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Abstract This research-expository paper is devoted to variational modelling of me-
chanical forces, depending on velocities. First we explain basic standard theory of the
structure of the Euler-Lagrange mapping, assigning to a Lagrange function its Euler-
Lagrange form, including the integrability problem of the system of Euler-Lagrange
equations in which the unknown is the Lagrange function. Formulations and proofs of
basic standard theorems on the kernel and image of the Euler-Lagrange mapping as
well as explicit construction of Lagrange functions for variational systems are given.
Following these theorems we then introduce the canonical decomposition of a general
Lagrange function in two terms modelling its kinetic and potential energy compo-
nents. Then we introduce the concept of a force, compatible with a variational princi-
ple — the variational force, and find explicit classification of variational forces.
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1 Introduction

In this paper, R is the field of real numbers and R™ is the m-dimensional (topo-
logical) Euclidean space. Our basic underlying structure is the Cartesian product
IxU ,where I is an open interval in R and U is a star-shaped open set in R™; the ca-
nonical coordinates on I XU are denoted by t,x', where i=1,2,...,m. We also con-
sider the first and the second prolongations of I XU , the Euclidean spaces I xU xXR"
and IxUxR” xR", with canonical coordinates 7,x',x' and 7,x',%",X"; sometimes
also higher prolongations are used.

Recall that in classical mechanics of particles and fields a Lagrange function
L:IxUxXR" - R of a mechanical system is usually defined to be the difference of
kinetic energy J and potential energy U of a mechanical system,

1 L=J-.

While I is in a sense a universal function of the form
2) T =_g X%,

where g, are the components of a metric tensor on the configuration space U, potential
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energy U provides specific characteristics of mechanical systems; AU does not depend
on x' and the first-order form ¢ = ¢, , where

3 U
ax'

3) ¢, =

is the force, associated with Al . The Euler-Lagrange form of &£ is the family
E(¥)=E, (%), whose components are the Euler-Lagrange expressions

L d oL 9T  doT U

E)=——+—"—F—=-"""+—""F"+—.
ox'  dt ox' ox'  dtox' ox'

The Euler-Lagrange equations are second-order differential equations for curves
t = x'(¢t) in the set U,

0T  d 9T U

—_— = —
ox'  dt ox' ox'

The choice of the Lagrange functions prescribes basic properties of the corresponding
variational principle, and ensures straightforward investigation of symmetries of the
underlying mechanical systems and their consequences in terms of conservation laws.

Indeed, the simplest basic underlying space for this theory, the domain of defini-
tion I XU XR" of & ,or UXR"™ for time-independent Lagrange functions & , can be
replaced in the well-known sense by more general spaces such as smooth manifolds,
tangent bundles and jet bundles (cf. the handbook Krupka and Saunders [1]).

In this paper we study variationally compatible extensions of the concept of a
force as defined by the variational principle of the Lagrange mechanics. The aim is to
characterize a class of Lagrange functions &£ :1xU xR" — R admitting a decomposi-
tion £=J —AU analogous to (1), in which “kinetic ” and “potential” energy terms
generalize classical concepts of kinetic and potential energy, and AU (2) admits de-
pendence on velocities x". Then we introduce the concept of a variational force, com-
patible with a variational principle, and find explicit classification of variational forces.
Finally, the Newton’s equations of classical mechanics are discussed within the
framework of Finsler metric fields.

The problem of variational compatibility of forces is not new; its elementary ver-
sion was considered, probably for the first time, by Novotny [3]. This paper is based on
recent research in applications of the inverse problem of the calculus of variations to
differential equations (variational completion, Voicu, Krupka [4]), and to geometric
mechanics (variational submanifolds, Krupka, Urban and Volna [2]). Extensive, rela-
tively complete literature on various aspects of the inverse problem can be found
Krupka and Saunders [1] and edited volume Zenkov [5].

2 Elementary differential systems

In this section we review integration formulas for some elementary differential
systems on Euclidean spaces, needed for the proofs of our assertions in the theory of
the inverse problem of the calculus of variations. All functions we consider are defined



Variational forces 3

on a star-shaped neighbourhood U of the origin 0 € R™, and are supposed to be suffi-
ciently differentiable.

Suppose we have a system of functions A=A, , 1<k <m, defined on U, and con-
sider a differential equation for an unknown function P

9P

1 A =—-.
M ooxk

Lemma 1 (a) Equation (1) has a solution P if and only if the functions A, satisfy

J0A, O0A
2 —k_"1_-0
@ ax' oxt

(b) If condition (2) is satisfied, then a solution P is given by

3) P=2'[ Aex)dr.

Proof Necessity of condition (2) is obvious. To prove sufficiency, we differenti-
ate P with respect to x'. We have

o o [ (1 A,
Gu=laedeed [[5%) car

= li(Al.(Txl)r)dT = A, (x").
0dt

Now suppose we have a system of functions S=S,, defined on U. Consider a sys-
tem of differential equations for unknown system Q,

99, 90, _

k [
dx dx

“)

Lemma 2 (a) Equations (4) have a solution Q, if and only if the functions S,,
satisfy

as,, adS, aS
® Su= S G o =
(b) If condition (5) is satisfied, then every solution Q, is of the form

o
ox'’

Q1 = on +
where

(6) Q= x”jol S, (tx')rdt
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and ® = ®(x') is an arbitrary function.

Proof (a) Necessity of condition (5) is immediate.
To prove sufficiency, consider the function (6). Differentiating, we have

anO o . A 5
W_JOS"’(TX )rd1+x”j (ﬁ ”}_1 dt,

1
0

and

00} 9Q; o ,. L 9S, 95, ,
E =2[ S, (txyrdr+x’ | )T dt

o : o098, | 98y, | 9S, ,
—ZJOSkl(Tx )TdT+x jo P + oy +axp [’L' dt

—x"Jl 95y i dr
Nox" )

Using (5), this formula can also be expressed in the form

0 0
an _an :J'l((aSkl) XPT2+25kI(Txi)T)dT

ax*  ox' 0\ \ dx”

1 d N2 i
= OE(SH(TX )T ):Su(x )s
proving that Q] solves the system (5).

(b) Any two solutions Q, and Q, of the system (4) satisfy
99, 99, _0Q/ 09,

ax*  ax' ax* ax

hence
N9, -0) 99, =00 _,,
ax* ax' ’
Integrating we get
, 0D
QI Ql - axl

for a function ® = d(x').

D. Krupka

Consider a system of differential equations for an unknown function h, = h,(x’)
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. 0h,
) Oh_ 9% ),
Jx’  ox'

Lemma 3 Every solution of the system (7) is of the form
h,=A + Bijxj

for some constants A, ,B,.j € R such that

Proof Differentiating (7) we get

P, Fh PFh _ Ph
dx’ ax* x'ax*  oax’ax’ dx* 9x’

Thus, solutions A, of equations (7) must be linear functions of the form A, + B,x',
where the constants B, are skew-symmetric.

Suppose we have a collection of functions g, = gij(xk ) , defined on an open star-
shaped set U in R™. Consider a system of differential equations

>f

8i = ax’ 9x’'

®)

for an unknown function f = f(x"); the right-hand side is the Hessian matrix of f. The
following is the Hessian matrix reconstruction lemma.

