeneous equations, Publ. Math. Debrecen,
to appear

D. Global variational theory on fibred manifolds
11. P.L. Garcia, The Poincare-Cartan invariant in the calculus of

variations, Symposia Mathematica 14 (1974) 219-246
12. H. Goldschmidt, S. Sternberg, The Hamilton-Cartan

formalism in the calculus of variations, Ann. Inst. H. Poincare 23
(1973) 203-267

13. D. Krupka, Lepagean forms in higher order variational theory, in:
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Modern Developments in Analytical Mechanics, Proc. IUTAM-
ISIMM Sympos., Turin, June 1982, Academy of Sciences of Turin,
1983, 197-238

14. D. Krupka, A geometric theory of ordinary first order variational
problems in fibered manifolds, I. Critical sections, II. Invariance, J.
Math. Anal. Appl. 49 (1975) 180-206, 469-476

15. D. Krupka, Some Geometric Aspects of Variational Problems in
Fibered Manifolds, Folia Fac. Sci. Nat. UJEP Brunensis, Physica
14, Brno, Czech Republic, 1973, 65 pp.; arXiv:math-ph/0110005

16. A. Trautman, Noether equations and conservation laws, Commun.
Math. Phys. 6 (1967), 248-261

E. The global inverse problem of the calculus of variations
17. I. Anderson, T. Duchamp, On the existence of global variational

principles, Am. J. Math. 102 (1980) 781-867
18. J. Brajercik, D. Krupka, Variational principles for locally variational

forms, J. Math. Phys. 46 (052903), 2005, 1-15
19. M. Krbek, J. Musilova, Representation of the variational sequence

by differential forms, Acta Appl. Math. 88 (2005), 177–199
20. D. Krupka, Variational sequences in mechanics, Calc. Var. 5 (1997)

557-583
21. D. Krupka, Variational sequences on finite-order jet spaces, Proc.

Conf., World Scientific, 1990, 236-254
22. D. Krupka, O. Krupkova, G. Prince, W. Sarlet, Contact symmetries

of the Helmholtz form, Diff. Geom. Appl. 25 (2007) 518-542
23. D. Krupka and J. Sedenkova, Variational sequences and Lepage

forms, in: Diff. Geom. Appl., Proc. Conf., Charles University,
Prague, Czech Republic, 2005, pp. 617-627

24. F. Takens, A global version of the inverse problem of the calculus of
variations, J. Diff. Geom. 14 (1989), 543-562

F. The inverse problem for sprays
25. O. Krupkova, G. Prince, Second order ordinary differential equations

in jet bundles and the inverse problem of the calculus of variations,
in Handbook of Global Analysis, Elsevier, 2008, 837-904
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26. I. Bucataru, A setting for higher order differential equation fields
and higher order Lagrange and Finsler spaces, 2013, preprint

27. M. Crampin, On the inverse problem for sprays, Publ. Math.
Debrecen 70, 2007, 319-335

MSC2010: 49N45, 58A20, 58E30, 49Q99
Keywords: inverse problem, jet, variational principle, fibred manifold.
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HOMOGENEOUS VARIATIONAL PROBLEMS:
A MINICOURSE

David J. Saunders

Department of Mathematics, Faculty of Science, The University of Ostrava, 30.

dubna 22, 701 03 Ostrava, CZECH REPUBLIC

E-mail address: david@symplectic.demon.co.uk

Abstract

A Finsler geometry may be understood as a homogeneous variational prob-
lem, where the Finsler function is the Lagrangian. The extremals in Finsler
geometry are curves, but in more general variational problems we might con-
sider extremal submanifolds of dimension m. In this minicourse we discuss these
problems from a geometric point of view.

References

[1] M. Crampin, D.J. Saunders: Some concepts of regularity for parametric
multiple-integral problems in the calculus of variations, Czech Math. J. 59 (3)
(2009) 741-758.
[2] M. Giaquinta, S. Hildebrandt: Calculus of Variations II, Springer, Springer
1996.
[3] I. Kolář, P.W. Michor, J. Slovák: Natural Operations in Differential Geome-
try, Springer 1993.
[4] H. Rund: The Hamilton-Jacobi Equation in the Calculus of Variations,
Krieger 1973.
[5] D.J. Saunders: Homogeneous variational complexes and bicomplexes, J. Geom.
Phys. 59 (2009) 727-739.
[6] D.J. Saunders: Some geometric aspects of the calculus of variations in se-
veral independent variables,: Comm. Math. 18 1 (2010) 3-19.

