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Abstract  This research-expository paper is devoted to variational modelling of me-
chanical forces, depending on velocities. First we explain basic standard theory of the 
structure of the Euler-Lagrange mapping, assigning to a Lagrange function its Euler-
Lagrange form, including the integrability problem of the system of Euler-Lagrange 
equations in which the unknown is the Lagrange function. Formulations and proofs of 
basic standard theorems on the kernel and image of the Euler-Lagrange mapping as 
well as explicit construction of Lagrange functions for variational systems are given. 
Following these theorems we then introduce the canonical decomposition of a general 
Lagrange function in two terms modelling its kinetic and potential energy compo-
nents. Then we introduce the concept of a force, compatible with a variational princi-
ple – the variational force, and find explicit classification of variational forces.  
Keywords  Variational equation, Helmholtz conditions, Inverse problem of the  
calculus of variations, Potential energy, Force   
Mathematics subject classification (2010)  34A26, 34A55, 49J99, 49N45 

1		Introduction	

 In this paper, R  is the field of real numbers and Rm  is the m-dimensional (topo-
logical) Euclidean space. Our basic underlying structure is the Cartesian product 
I ×U , where I is an open interval in R  and U is a star-shaped open set in Rm ; the ca-
nonical coordinates on I ×U  are denoted by t, xi , where  i = 1,2,…,m . We also con-
sider the first and the second prolongations of I ×U , the Euclidean spaces I ×U ×Rm  
and I ×U ×Rm ×Rm , with canonical coordinates  t, x

i , !xi  and  t, x
i , !xi , !!xi ; sometimes 

also higher prolongations are used.  
 Recall that in classical mechanics of particles and fields a Lagrange function 
 � : I ×U ×Rm → R  of a mechanical system is usually defined to be the difference of 
kinetic energy  �  and potential energy  �  of a mechanical system,  

(1)   � = ⇥ − ⇤.  

While  �  is in a sense a universal function of the form  

(2)  
  
� = 1

2
gij !x

i !x j ,  

where gij  are the components of a metric tensor on the configuration space U, potential 
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energy  �  provides specific characteristics of mechanical systems;  �  does not depend 
on  !xi  and the first-order form φ = φi , where  

(3)  
 
φi = − ∂�

∂xi
 

is the force, associated with  � . The Euler-Lagrange form of  �  is the family 
 E(�) = Ei (�) , whose components are the Euler-Lagrange expressions  

  
  
Ei (�) = − ∂�

∂xi
+ d
dt
∂�
∂ !xi

= − ∂⇥
∂xi

+ d
dt
∂⇥
∂ !xi

+ ∂⇤
∂xi

.  

The Euler-Lagrange equations are second-order differential equations for curves 
t→ xi (t)  in the set U,  

  
  
− ∂�
∂xi

+ d
dt
∂�
∂ !xi

= − ∂⇥
∂xi

.  

The choice of the Lagrange functions prescribes basic properties of the corresponding 
variational principle, and ensures straightforward investigation of symmetries of the 
underlying mechanical systems and their consequences in terms of conservation laws.  
 Indeed, the simplest basic underlying space for this theory, the domain of defini-
tion I ×U ×Rm  of  � , or U ×Rm  for time-independent Lagrange functions  � , can be 
replaced in the well-known sense by more general spaces such as smooth manifolds, 
tangent bundles and jet bundles (cf. the handbook Krupka and Saunders [1]).  
 In this paper we study variationally compatible extensions of the concept of a 
force as defined by the variational principle of the Lagrange mechanics. The aim is to 
characterize a class of Lagrange functions  � : I ×U ×Rm → R  admitting a decomposi-
tion  � = ⇥ − ⇤  analogous to (1), in which “kinetic ” and “potential” energy terms 
generalize classical concepts of kinetic and potential energy, and  �  (2) admits de-
pendence on velocities  !xi . Then we introduce the concept of a variational force, com-
patible with a variational principle, and find explicit classification of variational forces. 
Finally, the Newton’s equations of classical mechanics are discussed within the 
framework of Finsler metric fields.  
 The problem of variational compatibility of forces is not new; its elementary ver-
sion was considered, probably for the first time, by Novotny [3]. This paper is based on 
recent research in applications of the inverse problem of the calculus of variations to 
differential equations (variational completion, Voicu, Krupka [4]), and to geometric 
mechanics (variational submanifolds, Krupka, Urban and Volna [2]). Extensive, rela-
tively complete literature on various aspects of the inverse problem can be found 
Krupka and Saunders [1] and edited volume Zenkov [5]. 
 
 
2		Elementary	differential	systems		

 In this section we review integration formulas for some elementary differential 
systems on Euclidean spaces, needed for the proofs of our assertions in the theory of 
the inverse problem of the calculus of variations. All functions we consider are defined 
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on a star-shaped neighbourhood U of the origin  0∈Rm , and are supposed to be suffi-
ciently differentiable.  
 Suppose we have a system of functions A = Ak , 1≤ k ≤ m , defined on U, and con-
sider a differential equation for an unknown function P 

(1)  Ak =
∂P
∂xk

.  

 Lemma 1  (a) Equation (1) has a solution P if and only if the functions Ak  satisfy  

(2)  ∂Ak
∂xl

− ∂Al
∂xk

= 0.  

 (b)  If condition (2) is satisfied, then a solution P is given by  

(3)  P = xk Ak (τ x
l )dτ

0

1

∫ .  

 Proof  Necessity of condition (2) is obvious. To prove sufficiency, we differenti-
ate P with respect to xi . We have  

  

∂P
∂xi

= Ai (τ x
l )dτ

0

1

∫ + xk ∂Ak
∂xi

⎛
⎝

⎞
⎠ τ xl

τ dτ
0

1

∫

= d
dτ
(Ai (τ x

l )τ )dτ
0

1

∫ = Ai (x
l ).

 

 Now suppose we have a system of functions S = Skl  defined on U. Consider a sys-
tem of differential equations for unknown system Ql  

(4)  ∂Ql

∂xk
− ∂Qk

∂xl
= Skl .   

 Lemma 2  (a) Equations (4) have a solution Ql  if and only if the functions Skl  
satisfy  

(5)  Skl = −Slk ,
∂Sks
∂xl

+ ∂Ssl
∂xk

+ ∂Slk
∂xs

= 0.  

 (b)  If condition (5) is satisfied, then every solution Ql  is of the form  

  Ql =Ql
0 + ∂Φ
∂xl

,  

where  

(6)  Ql
0 = x p Spl (τ x

i )τ dτ
0

1

∫  
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and Φ = Φ(xl )  is an arbitrary function.  

 Proof  (a) Necessity of condition (5) is immediate.  
 To prove sufficiency, consider the function (6). Differentiating, we have  

  

 ∂Ql
0

∂xk
= Skl (τ x

i )τ dτ
0

1

∫ + x p
∂Spl
∂xk

⎛
⎝⎜

⎞
⎠⎟ τ xi

τ 2 dτ
0

1

∫ ,  

and 

  

 

∂Ql
0

∂xk
− ∂Qk

0

∂xl
= 2 Skl (τ x

i )τ dτ
0

1

∫ + x p
∂Spl
∂xk

−
∂Spk
∂xl

⎛
⎝⎜

⎞
⎠⎟ τ xl

τ 2 dτ
0

1

∫

= 2 Skl (τ x
i )τ dτ

0

1

∫ + x p
∂Spl
∂xk

+
∂Skp
∂xl

+ ∂Slk
∂x p

⎛
⎝⎜

⎞
⎠⎟ τ xl

τ 2 dτ
0

1

∫

−x p ∂Slk
∂x p

⎛
⎝

⎞
⎠ τ xl

τ 2 dτ
0

1

∫ .

 

Using (5), this formula can also be expressed in the form  

  

∂Ql
0

∂xk
− ∂Qk

0

∂xl
= ∂Skl

∂x p
⎛
⎝

⎞
⎠ τ xl

x pτ 2 + 2Skl (τ x
i )τ⎛

⎝⎜
⎞
⎠⎟ dτ0

1

∫

= d
dτ
(Skl (τ x

i )τ 2 )
0

1

∫ = Skl (x
i ),

 

proving that Ql
0  solves the system (5).  

 (b)  Any two solutions Ql  and ′Ql  of the system (4) satisfy  

  ∂Ql

∂xk
− ∂Qk

∂xl
= ∂ ′Ql

∂xk
− ∂ ′Qk

∂xl
 

hence   

  ∂(Ql − ′Ql )
∂xk

− ∂(Qk − ′Qk )
∂xl

= 0.  

Integrating we get  

  Ql − ′Ql =
∂Φ
∂xl

 

for a function Φ = Φ(xl ) .  

 Consider a system of differential equations for an unknown function hi = hi (x
j )  
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(7)  ∂hi
∂x j

+
∂hj
∂xi

= 0.  

 Lemma 3  Every solution of the system (7) is of the form  

  hi = Ai + Bijx
j  

for some constants  Ai ,Bij ∈R  such that  

  Bij = −Bji .  

 Proof  Differentiating (7) we get  

  ∂2hi
∂x j ∂xk

= −
∂2hj
∂xi ∂xk

= ∂2hk
∂x j ∂xi

= − ∂2hi
∂xk ∂x j

= 0.  

Thus, solutions hi  of equations (7) must be linear functions of the form Ai + Bilx
l , 

where the constants Bil  are skew-symmetric.  

 Suppose we have a collection of functions gij = gij (x
k ) , defined on an open star-

shaped set U in Rm .  Consider a system of differential equations  

(8)  gij =
∂2 f
∂x j ∂xi

 

for an unknown function f = f (xk ) ; the right-hand side is the Hessian matrix of f. The 
following is the Hessian matrix reconstruction lemma.  

 Lemma 4  (a) Equation (8) has a solution f if and only if the functions gij  satisfy 
the following conditions 

(9)  gij = gij ,
∂gij
∂xk

= ∂gik
∂x j

.  

