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Preface

The 19th International Summer School on Global Analysis and its Applications
has become a fruitful continuation of the series of summer schools focused on
topics on the border of mathematics and physics, organized annually by the
Lepage Institute Research group. "Symmetries" - the research program of this
year meeting - were presented by renowned specialists in the field from differ-
ent points of view: Professors Hernán Cendra (Universidad Nacional del Sur,
Argentina), Peter Hydon (University of Surrey, United Kingdom) and Valentin
Lychagin (University of Tromsø, Norway) gave a basic course with the fol-
lowing topics: Dirac Structures and their applications in physics (H. Cendra),
Symmetry methods for differential and difference equations (P. Hydon), and
Symmetries, invariants and factor-equations (V. Lychagin).

For the organizers, I wish to thank our speakers for their top-quality lecturing
as well as discussions on different research topics, and also to all participants for
their support and making the 2014 summer school in Lednice (Czech Rep.) very
pleasant. We invite all of you to celebrate the next year anniversary summer
school with the anniversary topic "General Relativity: 100 years after Hilbert".
Last but not least, our thanks belong also to the main organizers: the Lepage
Research Institute and the University of Prešov for their support.

Lednice, 30 August 2014 Zbyněk Urban

Chairman of the Organizing Committee
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Programme

A) LECTURES

EXAMPLES OF APPLICATIONS OF DIRAC STRUCTURES
Hernán Cendra

SYMMETRY METHODS FOR DIFFERENTIAL AND DIFFERENCE
EQUATIONS
Peter E Hydon

SYMMETRIES, INVARIANTS AND FACTOR-EQUATIONS
Valentin Lychagin

B) SHORT PRESENTATIONS AND POSTERS

SOMEMETHODS OF DIFFERENTIAL SPACES IN SPACETIMEGEO-
METRY
Krzysztof Drachal

NOTES ON SLANT CURVES IN SASAKIAN 3-MANIFOLDS
İsmail Gök, Osman Ateş

EXISTENCE AND PERIODICITY FOR SOLUTIONS OF DELAY DIF-
FERENTIAL EQUATIONS
Ali Khelil Kamel, Ahcene Djoudi

TOPOLOGY, RIGID COSYMMETRIES AND LINEARIZATION IN-
STABILITY IN HIGHER GAUGE THEORIES
Igor Khavkine

THE NOETHER’S THEOREMS ANDNATURAL VARIATIONAL PRIN-
CIPLES
Demeter Krupka
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SEMIHOLONOMIC VELOCITIES AND CONTACT ELEMENTS: AN
ALGEBRAIC APPROACH I, II
Miroslav Kureš

PRINCIPAL FUNCTIONS OF NON-SELFADJOINT MATRIX STURM-
LIOUVILLE EQUATIONS
Murat Olgun, Yelda Aygar

NONLINEAR STATIC CHARACTERISTIC OF PNEUMATICMUSCLE
ACTUATOR
Ján Piteľ, Mária Tóthová

UNIFORM PROJECTILE MOTION AS A NONHOLONOMIC SYSTEM
WITH A NONLINEAR CONSTRAINT
Martin Swaczyna, Petr Volný

INVARIANT LEPAGE FORMS ON GRASSMANN FIBRATIONS: EX-
AMPLES
Zbyněk Urban, Demeter Krupka

REPRESENTATION OF VARIATIONAL SEQUENCES
Jana Volná

NUMERICAL COMPUTATION AND PROPERTIES OF THE TWO DI-
MENSIONAL EXPONENTIAL INTEGRALS
Seyhmus Yardimci, İbrahim Erdal
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EXAMPLES OF APPLICATIONS OF DIRAC STRUCTURES

Hernán Cendra1, María R. Etchechoury2, Sebastián J. Ferraro3

1Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000

Bahía Blanca, ARGENTINA
2Departamento de Matemática, Universidad Nacional De La Plata, Calle 50, y 115,

La Plata, ARGENTINA
3Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000

Bahía Blanca, ARGENTINA

E-mail address: hcendra@gmail.com, marila.mate@gmail.com, sferraro@uns.edu.ar

Abstract

Dirac geometry has evolved since the discovery of Dirac structures about 30
years ago by Courant and Weinstein, [6a], [6b], as a generalization encompass-
ing and going beyond presymplectic and Poisson geometry. In this course we
will emphasize the meaning of Dirac geometry for modelling physical systems
rather than its connection with other branches of mathematics.

A Dirac structure D ⊆ TM ⊕ T ∗M is a vector subbundle of the Pontryagin
bundle of the manifold M having certain properties that are satisfied, in par-
ticular, when D is the graph of the flat operator associated to a presymplectic
form or the sharp operator associated to a Poisson bivector. The transforma-
tion properties of Dirac structures make it easier to use a categorical approach,
where the objects are Dirac manifolds (M,D) and there are forward and back-
ward morphisms, [3], [2]. This confers some advantages to Dirac geometry over
Poisson geometry or symplectic geometry since certain transformations of Dirac
structures may be well defined in certain situations where, for instance, Poisson
geometry cannot be applied. For example, the pullback of a Poisson structure
under a smooth map cannot be defined in general as a Poisson structure, but in
many cases of interest the backward morphism of its graph is a Dirac structure.

In this course, we will describe essentially two aspects of Dirac geometry, both
related to physical systems modelling.
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In the first place, Dirac structures provide a way of describing equations of
motion as Dirac systems of the type (x,

.
x) ⊕ dE ∈ D, where E is an energy

function, [5], [14a], [14b]. This approach is useful for instance in representing
Euler-Lagrange equations for singular Lagrangians, where the Dirac theory of
constraints, [9], should be used to obtain a Hamiltonian description. The latter
is related to the original motivation in [6a] for introducing Dirac structures.
Examples where, besides the constraints coming from the singularities of the
Lagrangian, there are "external" constraints like nonholonomic systems or LC
circuits, control systems, etc, can also be represented as Dirac systems, which
provides a unified formalism for all of them.

