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Abstract In this research-expository article an example of an invariant de-
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tion method to mixed tensor spaces, is studied. Complete list of the natural
projectors, decompositions of natural projectors, and partitions of the tensor
space of (1,2) -tensors are given. All proofs, based on elementary tensor al-
gebra and projector theory in finite-dimensional real vector spaces, are in-
cluded.

Keywords Invariant tensor, Natural endomorphism, Projector, Partition of
vector space, Torsion

Mathematics subject classification (2010) 15A72, 20G05, 53A45, 53A55

1 Introduction

In this note we apply the natural projector method to the decomposition
problem of tensors of type (1,2) on the n-dimensional real vector space R”
(Krupka, [2], [3], [4]). Our aim is twofold: (1) to test the possibility of ex-
tending the theory of natural projectors for tensors of type (0,s) to tensors
of type (r,s) with r>0, and (2) to study in detail natural projectors in the
tensor space T,R" =R" @ R™ @ R"™ of (1,2)-tensors (in differential geome-
try the torsion tensors).

In this paper the vector space R" is considered with the canonical left
action of the general linear group GL (R), and the tensor space 7,R" is
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endowed with the induced tensor action. Since our discussions are GL, (R) -
invariant, the results apply, in the well-known sense, to any real, n-
dimensional vector space E, and to the tensor space T, E . In the canonical
basis e, of R", a tensor U ET%IR” is usually denoted in components as
U =U/,; an endomorphism P:T,R" —T,R" is denoted as P =P, !, with
standard meaning of the superscripts and the subscripts.

In Section 2 basic composition law for natural linear operators in the
vector space T,R" is recalled, serving later in Section 3 for derivation of the
natural projector equations. Section 4 contains solutions of these equations,
expressed as a complete list of all natural projectors. It should be pointed out
that the list includes, beside the natural projectors with constant coefficients,
also parameterized families of natural pojectors, depending on several real
parameters. Section 5 is devoted to the decomposition theory of natural pro-
jectors; all invariant decompositions and the dimensions of the correspond-
ing image subspaces of the tensor space T,R" are found. Since the set of
dimensions turns out to be finite, as the main investigation tool for the de-
composition problem we propose the decomposability indicatrix, a finite
subset of integers, constructed from the dimensions of subspaces of the ten-
sor space T,R" and the sums of these dimensions. Finally, in Section 6 we
prove a theorem on natural decompositions of the identity projector in the
tensor space T,R"; we find the natural projectors, which define primitive
natural partitions of the tensor space T,R".

Many sources dealing with decompositions of tensor spaces of type
(0,s) (or (r,0)) as a part of the group representation theory can be found in
the literature; exposition is usually given in a simplified setting for vector
spaces over the field of complex numbers. It seems, however, that the case
of mixed (r,s)-tensors with r,s #0 , or even examples of decompositions of
mixed tensors for small r, and s, has not been discussed. Our results, esp.
appearance of parameterized families of natural projectors, show that such
extension of the representation theory to mixed real tensor spaces would not
be straightforward.

2 Natural endomorphisms

Let P:T,R" > T,R", P= Pj’k % » be an endomorphisms. According to
the Gurevich theorem on the structure of natural tensors (Gurevich [1],
Krupka [5]) P is natural if and only if

G A= adEs 885 +ab8i6] +a. 8816,
+a,51815] +a,5.5¢5),
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where a,,a,,a,,a,,a;,a, are some real numbers. The vector space of natural
endomorphisms of T;R” is denoted by N (T;R”) . According to formula (1),
dimN(T,R")=6.

We need the composition law for natural endomorphisms. Its derivation
is straightforward. Consider a natural endomorphism (1), and another natural
endomorphism Q =0, 7", where

QL "= b,8:818, +b,8.818] +b,5'55; +b,5°5!8"

bc p

+b,5518! +b,5575,.

Lemma 1 The composed endomorphism R=PQ =R, is a natural
endomorphism expressed by

R, "= 81808" +¢,8'615; +¢,6,85) +¢,8,675

Jjk p

081815, + 51518,

where
¢, =ab, +nab, +ab+na,b +a,b, +a,b;+ab,+ab,,
¢, =a,b, +na,b, +ab, +na,b, + a,b, +a,b; +ab, +ab;,
) ¢, =nasb, +ab, +a,b; +a,b, +na,b, +a,b, +ab,+ab,,

¢, =nab, +ab, +ab, +a,b, +nab, +a,b; +ab, +ab,,
cs =asby +agby,

¢, =asbg +agbs.

Proof Formula (2) is obtained by a direct substitution. Indeed, since for
any U€T,R", U=U", RU=U), =P, "Uf. =P, “Qp. YU’ =R, "U’ , the

. . i . Jk a jk a =bc p jk p~qr
coefficients R}, 7" are given by the formula

(3) Rz qr_ Pt cha qr

Jk p jk a =bc p*

Then

Ry 7= 55,5, (0 5,515, +b,5,616 +.675:5,

5,855 +b,5°515! +b,55%5))
+ 4,818 5 (b,5:55, +b,5.5°5! +b,5'5%5]
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+5,8°857 + bS58, +b,555])
+a,5i8!5¢ (555" +b,5.8°5] +b,5'5°5]
+5,5°8157 + b5 515! +by555])
+a,516"8: (h,50815] +b,5/515! +b5'55,
1+ b,5°8157 + b5 515! +by555])
+a 5155 (555" +b,5/55" +b,5°5°5]
+5,5515" +b;5515] +by55°5))
+a 85155 (555", +b,5:55" +b,5°5°5]
+5,8°515] + 5,555 +by5575)),

hence

R 7= al(bl(s;a;ls; +b25;656; +nb35;525;€

Jk p
+nb,06{8, +b;0,0[0 +be0,015;)
+a,(nb, 865", +nb,8.646, +b,0,675;
+b,0.806) +b5.015, +b5':5[5")
+ay(nb,6,6!8" +nb,5,616" +b,6,615"
+b,6,010, +b6,010" +b5,65")
+a,(b,6,618, +b,6,618" +nb,6,6'5
+nb,6,0!6) +b,6,0!6) +b:6,615")
+as(b,0,6/6, +b,0:615, +b,6,0'5,
+b,6,018 +bs0,015, +b,5,6/5")
+ay(b,6,6'6) +b,5,616" +b,6:6'5,
+b,8,6/0) +b6,5/0; +be6,615,)

and

R "= ab5!5!5" +a,b,5!55] +nab5'85;

Jjk p

+na,b,8.0/8, +abs0.516) +ab0:6'5;
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+na,b,6:5/8, +na,b,8.8°6, +a,b;6.615,

+a,b,6:6[8" +a,b;66°5, +a,b,0.55,

+na,b,6,648) +na,b,5,610" +a,b,6,6:5"

+a;b,6,618" +a,b;6,6!8 +a,be6,615,

+a,b,6,6!8) +a,b,6,6°8 +na,b,6,65'

+na,b,6,610) +a,b;6,616, +a,be6,6'5

+asb, 0608, +asb,6:6°5; +asb,5,615

+asb,6,6!8) +a;b,6,615, +asbed,6.5"

+aeh6,016, +ach,6,615" +ab,6:645,

+agh,0:6[8" +aghi6,606" +ab5,5!5;

= (a,b, + na\b, + a,bs + na,b, + a,b, + a,b; + asb, + ab, )55/,

+(a,b, + nab + a,bg + na,b, + a,by + a,bs + ash, + agh,)6:645,

+(nasb, + a;b, + abg + a,b, +na,b, + a,bs + asb, +agh,)8,615,
+(nasb, + asb, + abs +a,b, + naby +a,bg + asby +agh,)8,615,
+(asbs +agh 8,816, + (ashs +aghs)6,6]5

proving (2).

3 Natural projector equations

Consider a natural endomorphism P:T,R" — T,R", expressed as

G A= adEs 885 +ab8i6] +a. 8816,
+ ;51815 +a, 5515,

Lemma 2 P is a natural projector if and only if its components satisfy
the system

) (a,—a;)a,+a,+n(a, +a,)+2a,—1)=0,

(a,—a,)a +a,+n(a,+a,)+2a;-1)=0,
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(a,+a;)a,+a,+n(a, +a,)+2a;,—1)
+2((a, +a,)a, +a,a,—a,a;)=0,
(a,+a,)a +a,+n(a,+a,)+2a,—1)

+2((a, +ay)a, + n(aa; —a,a,)) =0,

2 2 _
a5+a6 —as,

2asa, = ag.

Proof Endomorphism (1) is a projector if and only if it satisfies the pro-

jector equation Pj’k VP 1= Pj’k % . Substituting Q=P and R=P into for-

YW p

mula (3), Sec. 2, or, which is the same, setting b, =a, and ¢, = g, in equation
(2), Sec. 2, we obtain

a; +na,a, +naa, +2a,a, + a,a, + a,a, +a,a, = a,,
a,a, + na,a, + a,a, + na; + a,a, +2a,a; + a,a, = a,,
na,a, + a,a, + a,a, + a; + naa, +2a,a; + a,a, = a,,
na,a, +a,a, +a,a, + a,a, + a,a, + na, +2a,a; = a,,
al+a; =as,

2asa, = ag.