MSC2010: 35A15, 58A10, 58A20
Keywords: calculus of variations, parametric problems.
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THE GEOMETRY OF VARIATIONAL PRINCIPLES ON
GRASSMANN FIBRATIONS

Zbyněk Urban

Lepage Research Institute, Slatinky, CZECH REPUBLIC

Department of Mathematics and Physics, Faculty of Electrotechnics and Infor-

matics, University of Pardubice, Studentska 95, 532 10 Pardubice, CZECH REPUB-

LIC

E-mail address: zbynek.urban@lepageri.eu

Abstract

The Grassmann fibrations are regarded in this lecture as basic geometric un-
derlying structures for variational problems for submanifolds. The corresponding
variational objects (Lagrangian, Euler-Lagrange form, Helmholtz form, Noether
current) appear in this context to be rather classes than differential forms as
such. The notion of a Lepage form on Grassmann fibration is introduced. We
consider the variational functionals associated with Lepage forms for higher-
order immersed curves and first-order immersed submanifolds and discuss the
inverse variational problem in terms of Helmholtz conditions. The correspon-
dence with homogeneous variational problems on slit tangent bundles will be
discussed.

References
1. M. Crampin, D. J. Saunders, The Hilbert-Carathéodory Form for

Parametric Multiple Integral Problems in the Calculus of Variations,
Acta Appl. Math. 76 (2003) 37-55.

2. P. Dedecker, On the generalization of symplectic geometry to
multiple integrals in the calculus of variations, in: Lecture notes in
Math. 570, Springer, Berlin, 1977, 395-456.

3. D. R. Grigore, D. Krupka, Invariants of velocities and higher-order
Grassmann bundles, J. Geom. Phys. 24 (1998) 244–264.

4. D. Krupka, Lepagean forms in higher order variational theory, in:
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Modern Developments in Analytical Mechanics, Proc. IUTAM-
ISIMM Sympos., Turin, June 1982, Academy of Sciences of Turin,
1983, 197-238.

5. D. Krupka, Lepage forms in Kawaguchi spaces and the Hilbert
form, Publ. Math. Debrecen (2013), to appear.

6. Z. Urban, Variational sequences in mechanics on Grassmann
fibrations, Ph.D. Dissertation, University of Ostrava, 2011, 75pp.

MSC2010: 49N45, 49Q99, 58E30, 58A20
Keywords: Lagrangian, Euler-Lagrange form, Lepage form, submanifold, jet,
contact element, invariance, Noether current
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NATURAL LAGRANGIANS OF FRAMES AND OF COFRAMES

Ján Brajerčík, Milan Demko

Department of Physics, Mathematics and Techniques, University of Prešov,

Ul. 17. novembra 1, 081 16 Prešov, SLOVAKIA

E-mail address: jan.brajercik@unipo.sk, milan.demko@unipo.sk

Abstract

Let FX and F ∗X denote the frame and the coframe bundle, respectively,
over an n-dimensional manifold X. By natural Lagrangian we mean Lagrangian
invariant with respect to all diffeomorphisms of X. Variational principles de-
fined by natural Lagrangians on frame and coframe bundles are well known in
several approaches to gravitation, and general relativity. One of the tasks of
differential geometry is to describe the structure of all natural Lagrangians of
the corresponding order r.

Let Lr
n be r-th differential group of Rn (n-tuples of real numbers). Let P

and Q be two manifolds with left actions of Lr
n. A smooth mapping F : P → Q

is called a differential invariant if it is Lr
n-equivariant, i.e., F (g · p) = g · F (p)

for all g ∈ Lr
n and p ∈ P . A characteristic property of a natural Lagrangian is

that it is, in fact, a differential invariant. Effective tool to find these differential
invariants is the orbit reduction method, first time used in D. Krupka, Local
invariants of a linear connection, In: Diff. Geometry, Budapest, 1979, Colloq.
Math. Soc. J. Bolyai 31, North Holland, Amsterdam, 1982. The orbit reduction
method uses the fact that Lr

n can be represented as a semi-direct product of L1
n

and the kernel of canonical jet projection of Lr
n onto L1

n, denoted by Kr
n, i.e.,

Lr
n = L1

n ×s Kr
n.