We will start with a review of the Dirac theory of constraints [9] and the Gotay-
Nester theory, [10]. Constraints theories have been studied extensively by many
authors, for instance, [4a], [4b], [12a], [12b]. In an abstract setting, the basic
ingredients of the Dirac theory are a given symplectic manifold (a cotangent
bundle in the original Dirac’s exposition), the primary constraint submanifold
(the image of the Legendre transformation in the original Dirac’s exposition)
described regularly as the zero set of a family of functions (primary constraints)
and an Energy function (Hamiltonian) defined on the symplectic manifold. A
generalization is given in [5] by replacing the primary constraint submanifold
by a foliated submanifold, in order to deal with more general Dirac systems
rather than the systems that originally motivated the Dirac or Gotay-Nester
theories. As a further example we will show how to deal with linear Poisson
systems using a Dirac geometric approach, which gives the equations of motion
derived in [8]. One should also mention that, in the context of Dirac structures,
it appeared recently a study of constraints in which the symplectic manifold
(phase space) is replaced by a Poisson manifold, [3].

Second, the other important aspect is that Dirac geometry can be used to study
systems with ports and interconnected systems [13]. This approach is specially
useful in the case of complex systems. We will define the notions of port-Dirac
structures and systems (which are closely related to port-Hamiltonian systems,
[13]) and we will briefly show how the categorical approach helps to understand
this notion and also the notion of interconnection.
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We will very briefly review the notion of Dirac-Weinstein reduction (work in
progress).

The list of references below is by no means complete.
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SYMMETRY METHODS FOR DIFFERENTIAL AND
DIFFERENCE EQUATIONS

Peter E Hydon

Department of Mathematics, University of Surrey, Guildford GU2 7XH UNITED

KINGDOM

E-mail address: P.Hydon@surrey.ac.uk

Abstract

Most well-known techniques for solving differential equations exploit sym-
metry in some form. This simple observation, due to Sophus Lie, has been
developed into a set of systematic methods for finding and using symmetries,
first integrals and conservation laws of a given differential equation. Recent
research has shown how to extend these powerful methods to difference equa-
tions. For instance, there are difference analogues of Noether’s two theorems
on variational symmetries, together with a new intermediate result. An impor-
tant application is to determine which finite difference approximations retain
conservation laws, Bianchi identities and other essential structures.

This course describes the basic theory for both differential equations (DEs)
and difference equations (4Es), and shows how the resulting techniques are
used in practice. The contents and conclusions of each lecture are summarized
below, together with some suggestions for further reading.

Lecture 1: From symmetries to solutions

• Most well-known methods for solving a given first-order ODE or O4E
use canonical coordinates to transform the equation into a simple solvable
form.

• Symmetries of a given ODE or O4E map the set of solutions to itself
(invertibly, preserving the locally-smooth dependence on arbitrary con-
stants).

• Nontrivial one-parameter local Lie groups of symmetries yield useful local
canonical coordinates.
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Lecture 2: How to find Lie symmetries

• Given an ODE or O4E of order p ≥ 2, canonical coordinates reduce the
order by one. If the reduced equation can be solved, the original equation
is solved by one more integration or summation.

• The infinitesimal generator X determines the local behaviour of Lie sym-
metries.

• A function is invariant if and only if it is in the kernel of X .

• The prolonged infinitesimal generator yields the linearized symmetry con-
dition (LSC). For an ODE, this is a differential equation; for an O4E, the
LSC is a functional equation.

• By restricting the characteristic, Q, one can seek all Lie symmetries that
satisfy the restriction.

• Point symmetries act on the space of independent and dependent variables;
dynamical symmetries act on the space of first integrals (or arbitrary con-
stants).

Lecture 3: Lie symmetry methods for PDEs and P4Es

• Provided that the LSC can be written as an identity, one can find its Lie
symmetries by the same methods as for ODEs or O4Es.

• Besides Lie point symmetries, PDEs and P4Es may also have generalized
symmetries.

• Invariant solutions, which satisfy the given equation and Q = 0, may be
constructed from Lie point or generalized symmetries.

• Lie point symmetries can be used to construct linearizing point transfor-
mations for a given PDE or P4E, provided such transformations exist.

Lecture 4: Conservation laws

• For PDEs, characteristics identify equivalent conservation laws directly.

• Characteristics for P4E conservation laws can be constructed; their roots
identify equivalent conservation laws.
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• Characteristic discretization of continuous characteristics can produce fi-
nite difference schemes that preserve multiple conservation laws.

Lecture 5: Noether-type theorems

• Noether’s theorems on variational symmetries apply equally to PDEs and
P4Es.

• There is a result that bridges the gap between Noether’s theorems.

• For at least some gauge theories, there exist discretizations that preserve
the relations produced by Noether’s Second Theorem.

• A key reason for the close analogy between PDE and P4E methods is the
existence of identical cohomological structures.

Further Reading

[1] Bluman, G. W. & Anco, S. 2002 Symmetry and Integration Methods for
Differential Equations, New York: Springer.

[2] Bluman, G. W., Cheviakov, A. & Anco, S. 2010 Applications of Symmetry
Methods to Partial Differential Equations, New York: Springer.

[3] Brading, K. 2002 Which symmetry? Noether, Weyl and conservation of
electric charge. Stud. Hist. Phil. Mod. Phys. 33, 3-22.

