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 In this lecture we describe all metric tensor fields on the manifold 
R3 \ {(0,0,0)}  and R × (R3 \ {(0,0,0)}) , invariant with respect to rotations. The 
rotations are elements of the group SO(3)  of 3× 3  matrices τ  such that the 
transposed of τ  is equal to the inverse, tτ = τ −1 , and detτ = 1 . We consider the 
standard left action of SO(3)  on R3 \ {(0,0,0)} , and call a metric tensor field g-
invariant with respect to rotations, if τ∗g = g  for all  τ SO(3) ; this definition 
also implies to the manifold R × (R3 \ {(0,0,0)})  via the second Cartesian factor.  
 Then we consider the standard Schwartzschild solution of the Einstein 
equations. We give a geometric construction of a 2-dimensional manifold X, 
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diffeomorphic with R2 , equipped with a metric g of Lorentz type, and satisfying 
the following two conditions:  
 (a)  X is the union of mutually disjoint open submanifolds P and Q and a 1-
dimensional closed submanifold S, and  
 (b)  The restrictions of g to P and Q coincide with the Schwarzschild solution 
of the Einstein equations.  
 This construction provides a new interpretation of the well-known “Kruskal-
Szekeres extension” as the globalization of local coordinate expressions of the 
Schwarzschild metric field. The metric g on X, extending the Schwarzschild 
metric, is given explicitly.  

1  Introduction  

 Our aim in this lecture is to analyse the well-known relativistic concepts, 
related with spherically symmetric solutions of the Einstein equations, namely the 
Schwartzschild solution  

(1)  
 
gm = − r − 2m

r
dt⊗ dt + r

r − 2m
dr⊗ dr + r2 (dϑ⊗ dϑ + sin2ϑ ⋅dϕ⊗ dϕ ),  

the “Kruskal-Szekeres coordinates”, and the “Kruskal-Szekeres extension”.  
 We use notations and standard terminology that allows us to restrict our 
considerations to 2-dimensional underlying manifolds. In our constructions we 
take over the well-known Schwarzschild, Kruskal and Szekeres coordinate 
expressions, giving them, however, a different geometric meaning. However, our 
basic results - an explicit manifold description of what could be called the 
Kruskal-Szekeres spacetime, as well as the methods of its construction - differ 
from the usual coordinate settings; formally, they seem to be closest to Kriele [4].  
 We consider the 2-dimensional manifold M = R × (0,∞) , its open 
submanifolds P = R × (0,2m)  and Q = R × (2m,∞) , and a metric field gm , 
defined on  P∪Q  by  

(2)  
 
gm = − r − 2m

r
dt⊗ dt + r

r − 2m
dr⊗ dr.  

We call gm  the Schwartzschild metric field. Our main objective is the discuss 
properties of the points  (t,2m)M  that do not belong to the open set  P∪Q .  
 Historically (indeed in the context of 4-dimensional relativistic spacetimes), 
many authors regard the points (t,2m)  as “singular points” of the Schwartzschild 
metric. There has been a permanent effort to find a way, how to include these 
points into the domain of definition of gm  or “remove” them from the underlying 
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spacetime. The most well known tools have become the Kruskal-Szekeres 
“coordinates”; the result is known as the “Kruskal-Szekeres extension” of the 
underlying manifold and “extension of the Schwarzschild metric field” (see e.g. 
De Felice and Clarke [3], and Kriele [4]). However, in spite of these discussions 
it is obvious from (1) that gm  cannot be extended to a continuous metric field, 
defined everywhere on M, and the “singularity” cannot be “removed”. 
 Many questions concerned with these contradictory ideas, have been 
presented by different authors with different understanding and different opinions 
or criticism (see for instance Crothers [2] and references therein). 
 In this article we do not follow these lines. We regard gm  to be a chart 
expression of a metric field g, defined on another manifold X, not on M. We 
construct a 2-dimensional manifold X, diffeomorphic with the Euclidean space 
R2 , and a metric field g of Lorentz type on X, with the following two properties:  
 (a) X is the union of mutually disjoint open submanifolds P and Q and a 1-
dimensional closed submanifold S, and  
 (b) the restrictions of g to P and Q coincide with the Schwarzschild solution 
(1) of the Einstein equations.  
 Clearly, X will be determined up to a diffeomorphism. A concrete model for 
X, P, and Q can easily be recognized from a diagram describing the Kruskal-
Szekeres coordinates (see [4]). The metric tensor field g, whose restrictions to P 
and Q coincide with gm , is given by  