Lemma 4 (a) Equation (8) has a solution f if and only if the functions g; satisfy
the following conditions

agi‘ ag,
©) 8i=8n S t=o

(b) If the functions g satisfy conditions (9), then every solution f of equation (1)
is of the form

(10) f=f,+A+Bx,
where
=L, n=2[([ ydx|td
fg—E XX, k= JO(JOgU(m'x ) K)T T.

and A, B, are arbitrary constants. The functions h; satisfy

Ly o

ij ii* k ’
i Jt ax ax./
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Proof 1. Conditions (9) are obviously necessary conditions for existence a solu-
tion of equation (8).

2. We show that if conditions (9) hold, then equation (8) has a solution. Integrat-
ing the second equation (9),

oh,
(11) 8i =57
for some functions A, ; h; can be taken as
k 1
(12) h=x J.Ogl.k(lcx”)dic

(Lemma 1). Indeed, A, obviously satisfies (11):

oh, 0g.
( ',) :jl[gij(icx"ﬂ(i’/’.) K‘erdK'
ax (xP) 0 ax (kxP)

— : d p — P
= J, (8, Gex W) dic = g,(x").

Now we apply condition g; =g, (9). We get integrability condition

oh. Oh,

i J

ax’  ox'

ensuring existence of a function f such that

_of
(13) h=o2

A solution may be taken as f = fé , where
i ! 2
f,=x jo h(tx")dr.
Substituting from (12)
1
h(tx”)=1x" JO g, (xktx")dx,
we get
i p L i
(14) f,=x'x JO(J.OgU(K'Tx )dK)Td‘L':EhUx X/,

where

— ! ! p
h; = 2J.0('[0 g, (KTx )dK')TdT.
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Then by constructions (11) and (13), (14), f, satisfies

_oh _ &),

8i = ox’ dx'ox’’

The functions (12) satisfy

dh, ag; dh,
h,=h,, —”=2_[1 jl % ktdx |rdr ="
T axt ool axt ) dx’

The general solution of equation (18) is of the form f=f +A+ Bx", where A and
B, are arbitrary constants.

Remark 1 Given g; and setting
ij ! ! 14
fo=x'x '[0 (IO g, (KTx )dK)‘L'dT,

we can determine the second derivatives 9° Jo! dx'dx’ by a straightforward calcula-
tion. We have

afg Celf el
o =2x’ JO (jo 8y (m’x”)dlc)rdr

(15)
w2 Pydx|td
+x'x a—xk.l.o(.[og"j(’qx ) K‘)’L’ T.

Supposing that conditions (9) are fulfilled and using the chain rule, the second term in
this formula can be expressed as

d , _ (' (98
WJO(J‘O&;,-(K’TX )dK)TdT—J.O[J‘O(H (mp)de 7dT.
On the other hand,
d ag. .
—(gk.(mx”)r2)=21gkA(mx”)+T(—’-,ﬁx’j .
dT ! ! a (K‘T)C’))

Thus, returning to (15),

ax* o\Jodr

% =x’ (Il(J.(Ii(gkj(KTxp)Tz)dT)dK) = ij.ol gkj(KxP)dK’

and
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O f

& ! 14 J ! %
o or —_[ng,(rcx )dK + x J'( W)Kdrc

o\ 9x’
1 J .
=J. (gk,+i’_‘j’x’) dx.
0 ax (pr)

Since

d a8,
— KxP)) = + I o) ,
dK(gk,( )K) (gk, ox ")

we finally get

O f 1 d
axk agxl = J.OE(gkl(pr)K)dK =gu(x").

3 The Euler-Lagrange mapping

Our main objective in this section will be analysis of the dependence of the to Eu-
ler-Lagrange expressions E(£):I1xUxR" xR" - R, where i=1,2,...,m, defined
by the formula
o< N d o
ax'  dr ox'’

(1) E($)=-

on the Lagrange functions &£ :1xU xR" — R . The family E(¥)=E, (%) is called the
Euler-Lagrange form. We wish to characterize the kernel and the image of the Euler-
Lagrange mapping ¥ — E(£), The domain of definition of the Euler-Lagrange map-
ping is the vector space of C’-functions on I xU xR" and its image space is the vec-
tor space of m-tuples of C”-functions on IxU xR” xR" ; this mapping is obviously
linear.

A Lagrange function & is said to be (variationally) trivial, if

) E($)=0
forall i=1,2,....m.

Theorem 1 A Lagrange function ¥ = P(t,x",x") is trivial if and only if there ex-
ists a function f = f(t,x') such that

g &

©) Tar

Proof 1. By a straightforward calculation
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@ ()2 Ao od dif_,
dt ox' dt dt ox' dt ox' dt dt ox'

2. Conversely, suppose that E,(£)=0 . Then since

oL *r L , %

5 E($)=——+ _ 4 - x + o
%) (L) ax'  9rdx’  9x' ox’ dx' 9x'

and this expression is linear in ¥’ , hence
©6) P=A+Bi
for some functions A = A(z,x') and B, =B, (t,x"), and have

9A OB 9B, 0B,
B 0 9%
Jx' ot

(N

ax' ox'

’

Integrating we get for some f, = f; (¢,x’)

62 (%),

8 B=— — —4
®) Toox' ox' ot

Further integration yields

af. dg
9 —A+—0= =20
©) ot § dt

for some g = g(t) and some primitive g, of g. Then, however,

$:A+Bl_x.jl :%_%_’_G_ﬁ;xl
ot dt  9dx

— a(fo _go) + a(fo _gO))'Cl
ot ax' '

(10)

Setting f = f,—g, we get (3).

Theorem 1 characterizes the kernel of the Euler-Lagrange mapping £ — E(&).

We shall now consider arbitrary systems € =¢; of sufficiently differentiable func-
tions € :IXxUxXR" xR" — R, where i=1,2,...,m ; in agreement with the calculus of
variations, differential geometry and mechanics, the systems € are covector fields, and
are called source forms.

A source form &£=¢; is said to be variational, if there exists a function
L:IxUxR" - R such that

(11 8i=—a‘$+ia$.
ax'  dr ox'

If & exists, it is called a Lagrange function for € . Clearly, variationality of a source
form € means that & belongs to the image of the Euler-Lagrange mapping
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¥ — E(¥) in the set of source forms or, in a different terminology, integrability of
equation (11) with respect to the unknown function &£ .

To find solutions of the system of partial differential equations (11) an integrabil-
ity condition must be determined. We prove its necessity and sufficiency parts sepa-
rately.