 (b)  If the functions gij  satisfy conditions (9), then every solution f of equation (1) 
is of the form  

(10)  f = fg + A + Bix
i ,  

where  

  fg =
1
2
hij x

ix j , hij = 2 gij (κτ x
p )dκ

0

1

∫( )τ dτ0

1

∫ .  

and  A, Bi  are arbitrary constants. The functions hij  satisfy  

  hij = hji ,
∂hij
∂xk

= ∂hik
∂x j

,  
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 Proof  1. Conditions (9) are obviously necessary conditions for existence a solu-
tion of equation (8).  
 2.  We show that if conditions (9) hold, then equation (8) has a solution. Integrat-
ing the second equation (9),  

(11)  gij =
∂hi
∂x j

 

for some functions hi ; hi  can be taken as  

(12)  hi = x
k gik (κ x

p )dκ
0

1

∫  

(Lemma 1). Indeed, hi  obviously satisfies (11):  

 

∂hi
∂x j

⎛
⎝

⎞
⎠ (x p )

= gij (κ x
p )+ ∂gir

∂x j
⎛
⎝

⎞
⎠ (κ x p )

κ xr⎛
⎝⎜

⎞
⎠⎟
dκ

0

1

∫

= d
dκ
(gij (κ x

p )κ )dκ
0

1

∫ = gij (x
p ).

 

 Now we apply condition gij = gij  (9). We get integrability condition  

  ∂hi
∂x j

=
∂hj
∂xi

 

ensuring existence of a function f  such that  

(13)  hi =
∂ f
∂xi

.  

A solution may be taken as f = fg , where  

  fg = x
i hi (τ x

p )dτ
0

1

∫ .  

Substituting from (12)  

  hi (τ x
p ) = τ xr gir (κτ x

p )dκ
0

1

∫ ,  

we get  

(14)  fg = x
ix j gij (κτ x

p )dκ
0

1

∫( )τ dτ0

1

∫ = 1
2
hij x

ix j ,  

where  

  hij = 2 gij (κτ x
p )dκ

0

1

∫( )τ dτ0

1

∫ .  
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Then by constructions (11) and (13), (14), fg  satisfies  

  gij =
∂hi
∂x j

=
∂2 fg
∂xi ∂x j

.  

The functions (12) satisfy  

  hij = hji ,
∂hij
∂xk

= 2
∂gij
∂xk

⎛
⎝⎜

⎞
⎠⎟ (κτ x p )

κτ dκ
0

1

∫
⎛
⎝⎜

⎞
⎠⎟
τ dτ

0

1

∫ = ∂hik
∂x j

.  

 The general solution of equation (18) is of the form f = fg + A + Bix
i , where A and 

Bi  are arbitrary constants.  

 Remark 1  Given gij  and setting  

  fg = x
ix j gij (κτ x

p )dκ
0

1

∫( )τ dτ0

1

∫ ,  

we can determine the second derivatives ∂2 fg / ∂x
i ∂x j  by a straightforward calcula-

tion. We have  

(15)  

∂ fg
∂xk

= 2x j gkj (κτ x
p )dκ

0

1

∫( )τ dτ0

1

∫
+xix j ∂

∂xk
gij (κτ x

p )dκ
0

1

∫( )τ dτ0

1

∫ .
 

Supposing that conditions (9) are fulfilled and using the chain rule, the second term in 
this formula can be expressed as  

  ∂
∂xk

gij (κτ x
p )dκ

0

1

∫( )τ dτ0

1

∫ =
∂gij
∂xk

⎛
⎝⎜

⎞
⎠⎟ (κτ x p )

κτ dκ
0

1

∫
⎛
⎝⎜

⎞
⎠⎟
τ dτ

0

1

∫ .  

On the other hand,  

  d
dτ
(gkj (κτ x

p )τ 2 ) = 2τgkj (κτ x
p )+τ

∂gij
∂xk

xi⎛
⎝⎜

⎞
⎠⎟ (κτ x p )

.  

Thus, returning to (15),  

  
∂ fg
∂xk

= x j d
dτ
(gkj (κτ x

p )τ 2 )dτ
0

1

∫⎛⎝
⎞
⎠ dκ0

1

∫⎛⎝
⎞
⎠ = x

j gkj (κ x
p )dκ

0

1

∫ ,  

and  
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∂2 fg
∂xk ∂xl

= gkl (κ x
p )dκ

0

1

∫ + x j ∂gkl
∂x j

⎛
⎝

⎞
⎠ (κ x p )

κ dκ
0

1

∫

= gkl +
∂gkl
∂x j

x j⎛
⎝

⎞
⎠ (κ x p )

dκ
0

1

∫ .
 

Since  

  d
dκ
(gkl (κ x

p )κ ) = gkl +
∂gkj
∂xl

x j⎛
⎝⎜

⎞
⎠⎟ (κ x p )

,  

we finally get  

  
∂2 fg
∂xk ∂xl

= d
dκ
(gkl (κ x

p )κ )dκ
0

1

∫ = gkl (x
p ).  

 

3		The	Euler-Lagrange	mapping		

 Our main objective in this section will be analysis of the dependence of the to Eu-
ler-Lagrange expressions  Ei (�) : I ×U ×Rm ×Rm → R , where  i = 1,2,…,m , defined 
by the formula  

(1)  
  
Ei (�) = − ∂�

∂xi
+ d
dt
∂�
∂ !xi

,  

on the Lagrange functions  � : I ×U ×Rm → R . The family  E(�) = Ei (�)  is called the 
Euler-Lagrange form. We wish to characterize the kernel and the image of the Euler-
Lagrange mapping  � → E(�) , The domain of definition of the Euler-Lagrange map-
ping is the vector space of C 2 -functions on I ×U ×Rm  and its image space is the vec-
tor space of m-tuples of C 2 -functions on I ×U ×Rm ×Rm ; this mapping is obviously 
linear.  
 A Lagrange function  �  is said to be (variationally) trivial, if  

(2)   Ei (�) = 0  

for all  i = 1,2,…,m .  

 Theorem 1  A Lagrange function   � = �(t, xi , !xi )  is trivial if and only if there ex-
ists a function f = f (t, xi )  such that  

(3)  
 
� = df

dt
.  

 Proof  1. By a straightforward calculation  
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(4)  
 
Ei

df
dt

⎛
⎝

⎞
⎠ = − ∂

∂xi
df
dt

+ d
dt

∂
∂ !xi

df
dt

= − ∂
∂xi

df
dt

+ d
dt
∂ f
∂xi

= 0.  

 2.  Conversely, suppose that  Ei (�) = 0 . Then since  

(5)  
  
Ei (�) = − ∂�

∂xi
+ ∂2�
∂t ∂ !xi

+ ∂2�
∂xl ∂ !xi

xl + ∂2�
∂xl ∂ !xi

!!xl  

and this expression is linear in  !!x j , hence  

(6)    � = A + Bl !x
l  

for some functions A = A(t, xl )  and Bk = Bk (t, x
l ) , and have   

(7)  
 
− ∂A
∂xi

+ ∂Bi
∂t

= 0, ∂Bl
∂xi

− ∂Bi
∂ !xi

= 0.  

Integrating we get for some f0 = f0 (t, x
j )  

(8)  Bi =
∂ f0
∂xi

, ∂
∂xi

−A + ∂ f0
∂t( ) = 0.  

Further integration yields  

(9)  −A + ∂ f0
∂t

= g = dg0
dt

 

for some g = g(t)  and some primitive g0  of g. Then, however,  

(10)  

  

� = A + Bl !x
l = ∂ f0

∂t
− dg0
dt

+ ∂ f0
∂xl
!xl

= ∂( f0 − g0 )
∂t

+ ∂( f0 − g0 )
∂xl

!xl .
 

Setting f = f0 − g0  we get (3).  

 Theorem 1 characterizes the kernel of the Euler-Lagrange mapping  � → E(�) .  
 We shall now consider arbitrary systems ε = ε i  of sufficiently differentiable func-
tions ε i : I ×U ×Rm ×Rm → R , where  i = 1,2,…,m ; in agreement with the calculus of 
variations, differential geometry and mechanics, the systems ε  are covector fields, and 
are called source forms.  
 A source form ε = ε i  is said to be variational, if there exists a function 
 � : I ×U ×Rm → R  such that  

(11)  
  
ε i = − ∂�

∂xi
+ d
dt
∂�
∂ !xi

.  

If  �  exists, it is called a Lagrange function for ε . Clearly, variationality of a source 
form ε  means that ε  belongs to the image of the Euler-Lagrange mapping 
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 � → E(�)  in the set of source forms or, in a different terminology, integrability of 
equation (11) with respect to the unknown function  � .  
 To find solutions of the system of partial differential equations (11) an integrabil-
ity condition must be determined. We prove its necessity and sufficiency parts sepa-
rately. 

 Theorem 2  If a source form ε = ε i  is variational, then  

(12)  
 

∂ε i
∂!!x j

−
∂ε j

∂!!xi
= 0,  

(13)  
 

∂ε i
∂ !x j

+
∂ε j

∂ !xi
− d
dt

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟
= 0,  

and  

(14)  
 

∂ε i
∂x j

−
∂ε j

∂xi
− 1
2
d
dt

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
= 0.  

 Proof  1.  We show that if ε i  are expressible in the form (11), then conditions 
(12), (13) and (14) hold. Using explicit expressions  

  
  
ε i =

∂⇥
∂xi

− ∂2⇥
∂t ∂ xi

− ∂2⇥
∂xk ∂ xi

xk − ∂2⇥
∂ xk ∂ xi

xk  

we get  

  
  

∂ε i
∂!!xl

= − ∂2�
∂ !xl ∂ !xi

,  

  

  

∂ε i
∂ !xl

= ∂2�
∂ !xl ∂xi

− ∂3�
∂ !xl ∂t ∂ !xi

− ∂3�
∂ !xl ∂xk ∂ !xi

!xk

− ∂2�
∂xl ∂ !xi

− ∂3�
∂ !xl ∂ !xk ∂ !xi

!!xk ,
 

  
  

∂ε i
∂xl

= ∂2�
∂xl ∂xi

− ∂3�
∂xl ∂t ∂ !xi

− ∂3�
∂xl ∂xk ∂ !xi

!xk − ∂3�
∂xl ∂ !xk ∂ !xi

!!xk  

and 

  
  

∂ε i
∂!!x j

−
∂ε j

∂!!xi
= − ∂2�

∂ !x j ∂ !xi
+ ∂2�
∂ !x j ∂ !xi

= 0.  