(3)  g = 16m2g0,  

where g0  is a metric field on an open subset of R2 , defined by  

(4)  
 
g0 =

1
1+W ((U 2 −V 2 ) / e)

e−1−W ((U
2−V 2 )/e)(dU⊗ dU − dV ⊗ dV ),       

U and V are the canonical coordinates on R2  and W is the Lambert function.  
 Note that the metric field g0  is independent of the mass m. Two metric 
fields, corresponding with different masses, are in conformal correspondence.  
 Our analysis has also some general aspects, namely, what kind of data we 
have when we are given a solution of the Einstein equations. To give a sense to 
these local data (metric fields defined in terms of coordinates), we need to embed 
them in a concrete spacetime manifold, and then to globalize them in this 
manifold. In this sense the method we use in this paper can also be regarded as an 
example of globalization of the (local) Schwarzschild metric fields. The topology 
of the resulting manifold is in this case the topology of R2 .  
 From the nature of these results we prefer to use the phrase Kruskal-Szekeres 
globalization instead of Kruskal-Szekeres extension.  
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2 Rotations in Euler angles 

 Consider a rotation τ  of the Euclidean space R3 , given in the canonical 
coordinates as a mapping  

(1)   x = x τ , y = y τ , z = z τ .  

τ  can be characterized  explicitly by means of three real parameters, the Euler 
angles Φ1 , Φ2  and Θ  ; equations of the rotation τ  are   

(2)  

x = (cosΦ1 cosΦ2 − sinΦ1 cosΘsinΦ2 ) ⋅ x
− (cosΦ1 sinΦ2 + sinΦ1 cosΘcosΦ2 ) ⋅ y + sinΦ1 sinΘ⋅ z,

y = (sinΦ1 cosΦ2 + cosΦ1 cosΘsinΦ2 ) ⋅ x
+ (−sinΦ1 sinΦ2 + cosΦ1 cosΘcosΦ2 ) ⋅ y − cosΦ1 sinΘ⋅ z,

z = sinΦ2 sinΘ⋅ x + cosΦ2 sinΘ⋅ y + cosΘ⋅ z.

 

The domain of definition of the mapping (2) is R3 , and the mapping is composed 
of periodic functions. We may restrict the domain of definition if suitable to the 
sets where (2) is a three-parameter family of diffeomorphism. If we take for the 
domain of definition of the parameters the set  

(3)  −π <Φ1 < π , −π <Φ2 < π , − π
2
<Θ < π

2
,  

then the point (Φ1,Φ2,Θ) = (0,0,0)  defines the identity rotation. The parameters 
(Φ1,Φ2,Θ) = (0,Φ2,0) , (Φ1,Φ2,Θ) = (0,0,Θ) , (Φ1,Φ2,Θ) = (Φ1,0,0)  define 
one-parameter families of rotations  

(4)  
x = cosΦ2 ⋅ x − sinΦ2 ⋅ y,
y = sinΦ2 ⋅ x + cosΦ2 ⋅ y,
z = z,

 

and  

(5)  
x = x,
y = cosΘ⋅ y − sinΘ⋅ z,
z = sinΘ⋅ y + cosΘ⋅ z,

 

and  
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(6)  
x = cosΦ1 ⋅ x − sinΦ1 ⋅ y,
y = sinΦ1 ⋅ x + cosΦ1 ⋅ y,
z = z.

 

Note that multiplying these three matrices,  

(7)  
cosΦ1 −sinΦ1 0
sinΦ1 cosΦ1 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0
0 cosΘ −sinΘ
0 sinΘ cosΘ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

cosΦ2 −sinΦ2 0
sinΦ2 cosΦ2 0

0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,  

we get the matrix of the transformation equations (2).  
 One can directly verify that the rotation matrices do not commute. The 
inverse of the rotation, given by the parameters (Φ1,Φ2,Θ) , is the rotation given 
by (−Φ2,−Φ1,−Θ) . Indeed, we have from (2), replacing the triple (Φ1,Φ2,Θ)  
with (−Φ2,−Φ1,−Θ) , 

(8)  

x = (cosΦ2 cosΦ1 − sinΦ2 cosΘsinΦ1) ⋅ x
+ (cosΦ2 sinΦ1 + sinΦ2 cosΘcosΦ1) ⋅ y + sinΦ2 sinΘ⋅ z ,

y = −(sinΦ2 cosΦ1 + cosΦ2 cosΘsinΦ1) ⋅ x
+ (−sinΦ2 sinΦ1 + cosΦ2 cosΘcosΦ1) ⋅ y + cosΦ2 sinΘ⋅ z ,

z = sinΦ1 sinΘ⋅ x − cosΦ1 sinΘ⋅ y + cosΘ⋅ z .