[4] Christiansen, S. H. & Halvorsen, T. G. 2011 Solving the Maxwell-Klein-
Gordon equation in the lattice gauge theory formalism. IMA J. Num. Anal.
31, 1-24.

[5] Dorodnitsyn, V. 2001. Noether-type theorems for difference equations.
Appl. Num. Math. 39, 307-321.

[6] Dorodnitsyn, V. 2011 Applications of Lie Groups to Difference Equations,
Boca Raton: Chapman & Hall/CRC.

[7] Grant, T. J. & Hydon, P. E. 2013 Characteristics of conservation laws for
difference equations. Found. Comp. Math. 13, 667-692.

[8] Hickman, M. & Hereman, W. 2003 Computation of densities and fluxes of
nonlinear differential-difference equations. Proc. Roy. Soc. Lond. A 459,
2705-2729.

[9] Hydon, P. E. 2000 Symmetries and first integrals of ordinary difference
equations. Proc. Roy. Soc. Lond. A 456, 2835-2855.



19th International Summer School on Global Analysis 13

[10] Hydon, P. E. 2000 Symmetry Methods for Differential Equations: A Be-
ginner’s Guide, New York: Cambridge University Press.

[11] Hydon, P. E. 2014 Difference Equations by Differential Equation Methods,
New York: Cambridge University Press.

[12] Hydon, P. E. & Mansfield, E. L. 2004 A variational complex for difference
equations. Found. Comp. Math. 4, 187-217.

[13] Ibragimov, N. H. 1999 Elementary Lie Group Analysis and Ordinary Dif-
ferential Equations, Chichester: John Wiley & Sons.

[14] Kosmann-Schwarzbach, Y. 2010 The Noether Theorems. Invariance and
Conservation Laws in the Twentieth Century, New York: Springer.

[15] Mansfield, E. L. 2010 A Practical Guide to the Invariant Calculus, New
York: Cambridge University Press.

[16] Mansfield, E. L. & Hydon, P. E. 2008 Difference forms. Found. Comp.
Math. 8, 427-467.

[17] Noether, E. 1918, Invariante Variationsprobleme. Nachr. v. d. Ges. d. Wiss.
zu G..

ottingen, Math-phys. Klasse, 235-257. English translation by M. A.
Tavel: arXiv:physics/0503066v1 [physics.hist-ph].

[18] Olver, P. J. 1993 Application of Lie Groups to Differential Equations, 2nd
edn, New York: Springer.

[19] Peng, L. 2013 From differential to difference: the variational bicomplex
and invariant Noether’s theorems, PhD thesis, University of Surrey.

[20] Stephani, H. 1989 Differential Equations: Their Solutions Using Symme-
tries, New York: Cambridge University Press.



14 19th International Summer School on Global Analysis

SYMMETRIES, INVARIANTS AND FACTOR-EQUATIONS

Valentin Lychagin

Department of Mathematics, University of Tromsø, NORWAY

E-mail address: valentin.lychagin@uit.no

Abstract

The main purpose of these lectures is to present a short introduction to the
world of differential invariants. We’ll discuss symmetry groups and pseudogroups
of PDEs and algebras of their differential invariants. The main theorem in the
differential invariants theory - Lie-Tresse theorem - shall be discussed in de-
tails. We shall explain in details the importance of certain kind of algebraicity
in PDEs theory and outline algebro-differential methods for finding differential
syzygies and construction of the factor equations. A number of concrete exam-
ples shall be considered.
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SOME METHODS OF DIFFERENTIAL SPACES IN
SPACETIME GEOMETRY

Krzysztof Drachal

Faculty of Mathematics and Information Science, Warsaw University of Techno-

logy, Koszykowa 75, 00 – 662 Warszawa, Poland

E-mail address: k.drachal@mini.pw.edu.pl

Abstract

Let M be a nonempty set. Let A be a family of real functions on M . Denote
these functions by fi. Let this family fulfill axioms of the Sikorski differential
space, i.e. let the pair (M,AM) be the Sikorski differential space.

Let a predifferential space be the construction similar to Sikorski one, but
without the axiom of localization closure.

Let Â denote the collection of real functions defined on SpecA by the fol-
lowing rule â(χ) = χ(a), where a ∈ A, â ∈ Â and χ ∈ SpecA.

Proposition 1 For the predifferential space (M,A) the following statements
are equivalent:

• (M,A) has the spectral property.

• The generator image F (M) is closed with respect to the Euclidean metric.

• (M,A) and (SpecA, Â) are diffeomorphic.

Let (M, g) be a spacetime, i.e. M is 4–dimensional, smooth manifold and g

is Lorentzian metric. Let O(M) be the connected component of the fibre bundle
of orthonormal frames over M .

Let Ainv denote O(3, 1)–invariant functions from C∞(O(M)) and let Ainv
O(M)

denote O(3, 1)–invariant functions from AO(M).

Proposition 2 The original Schmidt’s b–boundary of a spacetime is then just

(SpecAinv
, Âinv

) \ (SpecAinv
O(M), Âinv

O(M)) .
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Now consider E = O(M) and G = O(3, 1). Let E
πM→ M be the fiber bundle.

Space E is a sum of orbits of the right action E × G → E of the group G

on E, i.e. E =
⋃

x∈M π−1
M (x).

Consider the Cauchy completion E of the space E (with respect to a fixed
metric). The mentioned right action may be prolonged to E ×G → E.

Consider two algebras of G–invariant functions on E and on E, i.e.