Then by a direct calculation  
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∂ε i
∂ !xl

+ ∂ε l
∂ !xi

− d
dt

∂ε i
∂!!xl

+ ∂ε l
∂!!xi

⎛
⎝

⎞
⎠ = 0  

and  

  
 

∂ε i
∂xl

− ∂ε l
∂xi

− 1
2
d
dt

∂ε i
∂ !xl

− ∂ε l
∂ !xi

⎛
⎝

⎞
⎠ = 0.  

 To prove the converse statment we proceed in several steps. First note that equa-
tions (12), (13) and (14) can be expressed as an equivalent system  

(15)  
 

∂ε i
∂!!x j

−
∂ε j

∂!!xi
= 0,  

(16)  
 

∂
∂!!xk

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟
= 0,  

(17)  

 

∂ε i
∂ !x j

+
∂ε j

∂ !xi
− ∂
∂t

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟
− ∂
∂xl

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟
!xl

− ∂
∂ !xl

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟
!!xl = 0,

 

(18)  
 

∂
∂!!xk

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
= 0,  

(19)  

 

∂ε i
∂x j

−
∂ε j

∂xi
− 1
2
∂
∂t

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xl

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!xl

− 1
2
∂
∂ !xl

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!!xl = 0.

 

 Lemma 5  Let ε = ε i  be a source form satisfying conditions (15) – (19). Then  

(20)   ε i = Pi +Qil !!x
l  

for some functions  Pi = Pi (t, x
k , !xk )  and 

 
Qij =Qij (t, x

k , !xk )  such that  

(21)  Qij =Qji ,  

(22)  
 

∂Qik

∂ !x j
−
∂Qjk

∂ !xi
= 0,  

and 



	 	 D.	Krupka	
 
12	

(23)  
 

1
2
∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
−
∂Qij

∂t
−
∂Qij

∂xl
!xl = 0,  

(24)  
 

∂Pi
∂x j

−
∂Pj
∂xi

− 1
2
∂
∂t

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xk

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xk = 0.  

 Proof  Condition (15) and (16) imply  

  
 

∂2ε i
∂!!x j ∂!!xk

= 0,  

thus, ε i  must be of the form (20) with coefficients Qij  satisfying (21), (22).  
 Substitution from (20) into (17) yields  

  

 

∂ε i
∂ !x j

+
∂ε j

∂ !xi
− ∂
∂t

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟

− ∂
∂xl

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟
!xl − ∂

∂ !xl
∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟
!!xl

= ∂Pi
∂ !x j

+
∂Pj
∂ !xi

+ ∂Qik

∂ !x j
+
∂Qjk

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!!xk

−
∂(Qij +Qji )

∂t
−
∂(Qij +Qji )

∂xl
!xl −

∂(Qij +Qji )
∂ !xl

!!xl ,

 

and the vanishing of this expression implies   

  
 

∂Qik

∂ !x j
+
∂Qjk

∂ !xi
−
∂(Qij +Qij )
∂ !xk

= 0  

and 

  
 

∂Pi
∂ !x j

+
∂Pj
∂ !xi

−
∂(Qij +Qij )

∂t
−
∂(Qij +Qij )

∂xl
!xl = 0.  

proving (23).  
 Substitution from (20) into (18) proves (22) . 
 To substitute from (20) into (19) we use expressions  

  

 

∂ε i
∂x j

−
∂ε j

∂xi
= ∂Pi
∂x j

−
∂Pj
∂xi

+ ∂Qil

∂x j
−
∂Qjl

∂xi
⎛
⎝⎜

⎞
⎠⎟
!!xl ,

∂ε i
∂ !x j

−
∂ε j

∂ !xi
= ∂Pi
∂ !x j

−
∂Pj
∂ !xi

+ ∂Qil

∂ !x j
−
∂Qjl

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!!xl

 

leading to the expression  
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∂ε i
∂x j

−
∂ε j

∂xi
− 1
2
∂
∂t

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟

− 1
2
∂
∂xl

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!xl − 1

2
∂
∂ !xl

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!!xl

= ∂Pi
∂x j

−
∂Pj
∂xi

+ ∂Qil

∂x j
−
∂Qjl

∂xi
⎛
⎝⎜

⎞
⎠⎟
!!xl

− 1
2
∂
∂t

∂Pi
∂ !x j

−
∂Pj
∂ !xi

+ ∂Qil

∂ !x j
−
∂Qjl

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!!xl⎛

⎝⎜
⎞
⎠⎟

− 1
2
∂
∂xk

∂Pi
∂ !x j

−
∂Pj
∂ !xi

+ ∂Qil

∂ !x j
−
∂Qjl

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!!xl⎛

⎝⎜
⎞
⎠⎟
!xk

− 1
2
∂
∂ !xk

∂Pi
∂ !x j

−
∂Pj
∂ !xi

+ ∂Qil

∂ !x j
−
∂Qjl

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!!xl⎛

⎝⎜
⎞
⎠⎟
!!xk .

 

Since the coefficients at  !!xl  and  !!xk !!xl  shoud vanish separately, we have   

  
 

∂
∂ !xk

∂Qil

∂ !x j
−
∂Qjl

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂ !xl

∂Qik

∂ !x j
−
∂Qjk

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
= 0,  

  

 

∂Qil

∂x j
−
∂Qjl

∂xi
− 1
2
∂
∂t

∂Qil

∂ !x j
−
∂Qjl

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xk

∂Qil

∂ !x j
−
∂Qjl

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!xk

− 1
2
∂
∂ !xl

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
= 0,

 

and 

  
 

∂Pi
∂x j

−
∂Pj
∂xi

− 1
2
∂
∂t

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xk

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xk = 0  

proving (24).  

 The following is merely a restatement of Lemma 5.  

 Lemma 6   Let ε = ε i  be a source form satisfying conditions (15) – (19).  Then 
there exist some functions  Pi = Pi (t, x

k , !xk )  and  f = f (t, xk , !xk )  such that 

  
 
ε i = Pi +

∂2 f
∂ !xi ∂ !xl

!!xl ,  

where  

(25)  
 

1
2
∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− ∂3 f
∂t ∂ !xi ∂ !x j

− ∂3 f
∂xl ∂ !xi ∂ !x j

!xl = 0  
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and 

(26)  
 

∂Pi
∂x j

−
∂Pj
∂xi

− 1
2
∂
∂t

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xk

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xk = 0.  

 Proof  Only formula (25) needs proof. According to Lemma 4, conditions (21), 
(22) are equivalent to the existence of a function  f = f (t, xk , !xk )  such that  

(27)  
 
Qij =

∂2 f
∂ !x j ∂ !xi

.  

Replacing Qij  in (23) by (27) we get (25).  

 Now we study equation (25).  

 Lemma 7  The following two conditions are equivalent:  
 (a)  Pi  and f satisfy  

(28)  
 

1
2
∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− ∂3 f
∂t ∂ !xi ∂ !x j

− ∂3 f
∂xl ∂ !xi ∂ !x j

!xl = 0.  

 (b)  There exist unique functions Ajk = Ajk (t, x
i )  and Rj = Rj (t, x

i )  such that  

(29)  
 
Pj = Rj + Ajl !x

l − ∂ f
∂x j

+ ∂2 f
∂t ∂ !x j

+ ∂2 f
∂xl ∂ !x j

!xl  

and  

  Ajk = −Akj .  

The functions Ajk = Ajk (t, x
i )  and Rj = Rj (t, x

i )  are determined by  

  
 
Ajk =

1
2
∂Pj
∂ !xk

− ∂Pk
∂ !x j

⎛
⎝

⎞
⎠ −

∂2 f
∂xk ∂ !x j

+ ∂2 f
∂x j ∂ !xk

,  

and 

  

 

Rj = Pj −
1
2
∂Pj
∂ !xk

− ∂Pk
∂ !x j

⎛
⎝

⎞
⎠ −

∂2 f
∂xk ∂ !x j

+ ∂2 f
∂x j ∂ !xk

⎛
⎝

⎞
⎠ !x

l

+ ∂ f
∂x j

− ∂2 f
∂t ∂ !x j

.
 

 Proof  1. First we show that (28) implies  

(30)  
 

∂Pj
∂ !xk

= Ajk +
∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂3 f
∂xl ∂ !x j ∂ !xk

!xl  

for some Ajk = Ajk (t, x
i )  such that  
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(31)  Ajk = −Akj .  

 Differentiating (28),  

(32)  

 

1
2
∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟

− ∂4 f
∂t ∂ !xi ∂ !x j ∂ !xk

− ∂4 f
∂xl ∂ !xi ∂ !x j ∂ !xk

!xl − ∂3 f
∂xk ∂ !xi ∂ !x j

= 0.
 

Cycling the indices i, j and k 

(33)  

 

∂4 f
∂t ∂ !xi ∂ !x j ∂ !xk

+ ∂4 f
∂xl ∂ !xi ∂ !x j ∂ !xk

!xl

= 1
6

∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂ !x j

∂Pk
∂ !xi

+ ∂Pi
∂ !xk

⎛
⎝

⎞
⎠ +

∂
∂ !xi

∂Pj
∂ !xk

+ ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

− 1
3

∂3 f
∂xk ∂ !xi ∂ !x j

+ ∂3 f
∂x j ∂ !xk ∂ !xi

+ ∂3 f
∂xi ∂ !x j ∂ !xk

⎛
⎝⎜

⎞
⎠⎟

 

we can eliminate expression (33) from (32). Thus  

  

 

1
2
∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟

− 1
6

∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂ !x j

∂Pk
∂ !xi

+ ∂Pi
∂ !xk

⎛
⎝

⎞
⎠ +

∂
∂ !xi

∂Pj
∂ !xk

+ ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+ 1
3

∂3 f
∂xk ∂ !xi ∂ !x j

+ ∂3 f
∂x j ∂ !xk ∂ !xi

+ ∂3 f
∂xi ∂ !x j ∂ !xk

⎛
⎝⎜

⎞
⎠⎟
− ∂3 f
∂xk ∂ !xi ∂ !x j

= 0,

 

that is  

(34)  

 

1
2
∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟

− 1
6

∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂ !x j

∂Pk
∂ !xi

+ ∂Pi
∂ !xk

⎛
⎝

⎞
⎠ +

∂
∂ !xi

∂Pj
∂ !xk

+ ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ∂3 f
∂xk ∂ !xi ∂ !x j

− 1
3

∂3 f
∂xk ∂ !xi ∂ !x j

+ ∂3 f
∂x j ∂ !xk ∂ !xi

+ ∂3 f
∂xi ∂ !x j ∂ !xk

⎛
⎝⎜

⎞
⎠⎟
.