The frame and coframe bundles of X can be interpreted as fibre bundles
associated with the principal bundle FX and type fibre L1

n; left actions of the
structure group L1

n of FX on the type fibre are called frame and coframe ac-
tions, respectively. Then, by prolongation theory, r-jet prolongations JrFX and
JrF ∗X of frame and coframe bundles, respectively, have the structure of fibre
bundles, associated with the principal bundle F r+1X of the frames of order
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r + 1, and with type fibre T r
nL1

n (the manifold of r-jets with source 0 ∈ Rn and
target in L1

n). The actions of Lr+1
n on the type fibre are induced by prolongation

formula from frame and coframe actions.

General result on the structure of natural Lagrangians says that, given L1
n-

manifold Q, there is a one-to-one correspondence between natural Lagrangians
on JrFQX and differential invariants I : T r

nQ → R̃, where R̃ is the real line
endowed with the trivial action of L1

n (see, e.g., D. Krupka, Natural variatio-
nal principles, In: Symmetries and Perturbation Theory, Proc. of the Internat.
Conf., Otranto, Italy, 2007, World Scientific, 2008, pp. 116–123). Thus, to ob-
tain all natural Lagrangians of order r on frame and coframe bundles it is
sufficient to describe all differential invariants I : T r

nL1
n → R̃.

During calculation process of differential invariants I we use Young decom-
position of tensors of the corresponding type. Calculation difficulty increases
with the increasing of differential invariants order. There is also difference in
calculation difficulty between differential invariants of frames and coframes of
the same order. Because of duality of the frame and the coframe actions (see D.
Q. Chao and D. Krupka, 3rd order differential invariants of coframes, Math.
Slovaca, 49 (1999), 563–576), it could be useful to obtain differential invari-
ants of coframes first and then to transpose them into differential invariants of
frames.

To finalize the construction of natural Lagrangians of frames and of coframes
we introduce the concept of canonical odd n-form on FX, and on F ∗X, re-
spectively. In the case of frames the situation is as follows. Any chart (U,ϕ),
ϕ = (xi), on X, induces the fibred chart (V, ψ), ψ = (xi, xi

j), on FX . By setting
xi

jy
j
k = δi

k we define another coordinates yj
k on FX . With the chart (V, ψ) we

associate the object

ω̃(V,ψ) = | det yi
j| · ϕ̃⊗ dx1 ∧ dx2 ∧ . . . ∧ dxn, (1)

where ϕ̃ is a field of odd scalars on X , associated with (U,ϕ) (see D. Krupka,
Natural Lagrangian structures, In: Banach Center Publications, 12, Polish Sci-
entific Publishers, Warszawa, 1984, pp. 185–210). It is easily seen that (1) rep-
resents a globally defined odd base form on FX ; we denote this form by ω̃, and
call it the canonical odd n-form on FX . The canonical odd n-form on F ∗X
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can be obtained analogously. For the properties of these forms see J. Brajerčík,
Second order differential invariants of linear frames, Balkan J. Geom. Appl.,
15 (2010), no. 2, 14–25, and J. Brajerčík and M. Demko, Second order natural
Lagrangians on coframe bundles, Miskolc Math. Notes, to appear, respectively.

Our main results for frames are described in the following assertions.

Theorem 1 Every r-th order natural Lagrangian λ on frame bundles is of the
form

λ = Lω̃,

where L is any function of order r, invariant with respect to corresponding lifts
of all diffeomorhisms of X, and ω̃ is canonical odd n-form of FX.

For illustration we give an explicit expression of the functions L for r = 2. Let
(V 2, ψ2), ψ2 = (xi, xi

j, x
i
j,k, x

i
j,kl) be the fibred chart on J2FX , associated with

(V, ψ).

Theorem 2 Any function L on J2FX, invariant with respect to corresponding
lifts of all diffeomorhisms of X, can be locally written as a differentiable func-
tion of the functions Li

j,k, Li
jk,l which are given by

Li
j,k = yi

tx
s
k̃
xt

j̃,s
,

Li
jk,l = yi

t(2x
s
l x

m
k̃
xt

j̃,ms
+ yp

qx
s
l x

t
p,sx

m
j̃
xq

k̃,m
+ xs

j̃
xt

l,mxm
k̃,s

+ 3
2x

s
l x

t
j̃,m

xm
k̃,s

+1
2x

s
k̃
xt

j̃,m
xm

l,s + 1
2y

p
qx

s
l x

t
p,mxm

j̃
xq

k̃,s
+ 1

2y
p
qx

s
k̃
xm

j̃
xt

p,sx
q
l,m),

where writing a tilde over two indices means antisymmetrization in these in-
dices.

Second order natural Lagrangians on coframe bundles have been obtained
by an analogous way.