Theorem 2 If a source form € = ¢, is variational, then

. 0E.
(12) 98 %,
%’ o
. 0€. . J€.
(13) 0, f—i(i++)=o,
ox’  ox' dr\dx’ ox
and
. 0€; . 0€,
(14) a—‘ga-—%—li(a—‘?’_— f):
ox’  ox' 2dr\ox’ ox'

Proof 1. We show that if & are expressible in the form (11), then conditions
(12), (13) and (14) hold. Using explicit expressions

0L *L L ., L
i i akait T oikaut
dx' OJrox' ox ox Jax" ox

we get
de,__ 0%
ax' ax'ax’’
dg,_ ¢ ¥ L
ax'  ax'ox’ ax'arox’  o9x'ox* ox!
4 ’>L
- Y .ixv
dx 9x' ox dx"ox
de, % 7 T
Sl o dad al i ada kA T o daikat
Jdx" odx d0x' OJdx J0tox' Ox dx ox dx dx" ox
and

dg, dg, L Y

X! 0x' 0x’'9x" 9x’ 9x’

Then by a direct calculation
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g, dg, d(0g O¢
ot St | =0
0x  dx' dt\ox' OJx

and

ax' ax' 2dt

ax'  ox'

de, dg, 1d(c’)ei ae,)_

To prove the converse statment we proceed in several steps. First note that equa-
tions (12), (13) and (14) can be expressed as an equivalent system

de. O€,
15 —t 1 =0,
(15 ax’  ax'
0 (0e O€,
16 — L4+ 2 1=0,
(16) ax"(axf ax’)
dg,  0g; 9 ( g 88,) 0 (aei 68,),,
— + +T - —+ il
ax’  9x' at X’ 9% ox \ 0x¥’ dx
17 d (0 o€
L )
ox'\ X’ ok
0 (0e O€,
18 — < —-—L1=0,
(18) ax"(axf ax')
g, _0¢;, 10(0g 0g ) ( j)
axl  ax' 201\ 9k 9x ) 20x
(19)

1.9 (g Og _o.
205\ 0%/ 9i
Lemma 5 Let € =¢, be a source form satisfying conditions (15) — (19). Then
(20) £ =F+0,i

for some functions P, = R.(t,xk,fck) and Q; =0, (¢,x5,x*) such that

(22) 90, "y,
ox’  ox'

and
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0P\ 00. 00.
(23) 1(a€,+—_%]—&—£7x’=0,
2 9x’ ox' at  dx
> JP, P, > JP,

(24) 6—3——%—13(6—3——_%)—1%(6—6——%%":0.

ax’  ax' 29t\ax’ ax') 294x"\ox’ ox

Proof Condition (15) and (16) imply
8281' —
ax’ oxt

thus, &, must be of the form (20) with coefficients O, satisfying (21), (22).

Substitution from (20) into (17) yields

de, 98, 9 (aei +ae,)

X' ox  orlax  ox

_i agi+68j X’I—i agi+88_/ 5!
ax'\ ax!  9x ax' ox!  9x

_9P +8ﬁ+(aQ,-k+aQ,»k)xk

Cox o o o
A0, +0,) 40,40, ¥Q,+0,)
ot ax' o' ’
and the vanishing of this expression implies
00, 90, 9Q;+0;)
i + i k =0
ox’  dx 0x
and
OF, P, 9Q;+0;) 9Q, +,Q’f”)x’ _o.
ax’ X' ot ox
proving (23).

Substitution from (20) into (18) proves (22) .

To substitute from (20) into (19) we use expressions
de, 08 ok O (90, 00 )y
dx’  dx' oJx’ ox' dx’  ox' ’
de, _de, o 0P, (30, 90,
ax’ 9x' 9k ax' \9x  9X

leading to the expression

D. Krupka
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de, Og; 16(68,. ai}

ox’  ox 201\ ox ox

(10 (og O, 10 (0 O,
20x'\ ax/  ox' 209x'\ax’  o9x'

3800 (5, ),

ax’  ax' ax’  9x'
_li aPt _aPJ + %_aQﬂ _551
20\ ox’ ax' \ox! ox
18 [9R OB (90 90 )
29x"\ax’ ox ax’  9x
_li_k(a_{%;_ 0B, +(a_Q_,, %, ))
29x*\ax’  ox ox’  9x

Since the coefficients at X' and ¥“i' shoud vanish separately, we have
p y

9 (0, 1), 000, 00,

ox*lax’ ox' ) oi'\ax’ ax )

20, 0, 1000, 10,) 19 (50, ),

axl  ox' 20\ ox oi ) 20x\ax  ox
_19 (o 9P _,
20x'\ ax’  9x' ’
and
oF, _ﬁ_ii(ﬁ_ﬂ)_ii(ﬁ_aﬁjxk_o
ax’  ax' 209\ ax’ 9x' ) 29x*\ax’ 9x'
proving (24).

The following is merely a restatement of Lemma 5.

Lemma 6 Let €=¢, be a source form satisfying conditions (15) — (19). Then
there exist some functions P, = R.(t,xk XY and f= f(t,x* X5 such that

2
g=F+ (?-f.le’
0x'ox
where
9P, 3 3
25) 1(6—{)’,+ f)— Of __0J u_g
2\ 0x’  ox' Jtox'ox’  dx' 0x'ox’
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and

 JP.  JP.  JP,
(26) E__f_li(ﬂ__lj_lik(ﬁ__/)xk:()
ox’  ax' 29r\ax’ ox' 29x"\ax’ ox'

Proof Only formula (25) needs proof. According to Lemma 4, conditions (21),
(22) are equivalent to the existence of a function f = f (¢,x*,x*) such that

9f

ax’ox'

27) 0,=

Replacing Q; in (23) by (27) we get (25).
Now we study equation (25).

Lemma 7 The following two conditions are equivalent:
(a) P andfsatisfy

0P, : :
R e e

(28) PR iaej I ninej
2\ 0x’  ox 0tox'ox’  dx' d0x'ox

(b) There exist unique functions A, = A, (t,x') and R, =R, (¢,x') such that

o Bf P

29 P=R +A x'——L . _ %
29 IO 9x 9rax ax' X

and
A, =-A,.
The functions A, = Ay (t,x") and R, =R, (t,x") are determined by

1(81).;‘ apk) ’f N O’ f

9" ok ) oxtox  oxi it

Jk 2

ax*  ax’

and

R.=pj_(l(ﬂ_ﬁj_ O f N o f sz

/ 20ax*  9x’ ) oax*ox!  ox'ax*
LIS
ax’  arox’’

Proof 1. First we show that (28) implies

aP 2 2 3 3
(30) —4=A, + akf_— a.f,k+ a_f'k+ la'f — '
0x oox"ox!  dx’ox"  0rox’ 9x*  9x'ox’ ox

forsome A, =A, (t,x") such that
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10 (aPl. an)

AN Ak .'+ i

29x"\ ox’  ox
"' f ' f g o f

— - - — - - X — " - = U.
Atdx' 0x’ 9x*  ax' 9%’ ax’ 9x* ax* 9x ox’

Differentiating (28),

(32)

Cycling the indices i, j and k
o' f ot f N

- - - - X
Jtox ax’ ax*  9x' 9x' 9x’ 9x*

1( o0 (0P, BPj d (0P, 0P 0 8Pj oP,
(33) = — o —.l.+ ) +f +—;( +f —k+—
6\ dx"\ dx’ ax' ax’ \ ox'  dx ax'\ ax" ox’
R & af
3\ ox*ax' ax’  ox’axtax’  ox'9x’ 9x

we can eliminate expression (33) from (32). Thus

1 0 (aP 0P
Ak L +—,
29x"\ 0x’  ox

1( 0 (ae P\ 9 (apk aP,,) a (0P, 9P,
A T T M R Y A Y T Y
6\ax "\ dx’ dx ax’ \ ax"  ax ax' \ ox"  ax’