 

But the left-hand side and the right-hand side give 
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3
6
∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− 1
6
∂
∂ !xk

∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− 1
6
∂
∂ !x j

∂Pk
∂ !xi

+ ∂Pi
∂ !xk

⎛
⎝

⎞
⎠

− 1
6
∂
∂ !xi

∂Pj
∂ !xk

+ ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟

= 1
6
∂
∂ !xi

∂Pj
∂ !xk

− ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟
+ 1
6
∂
∂ !x j

∂Pi
∂ !xk

− ∂Pk
∂ !xi

⎛
⎝

⎞
⎠

 

and  

  

 

3
3

∂3 f
∂xk ∂ !xi ∂ !x j

− 1
3

∂3 f
∂xk ∂ !xi ∂ !x j

+ ∂3 f
∂x j ∂ !xk ∂ !xi

+ ∂3 f
∂xi ∂ !x j ∂ !xk

⎛
⎝⎜

⎞
⎠⎟

= 1
3
∂
∂ !xi

∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

⎛
⎝⎜

⎞
⎠⎟
+ 1
3
∂
∂ !x j

∂2 f
∂xk ∂ !xi

− ∂2 f
∂xi ∂ !xk

⎛
⎝⎜

⎞
⎠⎟

 

so formula (34) becomes   

(35)  

 

1
2
∂
∂ !xi

∂Pj
∂ !xk

− ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟
+ 1
2
∂
∂ !x j

∂Pi
∂ !xk

− ∂Pk
∂ !xi

⎛
⎝

⎞
⎠

= ∂
∂ !xi

∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂ !x j

∂2 f
∂xk ∂ !xi

− ∂2 f
∂xi ∂ !xk

⎛
⎝⎜

⎞
⎠⎟
.
 

Thus,  

(36)  

 

∂
∂ !xi

1
2
∂Pj
∂ !xk

− ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟
− ∂2 f
∂xk ∂ !x j

+ ∂2 f
∂x j ∂ !xk

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂ !x j

1
2
∂Pi
∂ !xk

− ∂Pk
∂ !xi

⎛
⎝

⎞
⎠ −

∂2 f
∂xk ∂ !xi

+ ∂2 f
∂xi ∂ !xk

⎛
⎝⎜

⎞
⎠⎟
= 0.

 

 For every fixed k we get a system of differential equations considered in Lemma 3. 
Since by hypothesis the system (28) has a solution, integrability condition for equa-
tions (36) yields 

(37)  
 

1
2
∂Pj
∂ !xk

− ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟
− ∂2 f
∂xk ∂ !x j

+ ∂2 f
∂x j ∂ !xk

= Ajk + Bjkl !x
l  

for each k  and for some Ajk = Ajk (t, x
i )  and Bjlk = Bjlk (t, x

i )  such that    

(38)  Bjkl = −Blkj  

(cf. Lemma 3). Formula (37) also implies that the coefficients can be chosen in a 
unique way such that  

(39)  Ajk = −Akj , Bjkl = −Bkjl .  
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 Formula (35) is a consequence of (28) obtained by derivations and subsequent in-
tegration. Writing (28) and (37) together as  

  

 

1
2
∂Pj
∂ !xk

+ ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟
= ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂3 f
∂xl ∂ !x j ∂ !xk

!xl ,

1
2
∂Pj
∂ !xk

− ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟
= Ajk + Bjkl !x

l + ∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

,
 

we get  

(40)  

 

∂Pj
∂ !xk

= Ajk + Bjkl !x
l

+ ∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂3 f
∂xl ∂ !x j ∂ !xk

!xl .
 

 
 To determine integrability condition for this equation from commutativity of the 
second derivatives 

 
∂2Pj / ∂ !x

i ∂ !xk  we calculate  

  

 

∂
∂ !xi

Ajk + Bjkl !x
l + ∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂3 f
∂xl ∂ !x j ∂ !xk

!xl⎛
⎝⎜

⎞
⎠⎟

= Bjki +
∂
∂ !xi

∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂3 f
∂xl ∂ !x j ∂ !xk

!xl⎛
⎝⎜

⎞
⎠⎟

 

and 

  

 

∂
∂ !xk

Aji + Bjil !x
l + ∂2 f
∂xi ∂ !x j

− ∂2 f
∂x j ∂ !xi

+ ∂3 f
∂t ∂ !x j ∂ !xi

+ ∂3 f
∂xl ∂ !x j ∂ !xi

!xl⎛
⎝⎜

⎞
⎠⎟

= Bjik +
∂
∂ !xk

∂2 f
∂xi ∂ !x j

− ∂2 f
∂x j ∂ !xi

+ ∂3 f
∂t ∂ !x j ∂ !xi

+ ∂3 f
∂xl ∂ !x j ∂ !xi

!xl⎛
⎝⎜

⎞
⎠⎟
.

 

The difference of these two expressions must be equal to 0,  

  

 

Bjki +
∂
∂ !xi

∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂3 f
∂xl ∂ !x j ∂ !xk

!xl⎛
⎝⎜

⎞
⎠⎟

− Bjik −
∂
∂ !xk

∂2 f
∂xi ∂ !x j

− ∂2 f
∂x j ∂ !xi

+ ∂3 f
∂t ∂ !x j ∂ !xi

+ ∂3 f
∂xl ∂ !x j ∂ !xi

!xl⎛
⎝⎜

⎞
⎠⎟

= Bjki − Bjik = 0.

 

Taking into accoung this condition together with (38) and (39) we get the following 
index symmetries Bjkl = −Blkj , Bjkl = −Bkjl  and Bjki = Bjik . Then, however,   

(41)  Bijk = −Bkji = Bjki = −Bikj = −Bijk = 0.  
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Summarizing, formulas (40) and (42) prove (30) and (31).  
 2.  Suppose that Pi  and f satisfy condition (a). Then also equations (30) and (49) 
are satisfied. But formula (30) admits integration in quadratures. Writing 

 
∂Pj / ∂ !x

k  as  

 

 

∂Pj
∂ !xk

= Ajk +
∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂3 f
∂xl ∂ !x j ∂ !xk

!xl

= Ajk +
∂2 f
∂xk ∂ !x j

− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂
∂ !xk

∂2 f
∂xl ∂ !x j

!xl⎛
⎝⎜

⎞
⎠⎟
− ∂2 f
∂xk ∂ !x j

=
∂Ajl !x

l

∂ !xk
− ∂2 f
∂x j ∂ !xk

+ ∂3 f
∂t ∂ !x j ∂ !xk

+ ∂
∂ !xk

∂2 f
∂xl ∂ !x j

!xl⎛
⎝⎜

⎞
⎠⎟
,

 

we have  

  
 

∂
∂ !xk

Pj − Ajl !x
l + ∂ f
∂x j

− ∂2 f
∂t ∂ !x j

− ∂2 f
∂xl ∂ !x j

!xl⎛
⎝⎜

⎞
⎠⎟
= 0  

hence  

  
 
Pj − Ajl !x

l + ∂ f
∂x j

− ∂2 f
∂t ∂ !x j

− ∂2 f
∂xl ∂ !x j

!xl = Rj  

for some functions Rj = Rj (t, x
i ) . Equation (30) determines Ajk ; then Rj  is deter-

mined by (29).  
 This shows that condition (a) implies (b).  
 3.  The opposite can be proved by immediate calculation. Substitution from (29) to 
(28) yields  

  

 

1
2
∂Pj
∂ !xk

+ ∂Pk
∂ !x j

⎛
⎝⎜

⎞
⎠⎟
− ∂3 f
∂t ∂ !x j ∂ !xk

− ∂3 f
∂xl ∂ !x j ∂ !xk

!xl

= 1
2
Ajk −

∂ f
∂x j ∂ !xk

+ ∂2 f
∂t ∂ !x j ∂ !xk

+ ∂2 f
∂xl ∂ !x j ∂ !xk

!xl + ∂2 f
∂xk ∂ !x j

⎛
⎝⎜

+Akj −
∂ f

∂xk ∂ !x j
+ ∂2 f
∂t ∂ !xk ∂ !x j

+ ∂2 f
∂xl ∂ !xk ∂ !x j

!xl + ∂2 f
∂x j ∂ !xk

⎞
⎠⎟

− ∂3 f
∂t ∂ !x j ∂ !xk

− ∂3 f
∂xl ∂ !x j ∂ !xk

!xl ≡ 0.

 

 Lemma 8  The following two conditions are equivalent:  
 (a)  Pi  and f solve the system  

(42)  
 

1
2
∂Pi
∂ !x j

+
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− ∂3 f
∂t ∂ !xi ∂ !x j

− ∂3 f
∂xl ∂ !xi ∂ !x j

!xl = 0,  
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(43)  
 

∂Pi
∂x j

−
∂Pj
∂xi

− 1
2
∂
∂t

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xk

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xk = 0.  

 (b)  Pi  is of the form  

  
 
Pj = Rj + Ajl !x

l − ∂ f
∂x j

+ ∂2 f
∂t ∂ !x j

+ ∂2 f
∂xl ∂ !x j

!xl ,  

where the functions Rj = Rj (t, x
i )  and Aij = Aij (t, x

i )  satisfy 

  Aij = −Aji ,
∂Ail
∂x j

+
∂Alj
∂xi

+
∂Aji

∂xl
= 0  

and 

(44)  ∂Ri
∂x j

−
∂Rj

∂xi
−
∂Aij
∂t

= 0.  

 Proof  1. Suppose that Pi  satisfies condition (a). Then Pi  also satisfies condition 
(b), Lemma 7; we shall determine consequences of condition (43). From formula (29) 
we have  

  

 

∂Pi
∂x j

−
∂Pj
∂xi

= ∂Ri
∂x j

+ ∂Ail
∂x j
!xl − ∂2 f

∂x j ∂xi
+ ∂3 f
∂t ∂x j ∂ !xi

+ ∂3 f
∂xl ∂x j ∂ !xi

!xl

−
∂Rj

∂xi
−
∂Ajl

∂xi
!xl + ∂2 f

∂xi ∂x j
− ∂3 f
∂t ∂xi ∂ !x j

− ∂3 f
∂xl ∂xi ∂ !x j

!xl
 

and  

  
 

∂Pi
∂ !x j

−
∂Pj
∂ !xi

== 2 Aij −
∂2 f
∂xi ∂ !x j

+ ∂2 f
∂x j ∂ !xi

⎛
⎝⎜

⎞
⎠⎟
.  