 

The matrix of this transformation is transposed to the matrix of (2) so it coincides 
with the inverse matrix of equations (2). On the other hand, it is by definition the 
inverse of the matrix of (2), because the rotation (Φ1,Φ2,Θ)  followed by the 
rotation (−Φ2,−Φ1,−Θ)  is the identity rotation.  
 For geometrical meaning of the Euler angles see e.g. I.M. Gelfand, 
P.A. Minlos and Z.J. Shapiro, Representations of the rotation group and the 
Lorentz group, GIFML, Moscow, 1958 (Russian).  
 Note that the choice of parameters Φ1 = π / 2 , Φ2 = −π / 2  defines a one-
parameter  family of rotations around the y-axix,  

(9)  
x = cosΘ⋅ x + sinΘ⋅ z,
y = y,
z = −sinΘ⋅ x + cosΘ⋅ z.

 

 Another useful example of a rotation, which is the composition of the 
rotation α  around the z-axis and the rotation β  around the x-axis. The matrix is 
given by (7),  
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(10)  

1 0 0
0 cosβ −sinβ
0 sinβ cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosα −sinα 0
sinα cosα 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
cosα −sinα 0
cosβ sinα cosβ cosα −sinβ
sinβ sinα sinβ cosα cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

 

Let ν  be the rotation, defined by α = π  and β = π / 2 . Then ν  has a matrix  

(11)  
−1 0 0
0 0 −1
0 −1 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,  

and the equations  

(12)   x ν = −x, y ν = −z, z ν = −y.  

 
 Remark  It follows from the decomposition (7) of any rotation that to prove 
that a differential form is invariant with respect to all rotations it is sufficient to 
prove its invariance with respect to rotations around the x-axis and z-axis.  

3 Spherical coordinates 

 By the first spherical chart on the manifold R3 \ {(0,0,0)}  we mean a chart 
(U,Φ) , Φ = (r,ϕ,ϑ ) , where  

(1)    U = {(x, y,z)R3 \ {(0,0,0)} | x ≥ 0, y = 0}  

and the coordinate functions are defined by 

(2)  r = x2 + y2 + z2 , cosϑ = z
x2 + y2 + z2

, tanϕ = y
x
.  

The range of the chart in R3  is the set where  

(3)  r > 0, 0 <ϑ < π , 0 <ϕ < 2π .  

The transformation equations to the canonical (Cartesian) coordinates are  
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(4)  x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ.  

 We now introduce another chart on R3 \ {(0,0,0)}  as a modification of the 
first spherical chart. We use the mapping ν , defined by the equations  x ν = −x , 

 y ν = −z ,  z ν = −y  (Section 1, (12)) and set  

(5)  

   

U = ν −1(U ) = {(x, y,z)R3 \ {(0,0,0)} |ν(x, y,z)U}

= {(x, y,z)R3 \ {(0,0,0)} | x ν ≥ 0, y ν = 0}
= {(x, y,z)R3 \ {(0,0,0)} | x ≤ 0,z = 0},

 

and  Φ = Φ ν = (r ,ϕ ,ϑ ) , where  

(6)  

 

r = r ν = (x ν )2 + (y ν )2 + (z ν )2 = x2 + y2 + z2 ,

ϑ =ϑ ν = arccos z
x2 + y2 + z2

⎛
⎝⎜

⎞
⎠⎟
ν

= arccos − y
x2 + y2 + z2

⎛
⎝⎜

⎞
⎠⎟
,

ϕ =ϕ ν = arctan y
x( )ν = arctan z

x( ).
 

or, in short,  

(7)  r = x2 + y2 + z2 , cosϑ = − y
x2 + y2 + z2

, tanϕ = z
x
.  