1 Of N O f Of ~ O f
3\ ax*ax ox!  ax‘ax*ox’  ox'ax’ax* ) oax*ox' ox’
=0,
that is
19 (aPl. 8Pj)
Sk Aw T A
29x"\ox’  Ox
 IP, . OP.
(34) 1 ik a—l_D’,+ 4 +i(ap" +a—Rk)+i —,i+ai
6\ 0x"\ dox’ ox' ox’ \ dx' o0x ox' '\ ax" ox’
_f 1 o' f o' f o' f
ax*ox'ox’ 3\ ax*ax'ax’ ox'ox*ox’  oax'9x’ax* )

But the left-hand side and the right-hand side give

15
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39 (aPl. anj 19 (aPl. an) 19 (aPk aPl.)
6 0x"\ax/ ax') 60x\0x’ 9x') 69x'\9x" 9x*

ERLARIA

C60i \9x° o/
_10 ﬂ_ﬁ)+ii(ﬂ_ﬁj
69x'\ ax* 9x’) 69x'\ax* a9x
and
3 Q' f 1 o’ f o’ f o’ f
39xFox ox’ 3\ ax*ax'ax’  ox'ax*ax’ oax'ax’ax*

_to(of af N rafaf  &f
30i'\ 9x 9%’ ox’ax" ) 39x’\ox"ox ox'9x"

so formula (34) becomes

10 (aP,. aPk) 19 [aPl. aij
+

20x'\ ax* ax’) 29x'\ax* ax
(35) 2 2 2 2
_o9( of of +iaf_af
ax'\ax*ax! ax’axt ) oax’\ax*ax’ oax'ax* )
Thus,
9 1(%;&)_ ’f , Of
ax'\ 2\ ax* 9x’ ) ox*ox’ ox’ax*
(36)

2 2
+i 1(3{’;_81})_ akf~i+ aif-k =0.
ox’ \ 2\ ox* 0x ox"ox' dx'ox

For every fixed k we get a system of differential equations considered in Lemma 3.

Since by hypothesis the system (28) has a solution, integrability condition for equa-
tions (36) yields

(37

aP 2 2
l .J _a—ﬂ - g f a~ f :A‘k+B'k1xl
2\ 0xF 0x') ax*ax’  ax’oxt ! /

for each k and for some A, =A; (¢,x") and B, =B, (¢,x") such that

(38) By, =-By;

(cf. Lemma 3). Formula (37) also implies that the coefficients can be chosen in a
unique way such that

(39) A,=-A,, B,=-B,.
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Formula (35) is a consequence of (28) obtained by derivations and subsequent in-
tegration. Writing (28) and (37) together as
1 (aP,- +8ﬁ) Of L, 9f

20 05* 0%/ ) oraxox*  ax'ox! 9x*
1(9P, R _ L Of &S
2(W_@ S At B T T a0
we get
JP, .
y = Ajk + B_/.,dx
(40)

ax* ax’  oax’ox*  9rox’ox*  ox'ox’9x*

°f_of  Of O

To determine integrability condition for this equation from commutativity of the
second derivatives 82Pj /9% 9x* we calculate

a,(A g e O ’f . of . 9f j

- - - - X
ax* ax’  oax’ax*  Arox’ox*  ox'ox’9x*
2 2 3 3
_3 a(af ;f  Of , Of x’]

ki % -

ax*ax’  ox’ax*  arox’ox*  oax'ax’ ax*

and

2 2 3 3
O (g 4p s oS O [ 0F | la,f i
ox'ox’ ox’ox' Odrox’odx' Ox ox’ox'

_n a(azf 82f+ O f . o f xl).

T ax o ax’ax 0rox 90X 9x' 9% o
The difference of these two expressions must be equal to 0,

o ( 0*f *f O’f 3f

B'ki . ka+j A ek T A Tk

oax axtox’  ax’ax"  9rox’ ox*  0x'0x’ 0x
2 2 3 3
—B,ik—i_k aAf_.— a.f_+ a.f_‘+ la_f — '
oax \ox'ax!  Ox’9x'  9tdx’ ax'  9x'9x’ ox'
= Bjki _Bjik =0.

Taking into accoung this condition together with (38) and (39) we get the following

index symmetries B, =—B,;, B;, =—B,, and B, = B;, . Then, however,

(41) Bijk =-B =Bjki :_Bikj Z_Bijk =0.

kji
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Summarizing, formulas (40) and (42) prove (30) and (31).
2. Suppose that P, and f satisfy condition (a). Then also equations (30) and (49)
are satisfied. But formula (30) admits integration in quadratures. Writing 9P, / ax* as
’f O’ f ’f I f
* T oxtox’  ox 0it | 0rox 0x* | ox' 0%’ 0%
X 0x x’ox tox’ dx X 0x’ 0x

4. Of ’f ’f 0 ( O’ f jC]j O f

ap;
axt

.+ - — - - —_— - - -
Koxkox!  ox’oxt  arox’ox* 9x*\ ax' 9x’ x* ax’

_0AX 9f ’f 0 ( 9’ f ,,)

- : — — X
axt  ox’axt  arax’ax*  ax*\ ax'ax’
we have
d L 0f O f ’f
ook PJ_AJI T T T o ad Aadaa X |7
ox dx’  odtdx’ OJx odx
hence
2 2
P—A,"+—f—a—f.— alf ' =R,
o dx’  9rox’  ox' ax’ /

for some functions R, =R; (t,x"). Equation (30) determines A;; then R; is deter-
mined by (29).

This shows that condition (a) implies (b).

3. The opposite can be proved by immediate calculation. Substitution from (29) to
(28) yields

l ai_i_ﬁ _ a%f _ a3f .l
2005 ax/ ) orox’ox*  9x'9x’ 9x*
2 2 2
_1 A, - Qf.k a_f_k+ ,a_f — X'+ akf_
2 ox’ox" 0rox’ ox" 0x' dx’ox dx" ox’
af 9’ f ’Pf L, S
+Ak_/_ ke ke I nok qej + Jqk
dx"0x’ 0tdx" ox’ 9dx 0x"ox dx’ ox
9’ 9’
f s i'=0.

T 9tox 0" ox'ox 0it

Lemma 8 The following two conditions are equivalent:
(a) P and fsolve the system

0P, +6P,»)_ ’f of

i i e I~ .'xlzo’
ox’  ox drdx' ax’  Jx' dax' ox’

(42) %[
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 JP,  JP,  JP,
(43) E__f_li(ﬂ__lj_li(ﬁ__f)xkzo
dx?  ax' 2ar\ax’ ox'
(b) P, is of the form

o P, Pf

P=R +A x'——- : _ X
IO 9y 9rax ax' ox!