Substituting 

(45)  

 

∂Pi
∂x j

−
∂Pj
∂xi

− 1
2
∂
∂t

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xk

∂Pi
∂ !x j

−
∂Pj
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xk

= ∂Ri
∂x j

−
∂Rj

∂xi
−
∂Aij
∂t

+ ∂Ail
∂x j

+
∂Alj
∂xi

+
∂Aji

∂xl
⎛
⎝⎜

⎞
⎠⎟
!xl .

 

Thus, (43) implies (44) and conditions (b) are fulfilled.  
 2.  Condition (a) follows from (b) by formula (45).  

 Lemma 9  Suppose that a source form ε = ε i  satisfies conditions (12), (13) and 
(14). Then 

(46)   ε i = Pi +Qil !!x
l ,  



	 	 D.	Krupka	
 
20	

where  

  
 
Qij =

∂2 f
∂ !xi ∂ !x j

 

and  

(47)  
 
Pj =

∂h
∂x j

−
∂η j

∂t
+ ∂ηl

∂x j
−
∂η j

∂xl
⎛
⎝⎜

⎞
⎠⎟
!xl − ∂ f

∂x j
+ ∂2 f
∂t ∂ !x j

+ ∂2 f
∂xl ∂ !x j

!xl  

for some functions  f = f (t, xk , !xk ) , η j =η j (t, x
i )  and h = h(t, xi ) .  

 Proof  According to Lemma 6, Pi  and f solve the system (25), (26), that is, the 
system (42), (43); thus by Lemma 8  

  
 
Pj = Rj + Ajl !x

l − ∂ f
∂x j

+ ∂2 f
∂t ∂ !x j

+ ∂2 f
∂xl ∂ !x j

!xl ,  

where Rj = Rj (t, x
i )  and Aij = Aij (t, x

i )  are some functions such that 

  Aij = −Aji ,
∂Ail
∂x j

+
∂Alj
∂xi

+
∂Aji

∂xl
= 0  

and 

(48)  ∂Ri
∂x j

−
∂Rj

∂xi
−
∂Aij
∂t

= 0.  

These conditions allow to construct η j  and h. We have 

  Aij =
∂η j

∂xi
− ∂ηi

∂x j
 

and then (48) yields  

  ∂Ri
∂x j

−
∂Rj

∂xi
= ∂
∂t

∂η j

∂xi
− ∂ηi

∂x j
⎛
⎝⎜

⎞
⎠⎟

 

hence  

  ∂
∂x j

Ri +
∂ηi

∂t
⎛
⎝

⎞
⎠ −

∂
∂xi

Rj +
∂η j

∂t
⎛
⎝⎜

⎞
⎠⎟
= 0.  

Integrating for any fixed η j  

  Ri +
∂ηi

∂t
= ∂h
∂xi

 

for some function h = h(t, xi ) . Using these functions we get (47).  
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 Our discussion now concludes into the following assertion.  

 Theorem 3  Suppose that a source form ε = ε i  satisfies conditions (12), (13) and 
(14). Then there exist some functions  f = f (t, xk , !xk ) , η j =η j (t, x

i )  and h = h(t, xi )  
such that ε i , are the Euler-Lagrange expressions of the Lagrange function given by  

(49)    � = f −ηl !x
l − h.  

In particular, ε  is a variational source form.  
 Proof  Set  f0 = −ηl !x

l − h ,  � = f0 + f . Calculating the Euler-Lagrange expres-
sions of the Lagrange function  �  we get  

  

 

Ei ( f0 )+ Ei ( f ) = − ∂ f0
∂xi

+ d
dt
∂ f0
∂ !xi

+ Ei ( f )

= ∂ηl

∂xi
!xl + ∂h

∂xi
− dηi

dt
+ Ei ( f )

= ∂h
∂xi

− ∂ηi

∂t
+ ∂ηl

∂xi
− ∂ηi

∂xl
⎛
⎝

⎞
⎠ !x

l + Ei ( f )

= ε i .

 

 Remark 2  Formula   � = f −ηl !x
l − h  (49) defines a (first-order) Lagrange func-

tion for the source form  ε i = Pi +Qil !!x
l  (46), satisfying conditions (21), (22), (23) and 

(24). The functions f and ηl  can be determined in an explicit form as functions of the 
components Pi  and Qij , and h remains arbitrary. Indeed, according to the Hessian ma-
trix reconstruction lemma,  

  f = xix j Qij (κτ x
p )dκ

0

1

∫( )τ dτ0

1

∫ .  

Then setting   

  
 
!Pj = Pj +

∂ f
∂x j

− ∂2 f
∂t ∂ "x j

− ∂2 f
∂xl ∂ "x j

"xl  

formula (47) becomes  

(50)  
 
!Pj =

∂h
∂x j

−
∂η j

∂t
+ ∂ηl

∂x j
−
∂η j

∂xl
⎛
⎝⎜

⎞
⎠⎟
"xl .  

Then 

  
 

∂ !Pj
∂ "xk

= ∂ηk

∂x j
−
∂η j

∂xk
= 1
2
∂ !Pj
∂ "xk

− ∂
!Pk

∂ "x j
⎛
⎝⎜

⎞
⎠⎟ .  

Consequently, by Lemma 2  
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ηl =ηl

0 + ∂Φ
∂xl

, ηl
0 = 1

2
x p

∂ !Pp
∂ "xl

− ∂
!Pl

∂ "x p
⎛
⎝⎜

⎞
⎠⎟ (t ,κ xi )

κ dκ
0

1

∫  

where Φ = Φ(t, xl )  is arbitrary. Then from (50)  

  
 

∂h
∂x j

= !Pj +
∂η j

∂t
− ∂ηl

∂x j
−
∂η j

∂xl
⎛
⎝⎜

⎞
⎠⎟
"xl .  

Substitutions for η j  and 
 
!Pj  show, however, that this equation is satisfied identically.  

4		First-order	variational	source	forms	

 Consider a first order source form ε = ε i , where 

   ε i = ε i (t, x
i , !xi ).  

In this case Theorem 2 and Theorem 3 of Section 3 imply that the variationality of ε  is 
equivalent to the conditions  

(2)  
 

∂ε i
∂ !x j

+
∂ε j

∂ !xi
= 0  

and  

(3)  
 

∂
∂ !xk

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
= 0,  

(4)  
 

∂ε i
∂x j

−
∂ε j

∂xi
− 1
2
∂
∂t

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xl

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!xl = 0.  

Note, however, that according to Section 3, Lemma 3, condition (3) follows from (2) 
and may be omitted.  
 The following two theorems provide a complete classification of the first-order 
source forms.  

 Theorem 4  Let ε = ε i  be a first-order source form. The following two conditions 
are equivalent:  
 (a)  ε  is variational.  
 (b)  There exist a system of functions η =ηi , ηi =ηi (t, x

j ) , and a function 
h = h(t, x j )  such that  

(5)  
 
ε i =

∂h
∂xi

− ∂ηi

∂t
+ ∂ηl

∂xi
− ∂ηi

∂xl
⎛
⎝

⎞
⎠ !x

l .  

 Proof  1. Suppose that ε  is variational. Then by Section 2, Lemma 3, equations 
(2) imply  
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(6)   ε i = Ri + Sil !x
l ,  

where Ri = Ri (t, x
k ) , Sij = Sij (t, x

k )  are some functions such that Sij = −Sji . Then (3) is 
an identity, and equation (4) implies  

  

 

∂Ri
∂x j

−
∂Rj

∂xi
+ ∂Sil
∂x j

−
∂Sjl
∂xi

⎛
⎝⎜

⎞
⎠⎟
!xl − 1

2
∂(Sij − Sji )

∂t
− 1
2
∂(Sij − Sji )
∂xl

!xl

= ∂Ri
∂x j

−
∂Rj

∂xi
−
∂Sij
∂t

+ ∂Sil
∂x j

−
∂Sjl
∂xi

−
∂Sij
∂xl

⎛
⎝⎜

⎞
⎠⎟
!xl = 0.

 

Since the coefficients in this linear expression does not depend on  !xl , we get  

(9)  ∂Sli
∂x j

+
∂Sjl
∂xi

+
∂Sij
∂xl

= 0  

and  

  ∂Ri
∂x j

−
∂Rj

∂xi
−
∂Sij
∂t

= 0.  

 Equation (9) can be integrated. According to Section 2, Lemma 2, there exists a 
system of functions η =ηl  such that  

(11)  Skl =
∂ηl

∂xk
− ∂ηk

∂xl
.  

Then condition (10) transforms to   

  ∂
∂x j

Ri +
∂ηi

∂t
⎛
⎝

⎞
⎠ −

∂
∂xi

Rj +
∂η j

∂t
⎛
⎝⎜

⎞
⎠⎟
= 0  

and can also be integrated. We get  

(13)  Ri +
∂ηi

∂t
= ∂h
∂xi

 

for some function h = h(t, xi ) . Substituting into (6) proves formula (5).  
 2.  The converse follows by substituting from (5) into (2) – (4).  

 Theorem 5  If a first-order source form ε = ε i  is variational and is expressed by 
(5), then ε  has a Lagrange function   

   f = −ηl !x
l − h.  

 Proof  The Euler-Lagrange expressions of the function (14) are  
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Ei ( f ) = − ∂ f
∂xi

+ ∂2 f
∂t ∂ !xi

+ ∂2 f
∂xl ∂ !xi

!xl = ∂ηl

∂xi
!xl + ∂h

∂xi
− ∂ηi

∂t
− ∂ηi

∂xl
!xl

= ∂h
∂xi

− ∂ηi

∂t
+ ∂ηl

∂xi
− ∂ηi

∂xl
⎛
⎝

⎞
⎠ !x

l .
 

 Remark 3  Formula (5) shows that the classification parameters for the first-order 
variational source forms are real-valued functions ηl  and h of the variables t, xi . For a 
given source form ε = ε i  of the form (6), these functions can be determined by integra-
tion from formulas (11) and (13).  