MSC2010: 53A55, 58A10, 58A20
Keywords: natural Lagrangian, frame, coframe, differential invariant.
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GLUING FRIEDMAN COSMOLOGICAL MODELS IN
DIFFERENTIAL SPACES THEORY

Krzysztof Drachal

Faculty of Mathematics and Information Science, Warsaw University of Techno-

logy, Koszykowa 75, 00–662 Warszawa, POLAND

E-mail address: k.drachal@mini.pw.edu.pl

Abstract

Friedman cosmological models are fundamental in classical modern cosmo-
logy. In cyclic models one has to glue universes, which usually produces a ”sin-
gularity”. Therefore a formal description must be subtle. However it occurs that
when the description is done in theory of differential spaces, the problem of sin-
gularities is easier to cope with. Differential spaces (in a sense of Sikorski) are
therefore a very useful generalizations of the concept of a classical smooth mani-
fold. A special subcategory of differential spaces are so called differential spaces
generated by some (in our case finite) family of functions. These generators can
play the role of a nice tool in a special technique of gluing two differential spaces
(named of course ”generator gluing method”). Classically there emerges a prob-
lem with smoothness of functions and one has to smooth the obtained edge or
shift. In the category of differential spaces functions must be only continuous.
Therefore no ”smoothing” procedure is needed even if some kind of a ”singular”
point emerges. The proposed technique allows to glue functions, vector fields,
differential forms and all geometric objects. The whole technique is not fully
developed, but first results indicate that it is worth to study this concept more
thoroughly. From mathematical point of view this formalism is an interesting
part of global analysis.

References

[1] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Controlled Global Lorentzian Geo-
metry, Marcel Dekker, INC., New York, 1996.
[2] O’Neill, B.: Semi–Riemannian Geometry with Applications to Relativity,
Academic Press, New York, 1983.
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[3] Bondi, H.: Cosmology, Cambridge University Press, Cambridge, 1961.
[4] Sikorski, R.: Wstȩp do geometrii różniczkowej, Państwowe Wydawnictwo
Naukowe, Warsaw, 1972.
[5] Sasin, W.: Geometrical properties of gluing of differential spaces, Demon-
stratio Math., 24 (1991), 635–656.

MSC2010: 58A40, 83C75, 83F05
Keywords:Differential spaces, Friedman cosmological model, singularity, cyclic
cosmology.
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PRESYMPLECTIC CURRENT AND THE INVERSE PROBLEM
OF THE CALCULUS OF VARIATIONS

Igor Khavkine

Institute for Theoretical Physics, Utrecht University,

Leuvenlaan 4, 3584 CE Utrecht, THE NETHERLANDS

E-mail address: i.khavkine@uu.nl

Abstract

The inverse problem of the calculus of variations asks whether a given sys-
tem of partial differential equations (PDEs) admits a variational formulation.
We show that the existence of a pre-symplectic form in the variational bicom-
plex, when horizontally closed on solutions, allows us to construct a variational
formulation for a subsystem of the given PDE. No constraints on the differ-
ential order or number of dependent or independent variables are assumed.
Uniqueness of the variational formulation is also discussed but is inconclusive.

The PDE can be given in any form. Hence, the inverse problem of interest is
of the hard, multiplier kind. Our result can be considered as a PDE analog of the
older and stronger result of Henneaux [1] for systems of ordinary differential
equations (ODEs). Henneaux used the following crucial concepts, that were
available at the time, for the geometric formulation of ODEs: (a) ODE as a
vector field, (b) definition of symplectic form from Lagrangian, (c) conservation
of symplectic form under Lie flow of the ODE, (d) non-degeneracy of ODE
and symplectic form. Unfortunately, his result proved difficult to generalize to
PDEs [2] because the analogs of the above concepts for PDEs were not well
known.

Gradually, the right concepts became available and better known in the
course of the development of the literature on the geometric formulation of
PDEs in terms of jet bundles and the associated variational bicomplex, as well
as the local symplectic structure of field theories. Finally, a short remark of
Hydon [3] and Bridges, Hydon and Lawson [4] contributed the crucial idea for
recovering a Lagrangian from using the following PDE concepts in place of the
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corresponding ones for ODEs: (a) PDE as a jet bundle submanifold, (b) defini-
tion of local pre-symplectic current from Lagrangian, (c) on-shell conservation
condition via the variational bicomplex. We have expanded on this remark,
placed it in the appropriate geometric context and related it to the older work
of Henneaux.