’

where the functions R; = R, (t,x') and A, = Aij(t,xi) satisfy

. 0A, O0A,
A =—a, 0% N
’ ! ox’ ox' ox
and
. O0R. O0A.
(@4 a—R’.——'_’__’fzo'
ax./ axz at

Proof 1. Suppose that P, satisfies condition (a). Then P, also satisfies condition
(b), Lemma 7; we shall determine consequences of condition (43). From formula (29)
we have

 JP. ) . 2 3 3
OF 900 _OR A 9F | af_+ laf — i
dx’  ox' 9dx’  ox’ ox’dx'  drox’ox' 9Jx dx’ ox'
ax' 9x' dx' dx’  0rox'9x’  ox'ox'ox’

and

op, 9P, ’f . P f
L — 2(Al.j - + .

FrrT ox 0% ox’ ox

Substituting

OF 9P _19(0k 0P\ 1.9 (IR IR,
ax’  ax' 20t\aox! 9x' ) 209x*\ox’ 9x'
aRi aR./‘ _ aAij +(aAil + aAlj + aAji )xl‘

Toxr ox o \ax  ox  ox

(45)

Thus, (43) implies (44) and conditions (b) are fulfilled.
2. Condition (a) follows from (b) by formula (45).

Lemma 9 Suppose that a source form €=¢, satisfies conditions (12), (13) and
(14). Then

(46) g, =P+0Q,i,
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where
82
Qij= .,-f.,-
Jax' ox:
and
a ) a ) 2 2
47) P.=a—h—ﬂ+(a—m—i;)x1—a—f+ O O u
Toox! ot dx’  0x dx’  9tox’  ox' 9x’

for some functions f:f(t,xk,)'ck), u :nj(t,xi) and h=h(t,x").

Proof According to Lemma 6, P, and f solve the system (25), (26), that is, the
system (42), (43); thus by Lemma 8

2 2
P,:R,+A.,x’—a—f.+ 9 f.+ al f_x’,
ool ox’  dtox’ Ox 9x’

where R, =R, (¢,x") and A, = Aij(t,xi) are some functions such that

. 0A. O0A.
A =-A, 04y 0% | L=0
v oax) 0 ax' ox
and
9R OR. O0A.
(48) ST =0
ox’  Ox ot

These conditions allow to construct 17; and 4. We have

_on; _om,
Voooxt 9x!

E_%_Q(am_%)
ax’  ax' ar\ ax’  ax’

) an.
i‘(Ri-’_%)_ G(R+L)=O
dx’ ot ox'\ 7 ot

Integrating for any fixed 7,

and then (48) yields

hence

R+ Ok
ot 0x'

for some function /= h(t,x") . Using these functions we get (47).
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Our discussion now concludes into the following assertion.

Theorem 3 Suppose that a source form € =&, satisfies conditions (12), (13) and
(14). Then there exist some functions f= f(t,x*,x"), n,=n,(t.x") and h=h(t,x")
such that €,, are the Euler-Lagrange expressions of the Lagrange function given by

(49) P=f-nx —h.

In particular, € is a variational source form.
Proof Set f,=-nx'—h, $=f+f. Calculating the Euler-Lagrange expres-
sions of the Lagrange function & we get

oy, d o,

E(f)+E(F)=—20 L E
(f)TE(f) o T dr ox (f)
on, .,  oh dn,
M o0 AN g
ox~ Tow a TEW)
oh an. (an, an) y
O oM (O oMy g
o o lax an )¥TEWD
=E£..

i

Remark 2 Formula &= f —n,x’ —h (49) defines a (first-order) Lagrange func-
tion for the source form &, =P, +Qi,jc'l (46), satisfying conditions (21), (22), (23) and
(24). The functions f and 7], can be determined in an explicit form as functions of the
components F, and Q;, and h remains arbitrary. Indeed, according to the Hessian ma-
trix reconstruction lemma,

f= x'x-/'[(:(.[; Q”(K'L'x”)drc)fdr.

Then setting

. . - - - X
T axT drax’ ax'ax!

2 2
s_p Of_Pf _Tf

formula (47) becomes

an, _om,

- on.
(50) }1=f@f—lﬁ+( 4 ,]ﬂ.
Toox! ot dx’  ox

Then

ax*  ax’

0P, _on, _dn, :1(813_,. ai)k)
ax*  ax’ axt 2 '

Consequently, by Lemma 2



22 D. Krupka

0B | ofaP aﬁ)
_ 0 0:7 y4 _p__l
n,=n, +8x1 > 1 2x Jo(ax’ ax? (t,KX')KdK

where ® = d(¢,x') is arbitrary. Then from (50)

Substitutions for 7, and I5J show, however, that this equation is satisfied identically.

4 First-order variational source forms

Consider a first order source form € = ¢, , where
g =¢,(t,x',x).

In this case Theorem 2 and Theorem 3 of Section 3 imply that the variationality of € is
equivalent to the conditions

. 0€.
) 08 L 08 _
ax’  ox'
and
d (de O€;
3 P A
©) ax"(axf ax')
. 0€; . 0€; . 0€,
4) E__f_li(ﬁ__f)_lil(%__/)x’:o
dx’  ox' 20t\ox’ Ix' 20x'\ ox’ ox'

Note, however, that according to Section 3, Lemma 3, condition (3) follows from (2)
and may be omitted.

The following two theorems provide a complete classification of the first-order
source forms.

Theorem 4 Let £=¢; be a first-order source form. The following two conditions
are equivalent:

(a) € isvariational. .

(b) There exist a system of functions n=mn;, n,=n,(t,x’"), and a function
h=h(t,x’) such that

5) £ =

o ax' ox'

oh 6ni+(6n,_8ni)x1.
ox' ot

Proof 1. Suppose that & is variational. Then by Section 2, Lemma 3, equations
(2) imply
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(6) g =R+S,%,

where R, = Ri(t,xk), S, = Sij(t,xk) are some functions such that §; =—S ;. Then (3) is
an identity, and equation (4) implies

8_&_%4_(%_%))&1_13(&1—%)_1B(SU—Sﬁ)xl

ax’  ax' \ax!  ax' 2 9t 2 oy
:a_R{_a_R{'_%-p %—ﬁ—ﬂ i'=0.
ax’ ax' ar \ox’ ax'  ox'

Since the coefficients in this linear expression does not depend on x', we get

. 9S, oS
9) 9y Py 7=0
Jox’  dx'  Ox
and
dR. OR, 05, 0
ox’  ax' ot

Equation (9) can be integrated. According to Section 2, Lemma 2, there exists a
system of functions 1 =1, such that

an, Jn
(an Su= 3 o

Then condition (10) transforms to

. an,
i(RI +%)_i(R +i):0
dx’ ot ox'\ 7 ot

and can also be integrated. We get

(13) R+ M _ ok
ot  ox'

for some function /= h(t,x") . Substituting into (6) proves formula (5).
2. The converse follows by substituting from (5) into (2) — (4).

Theorem S If a first-order source form € =g, is variational and is expressed by
(5), then € has a Lagrange function

f=-nx'—nh.