Equivalence of this system and the system (2), (3), and (4) is immediate:

_ 2
a,—a, = a, +na,a, +na,a, +2a.as+a,a, +a,a, +a,a,
2
—Nna,a, — a,a, — a,da, — a; — Na,a, —2a,as — a,d,
=(a,—a;)a, +a,)+na,(a, —a,)+na,(a, —a,)+2as(a, —a,),

=(a, —a,)a, +a,+n(a,+a,)+2a;),

a,+a, =a, +naa, +naa, +2aa,+aa, +a,a, +a,a,
+na,a,+a,a, + a,a, +a; +naa, +2aa, +a,a
=a; +a; +na,(a, +a,)+na,(a, +a,)+2a,(a, +a,)
+2a,a, +2a,a, +2a,a,
2 2
=a; +a; +(a,+as)(n(a,+a,)+2a;)

+2a,a, +2a,a, +2a,a,
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and

a,

=a; +a; +2a,a,+(a,+a,)(n(a, +a,)+2a;)
+2(a,a, +a,a, +a,a, —a,a;)
=(a,+a,)a, +a;,+n(a,+a,)+2a;)

+2(a,a, +a,a, +a,a, —a,a;),

_ 2
—-a, = a,a, +na,a, +a,a, +na; +a,a, +2a,as + asa,
2
—na,a, — a,a, — a,a, — a,a, — a,ds — a, —2a,ds
_ 2 2
=n(a, —a,)+a,(a,—a,)+as(a,—a,)+2as(a,—a,)

=(a,—a,)(n(a, +a,)+a,+a,+2as),

+a, =a,(a, +a,)+2naa,+2a,a,+na, +a,(a, +a,)
+2a,(a, +a,)+2a,a, +na,

=na; +na; +(a, +a,)(a, +a, +2a;)

+2na,a, +2a,a, +2a,a;

=n((a, +a,)’ —2a,a,)+(a, +a,)a, +a,+2as)
+2na,a, +2a,a, +2a.a,

=(a, +a,)(n(a,+a,)+a,+a,+2as)

+2(na,a, +(a, + a,)a, — na,a,).

Remark 1 The identity endomorphism 1d , and the zero endomorphism,
represented by the 6-tuples (0,0,0,0,1,0) and (0,0,0,0,0,0), are both natu-
ral projectors. If (a,,a,,a,,a,,.a5,a,) is a solution of equations (2), (3), (4),
representing a natural projector P, then (-a,,—a,,—a,,—a,,1—as,—a,) is also
a solution; this solution represents the complementary projector 1d— P .

Equations (2), (3), and (4) can be further simplified. Set

(04

=a,+a,, B=a,+a,.

Lemma 3 P is a natural projector if and only if

(&)

(4,

—a)o+nB+2a,-1)=0,

(a,—a,)a+nB+2a,-1)=0,
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Ba+nB+2a;-1)+2a,0=0,

6
©) o(a+nf+2a,—-1)+2a,8=0,
o al+a; =as,

2asa, = ag.

Proof Subsystem (2) yields formula (5). Consider subsystem (3). Sub-
tracting and adding these equations we find
n(a, +a;)(a, +a,+n(a, +a,)+2a;—1)
+2n(a,a, +a,a, +a,a, —a,a;)
—(a,+a,)a, +a,+n(a,+a,)+2a;-1)

- 2(na,a, +a,a, + aa, —na,a, ) =0,

that is
(n(a,+ay)—a,—a,)a, +a,+n(a,+a,)+2a;—1)
+2a,(n(a, +a,)—a,—a;)=0,
and
n(a, +a;)(a, +a,+n(a, +a,)+2a;—1)
+2n(a,a, +a,a, +a,a, —a,a;)
+(a,+a,)a, +a,+n(a,+a,)+2a,—-1)
+2(na,a, + a,a, + a,a, — na,a,)
=(n(a, +a;)+a,+a,)a, +a,+n(a,+a,)+2a;—1)
+2(na,a, +na,a, +na,a, — na,a, +na,a,
+a,a, +asa, —na,a,)
=0,
that is

(n(a,+ay)+a,+a,)a, +a,+n(a,+a,)+2a;—1)
+2a,(n(a, +a,)+a,+a;)=0.

Consequently, in new variables @ =a,+a, and 8 =a,+a, subsystem (3) is
of the form
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(not - B)(o+nf+2a, — 1)+ 2a,(nB— ) =0,
(noc+ B)o+nB+2a,—1)+2a,(nf+a)=0.

Subtracting and adding expressions on the left hand side,

(0 = B)o+nB +2a; —1)+2a,(f - @)
—(nd + B)(a +nf+2a,— 1)~ 2a,(pff + @)
=2B(a+nB+2a;-1)—4a,

(noe— B)a+nB+2a5—1)+2a,(nf— )
+(noc+ B)a+nB+2a;—1)+2a,(nf+ x)
=2no(o+nB+2a,—1)+4na, =0,

proving formula (6).

4 Natural projector equations: Solutions

Equations of natural projectors (Sec. 3, (5), (6), (7)) will be solved by
elimination of variables. Recall for convenience that subsystems (5) and (6)
are of the form

(a,—ay)o+nB+2a,-1)=0,
(a,—a,)a+nB+2a,-1)=0,

ey

Ba+nB+2a;-1)+2a,0=0,

) o(a+nf+2a,—1)+2a,8=0.

Subsystem (7) has four solutions

wr-oman ;1)

These solutions (as,a,) split the system (1), (2) in four subsystems (A), (B),
(C), and (D), which will be studied separately.

(A) (a5,a5)=(0,0).
From equations (1) and (2) we get the system of bilinear equations

3) (a,—a))a+nB-1)=0, (a,—a,)a+nB-1)=0,



10 Classification of natural projectors in tensor spaces: (1,2)-tensors
(4) Ba+nB-1)=0, a(a+nB-1)=0.

(A1) (a5,as)=(0,0), a+nB-1=0.
Then since & =a,+a, and f=a,+aq,,

a,+a,+n(a,+a,)—-1=0,

and equations (3) and (4) do not give a new condition. Thus, case (Al) rep-
resents a 3-parameter family of solutions

(al aaz 9a3 ’a4 aaj aaé) = (1 - ;u - n(v + K),V,u,K,0,0),

I
M v,k €R.

(A2) (as5,a,)=(0,0), a+nf—10.
In this case

(ID) (a,,a,,a;,a,,a5,a,)=(0,0,0,0,0,0).
(B) (as.a5)=(1,0).
In this case equations (1) and (2) yield
(a,—a))a+nB+1)=0, (a,—a,)a+nB+1)=0,
Ba+nB+1)=0, a(a+nB+1)=0.

(B1) (a5,a,)=(1,0), a+nB+1=0.
In this case equations do not provide a new condition. Consequently,

a,+a,+n(a,+a,)+1=0,
and we have a 3-parameter family of solutions

(III) ((ll aaz ,(13 ,a4 7a5 aas) = (_1 - .u - l’l(V + K),V,‘U,K‘,l,()),
v,k €R.

(B2) (ay,a,)=(1,0), a+nB#0.
In this case (q,,4a,,a;,a,,a5,a,)=(0,0,0,0,1,0)

(IV) (al ’az7a3sa4 305 ’06)2(0305070’1’0)'

(C) (a5,a,)=(1/2,1/2).
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In this case, equations (1), (2) transform to the system
(a,—a))a+nB)=0, (a,—a)a+nP)=0,

Bla+nB)+a=0, o(o+nB)+L=0.

(C1) (a5,aq)=(1/2,1/2), a+nB=0.
This assumption leads to equations o¢=0 and B=0 hence a, =—a,
and a, =—a, . The corresponding solution is

11
(V) (al’az’a37a4’a5’a6): _#’_v’u’vvg’a s ,LL,VER'

(C2) (as,aq)=(1/2,1/2), a+nB#0.

In this case @, =a, and a,=a,, and B>=0o’ that is, ¢, =a; hence
a, =ta,.

(C21) (as,a,)=(1/2,1/2),a,=a,, a,=a,,a,=a,.

In this case ot =2a, =2a, =3 hence ov#0 and oo =—1/(1+n). Thus,

R 11)
2(1+n)° 2(+4n)’ 2(1+n)’ 2(1+n)’2°2)"

(VD (a],az,a3,a4,as,a6)=(

(C22) (a5.a,)=(Q1/2,1/2), a,=a,, a,=a, ,a,=—a,.
In this case a=2aq,=-2a,=—f hence o#0 and equation
—a(o+na)+o =0 yields oo =1/(1+n) . Thus,

1 11 11
2(1+n)° 2(14n) 2(1+n)’ 21+n)’2°2)

(VID) (a],az,a3,a4,a5,a6)=(

D) (a5.a,)=(1/2,-1/2).
In this case system (1), (2) transforms to

(5) (a,—a)a+nB)=0, (a,—a)a+nP)=0,

(6) Bla+nB)—-a=0, o(o+nB)—L=0.
(D1) (a5.a)=(1/2,-1/2), a+nB=0.