Unfortunately, the right analog the non-degeneracy conditions for PDEs are
not currently apparent. So the uniqueness of the obtained Lagrangian and the
equivalence of its Euler-Lagrange equations to the original PDE system cannot
be stated conclusively. Still we pose and sharpen these questions with the help
of a certain pre-order on Lagrangians, defined in terms of their Euler-Lagrange
equations and pre-symplectic currents.

References

[1] Henneaux, M.: Equations of motion, commutation relations and ambiguities
in the Lagrangian formalism, Annals of Physics, 140 (1982), 45–64.
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Abstract

The aim of this paper is to prove the superstability of the following functional
equations

f
(x + y

m

)m
= g(x)h(y),

where f, g, h : V 2 → A are unknown mappings and m is a fixed positive integer.
Here V is a vector space, and A is a unital normed algebra.

Furthermore, we prove the superstability of the following generalized Pexider
exponential equation

f
(x + y

r

)r
= g(x)h(y),

where f, g, h : V 2 → I(A)∩A+ are unknown mappings and r is a fixed nonzero
rational number. Here V is a vector space, I(A) is the set of all invertible
elements in a commutative unital C∗-algebra A and A+ is the positive cone of
A.

Theorem A. Let ϕ : V ×V → R+∪{0} be a function. Assume that ϕ(x, y)
is bounded as a function of y for each x ∈ V , and that f, g, h : V → A satisfy
the inequality ∥∥∥∥f

(
x + y

m

)m

− g(x)h(y)

∥∥∥∥ ≤ ϕ(x, y)

for all x, y ∈ V and g(0) = I. If there exists a sequence {yn} in V such that

‖h(yn)
−1‖ → 0
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as n →∞, then g satisfies

f(x + y) = f(x)f(y). (E)

Theorem B. Let ϕ : V ×V → R+∪{0} be a function. Assume that ϕ(x, y)
is bounded as a function of y for each x ∈ V , and that f, g, h : V → I(A)∩A+

satisfy the inequality
∥∥∥∥f

(
x + y

r

)r

− g(x)h(y)

∥∥∥∥ ≤ ϕ(x, y)

for all x, y ∈ V and g(0) = I. If there exists a sequence {yn} in V such that

‖h(yn)
−1‖ → 0

as n →∞, then g satisfies (E).

MSC2010: 39B52, 33B10, 65F10, 11D61, 46L05
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ider exponential equation.

ACKNOWLEDGMENTS

The first author and the second author were supported by Basic Science
Research Program through the National Research Foundation of Korea funded
by the Ministry of Education, Science and Technology (NRF-2010-0010243)
and (NRF-2012R1A1A2004299), respectively.



24 18th International Summer School on Global Analysis

VARIATIONAL SEQUENCES

Demeter Krupka1, Zbyněk Urban1,2, Jana Volná3

1 Lepage Research Institute, Slatinky, CZECH REPUBLIC
2 Department of Mathematics and Physics, University of Pardubice, Studentska 95,

532 10 Pardubice, CZECH REPUBLIC
3 Department of Mathematics, Faculty of Applied Informatics, Tomas Bata Univer-

sity, Nad Stranemi 4511, 760 05 Zlin, CZECH REPUBLIC

E-mail address: 1demeter.krupka@lepageri.eu, 2zbynek.urban@lepageri.eu, 3volna@fai.utb.cz

Abstract

The variational sequence theory on fibred manifolds with 1-dimensional base
(fibred mechanics) are studied.

Let Y be a fibred manifold over 1-dimensional base X with projection π :
Y → X, and denote m = dim Y − 1. Let r ≥ 0. We denote by JrY the r-jet
prolongation of Y , and by πr : JrY → X and πr,s : JrY → JsY , 0 ≤ s ≤ r,
the canonical jet projections. If r = 0, we set J0Y = Y . For any open subset
W ⊂ Y , let W r = (πr,0)−1(W ) ⊂ JrY . An element of JrY , denoted by Jr

xγ, is
the r-jet of a section γ of Y with source x ∈ X and target γ(x) ∈ Y .

We consider JrY with standard geometric structures. Recall that every fi-
bred chart (V, ψ), ψ = (t, qσ), 1 ≤ σ ≤ m, on Y induces the chart (U,ϕ) on
X, with U = π(V ), and the associated fibred chart (V r, ψr) on JrY , where
V r = (πr,0)−1(V ), and ψr = (t, qσ, qσ

1 , qσ
2 , . . . , qσ

r ) is the collection of coordi-
nates on V r, defined by qσ

l (Jr
xγ) = Dl(qσγϕ−1)(ϕ(x)). The associated charts

(V r, ψr) define a smooth structure of JrY ; the dimension of JrY is given by
dim JrY = 1 + m(r + 1).