5		Lagrange	functions:	Canonical	decomposition	

 In this section we consider Lagrange functions, which do not depend on t; this as-
sumption simplifies calculations, but main motivation consists in possibilities of com-
paring of the formulas with Finsler geometry. We use an observation that the decom-
position  � = ⇥ − ⇤ , applied in Lagrange mechanics, can be constructed for an arbi-
trary Lagrange function  � :U ×Rm → R , not necessarily quadratic in the  !xi .  
 Let  � :U ×Rm → R  be any Lagrange function. Setting  

  
  
⇥ = 1

2
∂2�
∂ !xi ∂ !x j

!xi !x j ,  

we get another Lagrange function  � :U ×Rm → R , called kinetic energy, associated 
with  � , and a decomposition  

   � = ⇥ − ⇤,  

where  �  is potential energy, associated with  � . The Euler-Lagrange form of  �  is  

  
  
Ek (�) = − ∂�

∂xk
+ d
dt
∂�
∂ !xk

.  

 Both functions  �  and  �  are invariant with respect to coordinate transformations  

  
 
x i = x i (x), !x i = ∂x

i

∂xk
!xk .   

Indeed, 

  
  

∂2�
∂ !x i ∂ !x j =

∂
∂ !x i

∂�
∂ !x j =

∂
∂ !x j

∂�
∂ !xk

∂ !xk

∂ !x i
⎛
⎝⎜

⎞
⎠⎟
= ∂2�
∂ !xk ∂ !xl

∂ !xl

∂ !x j
∂ !xk

∂ !x i
.  

 Set  

  
  
hij =

∂2�
∂ !xi ∂ !x j

.  
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In this notation  

  
  
� = 1

2
hij !x

i !x j .  

Note that hij  satisfies basic conditions of a Finsler metric  

  
 
hij = hji ,

∂hij
∂ !xk

= ∂hik
∂ !x j

.  

We call hij  the metric, associated with  � .  

 Lemma 10  (a) The Euler-Lagrange form of  �  is expressed by   

  

  

− ∂�
∂xk

+ d
dt
∂�
∂ !xk

= 1
2

−
∂hij
∂xk

+ ∂hik
∂x j

+
∂hjk
∂xi

⎛
⎝⎜

⎞
⎠⎟
!xi !x j

+ 1
2
∂2hij
∂xl ∂ !xk

!xi !x j !xl + 1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j +
∂hlj
∂ !xk
!x j + hlk

⎛
⎝⎜

⎞
⎠⎟
!!xl .

 

 (b)  The Euler-Lagrange form of  �  is expressed as   

  

  

− ∂⇥
∂xk

+ d
dt
∂⇥
∂ !xk

= 1
2

−
∂hij
∂xk

+ ∂hik
∂x j

+
∂hjk
∂xi

⎛
⎝⎜

⎞
⎠⎟
!xi !x j

+ 1
2
∂2hij
∂xl ∂ !xk

!xi !x j !xl + 1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j +
∂hlj
∂ !xk
!x j

⎛
⎝⎜

⎞
⎠⎟
!!xl

+ ∂�
∂xk

− ∂2�
∂xl ∂ !xk

!xl .

 

 Proof  (a) Differentiating  �  we have 

  
  

∂�
∂xk

= 1
2
∂hij
∂xk
!xi !x j , ∂�

∂ !xk
= 1
2
∂hij
∂ !xk
!xi !x j + hik !x

i ,  

and  

  

  

− ∂�
∂xk

+ d
dt
∂�
∂ !xk

= − 1
2
∂hij
∂xk
!xi !x j

+ ∂
∂xl

1
2
∂hij
∂ !xk
!xi !x j + hik !x

i⎛
⎝⎜

⎞
⎠⎟
!xl + ∂

∂ !xl
1
2
∂hij
∂ !xk
!xi !x j + hik !x

i⎛
⎝⎜

⎞
⎠⎟
!!xl

= 1
2

−
∂hij
∂xk

+ ∂hik
∂x j

+
∂hjk
∂xi

⎛
⎝⎜

⎞
⎠⎟
!xi !x j + 1

2
∂2hij
∂xl ∂ !xk

!xi !x j !xl

+ 1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j +
∂hlj
∂ !xk
!x j + hlk

⎛
⎝⎜

⎞
⎠⎟
!!xl .
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 (b)  The Euler-Lagrange form  E(�)  is defined by  E(⇤) = E(⇥)− E(�)  hence  

  

  

− ∂⇥
∂xk

+ d
dt
∂⇥
∂ !xk

= 1
2

−
∂hij
∂xk

+ ∂hik
∂x j

+
∂hjk
∂xi

⎛
⎝⎜

⎞
⎠⎟
!xi !x j + 1

2
∂2hij
∂xl ∂ !xk

!xi !x j !xl

+ 1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j +
∂hlj
∂ !xk
!x j

⎛
⎝⎜

⎞
⎠⎟
!!xl + ∂�

∂xk
− ∂2�
∂xl ∂ !xk

!xl
 

proving Lemma 10.  

6		Variational	forces	

 In this section we study Lagrange functions  � :U ×Rm → R  satisfying the metric 
homogeneity condition  

(1)  
  

∂3�
∂ !xi ∂ !x j ∂ !xk

!xk = 0.  

Using the metric hij  associated with  � , this condition can equivalently be expressed 
as  

(2)  
 

∂hij
∂ !xk
!xk = 0.  

Its meaning is explained by the following theorem.  

 Theorem 6  Let  �  be a Lagrange function. The following two conditions are 
equivalent:  
 (a)   �  satisfies the metric homogeneity condition.  
 (b)   The Euler-Lagrange form  E(�)  of potential energy  �  is of order 1.  
 Proof  1.  We show that (a) implies (b). Applying condition (1) to  Ek (�)  (Lem-
ma 10, formula (15)) we get by a straightforward calculation, using formulas (13), Sec-
tion 5, 

(3)  

 

1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j +
∂hlj
∂ !xk
!x j

= 1
2
∂
∂ !xk

∂hij
∂ !xl
!xi !x j⎛

⎝
⎞
⎠ −

∂hik
∂ !xl
!xi +

∂hlj
∂ !xk
!x j = 0.

 

Consequently,  E(�)  is of order 1.  
 2.  Conversely, let  �  be a Lagrange function such that  E(�)  is of order 1. Since 
 E(�)  is a variational form, according to Theorem 5 it has a Lagrange function 
  ′� = −h −ηi !x

i , where h and η j  are some functions depending on xi  only. Then, how-
ever,  

(4)   Ei (�) = Ei ( ′� ),  
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and the source form  Ei (�)  has two Lagrange functions,  �  and  ′� . This condition 
implies that the difference  �− ′�  belongs to the kernel of the Euler-Lagrange map-
ping  

(5)  
  
� = ′� + df

dt
= −h −ηi !x

i + df
dt

 

for some f = f (xi )  (Section 4, Theorem 1). On the other hand the functions  Ei (�)  
are determined by equations (15), Section 5; thus, condition (4) reads 

(6)  

  

Ek (⇥) =
1
2

−
∂hij
∂xk

+ ∂hik
∂x j

+
∂hjk
∂xi

⎛
⎝⎜

⎞
⎠⎟
!xi !x j + 1

2
∂2hij
∂xl ∂ !xk

!xi !x j !xl

+ 1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j +
∂hlj
∂ !xk
!x j

⎛
⎝⎜

⎞
⎠⎟
!!xl + ∂�

∂xk
− ∂2�
∂xl ∂ !xk

!xl

= ∂h
∂xk

+ ∂ηl

∂xk
− ∂ηk

∂xl
⎛
⎝

⎞
⎠ !x

l .

 

Consequently  

(7)  
 

1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j +
∂hjk
∂ !xl
!x j = 0.  

Since expressions 
 
∂hjk / ∂ !x

l  are symmetric in j, k, l we have  

(8)  
 

1
2
∂2hij
∂ !xk ∂ !xl

!xi !x j + ∂hlk
∂ !x j
!x j = ∂

∂ !xl
1
2
∂hij
∂ !xk
!xi !x j⎛

⎝⎜
⎞
⎠⎟
= 0.  

Integrating  

(9)  
 

1
2
∂hij
∂ !xk
!xi !x j = Φk ,  

where Φk = Φk (x
i ) . This formula solves equation (7).  

 We use this formula to determine expression  

(10)  
  

∂�
∂ !xk

= ∂⇥
∂ !xk

− ∂⇤
∂ !xk

.  

Since   

(11)  

  

∂
∂ !xk

1
2
hij !x

i !x j( )− hik !xi = 12 ∂hij∂ !xk
!xi !x j + hik !x

i − hik !x
i =

Φk ,
∂�
∂ !xk

− hik !x
i ,

⎧
⎨
⎪

⎩
⎪

 

then  
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(12)  
  

∂�
∂ !xk

= Φk + hik !x
i .  

On the other hand, from equations (5) 

(13)  
  

∂�
∂ !xk

= −ηk +
∂ f
∂xk

,  

thus 

(14)  
  

∂�
∂ !xk

= Φk + hik !x
i +ηk −

∂ f
∂xk

.  

 In this expression  

(15)  

  

∂
∂ !xl

Φk +ηk −
∂ f
∂xk

⎛
⎝

⎞
⎠

=
0,

∂
∂ !xl

∂�
∂ !xk

− hik !x
i⎛

⎝
⎞
⎠ =

∂2�
∂ !xk ∂ !xl

− ∂hik
∂ !xl
!xi − hlk ,

⎧

⎨
⎪

⎩
⎪

 

therefore  

(16)  
  

∂hik
∂ !xl
!xi = ∂3�

∂ !xk ∂ !xl ∂ !xi
!xi = 0.  