This assumption gives =0 and =0 hence a, =—a, and a,=—aq,.
The corresponding solution is
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(VIII) (al,az,a3,a4 aa5 ’aé): _,LL’_vuu«’va%’_l

ok u,veR

(D2) (as,a,)=(01/2,-1/2), a+nf#0.
In this case condition o+nf3 #0 implies that at least one of the num-
bers o, B must be different from 0. Since from (6), &* = 8° hence

a=xB=#0.
(D21) (as,a5)=(01/2,-1/2), a+nB+#0,0=p=0.
Equations (5), (6) imply a,—a,=0, a,—a,=0 and a+noe—1=0.
Thus, ¢ =1/(14+n) and since

1
a+ta,=a,+a,=2a =2a,=—,

14+n
we have
a=a,.=a,=a, = 1 )
TR T T (1)
Summarizing,
(IX) (a,,0,,a4,0, 05,0, ) = 1 1 1 11 1

2(1+n) " 2(1+n) " 2(1+n) " 2(1+n) 2" 2

(D22) (as,a,)=(01/2,-1/2), a+nB#0#0, a=-B+#0.
Equations (5), (6) imply a¢,—a,=0, a,—a,=0 and a—no+1=0.
Consequently, o =—1/(1—n) . But

1
a+ta,=-a,—a,=2a,=-2a,=

-
so we have
a,=a,=—a,=—a,=— ! :
b g YT 2(14m)
The corresponding solution is
1 1 1 1 1 1

X (- - L
X (@85, 00.85.00) = | = 2 mm) 2o 2= 2 2
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Remark 2 (Complementary natural projectors) Formulas (I)—(X)
show, that the pairs ¢e,"py, "p,Vpy, ('p,""P), (V'P,”P), and
("P,*P) include complementary projectors. To express this fact explicitly
it is sometimes convenient to use for the pairs (‘P,"P) and (*P,""P) com-
plementary parameterizations, that is, to write the families ™P and Y"P as

IIIP
(III) (al ,(12 7a3 9a4 aa5 ’a()) = (_1 + .LL + n(v + K)9_V>_.Ua_K,1,0),
v,u,Kk €R,
and
VIIIP
(VIII)

1
(al’a27a3sa4 305 ’aé): Hav’_ua_‘/eE [ ‘LLQVER‘

2 B

We can now summarize our results in a complete list of natural projec-
tors. In the following theorem M is an index running through the index set
{LILIOLIV,V,VLVIL,VILIX X} (Greek numbers); in this notation, P = Mp
is an element of the family of natural projectors % = {IP, p..... XP} .

Theorem 1 Let P:T,R" —T,R" be an endomorphism. The following
two conditions are equivalent:
(a) P is a natural projector.

(b) P="P for some M, where in components P ="P,",
“Piy = 48,65, +a,8,5,5 +4,5,6]5] +a,6,55,

Jjkp iTp

+a,51 58] +ag5 515,

and the numbers (a,,a,,a,,a,,as,a,) are determined by the following formu-
las:
'P
(I) (a1 ,a,,d5,4,,d5 ’a(,) = (1 —H- n(V + K),V,‘U,K',0,0),
V,i,Kk €R,

IIP

(I1)
(a,,a,,a;,a,,a5,a,)=(0,0,0,0,0,0),
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(IID)

av)

V)

(VD)

(VID)

(VIIT)

IX)

X)

Classification of natural projectors in tensor spaces: (1,2)-tensors

IIIP
(a,.a,,a;,a,,a5,a,) = (-1+ u+nv+x),-v,—u,—x,1,0),
v,u,Kk €R,

IVP
(al aaz 7a3 9a4 aa5 7a6) = (09070907170)7

vp
11
(al,a2,a3,a4,05,a6): _H’_V’M,V’E’E 5 ‘LL,VGR,
VIP
(aaaaaa)——l—l—l—lll
PEER R T 2(14n) T 2(14n) 0 2(1+n)° 2(1+n)°2°2)°
VIIP
(a,,a,,a,,a,,a.,a,)= b1 bt 11
PRl 2(1-n)” 2(1-n) "2(1-n) " 2(1-n)"2°2)
VIIIP
1
(al’az7a39a4aa5’aé)= uav7_us_v75’_§ ) H,VGR,
]XP
(a,,a,,a,,a,,a.,a,)= ! ! ! bt 1
PR E R ES T T 2(14n) " 2(140) " 2(140) " 2(0+0) 20 2)

p

(a]’az’agaa47a5’a6):(_ ! B ! [ ! B ! ’1’_1)'
: - 2(1-n) 2(1-n)  2(1-n) 2(1-n) 2"~ 2

Proof See formulas (I), (II), (ID), ..., (X).

Theorem 1 can be expressed in terms of equations of natural projectors

Vi="rius

Jjkp > qr>
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where U € T)R", U=U! ,and "P="P, "

Jjkp

15

Theorem 2 (Equations of natural projectors) Natural projectors P,
M=L]II,.... X, are expressed by the following equations:

@

ey

(IID)

av)

V)

(VD)

(VID)

(VIIT)

IX)

P
Vi =0-u—n(v+)8U; +voU,, +udU. +k8,U

Jj sk Jjs?

p

Vi =0,

"p

Vi=El+ p+n(v+x)8U, —v8:U, —ud U;, —x8,U’ +U',,
Vp

Vi =Uj.

VP

i irys irys irys irrs 1 i i
Vi= /’L((SkUsj _6_/Uks)+v(6kUj: -0U )+§(Ujk +Uy),

Jj sk

VIP

i 1 i K K i K K 1 i i
141 :_m(éj(Uks +U5k)+6k(Usj +Ujs))+§(Ujk +Uy),
VIIP
|
* 7 2(1-n)

i s s i s irrs 1 i i
(G)(UL, ~U)+8,U, = 8U )+ U +Up),

Jk

Vit P

i irrs irys irrs irys 1 i i
Vi= /1(5_/Uks _5kaj)+V(6jUsk _6kUjs)+§(Ujk -Uy),
IXP

; 1

i K s i s s 1 i i
= m(&j.(Uks +U;)+6,U;, +Ujs))+§(Ujk -Uy),
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*p
(X) i _ 1 51' s K 5i s s 1 i i
V/‘k _m( j(Usk_Uks)+ k(Ujs_Usj))+§(Ujk_Ukj)‘

Proof These formulas result from Theorem 1 by straightforward substi-

. TP : i _ Mpigryrp
tution for U =U_ into expressions V, = "P, U .

Remark 3 (Families of natural projectors) Natural projectors 'P,
"p, VP, Y"P depend on real parameters. If for instance u=1, v=x=0,
then Theorem 2, formula (I), yields

V,=8U,.
andif u=0, v=x=0,then
Vi, =0U,.
If £u=0, v=0 in Theorem 2, (V) and (VIII) then
i 1 i i
Vie =5 WU +Uy),
and
i 1 i i
Vie = E(Ujk ~Uy)-
Theorem 2 also shows that every nontrivial natural projector can be obtained

as a linear combination of these elementary natural projectors. In terms of
components, these four elementary projectors are characterized by

(a1 502 7a3 aa4 aa5 ’aé) = (0’0’15090’0)7

(a1 502 7a3 aa4 aa5 ’aé) = (1’0305090’0)7
11
(al’az’a39a4aa5’a6): 0’0’090’5a5 s

and

1 1
(al ’az 7a3 9a4 aa5 ’aﬁ) = (0’0’090’5 a_5)~
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Similarly, the choice y=1/2, v=x =0 in the family (I) yields

i 1 irrs irrs
Vie=50Ug +6.Uy).

5 Decomposability of (1,2)-tensors

In this section we study the problem of decomposing of a natural projec-
tor P:T,R" — T,R" into the sum of two natural projectors. We shall say
that a natural projector P is decomposable, if there exist two natural projec-
tors Q and R such that

(1) P=0Q+R.

Equation (1) for the unknowns Q and R is the decomposability equation for
the natural projector P. The problem of solving this equation includes the
decomposability conditions, to be satisfied by P, and then, provided the de-
composability conditions are satisfied, determining Q and R.

A natural projector, which is not decomposable, is called primitive.

Clearly, a necessary condition of existence of a solution is the existence
of a partition of the number dimIm P in two positive integers, satisfying the
dimension condition

2) dimImP =dimImQ + dimIm R

for some Q and R from the set of natural projectors, given by Theorem 1.

To apply this condition, we first determine the dimensions of the image
spaces ImMP C T,R", where P runs through the family of natural projec-
tors P={'P,"P,....,*P} .If in components Mp = MPJ’k‘;' , Where

“Piy = 48165, +a,85,5 +4,5,6]5] +a,6,55,

Jjkp iTp

+ a55;575,: + a65;5,f5;
(Theorem 1), then the dimension formula is

dimImMP="P * =an+a,n* +an+an’ +an’ +an’
(3) J
= a5n3 +(a, +a, +a n® + (a,+ay)n.

Second, we determine the decomposability indicatrix $ = {I4,} for the fam-
ily % . Recall that by definition, elements I, of the indicatrix $ are posi-
tive integers of the form I, =dimIm ®P+dimIm *P such that ¥ > ® for
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& = LILIIL...,X . Third, using the structure of MP and comparing the di-
mension dimIm™P to the elements I, of the indicatrix $, we get dimen-
sion conditions (2) and decomposability equations (1) for ™P .