FG(E) := {f ∈ C∞(E) | ∀g∈G,p∈Ef(pg) = f(p)}
and FG(E) := {f | f ∈ F0

G(E)}, where F0
G(E) is subalgebra of FG(E) con-

sisting of functions which can be continuously prolonged on E.
One can always choose the generators fi of C∞(E) such that they are pro-

longable, due to the Nash theorem.
The algebra of G–invariant functions from C∞(E) is isomorphic to FG(E).
Moreover FG(E) = π∗M(C∞(M)) = (sc{π∗Mh1, . . . , π

∗
Mhn})E, where hi are

generators of (M, C∞(M)).
Algebras F0

G(E) and FG(E) are isomorphic. So singularities of b–boundary
can be classified basing on the relation between algebras FG(E) and FG(E)
(equivalently: F0

G(E) and FG(E)).

Proposition 3 There are three cases:

[1] F0
G(E) = FG(E) and then SpecFG(E) = SpecF0

G(E),

[2] R � F0
G(E) ( FG(E),

[3] F0
G(E) ∼= R and then SpecF0

G(E) = {∗}.

(R above represents constant functions.)
In the first case the boundary is empty.
In Case 2 there are two subcases:

2a. (F0
G(E))E = FG(E) and then the boundary corresponds to M\M ,

2b. F0
G(E) ( sc{π∗Mh1, . . . , π

∗
Mhn}.

Case 2b is possible only if some nonprolongability emerges at the level of
the generators h1, . . . , hn of M . This can happen if the topology on O(M)
is stronger than the topology induced by π.
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NOTES ON SLANT CURVES IN SASAKIAN 3-MANIFOLDS

İsmail Gök, Osman Ateş

Department of Mathematics, Faculty of Science, Ankara University 06100, Ankara

- TURKEY

E-mail address: igok@science.ankara.edu.tr, ateso@ankara.edu.tr

Abstract

In the study of curves theory in differential geometry, special curves such as
geodesics, circles, Bertrand curves, circular helices, general helices, slant helices
etc. play an important role. Characterizations of these curves have been studied
for a long time. A curve of constant slope or helix is defined by the property
that its tangent vector field makes a constant angle θ with a fixed line l which
is axis of the curve in space. A necessary and sufficient condition that a curve
be of constant slope or a general helix is that the ratio of curvature to torsion
be constant. This classical result stated by M. A. Lancret in 1802 [9] and first
proved by B. de Saint Venant in 1845 [4].

Izumiya and Takeuchi [10] have introduced the concept of slant helices and
conical geodesic curves in Euclidean 3-space. A slant helix in Euclidean space
E3 was defined by the property that its principal normal vector field makes a
constant angle with a fixed line u. Moreover, they give a classification of special
developable surfaces under the condition of the existence of such a special curve
as a geodesic.

As a generalization of Legendre curves, Cho et.al [6] have introduced the
notion of a slant curve. In their study, a curve in a contact manifold is said
to be slant helix if its tangent vector field makes a constant angle with the
Reeb vector field ξ. In particular, if the contact angle is equal to (π/2), then
the curve is called a Legendre curve. Morever, in another study, Cho et.al [7]
have given that biharmonic curves in 3-dimensional Sasakian space forms are
slant helices. After these studies, Ji-Eun Lee and et.al [5] introduced the notion
of C-parallel mean curvature vector fields and C-proper mean curvature vector
fields along slant helices in Sasakian 3-manifolds.
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In this study, firstly we give some characterizations of slant curve and gene-
ralized it to new concept of curve called N -slant curve whose principal normal
vector field makes a constant contact angle with the Reeb vector field ξ. More-
over, we introduce the notion of AW(k) types of slant helices and obtain mean
curvature vector fields along the curves in Sasakian 3-manifolds.
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EXISTENCE AND PERIODICITY FOR SOLUTIONS OF
DELAY DIFFERENTIAL EQUATIONS

Ali Khelil Kamel, Ahcene Djoudi

Department of Mathematics, Badji Mokhtar University, Annaba, ALGERIA

E-mail address: k.alikhelil@yahoo.fr, adjoudi@yahoo.com

Abstract

In this work, we use the Krasnoselskii fixed point theorem to show that some
kind of neutral differential equation with delay has a periodic solution. Also,
by transforming the problem to an integral equation we are able, using the
contraction mapping principle, to show that the periodic solution is unique.
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TOPOLOGY, RIGID COSYMMETRIES AND LINEARIZATION
INSTABILITY IN HIGHER GAUGE THEORIES

Annales Henri Poincaré (2014) [arXiv:1303.2406]
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Abstract

It is well known that the (in general infinite dimensional) solution spaces
of non-linear PDEs may possess algebraic singularities, that is, singularities
similar to those of finite dimensional algebraic varieties. Practically, not all
solutions of the linearized PDE about such a singular point (constituting its
formal or Zariski tangent space) belong to the set of those that are tangent to
a 1-parameter family of exact solutions (constituting the tangent cone). This
inequality between the Zariski tangent space and the tangent cone are referred
to as linearization instability.

Seminal work in the ’70s on equations of mathematical physics by Fischer,
Marsden, Moncrief and others [2, 4] established that linearization instability
occurs in General Relativity, Yang-Mills and other gauge theories, and that
they are linked to compact spatial topology and Killing-type symmetries. Un-
fortunately, that work has been mostly of case-by-case type and in some ways
non-geometric, relying significantly on functional analytical methods. My work,
on the other hand, introduces a systematic way and fully geometric way of dis-
covering sufficient conditions for linearization instability. All known examples
happen to be of that form and some new examples can be readily identified.
These results partially overlap with the little known work of Arms & Anderson
[1].

The basic idea, given an exact solution ϕ of a non-linear PDE e[ϕ] = 0,
is to look for linearization obstructions, that is functions Q(ψ) on solutions of
the linearized PDE eϕ[ψ] = 0 such that Q(ψ) 6= 0 implies that ψ is not the
linearization of a 1-parameter family of exact solutions passing through ϕ. Such
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obstructions can be built from bilinear pairings of conservation laws of eϕ and
de Rham cohomology classes of the domain manifold.

