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1 Introduction

The goal of this note is to give an elementary proof of a fundamental
result of the classical algebraic invariant theory, the Gurevich theorem on the
structure of invariant tensors (tensors with constant components).

The classification problem for invariant tensors was studied by several
authors, and different approaches and proofs were presented (cf. Gurevich
[2], Theorem 16.2, Sec. 16.5). The problem was also considered as a part of
the theory of differential invariants and natural operations in differential ge-
ometry (Krupka and Janyska [6], Sec. 4.1, Kolar, Michor and Slovak [3],
Sec. 24.3), with proofs based essentially on the original Gurevich approach.
The proof given in this paper is based on application of the trace decomposi-
tion theory of tensors over real, finite-dimensional vector spaces (Krupka
[4], [5]) to invariant tensor equations, found by Gurevich. We solve these
equations by simple immediate analysis; the method avoids, in particular, the
Gurevich’s approach regarding linear dependences appearing in the equa-
tions for higher valency tensors.
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For basic notions and terminology related to invariants, matrix groups
and permutation groups we refer to H. Weyl [7] and Alperin and Bell [1].

In Section 2 we first recall the trace decomposition theorem for (r,r)-
tensors, then we state its second version, the complete trace decomposition
theorem. For proofs and further comments we refer to Krupka [4], [5]. Sec-
tion 3 contains the theory of tensors on the vector space R", invariant under
the tensor action of the general linear group. The Gurevich theorem, stating
that invariant tensors are essentially determined by real-valued functions on
the permutation group of tensor indices, is proved as a corollary to the com-
plete trace decomposition theorem.

In this paper 7/R" is the vector space of tensors of type (r,s) on the
vector space R" ((r,s)-tensors). For short, we usually express tensors
U eT/R" in terms of components in the canonical basis of R"; we simply
write U =U"" i1, - GL,(R) 1is the general linear group, with elements
invertible matrices;As= A;. of dimension n; the inverse A" is in components
denoted by A™' = A}. Thus, A'A] =4, , where &, is the Kronecker symbol.
The permutation group of the set of r numbers {1,2,...,r} is denoted by S, .
Standard summation convention over repeated indices is used unless other-
wise stated.

2 Trace decomposition of tensor spaces

Recall that a tensor is said to be traceless, if all its traces vanish. A
Kronecker tupe tensor, or just a Kronecker tensor, is any tensor, generated
by the Kronecker § -tensor 6 =9;.

Lemma 1 Every tensor U€T'R", U=U iy is expressible in

Jzidi?
the form
.., s,
U s =W
iy 1Y 7iyis.. d, iy 1Y yisiz..d, iy 1Y fisiz..d,
F GGV OV e OV
iy 24 7iriz iy iy 2y itise. d, iy 24 7itize. iy
(1) + 6]1 IV JaJze--Jr + 512 2V JiJze--Jr oot 61} ’V JiJaeeedrt
+...
i, FY 7y i,y i Y siiye i i, Y iy i
OV AV e GV
where W =W">" . . is a uniquely defined traceless tensor, and for every

p and q such that 1<p,qg<r, 'V = ;’Vi‘iz"'i"'l is a tensor, belonging to

_ Ji2eedra
the tensor space T/ R" .
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The trace decomposition formula (1) can be viewed as a system of line-
ar equations for the components W'™" 4, and 7 Py jiir, provided
Ui i, 1s given. From the uniqueness ‘of the raceless part Wit o
it follows that also the complementary Kronecker part is unique. In general,
this fact does not imply the uniqueness of the tensors / Vi iy - HOW=
ever, if 2r <n+1, these tensors are also unique.

Clearly, tensors ; Vi iy, CAD also be decomposed by the trace
decomposition formula; repeatlng this procedure r times, we can derive from
formula (1) another expression for (r,r)-tensors on R".

Let p be a positive integer. A tensor U € T/R", U=U">" b+ 18 said
to be 67’ -generated, if it admits an expression

i
Jida-edr

_ z 5’1(1)5’1(2) 5’1(,») A()A(2)... /l(p)vl/up+ DiA(p2) A

Jeqy Jx(2) Je(py KK (2),...k(p) Je ()i (pr2)- I (r)
K.AES,

AMDAQ2)...A(p) PR (i
for some tensors ;oo HV €T R" (indexed on the left),

A()A(2),. l(p)V A(D)AQ2)... /l(p)Vlnlv'
k(DK (2)...k(p) k(1)K (2)...k(p) JiJaeedr—p

If in addition the tensors AK((I])),{((ZZ)) i((f)))V are traceless, then U is said to be
primitive.