Remark 4 The decomposition method for natural projectors in the ten-
sor space T,R", described above, follows basic steps of the method for de-
composition of (0,s)-tensors (see Krupka [2]), and is obviously applicable
to general mixed (r,s)-tensors.

Theorem 3 (Dimensions) The dimensions of the image vector spaces
ImMP , where M=LILIIL,...,X, are given by the following list:

@ dimIm'P =n,
(1) dimIm"P =0,
(110) dimIm"P =n(n*-1),

(IV) dimIm"“VP=n’,

(V)  dimIm VP:%n2(n+1),

(VD)  dimIm“'P = ”2+2”_2 n,
(VII)  dimIm""P= ’AT””;@
(VII)  dimIm "™P = %nz (n-1),
(IX) dimIm *P = ”LT””n
(X) dimIm *P = ”2_2”_2 n.

Proof We use Theorem 1 and substitute for «a,,a,,a,,a,,as,a, into di-
mension formula (3):

0)) dimIm'P=(+x)n’ +(1-u—n(v+x)+wn=n,
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(1) dimIm"P =0,

am dimIm"P=n’+&+v)n’> +(=1—u—n(v+x)+)n
=n’+(K+v)n’ +(=1-n(v+K)n=nn>-1),

(IV) dimIm"“VP=n’,

V) dimImVP=%n3+(v—v+%)n2+(—‘u+,u)n=%n2(n+l),

dimImV1P=1n3+(— L1 +1)n2+(— L1 n
2 2(14n) 2(1+n) 2 2(14n)  2(1+n)
n+n* ( 1 1 1+n ) ) 2
= - - + n - n

V) 2(14n) 2(1+n) 2(14+n)  2(+n) 2(14n)
_ n’+n* + n’—n’ _ 2n n*+2n*—n-2 _ (1+n)(=2+n+n%)
T 2(1+n)  2(+n) 2(1+n)  2(1+n) a 2(14n)
_ n*+n-2 4o (1=D(n+2) n.
2 2
dimIm“"'p
1 5 1 1 1) 5 ( 1 1 )
=—n +|- - +—|n"+ + n
2 2(1-n) 2(1-n) 2 2(1-n)  2(1-n)
(VID) n-n*  1-n-2 , 2

= + n’+ n
2(1-n) 2(1-n) 2(1-n)
_nlent-n’-n’+2n _ —nP-n+2  (I-n)(n*+n+2)

2(-n) T 20-n) " 2(-n)
n’+n+2
= n,
2

(VII)  dimIm P = %if + (v - %)n2 F(—ft n = %nz(n _1),
dimIm *P

(IX) 1 4 ( 1 1 1) 5 ( 1 1 )
= n+|l— ||+ |n
2 2(14+n)  2(14+n) 2 2(14+n)  2(1+n)
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1+n 3 2—1-n 2 2
= n + n + n
2040y 20+n)  2(1+n)

_ P +nt+n’—n*+2n _ n+n+2 _ (n+1)(n*—n+2)

2(14n) C2(1+n)  2(1+n)

n’—n+2

= n,
2
dimIm *P

1, 1 1 1) ) ( 1 1
=—n’+ + ——|n"+|- - n

2 2(1-n)  2(1-n) 2 2(1-n) 2(1-n)

nP-n*  2-1+n 2 2
= n - n
2(1-n) 2(1-n) 2(1-n)

_ nP—n*+n*+n*-2n _ —n*+2n%+n-2 _ (1=n)(n*-n=2)

X)

2=y 20-nm) " 2(1-n)
n’—n-2
= n.
2(1-n)

Remark 5 Theorem 3 shows that the dimensions of the image vector
spaces of natural projectors P:T,R" — T,R" must be equal to one of the
positive integers

1 Z4n-2
n, 0O, n(nz—l), n’, fnz(n+1), non n,
2 2
2 2 2
+n+2 1 —n+2 —n-2
n“+n L n°-n n. n“-n
2 2 2 2

Remark 6 The sum of any two projectors R, S, belonging to the family
of natural projectors 'P , is not a natural projector. Indeed, the image space
Im(R+S) of the sum would be the direct sum ImR®ImS , whose dimen-
sion would be 2n; but according to Theorem 3, there does not exist any nat-
ural projector whose image space is of dimension 2n. Similar assertion
holds for any two projectors, belonging to any family P, M = LIIL,V,VIII .

Now we determine the decomposability indicatrix, restricting possible
decompositions of natural projectors by a priori dimension arguments. Since
the set of natural projectors is finite (and contains ten elements), complete
results for the indicatrix can be easily obtained from Theorem 3. Below we
get seven indicatrix tables; the fourth column characterizing the coincidence
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of the sums of dimensions of the image spaces of the natural projectors
'p,"p,Mp. ..., *P with the dimensions of these image spaces, includes the
corresponding decomposability equation. Indeed, next step in solving the
decomposability problem consists in investigating of these decomposability
equations. Clearly, calculations dimensions for the zero projector "P and
the identity projector VP are not needed, so the corresponding (trivial) ta-

bles are omitted.

The indicatrix tables

'P
dimIm'P=n
P |dimIm " P|dimIm'P+dimIm " P
'p n 2n -
1 p n(nz_l) n Np_lpilip
2
vp %nz(n+1) n +2”+2n Vip_1p,Vp
2 p—
vp| 2 %nz(n+1) Vp=1piVip
2 2
viip n +n+2n n +n+4n _
2 2
Vil p lnz(n—l) nz—n+2n Xp_1p, Vilp
2 2
2 2
Xp n n+2n n n+4n _
2 2
2_ p—
xp|n 2n 2n %nz(n_]) Vilp _1p_ Xp

Calculations of the sum dimIm'P+dimIm™P:

n+n=2n,

n+nn*-=n’,

1 1 1
n+§nz(n+l):11+—113+—n2 =

2

2

1
En(n2 +n+2),
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1 2n n*+n®=2n 1 ,
+-—nn-H(n+2)="+— "=~ +1),
n 2n(n Y(n+2) 5 5 2n (n+1)
nP+n+2  2n+nt+n’42n  nl+n+d
+ n= = n,
2 2 2
3 2 2
n+ln2(n—1):2n+n no_n n+2n’
2 2 2
n’—n+2 ne 2n+n’—n*+2n _ n’—n+4 n
2 a 2 T2 ’
2
-n-2 1
P Ty = (- 1)
2 2
IIIP
dimIm"™P =n(n*-1)
MP |dimIm ™ P|dimIm " P+dimIm™P
Pl nn®-1) 2n(n*—1) -
1 3n*+n-2
P | —n*(n+1) TS, —
2 2
Vip n2+n—2n 3n’+n—4 _
2 2
VI n*+n+2 3n+l ,
P n —n -
2 2
vill p ln2(n—1) 3n2—n—2n B
2 2
IXP n2—n+2 n 3]1—1 n2 _
2 2
2 2
Xp n—n 2n 3n"—n 4n _
2 2

Calculations of dimIm™P +dimIm P :

n(n* =D +nn* -1)=2n(n*-1),

213 =2n+n+n? _ 3n2+n—2n
2 2 ’

n(n® —1)+%n2(n+1)=
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n’+n=2 _2n2—2+n2+n—2 _3n3+n2—4n

2
-D+
n(n ) 5
3n’+n—4
=—n,
2

n(n*=1)+

n(n® —1)+%n2(n—1)=

2

2

n?+n+2 2n2=2+4n*+n+2 3n+l ,
n= n= n

2

2
2n°=2+n’-n
2

2_ — [—
_ 3n"—n Zn:(n 1)(3n+2)n

2 ’

2 2 ’
2_ 2_ 2_ _
n(n2—1)+n n+2 _ 2n"=2+n"—n+2 _ 3n lnz,
2 2 2
2 n?—n=2 2n2=2+n*—n-2 3n*—n—-4
n(n”—1)+ n= n= n.
2 2 2
'p
dimIm VP = %nz(n+1)
MP |dimIm M P|dimIm YP+dimImMP
1
vp Enz(n+1) n*(n+1) -
2 —
vp | 2 n(n® +n—1) -
2 +n+2
vip | I 2” n n(n*+n+1) —
VIIIP %nZ(n_l) n3 IVP:VP+VIIIP
2_
Xp| 2n+2n n(n®+1) —
n*—n-2
xp ;o n(n®-1) p=VpyXp

23
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Calculations of dimIm YP+dimIm™MP:

%nz(n+l)+%n2(n+l)=nz(n+1),

n*+n=2
2

%nz(n+1)+ nz%n(n2+n+n2+n—2)
_1 2 _ 2
—En(2n +2n-2)=nn"+n-1),

2
+n+2 1
" 2” nzin(n2+n+n2+n+2)

%nz(n+1)+
=%n(2n2 +2n+2)= %n(an +2n+2)=n(n* +n+1),

| S Lo 3
2n(n+1)+2n(n H=n",

2_
lnz(n+l)+n n+2n=ln(n2+n+n2—n+2)
2 2 2
=n(n*+1),
1 ‘n-2 1
—nz(n+l)+n " n=—nn*+n+n*—n-2)
2 2 2
=n(n’-1).