Then the pair (U,Φ) , Φ = (r ,ϕ ,ϑ ) , is a chart on R3 \ {(0,0,0)} , called the 
second spherical chart.  
 We determine the inverse transformation of the transformation (7). We have 
(8)  

sinϕ = 1− cos2ϕ = 1− 1
1+ tan2ϕ

= tan2ϕ
1+ tan2ϕ

= 1

1+ z
2

x2

z2

x2
= z2

x2 + z2
,

cosϕ = 1− z2

x2 + z2
= x2

x2 + z2
,

cosϑ = − y
x2 + y2 + z2

,

sinϑ = 1− y2

x2 + y2 + z2
= x2 + z2

x2 + y2 + z2
,

 
from which we have  

(9)  
sinϑ sinϕ = x2 + z2

x2 + y2 + z2
z2

x2 + z2
= z2

x2 + y2 + z2
= z
r
,

sinϑ cosϕ = x2 + z2

x2 + y2 + z2
x2

x2 + z2
= x2

x2 + y2 + z2
= x
r
,

 

hence  

(10)  x = r sinϑ cosϕ , y = −r cosϑ , z = r sinϑ sinϕ .  
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 In particular, the spherical charts (U,Φ)  and (U,Φ)  define an atlas, the 
spherical atlas on R3 \ {(0,0,0)} . To see this, we find an explicit expression for 
the coordinate transformation  

(11)    Φ(U ∩U ) (r,ϕ,ϑ )→ (r ,ϕ ,ϑ ) = ΦΦ−1(r,ϕ,ϑ )Φ(U ∩U ).  

We also determine for further use the corresponding Jacobi matrix explicitly.  
 If   (x, y,z)U ∩U , we have from (4) and (11)  

(12)  
r sinϑ cosϕ = r sinϑ cosϕ ,
r sinϑ sinϕ = −r cosϑ ,
r cosϑ = r sinϑ sinϕ .

 

From these equations we get the transformation law  

(13) r = r, cosϑ = −sinϑ sinϕ, tanϕ = cosϑ
sinϑ cosϕ

.  

 Note an important consequence of formulas (12).  
 
 Theorem 1  At every point   (x, y,z)U ∩U  

(14)   dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ = dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ .  

 Proof  We differentiate both sides of (12) and apply to the left-hand side 
expression a certain tensorial construction. Then we repeat the same for the right-
hand side and compare the resulting expressions.  
 Differentiating (12) we get  

(15)  
cosϑ cosϕdϑ − sinϑ sinϕdϕ = cosϑ cosϕdϑ − sinϑ sinϕdϕ ,
cosϑ sinϕdϑ + sinϑ cosϕdϕ = sinϑdϑ ,
−sinϑdϑ = cosϑ sinϕdϑ + sinϑ cosϕdϕ .

 

The linear forms on the left-hand side define a (0,2) -tensor   



9   The Kruskal-Szekeres globalization 
 
 

 

(16)  

 

(cosϑ cosϕdϑ − sinϑ sinϕdϕ )⊗ (cosϑ cosϕdϑ − sinϑ sinϕdϕ )
+ (cosϑ sinϕdϑ + sinϑ cosϕdϕ )⊗ (cosϑ sinϕdϑ + sinϑ cosϕdϕ )
+ sinϑdϑ⊗ sinϑdϑ
= cos2ϑ cos2ϕdϑ⊗ dϑ − cosϑ sinϑ cosϕ sinϕdϑ⊗ dϕ
+ cos2ϑ sin2ϕdϑ⊗ dϑ + cosϑ sinϑ sinϕ cosϕdϑ⊗ dϕ
+ sinϑ cosϑ cosϕ sinϕdϕ⊗ dϑ + sin2ϑ cos2ϕdϕ⊗ dϕ,
+ sin2ϑdϑ⊗ dϑ
= cos2ϑdϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ + sin2ϑdϑ⊗ dϑ
= dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ.