The key construction is of the compatibility (also Noether) complex for the
linear operator eϕ. Namely we call z0

ϕ a compatibility operator for eϕ if z0◦eϕ = 0
and any other differential operator g such that g ◦ eϕ = 0 factors through
z0
ϕ. We inductively define zi+1

ϕ to be the compatibility operator of zi
ϕ, and for

convenience set z−1
ϕ = eϕ. The cohomology classes in H i

def(eϕ) = ker zi
ϕ/ im zi−1

ϕ

are called stage-i consistent deformations. Note that the leading non-linearity
fϕ[tψ] = e[ϕ + tψ]− teϕ[ψ] + · · · represents an element in H0

def(eϕ).
The formal adjoints zi∗

ϕ constitute the adjoint compatibility complex, since
the property z

(i−1)∗
ϕ ◦ zi∗

ϕ is preserved. For variational PDEs, the operator z0∗
ϕ

coincides with the generator of infinitesimal gauge symmetries, with higher
gauge theories characterized by the non-triviality of zi∗

ϕ (i > 0). The cohomol-
ogy classes in H i

cosym(eϕ) = ker z
(i−1)∗
ϕ / im zi∗

ϕ are called rigid cosymmetries.
A generalization of Noether’s first theorem [3] establishes an isomorphism be-
tween H i

cosym(eϕ) and H i
char(eϕ), which consists of equivalence classes degree

i-differential forms (both cosymmetries and these forms may depend locally on
ψ and its derivatives) that are closed modulo the equations eϕ[ψ] = 0. Tradi-
tionally, the representatives of H i

char(eϕ) are called higher conservation laws.
A special construction pairs the leading non-linearity [fϕ] (or any other el-

ement in H0
def(eϕ)) with a [ρ] ∈ H i

cosym(eϕ) to produce a deformation current
[j] ∈ Hn−i

char(eϕ), with n being the dimension of the domain manifold M . We
can think of the de Rham cohomology valued Q(ψ) = [j[ψ]] ∈ Hn−i

dR (M) as the
charge of ψ ∈ Tϕ with respect to this current, where Tϕ denotes the space of
linearized solutions. The main result of this work is that the charge Q(ψ) must
vanish on linearized solutions that belong to the tangent cone at ϕ. In other
words, any i and l define a linearization obstruction map

Ql
i : Tϕ → (l)H i

cosym(eϕ)∗ ⊗Hn−i
dR (M),

where (l)H i
cosym(eϕ)∗ denotes the linear dual of the subspace of rigid cosymme-

tries that are homogeneous polynomials in ψ and its derivatives.
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THE NOETHER’S THEOREMS AND NATURAL
VARIATIONAL PRINCIPLES

Demeter Krupka

Lepage Research Institute, CZECH REPUBLIC

E-mail address: demeter.krupka@lepageri.eu

Abstract

The aim of this note is to discuss basic geometric aspects of the theory of
invariant variational principles. Let Y be a smooth manifold, α a diffeomor-
phism of Y . We say that a p-form ρ on Y is invariant with respect to α, if its
pull-back α∗ρ coincides with α, that is, α∗ρ = ρ. This definition immediately
extends to vector fields.

If ξ is a vector field on Y , then ξ generates invariance transformations of ρ if
and only if the Lie derivative of ρ by ξ vanishes, ∂ξρ = 0. Since the well known
(Cartan’s) formula ∂ξρ = iξdρ + diξρ is valid, for such a vector field we have
iξdρ + diξρ = 0. In the lecture we show that for some special choices of Y , ρ
and ξ, this formula reduces to the Noether’s equation known in the calculus of
variations; the forms iξdρ and iξρ reduce to the Euler-Lagrange form and the
conserved current. If in addition a mapping of manifolds γ : X → Y satisfies
γ∗iξdρ = 0, then dγ∗iξρ = 0 (first Noether’s theorem).

Let τ be a covariant functor from the category Dn of smooth n-dimensional
manifolds and their diffeomorphisms to the category FBn of associated bundles
over n-dimensional manifolds and their isomorphisms. Then for every object
Y ∈ ObFBn over an object X ∈ ObDn, Y can be written as Y = τX ; every
morphism α ∈ MorDn, α : X → X, induces a morphism τα : τX → τX .
An n-form ρ on τX is said to be natural, if (τα)∗ρ = ρ for all α. Similar con-
struction using flows applies to the vector fields ξ on X. Then the naturality
implies iτξdρ + diτξρ = 0 for all vector fields on X. Thus, if γ : X → τX is a
section satisfying the equations γ∗iξdρ = 0, we get dγ∗iτξρ = 0 for all ξ (sec-
ond Noether’s theorem). We show that for some special choices of τ and ρ, this
formula reduces to the second Noether’s theorem in the calculus of variations
on natural fibre bundles.



19th International Summer School on Global Analysis 25

MSC2010: 49S05, 58A32
Keywords: variational principle, invariance, Noether’s theorem, Euler-Lagrange
form, conservation law.



26 19th International Summer School on Global Analysis

SEMIHOLONOMIC VELOCITIES AND CONTACT ELEMENTS:
AN ALGEBRAIC APPROACH I, II

Miroslav Kureš
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CZECH REPUBLIC

E-mail address: kures@fme.vutbr.cz

Abstract

In the first part of the workshop, we explain the basic concepts and results
related to Weil bundles. We will focus on nonholonomic and semiholonomic ve-
locities and the corresponding Weil algebras. In the second part, we will study
Weil contact elements. The whole workshop will be interspersed with references
to geometric problems, in particular to liftings of geometric objects, and possi-
ble applications in physics will be mentioned, too.