VIP
2 p—
dimIm\”P:%n(n—l)(n+2)= e 2
MP |dimIm™P|dimIm "'P +dimIm ™ P
2
vip| 2 +2n+2n n’(n+1) —
VIHP %nZ(n_l) n(n2_1) IHP=VIP+VIHP
Xp n2—2’1+2n n Np_Vip, Xp
2_ p—
xp | 2” 2n n(n*-=2) —
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Calculations of dimIm Y'P+dimIm™MP:

n*+n+2
2

%n(n—l)(n+2)+ n=%n(n2+n—2+n2+n+2)
=n’(n+1),
%n(n—l)(n+2)+%n2(n—1)=%n(nz+n—2+n2—n)

=n(n*-1),

2_
%n(n—l)(n+2)+n 2n+2n=%n(n2+n—2+n2—n+2):n3,
2_ —
ln(n—l)(n+2)+n n 2n:ln(nz+n—2+nz—n—2)
2 2 2
=n(n*-2).
VIIP
2
dimIm Y"P = LG-kzn
P |dimIm™P|dimIm "P +dimIm "' P
vinp %nz(n—l) n(n® +1) -
2_
xp|” 2’”2;1 n(n® +2) -
Xp nz—zn—zn n3 Np_Vip, Xp

Calculations of dimIm Y"P+dimIm P :

n*+n+2
2

2 2
+n+2 —n+2 1
" 2” n+’ 2” nzan(nz+n+2+n2—n+2)=n(n2+2),

2 2
+n+2 —n—-2 1
" 2" n+ 2” nzin(n2+n+2+n2—n—2):n3.

n+%n2(n—1)=%n(n2+n+2+n2—n)=n(n2+l),
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Vit P

dimIm V"P = %nz(n _1

Mp |dimIm ™ P|dimIm "' P +dimIm™P

vinp %nz(n—l) n(n—-1) -
2_

Xp | 2n+2 nn*—n+1) —
2

xp | _;_Zn nn*—n-1) -

Calculations of dimIm "™P +dimIm P :

%nz(n—l)+%n2(n—l)= n*(n—1),

1 nt2 1
Enz(n—1)+n 2” ann(nz—n+n2—n+2)=n(n2—n+l),
1 n-2 1
—nz(n—1)+n " n=—nn’—n+n"—n-2)=nmn’-n-1).
2 2 2
IXP

2
dimIm*p=" 2

2

¥p| dim Im ™ P| dimIm ™ P+ dimIm ™ P|
n*—n-2 ‘
n
2

Xp

n*(n—1) —

Calculations of dimIm *P+dimIm™P:

n*—n+2
2
=n*(n-1).

n+%n(n+1)(n—2)=%n(n2—n+2+n2—n—2)

The following are results of the decomposability indicatrix tables. Note
that dimIm VP =dimImId =dim7,R" =n".
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Lemma 4 (Decomposability indicatrix) The natural projectors 'P,
"p,"p, ..., XP satisfy the following conditions:

dimIm"P =dimIm "P +dimIm *P,
dimIm ™P = dimIm "'P + dimIm "™ P,
dimIm"“VP=dimIm'P+dimIm"P,
dimIm"“ P =dimIm " P+dimIm "™P,
dimIm"“ P =dimIm "'P+dimIm * P,
dimIm VP =dimIm ""P +dimIm *P,
dimIm P =dimIm'P+dimIm v'P,
dimIm ""P =dimIm'P +dimIm " P,
dimIm ""'P =dimIm 'P + dimIm *P,

dimIm ®P = dimIm 'P + dim Im Y™P.

“)

Proof These assertions are consequences of the decomposability in-
dicatrix tables for the projectors VP .

Lemma 5 The natural projectors PP V'P.XP are primitive.

Proof According to Lemma 4, every decomposable natural projector
satisfies one of the formulas (4), with non-trivial summands.

Our aim now will be to investigate the decomposability equations sug-
gested by dimension formulas (4). Clearly, it is sufficient to study decom-
posability of the natural projectors "P,YP,Y'P V"'P *pP  different from
primitive natural projectors and the identity projector; the corresponding de-
composability equations are

HIP=VP+XP, HIPZVIP-FVHIP, VP=IP+VIP,
VHP:IP+VP, VIHP:IP"'XP, IXP:IP+VIHP.

Using Theorem 1, we find explicit forms of these equations, in which the
unknowns are parameters of the families P . Then we give complete solu-
tions of these equations.

Consider the family of natural projectors "'P , expressed as

(a,.a,,a5,a,,05,a,) = -1+ u+nv+x),-v,—u,—x,1,0),

5
%) v,k €R.
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Theorem 5 (a) "P is decomposable if and only if one of the following
two conditions holds:

6  Kk+v=_,
n—1

or
%) Vik=-—L
T+l

(b) If condition (6) is satisfied, then " P is given

1 1
(®) (a,.a,,a,,a,,a5,a,)= ,u+ﬂ,—v,—,u,v—m,l,0 ,

and has a unique decomposition
) p="p+*pP,
where VP is given by

(bl ’b2 ’b3 ab4 ’b5 7b6)

(10) ( 1 1 1 11 1)
,LL_ a_v_ ’_,Ll+ ,V+ s~ A |
2(1-n) 2(1-n) 2(1-n) 2(1-n)’2"2

(c) If condition (7) is satisfied, then " P is given by

1 1
(11 (a,.a,,a;,a,,a5,a,) =L~ e} —V,—uv— e} ,1,0),

and has a unique decomposition
(12) IIIP:VIIIP+VIP’
where "™ P is given by

(bl ’b2 ’b3 ab4 ’b5 7b6)

(13) 1 1 1 11 1
=\U————,—V+ —U+ V= e
2(14n) 2(14n) 2(14n) 2(1+n)°2" 2

Proof 1.To prove necessity, suppose that " P is decomposable. Then
either "P="YP+*P or "P="P+""P (Lemma 4).
But P, VP ,and *P are given by
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-1+ pu+nv+x),-v,—u,—x,1,0),

’ ’ /1 1
(14) (_,LL 7_v ’u ,V 95a§)7
(_ 1 1 111
2(1=n)2(0=n)" 2(1=n) 2(1=n)"2" 2’

thus, equation ""P="P+ *P reads

1
2(1-n)’
, 1 1 , 1

VeV ey THER TSy TRV ey

—l+u+nv+r)=—u'—
(15)

This system already implies (6), because
, 1 1
V=vt— =—K———.
2(1-n) 2(1-n)

I

Analogously, " P, VIp,and Y""'P are given by

-1+ u+nyv+x),-v,—u,—x,1,0),
(_ 1 111
2(04+n)° 2(1+n)" 2(+n)" 2(1+n)’2°2)

(Iv/_ /_vll_l
H’ 7“7 ’27 2a

so equation "P="Y'P+Y"P is equivalent to the system

’

—1+,u+n(v+1<)=—2(1+n)+u,
(16)
v Ly —U=- ! -y, —K=- Loy
2(14n) ’ 2(14n) ’ 2(14n)
Hence
’ 1 1
vi=—v

+ =— +K
2(+n) ~ 2(1+n)

2. We show that if condition (6) is satisfied, then "' P is of the form (8)

and can be expressed as "P="'P+ P, with 'P given by (10).
Condition (6) determines the choice of parameters for which P is de-
composable; substituting into (III) gives formula (8). Consider decomposa-
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bility equation (9), expressed in terms of parameters of the natural projectors
"'P and VP by the system (15) for the unknowns u’,v’,

1

—l+u+nv+x)=—u"— i)’

A7)

’

—-v=—V'+

’ 7

—p=p -, —k=V+

2(1-n)’ 2(1-n)"

Since (6) holds, the third equation is satisfied identically. The first equation
is also an identity: indeed, the left-hand side is

—1+y+n(v+1<):—1+,u—%:u—n+1_n= !

1-n 1-n
1
2(1-n)"

= —‘LL, —
Consequently, (17) implies

SOV S S S
V_V+2(1—n)’ H= u+2(1—n)'

Substitution in (14) yields

(_ I_VI /vlll)
,u9 ’,IJ’ ’2’2

1 1 1 1 11
,_V_ ’_u+ ,V+ A~ A |
2(1-n) 2(1-n) 20=n)"" " 2(=n)’22

(-

proving (10).

3. We show that if condition (7) is satisfied, then the natural projector
"'P is of the form (11), and can be expressed as "P=""P+"'P  with ""'P
given by (13).

Formula (11) arises by a direct substitution from (7) to expression (III).
Consider decomposability equation (12) for the unknowns u’,v’, expressed
by (16),

’

—1+,u+n(v+1<)=—2(1+n)+u,
(18) 1 1 1
V0 T TR 2w TR T e Y

Condition (7) implies that the last and the first equations follow from the
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remaining equations, which can also be written as

(19) Vv ! w=pu- !