 Theorem 7  Let  �  satisfy the metric homogeneity condition. Then  

(17)  
  
� = −h −ηi !x

i + df
dt
,  

where  

(18)  
  
ηk = − ∂2�

∂ !xi ∂ !xk
!xi + ∂�

∂ !xk
+ ∂ f
∂xk

, h = 1
2
∂2�
∂ !x j ∂ !xi

!x j !xi − ∂�
∂ !xi
!xi + �  

for some function f = f (xi ) . The functions ηk  and h do not depend on  !xi .  
 Proof  By Theorem 6, the Euler-Lagrange form of  �  is of the first order. Conse-
quently,  

(19)  
  
Ei (�) =

∂h
∂xi

+ ∂ηl

∂xi
− ∂ηi

∂xl
⎛
⎝

⎞
⎠ !x

l  

for some functions ηl =ηl (x
i )  and h = h(xi ) (Theorem 4).  Ei (�)  also admits a La-

grange function   ′� = −h −ηi !x
i  (Theorem 5). Then  Ei (�)  has two Lagrange functions, 

 �  and  ′�  hence, using definition of  �  
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(20)  

  

⇥ =

1
2
∂2�
∂ !xi ∂ !x j

!xi !x j − �,

−h −ηi !x
i + df

dt

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

for some f = f (xi ) . Verification of conditions (18) is now straightforward. Indeed, 
differentiating expressions (20) with respect to  !xk  

(21)  
  
ηk = − 1

2
∂3�

∂ !xi ∂ !x j ∂ !xk
!xi !x j − ∂2�

∂ !xi ∂ !xk
!xi + ∂�

∂ !xk
+ ∂ f
∂xk

 

hence  

(22)  

  

h = − − ∂2�
∂ !x j ∂ !xi

!x j + ∂�
∂ !xi

+ ∂ f
∂xi

⎛
⎝

⎞
⎠ !x

i + df
dt

− 1
2
∂2�
∂ !xi ∂ !x j

!xi !x j + �

= 1
2
∂2�
∂ !x j ∂ !xi

!x j !xi − ∂�
∂ !xi
!xi + �.

 

Then 

(23)  
  

∂ηk

∂ !xl
= − ∂2�

∂ !xl ∂ !xk
+ ∂2�
∂ !xk ∂ !xl

= 0  

and  

(24)  

  

∂h
∂ !xl

= ∂
∂ !xl

1
2
∂2�
∂ !xi ∂ !x j

!xi !x j − ∂�
∂ !xi
!xi + �

⎛
⎝

⎞
⎠

= − 1
2

∂3�
∂ !xi ∂ !x j ∂ !xl

!xi !x j + ∂2�
∂ !xi ∂ !xl

!xi − ∂2�
∂ !xi ∂ !xl

!xi − ∂�
∂ !xl

+ ∂�
∂ !xl

= 0.
 

 Our aim now will be to find explicit description of Lagrange functions satisfying 
the metric homogeneity condition. Our partial results can be summarized as follows. 
Given an arbitrary Lagrange function  � , we have the canonical decomposition  

(25)   � = ⇥ − ⇤,  

where  

(26)  
  
⇥ = 1

2
∂2�
∂ !xi ∂ !x j

!xi !x j  

Then the following conditions are equivalent:  
 (a)   �  satisfies the metric homogeneity condition.  
 (b)   The Euler-Lagrange expressions  Ei (�)  do not depend on  !!xk , that is,  
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∂Ei (�)
∂!!x j

= 0  

for all i and j.  
 If these conditions are satisfied, then  �  is of the form  

  
  
� = −h −ηi !x

i + df
dt
,  

for some function f = f (xi ) , and 

(29)  
  
ηk = − ∂2�

∂ !xi ∂ !xk
!xi + ∂�

∂ !xk
+ ∂ f
∂xk

, h = 1
2
∂2�
∂ !xi ∂ !x j

!xi !x j − ∂�
∂ !xi
!xi + �.  

The functions h and ηi  do not depend on  !xk and Euler-Lagrange expressions of  �  are  

(30)  
  
Ek (�) =

∂h
∂xk

+ ∂ηl

∂xk
− ∂ηk

∂xl
⎛
⎝

⎞
⎠ !x

l .  

 Remark 4  Equation (30) shows that for m = 1  (the case of mechanical systems 
with one degree of freedom) the Euler-Lagrange form  E(�)  cannot depend on  !x . In 
particular, equation of the motion of the one-dimensional damped harmonic oscillator 
cannot be variationally characterized this way.  

 It has already been noted in Section 5 that the kinetic energy part in the canonical 
decomposition of a Lagrange function has some properties of the fundamental Finsler 
functions in Finsler geometry. We shall now discuss these properties in more detail. 
We define a (possibly singular) Finsler metric as a system of real-valued functions 

 
gij = gij (x

k , !xk )  defined on U ×Rm , satisfying the following conditions:  
 (a)  The matrix gij  is symmetric,  

(31)  gij = gji .  

 (b)  The derivatives satisfy  

(32)  
 

∂gij
∂ !xk

= ∂gik
∂ !x j

,
∂gij
∂ !xk
!xk = 0.  

 Theorem 8  A Lagrange function  � :U ×Rm → R  satisfies metric homogeneity 
condition if and only if  

(33)  
  
� = 1

2
gij !x

i !x j + h +ηi !x
i ,  

where gij  is a Finsler metric and h and ηi  are some functions depending on xi  only.  
 Proof  1. Suppose that we have a Lagrange function  �  satisfying metric homoge-
neity condition. Then by Theorem 7, it is necessarily of the form  
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(34)  
  
� = 1

2
gij !x

i !x j + h + "ηi !x
i + df

dt
,  

where  

  
  
gij =

∂2�
∂ !xi ∂ !x j

 

and f,  !ηk  and h  are some functions depending on xi  only. The functions gij  obviously 
satisfy (31) and (32). Setting  

  
 
!ηi =ηi +

∂ f
∂xi

 

we get (33).  
 2.  Conversely, if gij  is a Finsler metric, then by (31) and (32), direct differentia-
tions of  � (34) yield  

  
  

∂�
∂ !xk

= 1
2
∂gij
∂ !xk
!xi !x j + gik !x

i +ηk ,
∂2�
∂ !xk ∂ !xl

= 1
2
∂gik
∂ !xl
!xi + glk .  

Hence  

  
  

∂3�
∂ !x j ∂ !xk ∂ !xl

!x j = ∂gkl
∂ !x j
!x j = 0.  

 Theorem 9  For every Finsler metric gij  formula (33) defines a solution  �  of 
equations (29).  
 Proof  Suppose we have a Finsler metric gij  and consider a Lagrange function  �  
(33). Differentiations yield  

  
  

∂�
∂ !xk

= 1
2
∂gij
∂ !xk
!xi !x j + gik !x

i +ηk ,
∂2�
∂ !xk ∂ !xl

= ∂gik
∂ !xl
!xi + gil .  

From these formulas  

  
  
− ∂2�
∂ !xi ∂ !xk

!xi + ∂�
∂ !xk

= −gik !x
i + gik !x

i +ηk =ηk  

and 

  

  

1
2
∂2�
∂ !xi ∂ !x j

!xi !x j − ∂�
∂ !xi
!xi + �

= 1
2
gij !x

i !x j − (gji !x
j +ηi ) !x

i + 1
2
gij !x

i !x j + h +ηi !x
i = h.
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 Remark 5  Note that ηk  can also be expressed as  

  
  
ηk = − ∂

∂ !xk
∂�
∂ !x j
!x j( ) + 2 ∂�

∂ !xk
= ∂
∂ !xk

2� − ∂�
∂ !x j
!x j( ).  

Integrating  

  
  
2� − ∂�

∂ !x j
!x j −η j !x

j = Ψ,  

where Ψ = Ψ(xi )  is an integration constant. Since 

  

  

h = 1
2
∂2�
∂ !xi ∂ !x j

!x j − ∂�
∂ !xi

⎛
⎝

⎞
⎠ !x

i + �

= 1
2

∂2�
∂ !xi ∂ !x j

!x j − ∂�
∂ !xi

⎛
⎝

⎞
⎠ !x

i − 1
2
∂�
∂ !xi
!xi − 2�( )

= − 1
2
ηk !x

i − 1
2
(−η j !x

j −Ψ) = 1
2
Ψ,

 

we have  

  
  
2� − ∂�

∂ !x j
!x j = 2h +η j !x

j .  

 Our main goal is in this section is to study variational properties of first-order 
source forms φi :U ×Rm → Rm ; we call these forms forces. A force φi  is said to be 
variational, if there exists a Lagrange function  � :U ×Rm → R  such that  

(46)   φi = Ei (� −⇥),  

where  �  is kinetic energy associated with  � , or, equivalently, if  

   φi = Ei (�),  

where  �  is potential energy associated with  � . Thus a variational force is exactly the 
Euler-Lagrange form of the potential energy  � . Allowing  �  to depend on positions 
and velocities, then we also admit variational forces depending on xl  and  !xl . 
 The inverse variational problem for a force φi  consists of finding integrability 
conditions and solutions   � = �(xi , !xi )  of the system (46). We already known that the 
integrability condition is given by equations (2) and (4) of Section 4,  

  
 

∂φi
∂ !x j

+
∂φ j

∂ !xi
= 0,  

  
 

∂φi
∂x j

−
∂φ j

∂xi
− 1
2
∂
∂t

∂φi
∂ !x j

−
∂φ j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xl

∂φi
∂ !x j

−
∂φ j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!xl = 0.  
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The following two theorems give a more detailed information. 

 Theorem 10  The following two conditions are equivalent:  
 (a)  φk  is a variational force.  
 (b)  There exist functions P = P(xi )  and Qk =Qk (x

i )  such that 

(50)  
 
φk =

∂P
∂xk

+ ∂Ql

∂xk
− ∂Qk

∂xl( ) !xl .  
 Proof  1. Suppose that φk  is variational. Since it is of order 1, (b) follows from 
Theorem 4.  
 2.  If φk  is expressible by formula (50), then φk  is variational as a first-order 
source form so it has a Lagrange function   � = −P −Ql !x

l  (Theorem 4).  

 Remark 6  The class of variational forces admits a physical interpretation; it in-
cludes some dissipative forces, depending on velocities.  

 Theorem 10 should be completed by description of all Lagrange functions defin-
ing a fixed variational force φi . The following is a solution of the inverse variational 
problem for forces, depending on positions and velocities.  

 Theorem 11  Let φi  be a variational force, let   � 0 = −P −Qi !x
i  be a Lagrange 

function for φi . Then the following two conditions are equivalent:  
 (a)   �  satisfies  φi = Ei (� −⇥) . 
 (b)   �  is of the form  � = ⇥ − ⇤ 0 , where  

  
  
� = 1

2
gij !x

i !x j  

for some Finsler metric gij .  
 Proof  Immediate.  
 

7		Newton’s	equations		

 In this paper the source forms ε = ε i  with components 

(1)   ε i = gil !!x
l − fi ,  

where gil  and fi  are functions of t, xi  and  !xi , will be referred to as the Newton’s 
source forms.  