Lemma 2 Every tensor U€T'R", U=U""
the form

b+ IS expressible in

(2) U=U+'U+U+..+'U,

where °U is a traceless tensor, and for every p=12,....,r, U is a 5" -
generated primitive tensor. Decomposition (2) is unique.

Tensors °U,'U,*U,...,’U are called primitive parts of U.

3 Invariant tensors

Recall that the tensor space T, R" is endowed with the canonical left
tensor action GL,(R)XT/R">(A,U)— A-U €T/R" of the general linear
group GL,(R). Expressing tensors U and A-U as U=U"", . and
A-U=U"", ., equations of the tensor action are ’

() U = ATALLLAYALAL AU

Jida--ds *
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A tensor U €eT/R" is said to be invariant, if A-U=U for all elements
AcGL,/(R),thatis,

Jizee-ds

kiks... ke, — AkiAk ke Ajv AJ A JsJ iz
4) Uttt = AMAR LAVAMAR AU

Invariant tensors constitute a vector subspace of the tensor space 7 R" .
The classification problem for (r,s)-tensors such that r #s, has only
trivial solution.

Lemmal If r#s, then a tensor U €T/R" is invariant if and only if
U=0.

Proof Suppose for instance that » > s . If A is a matrix with components
41." = c5ik , where ¢ #0 , then the components of the inverse matrix A" are
Al.k =1/ c)6ik . In this case equations (3) reduce to

kiky.. K, _rsyrkk. k,
U .1, =€ v Ly d,?
with arbitrary c. But r—s# 0 hence U"** ot =0
For r =s invariance condition (4) reads

ki Ak, k. AJi AJa AJr 7 Thin. . d,
() AbARAMKIAR AT

_ prkky. k,
=U Lly..d,

JiJae--Jr
or, equivalently,
ki A ky kg7l d, Al AL 1y rkiky. k,
(6) All Alz o 'Al, U Jiaeedr Aj] Ajz o 'AJ}U bly.. 1, *

Lemma2 Ler UT'R", U=U""* . The following two condi-
tions are equivalent:
(a) U is an invariant tensor.

(b) The components U">"" i satisfy

Ja-eeJy

iy Sle2) iy Thiky. K,
25j1 5.72 "'5./r U l
TES,

— ko Sk ke rizyie)tein
- 2 611(1)611(2> o '6lw)U

TES,

@y e

(N

Jieede

Proof 1. Suppose that invariance condition (a), that is, equation (6), is
satisfied. Consider the difference

ARAS AR ALAL AR R
L 1, i) Jr L.,

Jizee-Jr
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In this expression A; enters as an arbitrary element of the group GL (R),
which can be considered as an open set in a vector space R"x(R")* of all
square matrices 0 € R" x(R")*, 0 = 0’ But U "1u,..,, defines a mapping
of the vector space R" X (R")* into the tensor space T’R” by the equations

kiks.. k, i gix i, Tk k, _phgk ki
14 Pipa-e 9 0 el’rU iyl eil eiz "'91} U Pipaeepy
Writing V%% .., D terms of coefficients, we have
kiky.. .k,
V PiP2---Pr
— AQUQH* a, hSh i SPSB By rkiky.. k.
= 0505 .0 (81 5% .5} 858 . SPUtt

k Sk k SB SB B itiy..d,
—8h8k . SEshSE  SPUE Y
_ nopo o, B SB By rkiksy.. k.
= 0005 .00 (8555 ..5PUN*
— 8,8y ...6, Ul

1. O
P1P2~~-p,)

or, with coefficients, symmetrized in the pairs of indices Zf s

kb

PiP2---Pr

_ % a, Bey §Br2) Beiryy rhiky. K,
(8) - 0ﬁ1leﬂz o ‘Oﬁr Z;l (5 61’@ '517,- v Oz (1)0z 2y Ol (r)
7€

_6/‘1 5"2 6";- Uﬁr(l)ﬁuzr--ﬁm)

Gy Oray """ Oy Pll’z---l’r)'

Now if U is invariant, then V% ppren, =0 because GL,(R) is dense in
R" x(R")* and the function V%~ I is continuous; then, however,
since Oﬂ“ are arbitrary,

Bf(l) ﬁuz) ﬁr(,) kiky.. .k,
S (§Pwghe | §hoght
(9) €S,

O (1) (2)---Or(r)

Sh sk St Uﬁr<1)ﬁr<2>---ﬁr<r> ) )=0.