Selected author’s papers related to the topic from the most recent period:

Kureš, M., Weil algebras associated to functors of third order semiholonomic
velocities, Mathematical Journal of Okayama University, Vol. 56, (2014), No.
1, pp. 117-127, ISSN 0030-1566, Okayama University.

Kureš, M., On some directions in the development of jet calculus, Banach Cen-
ter Publications, Vol. 93, (2011), No. 1, pp. 251-260, ISSN 0137-6934, IM PAN.

Kureš, M., Fixed point subalgebras of Weil algebras: from geometric to algebraic
questions, Complex and Differential Geometry, pp. 183-192, ISBN 978-3-642-
20299-5, (2011), Springer.

MSC2010: 58A32, 58A20
Keywords: Weil algebra, nonholonomic jet, semiholonomic jet, higher order
velocity.
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PRINCIPAL FUNCTIONS OF NON-SELFADJOINT MATRIX
STURM-LIOUVILLE EQUATIONS

Murat Olgun, Yelda Aygar

Department of Mathematics, Faculty of Science, University of Ankara 06100 Ankara-

TURKEY

E-mail address: olgun@ankara.edu.tr, yaygar@science.ankara.edu.tr

Abstract

Consider the boundary value problem (BVP)

−u′′ + q(x)u = λ2u, x ∈ R+ (1)

u(0) = 0, (2)

in L2(R+, E), where q is a complex-valued function. The spectral theory of the
above BVP with continuous and point spectrum was investigated by Naimark
[5]. He showed the existence of the spectral singularities in the continuous spec-
trum of the BVP. He noted that the eigenfunctions and the associated functions
(principal functions) corresponding to the spectral singularities are not the el-
ements of L2(R+). He also noted that the spectral singularities belonging to
the continuous spectrum are the poles of the resolvent’s kernel, but are not the
eigenvalues of the BVP. Their existence does not occur in the spectral theory of
selfadjoint BVP. Spectral analysis of the selfadjoint differential and difference
equations with matrix coeficients has been studied by the works shown in [3,
6, 7].

Let E be an n-dimensional (n < ∞) Euclidian space and let the Hilbert
space of vector-valued functions with the values in E be denoted by L2(R+, E).
In the L2(R+, E) space we consider the BVP

−y′′ + Q(x)y = λ2y, x ∈ R+ (3)

y(0) = 0, (4)

where Q is a non-selfadjoint matrix-valued function (i.e. Q 6= Q∗). It is clear
that, the BVP (3), (4) is non-selfadjoint. In this work, we aim to investigate
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the properties of the principal functions corresponding to the eigenvalues and
the spectral singularities of the BVP shown in equations (3), (4).
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NONLINEAR STATIC CHARACTERISTIC OF PNEUMATIC
MUSCLE ACTUATOR

Ján Piteľ, Mária Tóthová
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Technologies, Technical University of Košice, SLOVAKIA

E-mail address: jan.pitel@tuke.sk, maria.tothova@tuke.sk

Abstract

Pneumatic muscle actuator (PMA) consisting of a pair of artificial mus-
cles in antagonistic connection belongs to nonconventional actuators with some
properties similar to biological muscles. Arm position of such actuator depends
mainly on pressure difference in the muscles.

The static characteristic of the actuator was measured on experimental PMA
with two artificial muscles type MAS 20-250N FESTO in antagonistic connec-
tion. Input variable is pressure difference in the muscles (P1 − P2) and the
output variable is the angle ϕ of actuator arm rotation. Due to the complex
elastic properties of the muscles as well as the compressibility of the air, this
characteristic is nonlinear. At the beginning both muscles were fully pressurized
and actuator arm was in zero initial position (ϕ = 0◦). Measured results are
shown in Fig. 1, part a) is for the air discharge from the muscle and part b) is
for the air filling into the muscle.

a) b)

Fig.1 Measured results of dependence of the angle of actuator arm rotation
on pressure difference in the muscles

The approximation of these measured results was made using the method of
least squares in MS Excel. Regarding of shape of the measured characteristic the
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initial form of the approximating function was found as polynomial function:

ϕ = f(P, A) = f(P1 − P2, a0, a1, . . . , ak), (1)

where the parameters ai, i = 1, . . . , k must be determined so that the approxi-
mated curve to be close to the measured points. This requirement will be ful-
filled if we consider the minimum of function:

S(A) =
n∑

j=1

[ϕj − f(P, A)]2. (2)

Nonlinear function for the air discharge from the muscle is expressed by the
third degree polynomial (with approximation error AE = 0.9997):

y = 8 · 10−9x3 + 8 · 10−5x2 + 0.047x− 0.376. (3)

Nonlinear function for the air filling into the muscle is expressed by the
fourth degree polynomial (with approximation error AE = 1):

y = −9 · 10−11x4 − 2 · 10−8x3 + 3 · 10−5x2 + 0.095x− 0.421. (4)

Due to the fact that the static characteristic of the actuator is centrally
symmetric function (Fig. 2), then based on (3) and (4) for the angle of the
actuator arm rotation applies:

ϕ = sign(P1 − P2) · (8 · 10−9 |P1 − P2|3 + 8 · 10−5 |P1 − P2|2 +

+0.047 |P1 − P2| − 0.376), (5)

ϕ = sign(P1 − P2) · (−9 · 10−11 |P1 − P2|4 − 2 · 10−8 |P1 − P2|3 +

+3 · 10−5 |P1 − P2|2 + 0.095 |P1 − P2| − 0.421). (6)

Fig.2 Static characteristic of PMA
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UNIFORM PROJECTILE MOTION AS A NONHOLONOMIC
SYSTEM WITH A NONLINEAR CONSTRAINT
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Abstract

A uniform projectile motion (motion of a projectile with constant instan-
taneous speed) is an illustration of a behavior of a simple mechanical system
of one particle subject to one nonlinear nonholonomic constraint. For a com-
plete description of dynamics of the uniform projectile motion it is necessary to
understand a requirement of constant instantaneous speed as a nonholonomic,
called isotachytonic constraint. Since isotachytonic constraint represents gen-
eral nonintegrable constraint, it is necessary to adopt a modern approach based
on the geometric concept of nonholonomic mechanical systems.