2(14n)’ 2(14n) "
Indeed,
1 , 1 1 1
- V== - +V=—"—+V=—kK,
2(1+n) 2(1+n) 2(1+n) 14+n
and
I+ p+n(v+K)=—l+pu+——=—1+ -
H B Hrn ™ 2(14n) 1
=-— +u’.
2(1+n) H

Thus, equations (19) solve the decomposability equation (18), or (12), and
we have

’ ’ ’ ’ ] 1
V= Voo
(‘u H 2° 2
1 1 1 1 1
v+ U+ V= |
2(1+n) 2(1+n) 214" 2(14n)’27 2

as required.

Consider the natural projector ¥ P, expressed by

11
(al,az,a3,a4,05,aé): _#’_V’M’V’E’E 5 ,LL,VER,

Theorem 6 For any values of the parameters W,v €R, the natural
projector ' P is decomposable, and admits a unique decomposition

(20) Yp="P+"'P.
In this formula 'P is given by

(bl ,b2 7b3 ab4 ’b5 7b6)

(21) 1 1 1 1

=|-u+ —V+ M+ WVt ,0,0
2(1+n) 2(1+n) 2(1+n) 2(1+n)
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Proof According to Theorem 1, 'P and “'P are given by
(22) (I-u —n(v'+x"),v" .1’ x’,0,0),

and

1 1111
2(1+n)° 2(4n)’ 2(+n)’ 2(1+n)’2°2)°
Then the sum "P+ Y'P is

1 , 1 , 1
’v - ’,Ll - s
2(1+n) 2(1+n) 2(1+n)

(1—u’—n(v’+1<’)—

, 1 11
K'———
2(1+n)°2°2

Decomposability equation (20) gives the following system for the unknowns
‘LLI,VI’KI

/_ ’ /_ l
v=vio - Ly !
h 2(1+n)’ H=H 2(1+n)” 2(1+n) "

These equations imply

KAV =
l+n’

and the first equation becomes an identity, because calculation of the righ-
hand side yields

TP PP SR B TP

H 2(1+n) H =1 2(14n)

— 2+2n—-2n-1 _ 4+ o

B 2(14n) H 2(14n) H

Consequently, we have a solution

, 1 , 1 , 1

Hw=u+—— vV=-v+_——- K=V+_——,
2(1+n) 2(1+n) 2(1+n)

uniquely determined by p and v . These parameters define the natural pro-
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jector 'P (22) as

A=y —nv +x"),v’ .1’ ,x’,0,0)

—(1— SN VL SRR S V. 00)
A 2(1+n) 1+n° 2(14n) H 2(1+n)" " 2(1+n) "’
24+2n—1-2n 1 1 1
:(— +5— = —v+ U+ VA ,0,0)
2(1+n) 2(1+n) 2(1+n) 2(1+n)

1 1 1 1
—(—/.L+ ,~V+ U+ WVt ,0,0),
2(14n) 2(14n) 2(1+n) 2(14n)

proving formula (21).

Consider the natural projector "' P, given by

1 1 1 1 11)

():05.05.0,05:00) = 5 1) 21y 2= 201=m)'2 2

Theorem 7 The natural projector ""P is decomposable and has a de-
composition

23)  V'p='P+'P,

where for any values of parameters [1,v €ER,'P and “P , are given by
1 1
(bl ’b2 7b3 ab4 ab5 ’bﬁ) = _;LL + E ,V,‘Ll,—V - E ,0,0)

and

(Cl acz ’C3 564 ’CS 7C6)

_(_1+_1_v1_1+v11)
\ 231-n) H 2(1-n) ’2(1-n) “’2(1—;1) 22)

Proof The natural projectors 'P and 'P are given by
(24) A-u-nv+x),v,u,x,0,0)
and
11

’ ’ ’ ’
- =V, NSl B
u u 2
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Then 'P+ " P has an expression

7’ ’ ’ ’ 1 1
l-u—nv+x)-p',v-vi,u+u . x+v o)

and the decomposability equation (23) is equivalent to the system

o
2(1-n)’
7 1 1 ’

Vom0 MR T a0y BTV T o0

I-u—n(v+x)—pu' =
(25)

for the unknowns u,v,x and u’,v’. Thus,

’ 1 1
V= —K=V+_——,
2(1-n) 2(1-n)

hence

(26) —L=V+K‘,
1-n

and the first equation in the system (25) is a consequence of the remaining
ones:

S0 P R
l—p—n(v+k)—p' =1 /zi+1_n 2(1_n)+;4

_ 2-2n+2n-1 _ 1
T 2(-n)  2(-n)’

Thus, if v and x satisfy (26), then system (25) has a solution

, 1 ,_ 1
v_2(1—n)+v’ “_2(1—;1)

.

Substitution into (24) and (25) yields
(1 - .LL - n(v + K),V,,LL,K,0,0)

= (1—u+i,v,u,—i—v,0,0)
1-n

1-n

= (—u+i,v,u,—i—v,0,0),
1-n 1-n
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and

(_ I_VI /vlli)
‘LL, 9#5 ’2’2

_(_1+_1_v1_1+V11)
\ 23-n) H 2(1-n) ’2(1-n) “’2(1—n) 2°2)

Now we study the natural projector ‘"' P , given by

1

——1, ,VER.
27 2 H

(a,,a,,a5,a,,a5,a,) = | L,V,—l,—V,

Theorem 8 For any values of the parameters W,v €R, the natural
projector "' P is decomposable, and admits a unique decomposition

27 Mp='P+*P,
where 'P is given by

(bl ,b2 7b3 ab4 ’b5 7b6)

(28) 1 1 1 1
= V= ’_,ll + ,—V — ’0’
20=n)"" " 2(1=n) 2(1-n) 2(1-n)

0].

Proof Natural projectors 'P and *P are given by
(29) A-p —n(v' +x"),v,u’,x’,0,0)

and

(_ 1 11 111
2(1-n) 2(1-n)" 2(1-n)’2(1-n)’2" 2)

and their sum 'P+ *P is

, 1 , 1
n)’v+2(l—n)"u 2(1-n)’

’ ’ ’ 1
(l—u —n(v' +x’)- (1=

, 1 1 1
K+ —

20-m)’2" 2}

Decomposability equations (27) for the unknowns u’,v’,x” can be written
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as the system

’ ’ ’ 1
-y’ —n(v’' +x )—2(1_n)=u,
1

, 1 , 1 ,
Vit ——=v, - =—M, K+ ==
2(1-n) H 2(1-n) H 2(1-n)
Thus,
’ 4 1
VK =——f,
1-n
and the first equation becomes the identity:
1 1 n 1
-y —n(v +x")- =1+u- — =
" ( ) 2(1-n) H 2(1-n) 1-n 2(1-n)
_ 2-2n-142n-1 _
B 2(1-n)
Consequently, equations
vy ] SIS S
B - H=TH 2(1-n)’ B 2(1-n)

2(1-n)
give a solution u’,v’,k”. Then from (29), the natural projector 'P is equal

to the expression
A=y —nv +x"),v 1’ ,x’,0,0)
1 n 1 1 1
- (1+“_ 20-m 1= T 20em M 2o Y T 20 ’O’O)
( 2220, 1 1, 1 ,0,0)
2(1-n) 2(1-n) 2(1-n) 2(1-n)
:(,u+ ! ,V— ! —U+ ! ,—V— ! ,0,0),
2(1-n)"  2(1-n) 2(1-n) 2(1-n)

proving (28).
Consider the natural projector *P, given by

(a,,a,,a,,a,,a.,a, )= ! ! ! 1.1

PR 2(14n) " 2(140) " 2(14n) " 2(140) "2 2 )
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Theorem 9 The natural projector P is decomposable. For any values
of parameters [,V € R, it admits a decomposition

30)  *p='p+"p,

VIII

where the natural projectors 'P and "™ P are given by

1 1
(31) (bl’b27b3ab4’b57b6): _u+mav’u’m_v’0’0)e

and

(Cl acz ’C3 ,C4 ’65 ’66)

1 1 1_1)
2(+n)°2° 2)°

Y Gny 20my TRV

- (_ 2014n)

Proof Natural projectors 'P and ""P are given by
(I-p—n(v+x),v,u.x,0,0)

and
1

1
32 ’ /_ /_/7_7.
(32) (u,v,u,v,2,2

Thus, 'P+ “""P is given by

’ ’ ’ /1 1
(1—u—n(v+1<)+,u WVHVLU— U K=V o)

Decomposition equation (30) provides a system

1
2(1+n)°

I-u—n(v+x)+u =
(33)

’

’ 1 ’ 1
H—l'=—) K=V

V+v , =
2(1+n) 2(1+n)

T 2(4n)’

for the unknowns u,v,x and u’,v’. This system implies

1
K+v=—o-.
1+n

Hence from (67), 'P is of the form
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(1-pu—nv+x),v,ux,0,0)
= (1 —-u- %,v,u,ﬁ—v,o,o)
= (—u+ﬁ,v,u,ﬁ—v,0,0),

proving formula (31). Since the first equation (33) becomes an identity,

1

1—u—n(v+x)+u’:1—u—i+u—

1+n 2(1+n)
_ 2+2n-2n-1 _ 1
T 2(4+n)  2(+n)’
therefore
Vl =—Vv+ # ’— = ;
- 2(14+n)’ H=H 2(1+n)
Then Y™P is, according to (32),
’ ’ ’ ’ ] 1
IJ’ ’v ’_/'L ,_V ’5’_5
1 1 1 1 1
= .Lt_ia_v*_ ,_,Ll+ ,V_ [T
( 2(14n) 2(1+n) 2(14n)""  2(1+n)°2° 2

Results, included in Theorems 5 — 9, characterize all decomposable nat-
ural projectors in the tensor space 7,R", and their decompositions. The fol-
lowing corollary summarizes the classification of primitive natural projec-
tors.