Proof The Euler-Lagrange expressions of the function (14) are
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2 2
E(n=-20 y OF O u_ Oy, Oh 0N, O
Jx'  odrox' ox' ox' ox' Jox' ot Oox
oh_on, (o, o)y

ax"_§ ax' ox'

Remark 3 Formula (5) shows that the classification parameters for the first-order
variational source forms are real-valued functions 1, and & of the variables #,x'. For a
given source form € = ¢, of the form (6), these functions can be determined by integra-
tion from formulas (11) and (13).

5 Lagrange functions: Canonical decomposition

In this section we consider Lagrange functions, which do not depend on #; this as-
sumption simplifies calculations, but main motivation consists in possibilities of com-
paring of the formulas with Finsler geometry. We use an observation that the decom-
position £ =9 —Al, applied in Lagrange mechanics, can be constructed for an arbi-
trary Lagrange function & :U x R" — R, not necessarily quadratic in the x'.

Let £:UXR"™ — R be any Lagrange function. Setting

2
g1 902 sy
2 0% 0%’

we get another Lagrange function & :UXR"™ — R, called kinetic energy, associated
with & , and a decomposition

L=J-U,
where AU is potential energy, associated with & . The Euler-Lagrange form of &£ is

0L d aF

E($)=—"T"r"",
() ax*  dr 9"

Both functions J and AU are invariant with respect to coordinate transformations

Indeed,
P’ :iaéfzi(ﬁﬁjzﬁa_f%
ax'ox’ ox'9x’ ox’\0i* 9x') oi*ox' ox’ ox'’

Set

i’ L

Voo9xtox!
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In this notation
a1y i
T =—hx'x.
2 Ul
Note that hl.j satisfies basic conditions of a Finsler metric

oh; o

) ik
=1, K -
) JU ax ax./

We call h; the metric, associated with &£ .

Lemma 10 (a) The Euler-Lagrange form of I is expressed by

0T d 89_1(_8hi,+%+(9il_ﬂ(jx,x,

_ﬁ E@_E ax*  ax’  ox'

*h. . 1 *h. . . oh, .
41 i | i+ —L i + by, |§
20x' 0x 2 0x" 0x 0x

(b) The Euler-Lagrange form of U is expressed as

P PY k i i
Cox* dr 9x© 2 Jdx"  odx’  Odx

Oh, . h, . . oh,
i1 i+ ! L |5
29x dx 29x" 0x dx

+§_ azg )'C[
ax*  ax'ox*

Proof (a) Differentiating & we have

0F _10h; ., 9T _ 10k

L]

= . =X
axt 2 9xF axt 204" "

and

0T dadTJ _ 10h;
—— =X

ax* " droxt T 2ax*
oh, oh;
+i(1 —L i3 + X jx +i[1 L' + b, &' )x

ax\ 2ot ax'\ 2 9x*
=1 —ahZ+ahi’T+ahj. 4 f+— Thy i
2\ 9x" ox!  ox' x ox*

1 h, .
+ = — X% + Li +hy, |%
2 9x" ax'
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(b) The Euler-Lagrange form E(U) is defined by E(U)= E(J)— E(Z) hence

ax' " droxt 2

O d o 1 Oy oy M) 1Oy
oxt  ox’  ox' 2 9x' ox*
h. o ¢ 9’
L0 i S |y O Oy
2 9x" 0x ox Jx"  0x'dx

proving Lemma 10.

6 Variational forces

In this section we study Lagrange functions & :U XR" — R satisfying the metric
homogeneity condition

ix" =0.
x ax’ 9x*

ey

Using the metric h; associated with &£, this condition can equivalently be expressed
as

ahii - k
) St =0,

Its meaning is explained by the following theorem.

Theorem 6 Ler & be a Lagrange function. The following two conditions are
equivalent:

(a) &£ satisfies the metric homogeneity condition.

(b) The Euler-Lagrange form E(AU) of potential energy U is of order 1.

Proof 1. We show that (a) implies (b). Applying condition (1) to E,(U) (Lem-
ma 10, formula (15)) we get by a straightforward calculation, using formulas (13), Sec-
tion 5,

1 &h; .. Oh
—— ./xx/+_-kx/
3) 20x" 0x ox
oh, . Oh, .
X X X X

Consequently, E(U) is of order 1.

2. Conversely, let & be a Lagrange function such that E(U) is of order 1. Since
E(W) is a variational form, according to Theorem 5 it has a Lagrange function
WU =-h-nx', where h and 7 ; are some functions depending on x' only. Then, how-
ever,

“4) E(W)=E (W),
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and the source form E,(U) has two Lagrange functions, U and AU’. This condition
implies that the difference U—" belongs to the kernel of the Euler-Lagrange map-

ping

(5) %=m’+d—f:—h—nixi+ﬁ
dt dt

for some f = f(x') (Section 4, Theorem 1). On the other hand the functions E,(U)
are determined by equations (15), Section 5; thus, condition (4) reads

oh,, dh, . . *h.
Euy=L[ -2y O P iigrf 1M i
2\ 9x" ox’  9x' 2 0x'9x

+| = XX PSP
2 9x% ox! ax* ax*  ax'ox*

_%+(8nz 8nk)xl'

Caxk \axt ax!
Consequently
1 0°h L
(7) Eaxka;c’xxj+ L3 =0

Since expressions Ghjk /9x' are symmetric in j, k, [ we have

a*h. . oh.
© o s T (),

— X - X' = —
2 9x* 9x! ox’ ax'\ 2 9x*

Integrating

(9) l%xixj—d)
29577 0

where @, =@ k(xi ) . This formula solves equation (7).
We use this formula to determine expression

L 8T U

10 =
(10 axt  axt 9t
Since
P,
(1 i(lh x"xf)—h PRSI S g
gt \27 w72t S a—_Jk—hikx",
X

then
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0T

(12) @=q>k+hikxi.

On the other hand, from equations (5)

ML of

13 ——n + ,
13 PYE
thus

0¥ i d
(14) W:d)k+hikx +nk_ﬁ.

In this expression

9 af
@(‘Dk*”fﬁ)

(15) 0,
= i(ﬁ_ )_ 0L Oy iy,
ax' Lax* %) axfax o 2
therefore
3
(16) Oy i ot ' =0.

X =—X
ax' 9x* 9x' 0x'

Theorem 7 Let & satisfy the metric homogeneity condition. Then

. d
(17) w=—h-ni+<,
dt
where
’>L ., AL of 1 3% .., %L
18 = ¥+ L h= i -+ 2
(18) M=o " T Toxt 2 957 9%’ ax'

for some function f = f(x'). The functions 1, and h do not depend on x'.