A geometric treatment of the problem of uniform projectile motion as a
nonholonomic system of one particle with a nonlinear constraint is presented.
We apply a general geometric theory of nonholonomic mechanical systems.
The problem is investigated from the kinematic and dynamic point of view.
Corresponding kinematic parameters of classical and uniform projectile motion
are compared, nonholonomic Hamilton equations are derived and their solv-
ability is discussed. Finally, symmetries and conservation laws of the uniform
projectile motion are studied, the nonholonomic formulation of a conservation
generalized law of energy is found as one of the corresponding Noetherian first
integrals of the nonholonomic system.

This contribution is based on the paper [1] which contains the following main
results:
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• The explicit expressions of standard kinematic parameters (range, height
and total time) of uniform projectile motion are derived.

• Additional parameters (distance deviation and directional deviation) com-
paring isochronic points of both trajectories are introduced and its time
behavior during the motions is graphically illustrated.

• Realization of uniform projectile motion by a regulation of some external
force acting along the line of instantaneous velocity is proposed.

• Hamilton approach to the uniform projectile motion problem is presented:
constraint momenta and constraint energy 1-form are computed and cor-
responding nonholonomic Hamilton equations are obtained.

• The set of all constraint Noetherian symmetries of the system was found
and physical interpretation of corresponding conservation laws is presented.

• One of the obtained Noetherian first integral is interpreted as a generalized
conservation law of energy.

• Energetic balances of classical and uniform projectile motions are com-
pared.

• Conservation laws of energy of both motions are presented in a unified
form, in the case of uniform projectile motion the law moreover includes
some factor called isotachytonic compensation coefficient.

• Relation between generalized conservation law of energy and the mechan-
ical work of Chetaev constraint force is discussed.
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INVARIANT LEPAGE FORMS ON GRASSMANN
FIBRATIONS: EXAMPLES
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Abstract

Our aim is to characterize the meaning of the definition of the first order
Lepage form, the Hilbert form, its invariance properties and the consequences
arising from the Noether theorem in this context (“conservation laws”) for ex-
tremals of the underlying variational functionals. In particular, differences be-
tween basic underlying concepts, the Lagrange form, Euler-Lagrange form, etc.
on fibred manifolds on one side, and the Lagrange class, Euler-Lagrange class,
etc. on Grassmann fibrations are described. The methods, based on the Hilbert
form, do not require any parametrisations. The examples also provide us with
the methods how the invariance properties can be used for the study of ex-
tremals: to this purpose one should first solve the Noether equations for the
generators of invariance groups, and then to formulate and solve the “con-
servation law” equations. It turns out that in our examples the conservation
law equations are completely equivalent with the Euler-Lagrange equations for
extremals. The functions, representing the first integrals, or “conserved quan-
tities”, can naturally be interpreted as a part of the adapted coordinates to
the extremal submanifolds. We consider in our examples three variational func-
tionals for 1-dimensional (nonparametrized) submanifolds of R2 and R3, defined
on the Grassmann fibrations G1R2 and G1R3; the functionals are defined by
means of the 1st-order Lepage forms (the Hilbert forms). The following topics
are included:

- construction of the Hilbert form from a homogeneous Lagrangian,
- the Euler-Lagrange class and equations for extremals as set solutions,
- invariance transformations of the Lagrange class, classification,
- “conserved quantities” (first integrals) within the Grassmann fibration frame-

work,
- conservation law equations and their solutions.
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Abstract

In this extended abstract a brief recapitulation of a representation of va-
riational sequences is presented. Some additional properties are mentioned. A
more detailed description can be found for example in [4] (mechanics) or in [6,7]
(field theory).

Let π : Y → X be a fibred manifold with fibred coordinate systems (V, ψ),
ψ = (xi, yσ), on Y and (U,ϕ), ϕ = (xi) on X, dim X = n, dim Y =
m + n. Denote by πr : JrY → X or just JrY the r-jet prolongation of
the fibred manifold π : Y → X , the coordinate system is (V r, ψr), ψr =
(xi, yσ, yσ

j , yσ
j1j2

. . . , yσ
j1j2...jr

) on JrY . The canonical jet projections are πr,s :
JrY → JsY , r > s and πr,0 : JrY → Y .

A differential q-form ρ on JrY is called contact, if it vanishes along the r-jet
prolongation Jrγ of every section γ of π. We say that an (n + k)-form ρ on
JrY is strongly contact if for every point Jr

xγ ∈ JrY there exist a fiber chart
(V, ψ), ψ = (xi, yσ), on Y , an integer s ≥ r, and a contact (n + k − 1)-form η
on V s with pk−1η = 0 such that

pk((π
s,r)∗ρ− dη) = 0. (1)

For any open set V ⊂ Y we denote by Ωr
qV the Abelian group of differential

forms defined on V r and we denote by Θr
qV the Abelian group of contact forms

(q ≤ n), resp. strongly contact forms (q ≥ n + 1) defined on V r. Θr
qV is a

subgroup of Abelian group Ωr
qV . We have de Rham sequence

0 → RY → Ωr
0 → Ωr

1 → · · · → Ωr
n → Ωr

n+1 → · · · → Ωr
N−1 → Ωr

N → 0, (2)

of sheaves of Abelian groups on JrY and its contact subsequence,

0 → Θr
1 → · · · → Θr

n → Θr
n+1 → · · · → Θr

M → 0, (3)
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in which all arrows denote the exterior differentiation d, and number N =
dim JrY , number M = m

(
n+r−1

n

)
+ 2n− 1. Both sequences are exact and the

quotient sequence

0 → RY → Ωr
0 → Ωr

1/Θ
r
1 → · · · → Ωr

n/Θ
r
n → . . .