Theorem 10 The following two conditions are equivalent:

(a) P is a primitive natural projector.

(b) P is equal to one of the natural projectors 'P,"P,"'P,*P , or to an
element of the family ™P , (5), such that

1 1
K+Ve— ——.
n—1 n+l

Proof This follows from Lemma 5 and Theorems 5-9, classifying de-
composable projectors.
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6 Partitions of the tensor space 7,R"

By a partition of a vector space E we mean a family {P,P,,...,P,} of
non-trivial projectors P.: E — E such that

B+P+...+P =1d,.

{P,,P,,...,P.} is said to be refinable, if there exists a partition {Q,,0,,...,0,}
of E, such that for every i, 1<i<k,either P.=0Q, forsome o, 1< </,or
there exist o and B such that 1<o,B</,and P,=Q,+Q;. Any partition
{0,,0,....,0,} with these properties is called a refinement of {P,,P,,...,P.}.

Every projector P:E — E defines a partition {P,Q}, where Q is the
complementary projector Id,— P .

A partition of the vector space T,R" is said to be natural, if its elements
are natural projectors. A natural partition is said to be primitive, if it has no
natural refinement different from the trivial one.

Our objective in this section is to find all primitive natural partitions of
the tensor space T,R". To this purpose we write Id (the identity of 7,R")
instead of "YP, and consider partitions, defined by complementary projec-
tors,

d="'P+"pP, 1d="P+"P, Id="P+"P,

(1
Id=""P+*P.

All other partitions can be constructed by refining of these four partitions.

Theorem 11 (Primitive natural partitions) (a) The tensor space of
(1,2) -tensors T,R" admits exactly two primitive natural partitions, namely
{'p,YP,*P} and {'P,"'P,""P} .

(b) The natural partition {'P,"P,*P} is formed by the natural projec-
tors

(2) (_;Lt-l-L V’,Lla_v_LaO’O s

1-n’ 1-n

(—l—v— L U SIS S O
H 2(1-n)’ 2(1-n)’ H 2(1-n)""  2(1-n)’2°2)°

and
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3) (_ 1 11 111 )
2(1-n)’2(1-n)" 2(1-n)’2(1-n)’2" 2)
where U,v €R are arbitrary parameters.
(c) The natural partition {'P,"'P,"" P} is formed by the natural pro-
Jjectors

1 1
(—,u+ —,V,U,—v+ E’O’O)

1+n’

(_1_1_1_111)
2(1+n)° 2(+n)’ 2(+n)" 2(1+n)’2°2)
and

“)

(—1—v+ LR S 1_1)
H 2(1+n)’ 2(14+n)’ H 2(1+n)°  2+n)’2° 2)

where U,v €R are arbitrary parameters.

Proof 1. Theorems 5 — 9 provide the following complete list of decom-
positions of natural projectors in two summands

IHP=VP+XP, IIIF)=VI})_|_VIIIF)7 VP=IP+VIP,
VHP=IP+VP, VIHPZIP+XP, IXP:IP+VHIP,

and characterize together the parameterizations for which the decomposi-
tions are valid. Substitutions into (1) lead to the following equations

d="P+'P+*P, 1d="P+"'P+""P,
d="P+V'P+""pP, ld="P+'P+*P,
d="pP+'P+"P

d="'P+ P+ *P,

(&)

where the unknowns are the natural projectors, complementary to the natural
projectors p tMp Vp Viip Xp Vip, respectively. But equations (1)
do not restrict parameterizations, thus, equations (5) always admit solutions.
However, this list includes only two different equations; this proves that the
identity Id admits no more than two partitions,

ld="'P+"P+*P, 1d="P+"'P+""P.
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2. We prove assertion (b). Consider the partition
Id="'P+"P.

This formula holds for any fixed parameters v,u,k € R of the families 'P
and "P , allowing us to condider 'P and "P as complementary projectors.
Explicit expressions are

(6) (1-u—nv+x),v,ux,0,0)
and
(_1 + :ll + l’l(v +K),_V,_‘u,_K,1,0),

respectively. But according to Theorem 5, for some values of parameters the
natural projector "'P is decomposable; if

7 k+v=-1
n—1

that is, if "P is equal to

-1+ u+nyv+x),-v,—u,—x,1,0).
1

= ‘LL+L,—V,—‘LL,V—7,1,O ’
n—1 -1
then
8) p="p+*pP,
where VP is given by
1 1 1 1 11

©) (“ 2(1-n)’ v 2(1-n)’ H 2(1—n)’v 2(1—n)’2’2)’
and *P is
(10) (_ ! ’ ! T ! s ! 91’_1)-

2(1-n) 2(1-n)  2(-n) 2(1-n) 2 2

The natural projector 'P for which " P =1d —'P has decomposition (8),
arises from (6) for parameters satisfying compatibility condition (7); this is
the natural projector

(11) (1_.u_n(v+’<)’v9/l7k"070)
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n 1
=(l-y——-,v,u,—v+—-,0.,0
n—1 n—1
= ( ! 1% v+ ! 0 0)
,LL }'l—l £ "Lla }’l—l A .
Summarizing, we have found parameters in such a way, that the families

'p,"p and YP, *P satisfy equations Id = 'P+"pP and "P="P+*P;
for these parameters, restricted by condition (7), equation

(12) Id='P+'P+*P

holds. The natural projectors on the right-hand side are determined by (9),
(10), and (11). This proves statement (b).
3. We prove assertion (c). Consider the partition

Id="'P+"P,

where 'P and "

P are given by
(13) (1-u—n(v+x),v,u,x,0,0),
and

-1+u+nyv+x),-v,—u,—x,1,0).

If according to Theorem 5

1
14 +V=—o,
(14) K n+l

then for some values of parameters the natural projector "P is decomposa-
ble.In this case "P is equal to

1 1
- ,—V,—U,V— ,1,0 5
" n+l H n+l

and admits a unique decomposition

IIIP= VIIIP+ VIP
where ""'P is given by
1 1 1 1 1
15) M- H

a_v+ T + V= s~ A
2(1+n) 2(1+n) 2(14+n) 2(14n) 2" 2
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and V'P is

1 1111
2(1+n)° 2(4n)’ 2(+n)’ 2(1+n)’2°2)°

(16)

The natural projector 'P for which " P =1d —'P has decomposition (4),
is given by (13) with parameters satisfying compatibility condition (14); this
is the natural projector

(I-p—n(v+x),v,u.x,0,0)
n 1
(17) —(l—u—ﬁ,v,u,ﬁ—v,o,o)
—(— +Lv L—vOO)
=\7H n+l’ "u’n+1 )

Summarizing, we have found parameters for which that the families 'P ,
"p,and Y"P, V'P satisfy decomposability equations Id='P+"P and
Wp=Vllp L VIp - for these parameters,

(18) Id="P+""P+ VP,

Clearly, condition (14) excludes parameter K , and partition (18) holds
for all v,u €R, where the natural projectors on the right-hand side are de-
termined by (15), (16), and (17).

4. It remains to show that the natural partitions 'P,VP.*P} and
{'P,V'P,"""P} are primitive. The natural projectors 'P, *P and “'P are
primitive, but the families P and “"P are decomposable. Existence of a
natural refinement of the natural partition {'P,"P,*P} thus consists in ex-
istence of solutions of the system Id='P+'P+*P and "P='P+"'P
(Theorem 6). Similarly, existence of a natural refinement of IP,VIP,VHIP}
is equivalent to existence of solutions of the system Id="'P+¥'P+""P and
ip='p+*P (Theorem 8). But these equations do not have solutions:
otherwise Id='P+'P+"'P+*P and Id='P+"'P+'P+*P,so 'P+'P
would be a natural projector, but such a natural projector does not exist
(Theorem 1).