 

The same construction applied to the right-hand side yields  

(17)  

 

(cosϑ cosϕdϑ − sinϑ sinϕdϕ )⊗ (cosϑ cosϕdϑ − sinϑ sinϕdϕ )
+ (sinϑdϑ )⊗ (sinϑdϑ )
+ (cosϑ sinϕdϑ + sinϑ cosϕdϕ )⊗ (cosϑ sinϕdϑ + sinϑ cosϕdϕ )
= cos2ϑ cos2ϕdϑ⊗ dϑ − cosϑ sinϑ cosϕ sinϕdϑ⊗ dϕ
− sinϑ cosϑ cosϕ sinϕdϕ )⊗ dϑ + sin2ϑ sin2ϕdϕ )⊗ dϕ
+ sin2ϑdϑ⊗ sinϑdϑ
+ cos2ϑ sin2ϕdϑ⊗ dϑ + cosϑ sinϑ cosϕ sinϕdϑ⊗ dϕ
+ sinϑ cosϑ sinϕ cosϕdϕ⊗ dϑ
+ sin2ϑ cos2ϕdϕ⊗ dϕ
= cos2ϑ cos2ϕdϑ⊗ dϑ + cos2ϑ sin2ϕdϑ⊗ dϑ + sin2ϑdϑ⊗ dϑ
+ sin2ϑ sin2ϕdϕ⊗ dϕ + sin2ϑ cos2ϕdϕ⊗ dϕ
= dϑ⊗ dϑ + dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ .

 

This proves that  dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ = dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ  as 
required.  
 
 The spherical atlas induces an atlas on the unique sphere in R3 \ {(0,0,0)} , 

  S
2 = {(x, y,z)R3 | x2 + y2 + z2 = 1} . S2  is a submanifold of R3 \ {(0,0,0)} , given 

in the spherical atlas by the equations  

(18)  r = 1, r = 1.  

Setting  V =U ∩S2 , Ψ = (ϕ,ϑ ) , and  V =U ∩S2 , Ψ = (ϕ ,ϑ ) , we get two charts 
(V ,Ψ)  and (V ,Ψ)  on the sphere S2 , forming the associated atlas on S2 .  
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 Note we have the canonical identification θ :R3 \ {(0,0,0)}→ (0,∞)× S2 , 
defined by  

(19)  
θ(x, y,z)

= x2 + y2 + z2 , x
x2 + y2 + z2

, y
x2 + y2 + z2

, z
x2 + y2 + z2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
.  

Denote  

(20)  x0 =
x

x2 + y2 + z2
, y0 =

y
x2 + y2 + z2

, z0 =
z

x2 + y2 + z2
,  

The first canonical coordinates of a point (x, y,z)  are r(x, y,z) , ϕ(x, y,z) , and 
ϑ(x, y,z)  while the image of this point θ(x, y,z)  has the coordinates r(x, y,z) , 1, 
ϕ(x0, y0,z0 ) =ϕ(x, y,z) , and ϑ(x0, y0,z0 ) =ϑ(x, y,z) . Thus, the chart expression 
of θ  is the mapping (r,ϕ,ϑ )→ (r,(1,ϕ,ϑ )) .  
 
 Our aim now will be to find the Jacobian matrix of the coordinate 
transformation (13). To this purpose we first compute from (9) the differentials. 
We have  

(21)  

d cosϑ = sinϕ cosϑdϑ + sinϑ cosϕdϕ

= ∂cosϑ
∂ϕ

dϕ + ∂cosϑ
∂ϑ

dϑ = −sinϑ ∂ϑ
∂ϕ

dϕ − sinϑ ∂ϑ
∂ϑ

dϑ,

d tanϕ = ∂
∂ϕ
cotϑ
cosϕ

dϕ + ∂
∂ϑ

cotϑ
cosϕ

dϑ

= − cotϑ sinϕ
cos2ϕ

dϕ − 1
cosϕ sin2ϑ

dϑ

= ∂tanϕ
∂ϕ

dϕ + ∂tanϕ
∂ϑ

dϑ = 1
cos2ϕ

∂ϕ
∂ϕ

dϕ + 1
cos2ϕ

∂ϕ
∂ϑ

dϑ,

 

from which we conclude that  

(22)  
sinϕ cosϑ = −sinϑ ∂ϑ

∂ϑ
, sinϑ cosϕ = −sinϑ ∂ϑ

∂ϕ
,

− cotϑ sinϕ
cos2ϕ

= 1
cos2ϕ

∂ϕ
∂ϕ
, − 1

cosϕ sin2ϑ
= 1
cos2ϕ

∂ϕ
∂ϑ
.
 