 Lemma 11  The Newton’s source form (1) is variational if and only if  

(2)  gij − gji = 0,  

(3)  
 

∂gik
∂ !x j

−
∂gjk
∂ !xi

= 0,  
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(4)  
 

1
2
∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ +

∂gij
∂t

+
∂gij
∂xl
!xl = 0,  

(5)  
 

∂gil
∂x j

−
∂gjl
∂xi

+ 1
2
∂
∂ !xl

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ = 0,  

(6)  
 

∂ fi
∂x j

−
∂ f j
∂xi

+ 1
2
∂
∂t

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ +

1
2
∂
∂xk

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ !x

k = 0.  

 Proof  Integrability conditions for the source form (1) are determined by Theo-
rem 2; we have  

  
 

∂ε i
∂!!x j

−
∂ε j

∂!!xi
= gij − gji = 0,  

  

 

∂ε i
∂ !x j

+
∂ε j

∂ !xi
− d
dt

∂ε i
∂!!x j

+
∂ε j

∂!!xi
⎛
⎝⎜

⎞
⎠⎟

= ∂gil
∂ !x j

+
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂ !x j

−
∂ f j
∂ !xi

−
d(gij + gji )

dt
= 0,

 

and  

  

 

∂ε i
∂x j

−
∂ε j

∂xi
− 1
2
d
dt

∂ε i
∂ !x j

−
∂ε j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟

= ∂gil
∂x j

−
∂gjl
∂xi

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂x j

+
∂ f j
∂xi

− 1
2
d
dt

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
= 0.

 

Solving this system,  

  gij − gji = 0,  

  

 

∂gil
∂ !x j

+
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂ !x j

−
∂ f j
∂ !xi

− 2
dgij
dt

= ∂gil
∂ !x j

+
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂ !x j

−
∂ f j
∂ !xi

− 2
∂gij
∂t

− 2
∂gij
∂xl
!xl − 2

∂gij
∂ !xl
!!xl

= ∂gil
∂ !x j

+
∂gjl
∂ !xi

− 2
∂gij
∂ !xl

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂ !x j

−
∂ f j
∂ !xi

− 2
∂gij
∂t

+
∂gij
∂xl
!xl⎛

⎝
⎞
⎠ = 0

 

and, after some calculation,  
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∂gil
∂x j

−
∂gjl
∂xi

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂x j

+
∂ f j
∂xi

− 1
2
d
dt

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ !!x

l − ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝⎜

⎞
⎠⎟

= − ∂ fi
∂x j

+
∂ f j
∂xi

− 1
2
∂
∂t

− ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ −

1
2
∂
∂xk

− ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ !x

k

+ ∂gil
∂x j

−
∂gjl
∂xi

− 1
2
∂
∂t

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ −

1
2
∂
∂xk

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ −

1
2
∂
∂ !xl

− ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ !!x

l

− 1
2
∂
∂ !xk

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ !!x

l !!xk − 1
2
∂gik
∂ !x j

−
∂gjk
∂ !xi

⎛
⎝

⎞
⎠ !!!x

k .

 

Consequently, we have a system  

  gij − gji = 0,  

  

 

∂gil
∂ !x j

+
∂gjl
∂ !xi

− 2
∂gij
∂ !xl

= 0,

∂ fi
∂ !x j

+
∂ f j
∂ !xi

+ 2
∂gij
∂t

+
∂gij
∂xl
!xl⎛

⎝
⎞
⎠ = 0,

 

 

 

− ∂ fi
∂x j

+
∂ f j
∂xi

− 1
2
∂
∂t

− ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ −

1
2
∂
∂xk

− ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ !x

k = 0,

∂gil
∂x j

−
∂gjl
∂xi

− 1
2
∂
∂t

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ −

1
2
∂
∂xk

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ −

1
2
∂
∂ !xl

− ∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ = 0,

∂
∂ !xk

∂gil
∂ !x j

−
∂gjl
∂ !xi

⎛
⎝

⎞
⎠ +

∂
∂ !xl

∂gik
∂ !x j

−
∂gjk
∂ !xi

⎛
⎝

⎞
⎠ = 0,

∂gik
∂ !x j

−
∂gjk
∂ !xi

= 0.

 

This system is equivalent to  

  gij − gji = 0,  

  
 

1
2
∂ fi
∂ !x j

+
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ +

∂gij
∂t

+
∂gij
∂xl
!xl = 0,  

  
 

∂ fi
∂x j

−
∂ f j
∂xi

+ 1
2
∂
∂t

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ +

1
2
∂
∂xk

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ !x

k = 0,  

  
 

∂gil
∂x j

−
∂gjl
∂xi

+ 1
2
∂
∂ !xl

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝

⎞
⎠ = 0,  

  
 

∂gik
∂ !x j

−
∂gjk
∂ !xi

= 0,  
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that is to the system (2) – (6).  

 Supposing that integrability conditions (2) – (6) are satisfied we now find solu-
tions  �  of the inverse problem equations  

(7)  
  
gil !!x

l − fi = − ∂�
∂xi

+ d
dt
∂�
∂ !xi

.  

 Theorem 12  The source form (1) is variational if and only if  

  
 

∂ fi
∂x j

−
∂ f j
∂xi

− 1
2
∂
∂xl

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xl = 0. 

 Proof  1.  First we solve the autonomous subsystem (2), (3). Its general solution 
 �  is, according to the Hessian matrix reconstruction lemma (Lemma 4)  

    � = � 0 + A + Bi !x
i ,  

where  

  
  
� 0 =

1
2
hij x

ix j , hij = 2 gij (t, x
p ,κτ !x p )dκ

0

1

∫( )τ dτ0

1

∫  

and  A, Bi  are arbitrary functions depending on t and x p . Using  � , the Newton 
source form (1) has an expression  

  

  

ε i = gil !!x
l − fi =

∂2� 0

∂ !xi ∂ !xl
!!xl − fi

= − ∂� 0

∂xi
+ ∂

2� 0

∂t ∂ !xi
+ ∂2� 0

∂xl ∂ !xi
!xl + ∂2� 0

∂ !xl ∂ !xi
!!xl − fi +

∂� 0

∂xi
− ∂

2� 0

∂t ∂ !xi
− ∂2� 0

∂xl ∂ !xi
!xl

= Ei (� 0 )−φi ,

 

where 

  
  
φi = fi −

∂� 0

∂xi
+ ∂

2� 0

∂t ∂ !xi
+ ∂2� 0

∂xl ∂ !xi
!xl .  

Thus, variationality of the Newton’s source form (1) is equivalent to variationality of 
the (first-order) source form φi .  
 2. Conversely, according to Theorem 2, and Section 4, equations (2) and (4), inte-
grability conditions for the source form (1) read  

(7)  
 

∂φi
∂ !x j

+
∂φ j

∂ !xi
= 0  

and 
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(8)  
 

∂φi
∂x j

−
∂φ j

∂xi
− 1
2
∂
∂t

∂φi
∂ !x j

−
∂φ j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xl

∂φi
∂ !x j

−
∂φ j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!xl = 0.  

 Equations (7) can be integrated. We have  

   φi = Ai + Bil !x
l ,  

where Ai  and Bil  are arbitrary functions of t and xl  such that Bij = −Bji . Thus 

  
  
fi = Ai + Bil !x

l + ∂� 0

∂xi
− ∂

2� 0

∂t ∂ !xi
− ∂2� 0

∂xl ∂ !xi
!xl .  

 To determine condition (8), first calculate partial derivatives of the functions φi : 

  

  

∂φi
∂x j

= ∂ fi
∂x j

− ∂2� 0

∂xi ∂x j
+ ∂3� 0

∂t ∂x j ∂ !xi
+ ∂3� 0

∂xl ∂x j ∂ !xi
!xl ,

∂φi
∂ !x j

= ∂ fi
∂ !x j

− ∂2� 0

∂xi ∂ !x j
+ ∂2� 0

∂x j ∂ !xi
+ ∂3� 0

∂t ∂ !xi ∂ !x j
+ ∂3� 0

∂xl ∂ !xi ∂ !x j
!xl .

 

Hence  

  

  

∂φi
∂x j

−
∂φ j

∂xi
= ∂ fi
∂x j

−
∂ f j
∂xi

+ ∂
∂t

∂2� 0

∂x j ∂ !xi
− ∂2� 0

∂xi ∂ !x j
⎛
⎝

⎞
⎠ +

∂
∂xl

∂2� 0

∂x j ∂ !xi
− ∂2� 0

∂xi ∂ !x j
⎛
⎝

⎞
⎠ !x

l

 

and 

  
  

∂φi
∂ !x j

−
∂φ j

∂ !xi
= ∂ fi
∂ !x j

−
∂ f j
∂ !xi

− 2 ∂2� 0

∂xi ∂ !x j
− ∂2� 0

∂x j ∂ !xi
⎛
⎝

⎞
⎠ . 

Then  

  

  

∂φi
∂x j

−
∂φ j

∂xi
− 1
2
∂
∂t

∂φi
∂ !x j

−
∂φ j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
− 1
2
∂
∂xl

∂φi
∂ !x j

−
∂φ j

∂ !xi
⎛
⎝⎜

⎞
⎠⎟
!xl

= ∂ fi
∂x j

−
∂ f j
∂xi

+ ∂
∂t

∂2� 0

∂x j ∂ !xi
− ∂2� 0

∂xi ∂ !x j
⎛
⎝

⎞
⎠ +

∂
∂xl

∂2� 0

∂x j ∂ !xi
− ∂2� 0

∂xi ∂ !x j
⎛
⎝

⎞
⎠ !x

l

− 1
2
∂
∂t

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂t

∂2� 0

∂xi ∂ !x j
− ∂2� 0

∂x j ∂ !xi
⎛
⎝

⎞
⎠

− 1
2
∂
∂xl

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xl + ∂

∂xl
∂2� 0

∂xi ∂ !x j
− ∂2� 0

∂x j ∂ !xi
⎛
⎝

⎞
⎠ !x

l

= ∂ fi
∂x j

−
∂ f j
∂xi

− 1
2
∂
∂xl

∂ fi
∂ !x j

−
∂ f j
∂ !xi

⎛
⎝⎜

⎞
⎠⎟
!xl .
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Since this expression should vanish, we get formula (7) as required.  
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