We denote by Ωr
0W the ring of differentiable functions, defined on W r, and by

Ωr
kW the Ωr

0W -module of differentiable k-forms on W r. The exterior algebra of
forms on W r is denoted by ΩrW . Recall that the chart formulas hf = f ◦πr+1,r,
h dt = dt and h dqσ

k = qσ
k+1 define a (global) homomorphism of exterior algebras

h : ΩrW → Ωr+1W , called the horizontalisation. Note that for any function
f : W r → R, h df = df

dt , where
df
dt = ∂f

∂t +
∑r

l=0
∂f
∂yσ

l
yσ

l+1 is the formal or total
derivative of f .
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A differential 1-form ρ ∈ Ωr
1W , satisfying condition hρ = 0, is said to be

contact. Note that, evidently, every k-form ρ ∈ Ωr
kW , with k ≥ 2, satisfies the

condition hρ = 0 trivially. Locally, every contact one form can be describe as

ρ =
r−1∑

l=0

Bl
σω

σ
l

where
ωσ

l = dyσ
l − yσ

l+1dt.

Using the last expression, we can change the standard basis of 1-forms dt, dqσ
l , dqσ

r ,
0 ≤ l ≤ r− 1 to the contact basis of 1-forms dt, ωσ

l , dqσ
r , 0 ≤ l ≤ r− 1, if it is

suitable.
For any k-form ρ ∈ Ωr

kW the pull-back (πr+1,r)∗ρ has a unique decomposi-
tion (πr+1,r)∗ρ = pk−1ρ + pkρ, called canonical decomposition of ρ. The form
pk−1ρ (resp. pkρ) is called the (k − 1)-contact (resp. k-contact) component of
ρ. In particular, if k = 1, we denote p0ρ = hρ the horizontal and p1ρ = pρ the
contact component of ρ, and write (πr+1,r)∗ρ = hρ + pρ,

A form ρ ∈ Ωr
kW is said to be k-contact, or completely contact, if it is equal,

up to the pull-back, to its k-contact component, that is, (πr+1,r)∗ρ = pkρ. The
module of completely contact k-forms will be denoted by (c)Ωr

kW .
We say that a k-form ρ ∈ Ωr

kW is contact, if for every point from Y there
exist a fibred chart (V, ψ), ψ = (t, qσ) and a completely contact (k − 1)-form
η ∈ (c)Ωr

k−1V such that pk(ρ − dη) = 0. It is equivalent with assertion that
ρ has a local expression ρ = µ + dη for some completely contact k-form µ

and completely contact (k− 1)-form η. Contact k-forms constitute an Abelian
subgroup, denoted by Θr

kW , of the Abelian group of k-forms Ωr
kW .

The subgroups Θr
kW of contact k-forms together with the exterior derivative

operator d define a sequence

0 → Θr
1W → Θr

2W → . . . → Θr
MW → 0, (1)

where M = mr + 1. Sequence (1) is a subsequence of the De Rham sequence

0 → R→ Ωr
0W → Ωr

1W → . . . → Ωr
MW → Ωr

M+1W → . . . → Ωr
NW → 0,

(2)
called the contact subsequence; the morphisms in (2) denote the exterior deriva-
tive operator and N = dim JrY = m(r + 1) + 1.
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The quotient sequence

0 → R→ Ωr
0W → Ωr

1W/Θr
1W → . . .

→ Ωr
MW/Θr

MW → Ωr
M+1W → . . . → Ωr

NW → 0,

with quotient mappings E : Ωr
kW/Θr

kW → Ωr
k+1W/Θr

k+1W , defined on classes
of forms by E([ρ]) = [dρ], , is called the variational sequence of order r on JrY .

Let us mention the quotient mapping E : Ωr
2W/Θr

2W → Ωr
3W/Θr

3W in more
detail. Let ε be a differential 2-form given in fibred coordinates by ε = εσω

σ∧dt,

where εσ = εσ(t, q
σ, qσ

1 , qσ
2 ) (so called source form). The class of ρ is an element

of Ωr
2W/Θr

2W . Applying the definition of the quotient mapping we obtain a
class [dρ], identified with 3-form on W 4

E(ε) = (Hσν(ε)ω
ν + H1

σν(ε)ω
ν
1 + H2

σν(ε)ω
ν
2) ∧ ωσ ∧ dt, (3)

where

H2
σν(ε) =

∂εσ

∂qν
2
− ∂εν

∂qσ
2
,

H1
σν(ε) =

∂εσ

∂qν
1

+
∂εν

∂qσ
1
− 2

d

dt

∂εν

∂qσ
2
, (4)

H0
σν(ε) =

∂εσ

∂qν
− ∂εν

∂qσ
+

d

dt

∂εν

∂qσ
1
− d2

dt2
∂εν

∂qσ
2

are the well-known Helmholtz expressions. Moreover, the form E(ε) is equal to
zero form if and only if the form ε is variational, i.e its coefficients εσ are the
Euler-Lagrange expressions for some Lagrangian λ.