We can also verify this assertion by solving the system

(19) d="P+'P+*P, 'P="'P+"'P.
Solutions 'P , VP of the first equation are given by (2), (3),

1 1
_,LL_ 7"/’#’_‘/ +— 5070 B
n-1

n—1
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(—l—v— LR S “)
H 2(1-n)’ 2(1-n)’ H 2(1-n)""  2(1-n)’2°2)°

where u,v € R, while solutions 'P, VP of the second one by Theorem 6,

(— p 1 -V’ + ! p 1 v+ ! OO)
H 2(14+n)’ 2(1+n)’“ 2(14+n)’ 214n) )

(_ /_v/ Iv/ll)
'LL, 7“5 ’2’2 ’

where u’,v’ € R .If, say, 'P solves system (19), then the parameters satisfy

1 , 1
—_ - = +
H n—1 H 2(1+n)’
, , 1 1 , 1
v=—Vv'+ , u=u'+ , —V+—=V'+ ,
2(14+n) 2(14+n) n—1 2(1+n)
but this system has evidently no solution: condition
VIR BN SR,
H=a 2(1+n)  n-1 s 2(14+n)’
is not satisfied.
Analogously, consider the system
(200 Id='P+“P+YMp, Yp='p1+¥p.
Solutions 'P, Y™P of the first equation are given by
(— +—V L—v 0,0
H n+l’ "u’n+l )
and
R BN S B S G|
K 2(1+n)’ 2(1+n)° K 2+n)""  2(1+n)’27 2)°

where u,v € R, while solutions p, v

(’+ ! v — ! -+ ! —v’—i1 OO)
K 2(1-n)’ 2(1-n)’ H 2(1-n)’ 2(1-n)" )

P of the second equation are

and
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’ v/ _ ’ _v/ l _1
,LL s ) ,[L ) a2 ’ ) s
where u’,v’ €R .If 'P solves system (20), then
1

1 ,
R A TR T 0ty
v ! SR VA
h 2(1-n)’ H=-H 2(1-n)" n+l 2(1-n)
hence
IR S DR
H==f 2(1-n)  n+l " 2(1-n)’

which leads to contradiction.
Thus, the natural partitions {'P,"P,*P}, {'P,Y'P,"" P} are primitive.

It remains to clarify the role of parameters in the natural partitions
{'P,YP,*P} and {'P,"'P,""P}. To the end of this section we rewrite them
in a more explicit way, by means of equations of natural projectors

Jjkp > qr>

Vi="rius

where U € TZIR” , U= Ujr ,and MP = MPJ,’}(‘;" , where

VP = adi6(5, +a.8,5,5] + a.5,5,5] +4,6,575,

Jjkp

+a,51 58] +a 5 515,

Lemma 6 (a) The natural partition {'P,"P,*P} is formed by the natu-
ral projectors, given by

IPi qu;r :—,u(5;U/§, —5;(U[1;)+V(5;U[[;k _62[]1{;)

Jjkp

1 i i
+ﬁ(5fU’z’ -6,U%),

vV pi quPr = y(éj,Ufp —5,’;UZ)+V(5£UJ-pp _6;Uppk)

Jjkp = qi
1 i 1 i 1 i 1 i
- z(l_n)6j(U/§, +U5k)+m5k([];; +U[p'j)+EUjk +§Ukj’

and
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lqup

Jkp

p 1 i i
- 2(1 [ UL UL+ 8 U} =Up )+ 5 WUy =Up).

(b) For every U=U?

the tensor V=Vj’)<, where Vj’k =Xpiaryr
traceless.

qr’ jkp = qr?

Proof (a) Lemma 6 is merely a restatement of Theorem 11, (b): The
natural partition {'P,"P,*P} is formed by the natural projectors

Jjkp jiop?

P,qr=(_u+$)5;535;+v5;635;+u5;;5;’5,’- ( v—ﬁ)(s 595"

v zqr_ _ r _ qSr
Fio (“ 2(1- >)5 00, % ( Y- n))65 o
q r q r
(“+u1)555 ( ukJ5Q@
lsisis 5 5157,
7 %
and
Xg;;rzz(l (515167 + 51515, — 515157 +65757)

1 i r r
+28,(815; - 815)),

where 1,y €R are arbitrary parameters. Substituting U=U, we can ex-
press these projectors as linear combinations of the components of the Kron-
ecker O -tensor, and linear combinations of the parameters:

P = (e L) UL U+ (v o
=96, (( /,L+—)U” +vU”)+6,ﬂ(uU,’,_’/.+(—v—_L)U_;;)
=—udU;, +—6 Ur +voUl +ud Ul —vsU" —TS’U"

=—u(SUL — S+ V(U —6’UP)+—(5 Ui, =8,U}),

J pk
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igrrrp _ P 1 irrp
Pl _(“ 2(1- ))5U ( 2(1—n>)5fU"k

, U Neop o1 1
(u+2(1 ))6U ( 2(l_n))(SkUjp+2Ujk+2Ukj
_ S _ 1 p Y 1 p
_5f((“ 2(1—n>)Ukp+( Y 2(1—n))UPk)
l- 1 1
o ((_“ * 2(l—n>)U5f +(V+ 2(l—n>)U"ppj

1 i i
+5(Ujk+U,<j)
=u(6}U,f;—5,iU1i’].)+v(6,iUp 5 U” )—2(1 5 w;,,+U;)
5 A +UP)+ Ul +lui
2(1 2k
and
]kii’U"
J i 1 i i
= 2(1 (5 (U ;k)+5k(U‘p”j—U;]))+5(Ujk—Ukj).
(b) We have
1 s s
2(] (n(U 1[7)k)+ U;);k - U/fp)-’- E(Usk - Uks)
1 s s
=§(UI§)_U51<)+E(Usk_Uks)=O’
and

1 s )
2(] [ U5, —U+nUy =Up N+, U, -U;)

1 s SN\
ZE(UIZ_UJZ‘)-’_E(UJS_USJ)_O'
Remark 7 If y,v=0,then

iqr 1 i i
UL = (SUL-8U).

Jjkp
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and
Vp: ‘”U P

Jkp
?m(b‘;(ug Ur)-8,Uh +U" N+ (U;k+U,’v)
Partition {'P,"P,*P} reads
i 1 i i
Ujk = E(éjU’Z’ _6kU]I;)

—2(11_) UL+ U0+ B U+ (U’ +UL)

2(1 6w}, U,’:k>+6:;<U;’,~—Uf;>>+5<U§k—UL;-%

with '"P, VP, and *P in the first, second, and third lines, respectively. For
general u,v, the corresponding partition differs from this formula in each
line, however, the sum, equal to U;.k , does not change.

Lemma 7 (a) The natural partition {'P,"'P,""P} is formed by the
natural projectors, given as

“”U” :( ,u+—)5 Ul +voUh +udU’

Jkp
(21
+(— o )6 ur,
YPUL __2(1 O;(Up,+Up)+6,Uy,+U})
(22)
+ = (U’ +U’)
and
VIl pigryrp _ z 1 irrp
Pfk"U‘”_(“ 2(1+n ))51 g ( V+2<1+n>)5fU"k
1 irrp _ 1 irrp
23) ( s ))5kU],j+(v Z(HH))akUﬂ,

+ (U Uy)-
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(b) Forevery U=U! , the tensor V=V, =""P,"U! is traceless.

jkp = qr>

Proof (a) Formulas (21), (22) and (23) follow from Theorem 11, (c):
iqr 1 i r i r i r
P = (L )5518, + 6818, + 15151,

Jjkp

Jjor?

N (—v N L)a,ia?a'
1+n

iptr = L (515187 +895])+51(895 +8°57)

kP T (14m)
1 i r r
+§6p(6;?6k+6,35j),
and
V‘"P.“f'=(u— ! )5%5qaf+(—v+ ! )5% 5
*p 2(1+n) ) IR 2(14+n)) TPk
_ i qsr _ 1SqSr
+( H +2(1+n))6k6”6j+(v 2(1+n))6k JTp
1 i r r
+55p(576k—6,35_f).
Therefore
igr 1 i i i
'PAUL = (—u+ E)Q.U,Z, +voUh +ud U,
1\
+(—v+m)6kU‘,’;,
igr 1 i i
U == 5 G UL+ UL+ WU+ UL
1 i i
+5(Ujk+Ukj),
and
VIl piargrp _ L 1 SiU? +(—V+ 1 )5{Up
skp = ar 2(14n)) /7 2(1+n))
i 1 i 1 i i
+(—u+2(1+n))6kU;’j+(v—M)SkUj’;+2(Ujk—Ukj).



50 Classification of natural projectors in tensor spaces: (1,2)-tensors

(b) Calculating traces, we get

2(1 (n(U”+U”)+U,’,’k+U”)+ W, +U,)

=— 2(1+ )((n+1)U +(n+1)U +— (ng+U,“)

=0,

and

p p p p
z(1+ [ UL+ U U+ UL+ (U +U2)

1 o
= 2y (T DY +(”+1)U.Z)+§(U_/s +Uy)

=0.

Remark 8 If y,v=0,then

iqr 1 i i
UL = (SUL+8U).

Jjkp
and
VIII fqr P —_ 1 l p 1 l p
kp Zar 2(1+n) i~k 2(1+n) Ik
1 ) . .
———8U" - 5U” U, -U,).
2(14n) < 2(1+) ¢ ( 5~ Uy)

Partition {IP,VIP,VHIP} reads

U, = (5 Ul +6,U")

2(1+ )(6 UL +UL)+6,UL +UL )+ (U’ +Uy)

l irrp
2(1+ )61 v 2(1 )6JUP"

1 i P _ i V4
2(1+n) Y 2(1+ )6Uﬂ,+ WUk -Uy)

with 'P, V'P ,and Y™P in the first, second, and third lines, respectively. For
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general u,v, the corresponding partition differs from this formula in each
line by some terms depending on [ and v ,however, the sum, equal to U ;.k s
does not change.
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