· · · → Ωr
M/Θr

M → Ωr
M+1 → · · · → Ωr

N−1 → Ωr
N → 0

(4)

is also exact. We call the quotient sequence the r-th order variational sequence.
The quotient mapping E : Ωr

q/Θ
r
q → Ωr

q+1/Θ
r
q+1 is defined by E([ρ]) = [dρ]. In

the case q = n we have the Euler-Lagrange mapping and in the case q = n + 1
we have the Helmholtz-Sonin mapping.

For a representation of the variational sequence we use a variational projector
I, see [6,7]. At first we define auxiliary operators Ik, k ≥ 1, acting on some
special (n + k)-forms.

Let ρ be a 1-contact (n+1)-form on Jr+1Y , ρ =
∑r

|J |=0A
J
σωσ

J ∧ω0, then I1ρ

is 1-contact ωσ-generated (n + 1)-form

I1ρ = Bσω
σ ∧ ω0, Bσ =

∑r
p=0(−1)pdi1 . . . dipA

i1...ip
σ , (5)

where ωσ = dyσ − yσ
i dxi, ω0 = dx1 ∧ · · · ∧ dxn and di is i-th total derivative.

Let k > 1, let ρ be a k-contact (n + k)-form on Jr+1Y , Ξ1, Ξ2, . . . , Ξk be
a π-vertical vector fields on Y and Ξ̃s = J2r+1Ξs and Ξ̂s = Jr+1Ξs be their
prolongations. We define a k-contact (n + k)-form Ikρ on J2r+1Y by

iΞ̃k
. . . iΞ̃2

iΞ̃1
Ikρ = 1

k

(
iΞ̃k

. . . iΞ̃3
iΞ̃2

Ik−1(iΞ̂1
ρ)− iΞ̃k

. . . iΞ̃3
iΞ̃1

Ik−1(iΞ̂2
ρ)

− · · · − iΞ̃k
iΞ̃1

iΞ̃k−2
. . . iΞ̃2

Ik−1(iΞ̂k−1
ρ)− iΞ̃1

iΞ̃k−1
. . . iΞ̃2

Ik−1(iΞ̂k
ρ)

)
.

(6)

Let ρ be an arbitrary (n+k)-form on JrY . Using the previous definition we
set

Iρ = Ikpkρ. (7)

A R-linear mapping I : Ωr
n+k → Ω2r+1

n+k , defined by (7), is called the variational
projector (or interior Euler-Lagrange operator [7]). The form Iρ is called the
canonical representative of ρ. For any open set W and for every form ρ ∈
Ωr

n+kW , Iρ belongs to the same class as (π2r+1,r)∗ρ. The kernel of the mapping
I coincides with the Abelian group Θr

n+kW , and I satisfies, up to the canonical
jet projection, I ◦ I = I.
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We can extend this definition also to the q-forms, where q ≤ n. In this case
we identify I with horizontalisation, i.e. Iρ = hρ for q-forms where q ≤ n.

Operator I represents a class of variational sequences by differential forms,
does not depend on the choice of coordinates and is related to the concepts of
calculus of variations (Lepage equivalent of Lagrangian, Euler-Lagrange form,
Helmholtz form, see [1,2,3,5]). Taking the example of n-form, we can say that
a differential n-form ρ is a Lepage equivalent of Lagrangian λ = hρ if and only
if

Idρ = p1dρ. (8)

In this case the canonical representative of dρ (i.e. Idρ) is precisely Euler-
Lagrange form of mentioned Lagrangian λ. This definition corresponds with
known definition of Lepage equivalent of Lagrangians.

Let ε be a πr,0-horizontal (source) form. Then the canonical representative
of dε (i.e. differential form Idε) corresponds with known Helmholtz form with
coefficients Helmholtz expressions. Then we can say that source form ε is va-
riational if Idε = 0.
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Abstract

The two-dimensional exponential integral (TDEI) functions play an impor-
tant role in various fields of theoretical physics, quantum chemistry, theory of
transport process, theory of fluid flow and theory of radiative transfer in a multi-
dimensional medium. The TDEI functions are especially useful for the study
of anisotropic scattering in a two-dimensional medium with a scattering phase
function. Breig and Crosbie derived a series expansion and recurrence relations
suitable for numerical computation of the one-dimensional exponential integral
functions. It is shown that the absorption of solar radiation by the earth’s at-
mosphere is given in terms of first-order exponential integral function. The fun-
damental integral equation of the radiative transfer of two-dimensional planar
media with anisotropic scattering was derived by Crosbie and Dougherty. Note
that the TDEI functions are the kernel of that integral equation. The TDEI
functions play an important role in the investigation of the two-dimensional
radiative transfer in an absorbing-emitting cylindrical medium and determina-
tion of the radiative flux. The generalized exponential integral functions are
studied. GEIF ’s are expressed with the single integrals. In our study, GEIF ’s
are expressed with double improper integrals as given in the original expression.
This depends on the truth that the uniform convergence of integrals gives more
precise results. Also GEIF ’s are given in terms of Bessel functions, in the form
of series. This GEIF ’s approximation gives ruder results compared to ours.
This study uses a different methodology and results are achieved with higher
accuracy.
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