MSC2010: 58A20, 58E30, 49Q99
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POINCARÉ INVARIANCE OF THE HELMHOLTZ MORPHISM
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Abstract

We study the Helmholtz morphism in the variational sequence and find
Helmholtz forms invariant with respect to the Poincaré group.

We shall use the framework of the theory of variational sequences on fibred
manifolds. The variational sequence is a quotient sequence of the de Rham
sequence, such that one of the morphisms is the Euler-Lagrange morphism
E1 : λ → Eλ, assigning to a Lagrangian, i.e. one-form λ = L dt, its Euler-
Lagrange form, i.e. two-form Eλ = Eσ(L) dqσ ∧dt, where Eσ(L) are the Euler-
Lagrange expressions

Eσ(L) =
∂L

∂qσ
− d

dt

∂L

∂
.
qσ .

The next morphism E2 : E → HE, called the Helmholtz morphism, assigns to a
two-form E = Eσ dqσ ∧ dt a three-form HE

HE =
1

2

(
∂Eσ

∂qν
− ∂Eν

∂qσ
− 1

2

d

dt

(
∂Eσ

∂
.
qν −

∂Eν

∂
.
qσ

))
ων ∧ ωσ ∧ dt

+
1

2

(
∂Eσ

∂
.
qν +

∂Eν

∂
.
qσ −

d

dt

(
∂Eσ

∂
..
qν +

∂Eν

∂
..
qσ

))
.
ων ∧ ωσ ∧ dt

+
1

2

(
∂Eσ

∂
..
qν −

∂Eν

∂
..
qσ

)
..
ων ∧ ωσ ∧ dt.

called Helmholtz form.
Classes in the variational sequence can be represented by differential forms.

We shall use the representation by so-called source forms, (q − 1)-contact q-
forms belonging to the ideal generated by contact forms. We shall be inter-
ested in Helmholtz-like forms (the source forms representing the classes of local
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3-forms) of order 3 (in particular, they correspond to second order ordinary
differential equations). In coordinates,

H = H0
σν ων ∧ ωσ ∧ dt + H1

σν
.
ων ∧ ωσ ∧ dt + H2

σν
..
ων ∧ ωσ ∧ dt

where H0
σν = −H0

νσ, H1
σν = H1

νσ, H2
σν = −H2

νσ.
The Poincaré group on R4 is the 10-parametric transformation group, gen-

erated by the vector fields

∂

∂q0 ,
∂

∂q1 ,
∂

∂q2 ,
∂

∂q3

for the space-time translations, and

q3 ∂

∂q2 − q2 ∂

∂q3 , q1 ∂

∂q3 − q3 ∂

∂q1 , q2 ∂

∂q1 − q1 ∂

∂q2 ,

q3 ∂

∂q0 + q0 ∂

∂q3 , q1 ∂

∂q0 + q0 ∂

∂q1 , q2 ∂

∂q0 + q0 ∂

∂q2

for the space-time rotations.
The problem is to find Helmholtz-like form H invariant with respect to the

Poincaré group. Substituing the generators of the Poincaré group into symmetry
conditions we obtain the following equations for the components of H:

H0
σρ

∂ξρ

∂qν
+ H0

ρν

∂ξρ

∂qσ
+

∂H0
σν

∂
.
qρ ξρ

1 +
∂H0

σν

∂
..
qρ ξρ

2 +
∂H0

σν

∂
...
q ρ ξρ

3 = 0

H1
ρν

∂ξρ

∂qσ
+

∂H1
σν

∂
.
qρ ξρ

1 +
∂H1

σν

∂
..
qρ ξρ

2 +
∂H1

σν

∂
...
q ρ ξρ

3 = 0

H2
ρν

∂ξρ

∂qσ
+

∂H2
σν

∂
.
qρ ξρ

1 +
∂H2

σν

∂
..
qρ ξρ

2 +
∂H2

σν

∂
...
q ρ ξρ

3 = 0

and we solve them.
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Abstract

In this talk, we prove the Hyers-Ulam stability of the Cauchy additive func-
tional equation and the Cauchy additive functional inequality in matrix normed
modules over a C∗-algebra.