Proof By Theorem 6, the Euler-Lagrange form of AU is of the first order. Conse-
quently,

oh (o an.).l
19 EW)=—+ L&
(19) (W ox' (8)6’ ax' o

for some functions 7, =n1(xi) and h=h(x") (Theorem 4). E,(U) also admits a La-
grange function U’ =—-h—nx" (Theorem 5). Then E,(°U) has two Lagrange functions,
U and U" hence, using definition of AU
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2
LI TV )
205 0%

o df
—h—n. ’+_
nx dr

(20) W =

for some f= f(x'). Verification of conditions (18) is now straightforward. Indeed,
differentiating expressions (20) with respect to x*

1 0% L *E ., A% of
21 = i i+
@ M= 5 0% 03" ax'ax* T axt ax*
hence
2 2
h:-(-%xwa—%ﬁ—{jxwﬁ—lﬁmusg
22) 0x’ 0x Jax'  ox dr 209x'ox’
1 % ... A% ..
) L e
2 9x’ ox' ox'
Then
an 4 > L
23 —k =0
23) ax' ax' ax*  ax*ox'
and
oh 9 R . L
Fzﬁ(;a"’a'fxlx]_a'iwri)
(24) X X X 0X X
1 L R R NPT S Y I . b
:—*ﬁxl)‘(j'i‘ " ‘[)'Cl— r .,)'c’——.l+—,l=0.
29x'ox’ 0x ox' 0x ox' 9x ox  ox

Our aim now will be to find explicit description of Lagrange functions satisfying
the metric homogeneity condition. Our partial results can be summarized as follows.
Given an arbitrary Lagrange function & , we have the canonical decomposition

(25) F=TJ -0,
where
2
(26) gl 0% uy
2 9x' 0x’

Then the following conditions are equivalent:
(a) & satisfies the metric homogeneity condition.
(b) The Euler-Lagrange expressions E,(U) do not depend on i, that is,
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OE(U) _
ox

0

for all i and ;.
If these conditions are satisfied, then 9 is of the form

0u=—h—nl.x"+ﬁ,
dt

for some function f= f(x'),and

2 2
(29) n = 0F wydL, or 1 02

0% .
- —+t— Xx-—x+ <.
ax' ox Jx" odx

2 95’ 0/ 9’

The functions / and 7, do not depend on i"and Euler-Lagrange expressions of A are

oh an, on ).1
30 E (W) =—+| —L-—* |4,
30) (W) ax* (axk dx' *

Remark 4 Equation (30) shows that for m =1 (the case of mechanical systems
with one degree of freedom) the Euler-Lagrange form E(°U) cannot depend on x . In
particular, equation of the motion of the one-dimensional damped harmonic oscillator
cannot be variationally characterized this way.

It has already been noted in Section 5 that the kinetic energy part in the canonical
decomposition of a Lagrange function has some properties of the fundamental Finsler
functions in Finsler geometry. We shall now discuss these properties in more detail.
We define a (possibly singular) Finsler metric as a system of real-valued functions
8;=8&; (x*,%") defined on U xR™, satisfying the following conditions:

(a) The matrix g; is symmetric,

31) % =85

(b) The derivatives satisfy

g, dg, g,
32 [/ zlf , i ok _
G2) ax*

0.
ax*  ox’

Theorem 8 A Lagrange function & :UXR™ — R satisfies metric homogeneity
condition if and only if

(33) $= % g X +hn

where g, is a Finsler metric and h and 1, are some functions depending on x' only.

Proof 1. Suppose that we have a Lagrange function & satisfying metric homoge-
neity condition. Then by Theorem 7, it is necessarily of the form
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T . . . df
34 =—g XX +h+nNx' +—
(34) L= gy AR+
where
Y
8= x 0%l

and f, 7], and h are some functions depending on x' only. The functions g; obviously
satisfy (31) and (32). Setting

af
=1+
n=n oy

we get (33).

2. Conversely, if g; is a Finsler metric, then by (31) and (32), direct differentia-
tions of &£ (34) yield

0L 108, ., i
W=§Wxx + 84X +1,

76258 —lﬁxi_’_
o ox  2ax 8K

Hence

3L .9 ,
e e T )
ox’ ox" ox ox

Theorem 9 For every Finsler metric g, formula (33) defines a solution & of
equations (29).

Proof Suppose we have a Finsler metric g, and consider a Lagrange function &£
(33). Differentiations yield

9P 10e
= 1080 i v g i,

0% L _ 08y
ax* 2 9x B

—_— X .
aitox  ox b

From these formulas

R 2 K y y
_axiaxk'x +ﬁ:_gikx + 8y X +1, =1,
and
i .. )
1 — ,.x’xf—gx#i
2 9x' 0x’ ox'

l ie . . i ] ciej o
=5 8% X —(gx +m)x +5 8% X +h+nx'=h.
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Remark 5 Note that 77, can also be expressed as

n, = g (a;‘cg_xf)mﬁ—i(zse—aixf').
ax./

T I TS 9!

Integrating
oL L
28— - =Y

where W =W(x') is an integration constant. Since

2
(1L 02)u
2 9x' 0x’ ox'
2
:1( 0L '-f—a‘%g)x"—l(a‘%gx"—zsg)
2\ 9x' ax’ ox' 2\9x'

R DY Y B A |
= znkx 2( n,x lI’)—Z‘I’,
we have

233—6%2)&" =2h+nx’.
ax./ J

Our main goal is in this section is to study variational properties of first-order
source forms ¢, :UXR™ — R"; we call these forms forces. A force ¢, is said to be
variational, if there exists a Lagrange function &£ :U XR"™ — R such that

(46) ¢i = Ei($ -7),
where I is kinetic energy associated with & , or, equivalently, if
¢i = Ej (OLL)a

where AU is potential energy associated with & . Thus a variational force is exactly the
Euler-Lagrange form of the potential energy AU . Allowing U to depend on positions
and velocities, then we also admit variational forces depending on x' and ' .

The inverse variational problem for a force ¢, consists of finding integrability
conditions and solutions & = F(x',x") of the system (46). We already known that the
integrability condition is given by equations (2) and (4) of Section 4,

- 00,
ai)’.+ i =0,
ax’  ox'

% a¢j la(a(pi aq)j) 14 (6¢i a¢jjx1:0

ax’  ax' 2ot

ax’  9x'

ax’  9x'
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The following two theorems give a more detailed information.

Theorem 10 The following two conditions are equivalent:
(a) ¢, is a variational force. . .
(b) There exist functions P=P(x') and Q, = Q,(x") such that

_dP (aQ, —@)Xl.

ax*  ax'

(50) ¢ =—7+

©oxt

Proof 1. Suppose that ¢, is variational. Since it is of order 1, (b) follows from
Theorem 4.

2. If ¢, is expressible by formula (50), then ¢, is variational as a first-order
source form so it has a Lagrange function U =—P—Q,%' (Theorem 4).

Remark 6 The class of variational forces admits a physical interpretation; it in-
cludes some dissipative forces, depending on velocities.

Theorem 10 should be completed by description of a/l Lagrange functions defin-
ing a fixed variational force ¢, . The following is a solution of the inverse variational
problem for forces, depending on positions and velocities.

Theorem 11 Let ¢, be a variational force, let U,=-P—Q,%" be a Lagrange
Sfunction for @..Then the following two conditions are equivalent:

(a) & satisfies ¢, =E(L-7).

(b) & isof the form £ =T U, , where

|
gzggijxx"

Jor some Finsler metric g,; .

Proof Immediate.

7 Newton’s equations

In this paper the source forms € = ¢, with components
..l
ey € =g;X — [,

where g, and f; are functions of ¢, x' and x, will be referred to as the Newton’s
source forms.