Oy Oy """ 7 Oy PiP2---Dy

Now formula (7) is obtained from (9) merely by changing the index notation
B—i,p—>j,and x —1.
2. Condition (b) implies (a) by means of (8).

Equivalent conditions (5), (6) and (7) are equations of invariant tensors.
For every permutation 0 €S, , set A, = Al*% where

o000, 0

iy d, N i i
Aol_z v ._641 5; 5.r

Jidae--Jr Joy Je) """ o "
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A, can equivalently be defined by A"

(o) dn .
p=L12,..,n,and Ay, . =0 otherwise.
A notable property of the tensors A, is that their components define the
stabilizers of the r-tuples of indices i,i,,...,i, with respect to the action of

the permutation group S, . Equation of the stabilizer of i,,i,,...,i, is

iy =1t i, = jg,, for all

iy d, —Si Sh —
Ao‘ iy, 6i6(1)6i5(2) "'61'0'(1‘) 1.

Lemma 3 (a) A, = AMe" i, 1S aninvariant tensor.
(b) Any linear combination

(10) U= c,A,,

oES,

where c, € R, is an invariant tensor.

Proof (a) To prove Lemma 3, we use equation (7). Setting

Kok, A kkak, _ ok Sk k,
U ot =88 loOh " Ol ?

Ky k, _ ok Sk k, . o .

we have U boteoodey, =00 0,2, -0, and, with substitution [, = j,,

Kk k, — ke k, _ sk Sk k
U Levley e U Jidae--dr ./a<1x5./a<z) S e

_shk Sk K

lm(]) lm(z) e lm(r) .

Substituting these expressions into (7), we get for the left-hand side

iy Sle2) iy Thiky. K,
26j1 5]2 "'6./r U

TES,

=D 508808 8P L8

i) o) " e

Leale 2y deery

TES,
The right-hand side is

26k1 6k2 6k, Ui1<1)51<2)~~~i1(r)

Ly Ly ” [) Jija---Jr
TES,
_ 5kl 5k2 5k, 61}6(1)5%(2) 5’}0(,)
Z Loy w2 " ey dey Jdey T Jotr
T€ES,

=80 82 .8 888,
w1y lwe2) Ji J2
TES,

to(r) J1
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proving invariance.
(b) Obvious.

Invariant tensors A, are called elementary invariant tensors.

Lemma 4 If r <n, then every invariant tensor U € T'R" has a unique
expression (10).

Proof Consider the subsystem of (7) defined by i, =j,=p,
2 611(1)5;:(2) . ‘5:(r)Uk,k2“.krl

TES,

- ko Sk ko prrD)T2)..7(r)
Za[r(l)alnz) "'6lr(r)U 12..r°

TES,

cle@y e

But §/"8;%...67” #0 if and only if t(1)=1,7(2)=2,...,7(r)=r; hence
7 must be the identity permutation, and we have

Uklkzmkrlllz.“lv _ 26k, 5k° ak( )Um)z(z) a(r)

,(1) ,(2) 12...r°

TES,

Setting ¢, =U" """ we get formula (10). To prove uniqueness of
this decomposmon, suppose that

Y c,A, =0,

oES,

that is, in components,

bk Sk
Zc,ﬁlmﬁlm)...ﬁlm) =0.

TES,

Then the component where k, =1,

= p yields ¢, =0.