Let E, F be vector spaces. For a given mapping h : E → F and a given
positive integer n, define hn : Mn(E) → Mn(F ) by hn([xij]) = [h(xij)] for all
[xij] ∈ Mn(E).

Throughout this paper, assume that A is a unital C∗-algebra with unitary
group U(A). Let (X, {‖·‖n}) be a matrix normed module over A and (Y, {‖·‖n})
a matrix Banach module over A.

For a mapping f : X → Y , define Dufn : Mn(X
2) → Mn(Y ) by

Dufn([xij], [yij]) := fn(u[xij + yij])− ufn([xij])− ufn([yij])

for all u ∈ U(A) and all x = [xij], y = [yij] ∈ Mn(X).
Theorem A. Let f : X → Y be a mapping and let φ : X2 → [0,∞) be a

function such that

Φ(a, b) :=
1

2

∞∑

l=0

1

2l
φ(2la, 2lb) < +∞,

‖Dufn([xij], [yij])‖n ≤
n∑

i,j=1

φ(xij, yij)

for all a, b ∈ X, u ∈ U(A) and all x = [xij], y = [yij] ∈ Mn(X). Then there
exists a unique A-linear mapping L : X → Y such that

‖fn([xij])− Ln([xij])‖n ≤
n∑

i,j=1

Φ(xij, xij)
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for all x = [xij] ∈ Mn(n).
Theorem B. Let f : X → Y be a mapping and let φ : X3 → [0,∞) be a

function such that

Φ(a, b, c) :=
1

2

∞∑

l=0

1

2l
φ(2la, 2lb, 2lc) < +∞,

‖ufn([xij]) + ufn([yij]) + fn(u[zij])‖n ≤ ‖fn ([xij] + [yij] + [zij])‖n

+
n∑

i,j=1

φ(xij, yij, zij)

for all a, b, c ∈ X , u ∈ U(A) and all x = [xij], y = [yij], z = [zij] ∈ Mn(X).
Then there exists a unique A-linear mapping L : X → Y such that

‖fn([xij])− Ln([xij])‖n ≤
n∑

i,j=1

Φ(xij, xij,−2xij)

for all x = [xij] ∈ Mn(X).
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Abstract

Typical representatives of the artificial muscles are pneumatic artificial mus-
cles (PAMs) which have a very good power-to-weight ratio and they are suitable
for use as manipulators actuator. Due to their highly non-linear characteristics
there are problems with control of such actuator and it is necessary to have
suitable dynamic model of these muscles. One of the simple way to obtain it
is mathematical describing considering muscle geometric properties. The ad-
vanced geometric muscle model in contrast to the simple model assumes that
not only muscle length h changes when inflated or deflated through valve dia-
meter d1, but also muscle diameter d2 changes. Geometry constants assuming
non expansion braiding fibers are the half nylon thread length L and number
N wrapped of single fibers (Fig. 1).

Fig.1 Geometry parameters of the PAM
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The artificial muscle is modeled as an elliptic cylinder with non-zero thick-
ness. Relation of the muscle cylinder volume V as a function of the muscle
length h has the following form:

V =
h · [3d2

1π
2N 2 + 4d1π ·N

√
4L2 − h2 + 8(4L2 − h2)]

60π ·N 2 (1)

Dependence of the air pressure p in the muscle on the muscle volume V

and the volume flow rate of the compressed air to/from the muscle is given by
differential equation:

.
p +

p

V

(
∂V

∂h
+

∂V

∂d2

∂d2

∂h

)
∂h

∂t
=

RS · T
V

(Qin −Qout) (2)

where Qin/Qout is the air flow rate through the inlet/outlet valve, RS is the
specific gas constant of the air and T is the absolute temperature.

On the basis of the law of energy conservation the input virtual work dWin =
p · dV and the output virtual work dWout = −F · dh done by muscle must be
the same. Then dependence of the muscle tensile force F on the air pressure in
the muscle can be obtained as follows:

F = −p ·
(

π · d2
1

20
+

8L2 − 6h2

15π ·N 2 +
d1
√

4L2 − h2

15N
− d1h

2

15N
√

4L2 − h2

)
(3)

Acquired knowledge will be used in future work to create a dynamic simula-
tion model in Matlab Simulink environment in order to simulate the dynamics
of the manipulator movement with PAMs.
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