Lemma 11 The Newton’s source form (1) is variational if and only if

(2) gij_gjizo’

o 0g,
3) 98 Er ),
ax’  ox




34 D. Krupka

o df. dg. 0g.
) l(af'.+ ff)+ 8 28 512,
2\ax’  ox' ot ox
o 0g, o adf,
5) % 08 10 ).,
dx’  dx' 20x \dx’ 9x'
© o adf, © o df, o adf,
(6) a_fl___fl__kli(a_fl__i)_,_lik(a_f{_ijxk:()‘
dx’  dx' 29r\ax’ odx'/ 2d4x \dx’ ox

Proof Integrability conditions for the source form (1) are determined by Theo-
rem 2; we have

JdE. aej
—L - L =g —0.=0,
ox  ox  SuT i
g, ¢, d ﬁﬁ%j
ax’  ax'  dr\ox’  ox
:(&&)xl_a_ﬁ_a_ﬂ_mzo,
9%’ o' 9%’ 9x' dr

and

Og;, _0¢; 1d(0e Of;
ax’ ax" 2di\ox’ ox

:(Lﬁ_aiﬂ)xl—a—ﬁﬁ—ﬁ_li ("’iﬂ_aﬁ)xl-a—ﬁﬁ_ﬁj:o.
Jax’  ox' ox’  ox' 2dr\\ox’ ox' Jax’  ox'

Solving this system,

gij_gji:O’
(35, 080990,y
ox’  ox' ox’  oax' dt
=(Lgﬂ+ai7)x’—a—ﬁ—a—ﬁ—zﬁ—zaiﬁx’—zagﬁjc"
ax’  ox' ax’  ox' ot 0x 0x
=[L‘_"".+ai_f.’—2ag_'{)xf—a—ﬁ—a—fi—z(ﬁﬁg;f'f):o
ox’  ox' 0x ox’  ox' Jt  ox

and, after some calculation,
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98 _&)xl_%+a_f/)

(%_ag.ﬂjxl_afi +6f_,_li [
ax’ ax' ax’  ax' 2dr\\ax’ 9x' ax’  ax'
- df, - af. - af.

=—af‘.+ f’,—la(—af‘.+ f{)—lak(—afﬂ+ f’)xk

dx’  dx' 20r\ ox’ 9Ix'/) 20x ax’  ox'
(&_%_li(ﬁ_ﬁj_1i(&_&)_li[_%+af,))x,
ax’  ax' 20t\9x’ ox' /) 20x*\ax’/ ax' ) 20x'\ ox/ 9

_li(%_aiﬂ)xlxk_1(&_8&5)36*_
29x \ax! 9 20 9x7 9%
Consequently, we have a system
gij_gji:O’
a;gi’.+aif.’— aiﬁ=0,
ax’  ox' 0x
- df dg. 0g.
a—f’.+4+2(ﬁ+i’jx’)=0,
ax’  ax' ot dx

"~ Of, "~ Of, - af,

—a—ﬁ+—f{—13(—6—{:-}-4)—1%(—%4-4}56,(:0,

dx’  ox' 2ar\ ox’ 9x'/ 20x ax’  ox'
&_%_13(&_%)_li(&_ﬁ)_li(_%ﬁ_f/—]:o
ax’ ax' 20t\ax’ ax' ) 20x*\ox/ ox' ) 20x'\ ox/ 9 ’

d (agil agﬂ) J (38,-1( 8gjk)_
vl Seevinieerl Rivevd Eroysaiornl A
Jox"\ax’ odx ax' \ax’ ox
98y 98 _
ax’  9x'
This system is equivalent to
gij_gji:O’

~adf, dg. 0g.
l(a—f’.+i’.)+—g’-’ +—g’j =0,
200x’  ax' Jt  Ox

%_Lffﬂi(
ax’ 9x' 29r\ax’ 9x’

%_%gi(%_a_ﬁ):o
ax’ ax' 29x'\9x’ 9x' ’

o af. - af.
2 ) 10 (U N,
29x"\dx!  ox'

98y 98 _

- — =V,

ax’  ox'
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that is to the system (2) — (6).

Supposing that integrability conditions (2) — (6) are satisfied we now find solu-
tions & of the inverse problem equations

(7) &X' = fi=—"=

Theorem 12 The source form (1) is variational if and only if

%_%_11(%_%%1:0

ax’  ax' 29x'\ax’ ax’

Proof 1. First we solve the autonomous subsystem (2), (3). Its general solution
& is, according to the Hessian matrix reconstruction lemma (Lemma 4)

$=%,+A+Bx,

where
££ = lh i/ h —2 : ! P P d d
0o T X X My = IO(JOg,j(t,X KTX") K)T T

and A, B, are arbitrary functions depending on ¢ and x”. Using &, the Newton
source form (1) has an expression

4
8,: A..[_ ‘:'70..[
I T
0 9? 9? 9?
=- ‘5£.°+ 56.0.+ ,"CB?.)‘H ,,‘SB?,X’—fﬁ
ox'  drdx’ Ox ox' Jx ox'
:Ei(go)—@,

—J;

£, &L, &L,
ax' 9tax’ ox'ox'

where

L%, L, P,
ax'  9tax’  ox'ax'

o, =/,

Thus, variationality of the Newton’s source form (1) is equivalent to variationality of
the (first-order) source form ¢, .

2. Conversely, according to Theorem 2, and Section 4, equations (2) and (4), inte-
grability conditions for the source form (1) read

%4_%—0

7 . L =
@ ax’  0x'

and
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ax’  9x'

) 2 30 100 B 10(% By
Tox 2ar\ax ox ) 20X o

Equations (7) can be integrated. We have
¢, =A+ Bilxl ’
where A, and B, are arbitrary functions of # and x' such that B; =-B, . Thus

0L, 7%, 9L, .
ax'  9rax’ oax'ax'

fi=A+Bx +

To determine condition (8), first calculate partial derivatives of the functions ¢,:

09 _of,_ ¥%, S L, P,
ax’  ax’ ax'ox’  ordx’ox’  ox'9x’ax’
fﬁi.=.§4;- 82;8?.-F 82;8?,—F 83550..-+ ?3§£° — '
Jax’  o0x’ odx'ox’ 9x’Ix' 0tox'ox’ 9Ix' 9x'ox’

Hence
99, 99, _af _9J;
ox’ ox' ox’  o9x'
POy P 8 (78, 0,
9t\ax’ax" ox'9x’ /) o9x'\ox’ox’ 9x'9x’
and
%_%za_ﬁ_a_ﬂ_z( Ly 62?’30)
ax’  ax'  ax! ox' ax'ax’  ax'ax')
Then

99,99, 10(09 _0,) 10 (09 3,
ax’  ax' 29r\ax’ ox') 29x'\9x’ 9x

08, 9 0%y Py ) 0 (0F, 05,

ax’ ax' at\ax’ax’ ax'ax’ /) ax'\ax'ax’ 9x'9x’

13(8_]3_%}3(3%80 ~ azggo)

20\ 0% 9% ) ot\ox 9x’ oxiox

N TRRIA PR K A C
ax’  9x' ax'\ox' ax’  ax’ox’
38210 (934,

ox’ ox 20x'\9x oi

2 9x'
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Since this expression should vanish, we get formula (7) as required.
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