For r <n ,formula (10) clarifies the meaning of the coefficients:

12...r _ 12...r
U v(hv(2)..v(r) — Z CO'AO' v(Dv(2)..v(r)
[

1 o (H)Sgo  (2) o (r)
chéva(l) Vo (2) vo‘(r) ZCGSV(I) 5v(2) 5v(r)
oES, OES,

:qu

. —1 oy, 1 )
We can also write U* """ =¢  thus, for every permutation T ,
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tr@).ary
U 2.0 = C

Clearly, for any mutually different indices k,,k,,....k, ,

kiky.. k, k.. ke,
U E C A,
kekey ke ke (ke 2y ke (ry

oES,
ky kz k, _ 2 1 r
= 2 Cs 0, keo 1) m(z>‘~-5kw(,> = C 510(1) 6(2) 610(;)
ocs, ocs,
_ o' () so7(2) ol(n _
- 2 0'51'(1) 61(2) 61(r) Crre

oESs,

If k,.k,,....k, are not mutually different, then

kiky.. k. 2 kiky.. k,
U kekeay-ke(ry CGA ke(vke2)--Ke(r)

o€s,

k
kz k1) shom12) o)

=>»co = E c,0,° Mo, .0
z o ‘m(l) ke (2) w() ke kze(2) ke

oES, oES,

=y tCo totC,

where 0,,0,,...,0,, are elements of the stabilizer of the r-tuple k,,k,.,....k, .
In particular, this number does not depend on 7.
Note that equations ¢, =c_, are symmeltry conditions for the matrix
Ullz A, ok,
2

Iy d, _ L. d, _ Lly..d,
U koo, 2 A, kg d, Co_,le_,l Kiky. . K,
o€Ss, o€Ss,
_ Kk &,
= 2 Com Ag Iy, *

[ofSh

System (7) splits in two autonomous subsystems:

Lemma 5 Let UcT/R", U=U"" ... » be a tensor. The following
two conditions are equivalent: '

(a) U is an invariant tensor.

(b) The components Uk‘kz'”k",],,‘_', , such that ki ,k,,....k,  is not a permu-
tation of 1,,1,,...,1 , satisfy o

(11) Uk]kz...k,,lllzml, — 0’

and, if the superscripts are permutations of the subscripts, then
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25’1m5’m) 5’r<r>U Luluyucry
i
V(V

v(l) V(Z)
TES,

— 2 5 u(l)5 n(2) 5 ,u(r)U’fU)’r(Z) e (r)

Lay "l lery byl 2) vy ©
TES,

@y e

(12)

Proof 1.Suppose that k ,k,,...k, is not a permutation of /,l,,...,[ .
Consider equation (7) determined by the choice j, =i, =1,. Since the left-
hand side becomes N(/l, ... U """, 1., » Where N([],...1)) is the di-
mension of the stabilizer of the r- tuprl(é”li,l;, .,0., and the right-hand side
vanishes, we get (11).

2. Subsystem of (7), satisfying condition (b), is exactly the system (12).

In equations (12) the subscripts and superscripts run through the index
set 1,2,. , and u,veS§, are arbitrary permutations; thus, we have
(r)’n 2 equatlons for in” unknowns the components U">", e

Finally, note the following property of invariant tensors, )grisfﬁé from
invariance with respect to suitable one-parameter subgroups of the general

linear group.

Lemma 6 Let UcT'R", U=U""" ... » be an invariant tensor. Then
for all indices p.q and k.k,,....k,, I,,L,,...,l", the components U"">* "y d

satisfy

kyy 1qkoks.. k. ky 1 7k gksky.. k. k. rkiky.. k. _1q
517 v Sz + 517 u Ji2- + ot 5 /ljz -Jr
 SqrTkik,y.. k. q 7 7kiks. . K, qrrkks...
- 5j|U Piaa---Jr + 6sz J\PJaJa---Jr Tt 6 U Jljz---/,——lp :

Proof Consider equations of invariant tensors (6). Differentiating the
left-hand side with respect to A at A? =4 yields

SUSIORO LOPUMI |  ShSEEIN ST

Jia--r Jud2---Jr
ky Ska Koy Ske ST 7hlae - il
+...46,'6,2...6,76,6/U Ao,
— Skiyrakyks.. .k, ky 7 Th\ghsky. . K, k. rkiky.. k._1q
=6,U jiss, TO,U jiagy T T O U e ?

and similarly for the right-hand side

Lsqshsl Ly k., Lshsq sh Sl Ly rkiks.. K
§1818L8h . St 48155515085 St

A J2 T Js

+..+867...675, 5"U""‘2" l
T, -y

Jr1

zazUklkzm . +6(1 Uklkz“ +. +6qu|k7

PhaJs--Jr J2 Lpjzja---Jr ]Ij’z--'jr—lp :



10 The Gurevich theorem on invariant tensors: Elementary proof

Now we are in a position to state and prove the fundamental theorem on
the structure of invariant tensors. The proof is based on the trace decomposi-
tion theory, particularized to invariant tensors.

Theorem (Gurevich) Ler U € T'R", U=U""" ... » be a tensor.
(a) If r#s,then U is invariant if and only if '

U=0.

(b) Suppose that r=s. Then U is invariant if and only if there exist
numbers a, €R , where 6 €S, such that

(13) U= a,A,

oES,

Proof Assertion (a), and also sufficiency of condition (13),have al-
ready been proved (Lemma 1, Lemma 3). Thus, only necessity of condition
(13) needs proof.

1. For any matrix A€GL,(R), A= A’ and any tensor U €T 'R",
U=U"" , denote for short U = i where

JJaeeide

T iy — Ak ke Ah K R i
U hmr%%m&@%m@U

Jiheede

It is easily seen that if U - i 18 6" -generated, then also the tensor

-y

g i i 18 87 -generated. Consider a 8’ -generated tensor U of the
form

iy d,

U .
L §ire) py ADAQ)w APV 72 iacps2) 20
- AZS 5/x(1)5fx(2) : 61,(1;;) K(Dx(2).. K(I’)V Jx (e (pr2yJe(r)
K,AE

The component U "> i, then includes a factor A,.’]“A,.’:2 ...Al.k"A/l“A/f AT

and a factor

Aku )Akl(z) Akl(mAJxmAJun A’x(mé"ama%m 5"_/1(p>

- ) G ey T k) Lepy ~ Jey Jx(2) Je(p)
— Aku1>Alxu>5’w>Akw>Alx<z)5'a<2> /‘A</J)Alw>5’w>
Ly ey T deay T ) k) T ’A(p) beipy  Jxp)

— Ak A5 Akae) A Kacpy X 8p
= As, AIK , AS] Alm) .. .A AK(,;)
ki) Skacz) o)
_ghoghe g

ey ey T ey T

Thus U " .., 1s 67 -generated.

NJ2e--Jr



D. Krupka 11

2. Now let U=U">" i Dean arbitrary invariant tensor. Consider
the complete trace decomposition U = U +'U+°U+..+'U (Lemma 2).
Writing U " lju J A"‘Akz Ak A"A’2 A"U"” o i as above, we have

by hypothesis U =0 hence
V+'U+U+..+U="U+"U+°0U+..+'0U.

Then, however, from Part 1 of this proof and Lemma 2, "U =" U for all p.
We wish to show that invariance of U implies

14  ‘vu=o0, *U=0, U=0, .., "'U=0.
First we show that U =0 . Consider equations of invariant tensors (7)

iy Sle2) iy Thiky. K,
25j1 5.72 "'5./r U l

TES,

E 6 k Urmlrm L10)
Ly lr(2> o r() Jiheedr

TES,

@y e

and apply this condition to the traceless tensor "U =W "% 4, - Then ex-
pression on the left-hand side can be viewed, for any fixed indices
Iislyseusl s JysJpse--»J, as a tensor indexed with superscripts k,,k,,...,k, and
subscripts /,l,,...,[ . But this tensor is both traceless and Kronecker, thus,

(15) Z 5]’::0)5;:(2) 3 ‘5;:(,.,Wk1k2..4k,.] —0

cfley e
TES,

Clearly, this equation holds for all values of the indices. Restricting this sys-
tem to a subsystem defined by the indices i, = j, =1, , we have

251(”5 w2 m)Wkkz o =0

iz iz 2y e r)
TES,

Summation in this formula reduces to permutations 7T €S, for which
51’1‘“)51’12(2) 5’1(” =1, that is, to the stabilizer of the r- tuple isiyse..,0 . Then,
however, N(i,...i )W"k2 & i =0, where N(z i,...[) is the d1mens10n of
the stabilizer, hence W :,2 =0, thatis, "U=0.

The tensors “U , where p=1,2,...,r—1, can be considered in the same

way. Setting U = W"lk2 o 1yt WE get a tensor which is primitive and &'’ -
generated, but also 8- generated This is only possible when (15) holds, so
we get Wb, =0, thatis, "U=0.

3. Taking into account formulas (14) the complete trace decomposition
formula for an invariant tensor U = U""" _, yields
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U="U.

Consequently, U must be of the form (13).
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