In these formulas  
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(23)  

sinϑ = 1− sin2ϑ sin2ϕ ,

cos2ϕ = 1
1+ tan2ϕ

= 1

1+ cot
2ϑ

cos2ϕ

= cosϕ
cos2ϕ + cot2ϑ

,  

hence  

(24)  

∂ϑ
∂ϑ

= − sinϕ cosϑ
1− sin2ϑ sin2ϕ

, ∂ϑ
∂ϕ

= − sinϑ cosϕ
1− sin2ϑ sin2ϕ

,

∂ϕ
∂ϕ

= − cotϑ sinϕ
cosϕ

1
cos2ϕ + cot2ϑ

, ∂ϕ
∂ϑ

= − 1
sin2ϑ

1
cos2ϕ + cot2ϑ

,
 

These formulas define the Jacobi matrix of the coordinate transformation (13).  

4 Generators of rotations  

 The generators of rotations around the coordinate axes are expressed by the 
vector fields (4), (5), (9), Section 1 

(1)  ξ = x ∂
∂y

− y ∂
∂x
, ζ = y ∂

∂z
− z ∂
∂y
, λ = z ∂

∂x
− x ∂
∂z
,  

Our aim now will be to find their expressions in the spherical coordinates. We 
want to show that  

(2)  
ξ = ∂

∂ϕ
, ζ = −sinϕ ∂

∂ϑ
− cotϑ cosϕ ∂

∂ϕ
,

λ = cosϕ ∂
∂ϑ

− cotϑ sinϕ ∂
∂ϕ
,

 

 We determine from the transformation formulas different derivatives:   

(3)  

∂r
∂x

= x
x2 + y2 + z2

= sinϑ cosϕ,

∂r
∂y

= y
x2 + y2 + z2

= sinϑ sinϕ,

∂r
∂z

= z
x2 + y2 + z2

= cosϑ,
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and  

(4)  

∂ϕ
∂x

= − 1

1+ y
2

x2

y
x2

= − y
x2 + y2

= − r sinϑ sinϕ
r2 sin2ϑ cos2ϕ + r2 sin2ϑ sin2ϕ

= − sinϑ sinϕ
r sin2ϑ

= − sinϕ
r sinϑ

∂ϕ
∂y

= 1

1+ y
2

x2

1
x
= x
x2 + y2

= r sinϑ cosϕ
r2 sin2ϑ cos2ϕ + r2 sin2ϑ sin2ϕ

= sinϑ cosϕ
r sin2ϑ

= cosϕ
r sinϑ

,

∂ϕ
∂z

= 0,

 

and  
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(5)  

∂ϑ
∂x

= 1

1− z2

x2 + y2 + z2

zx
x2 + y2 + z2

x2 + y2 + z2

= 1

1− z2

x2 + y2 + z2

zx
x2 + y2 + z2 (x2 + y2 + z2 )

= 1
x2 + y2

zx
x2 + y2 + z2

= 1
r sinϑ

r2 cosϑ sinϑ cosϕ
r2

= 1
r
cosϑ cosϕ,

∂ϑ
∂y

= 1

1− z2

x2 + y2 + z2

zy
x2 + y2 + z2

x2 + y2 + z2

= 1
x2 + y2

x2 + y2 + z2

zy
x2 + y2 + z2 (x2 + y2 + z2 )

= 1
x2 + y2

zy
x2 + y2 + z2

= sinϑ sinϕ cosϑ
r sinϑ

= 1
r
sinϕ cosϑ,

∂ϑ
∂z

= − 1

1− z2

x2 + y2 + z2

x2 + y2 + z2 − z2

x2 + y2 + z2

x2 + y2 + z2

= − 1
x2 + y2

x2 + y2 + z2

x2 + y2

(x2 + y2 + z2 ) x2 + y2 + z2

= − 1
x2 + y2

x2 + y2

x2 + y2 + z2
= − x2 + y2

x2 + y2 + z2
= − 1

r
sinϑ.

 

Altogether  
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(6)  

∂r
∂x

= sinϑ cosϕ, ∂r
∂y

= sinϑ sinϕ, ∂r
∂z

= cosϑ,

∂ϕ
∂x

= − sinϕ
r sinϑ

, ∂ϕ
∂y

= cosϕ
r sinϑ

, ∂ϕ
∂z

= 0,

∂ϑ
∂x

= 1
r
cosϑ cosϕ, ∂ϑ

∂y
= 1
r
sinϕ cosϑ, ∂ϑ

∂z
= − 1

r
sinϑ.

 

From these formulas  

(7)  

∂
∂x

= ∂r
∂x

∂
∂r

+ ∂ϕ
∂x

∂
∂ϕ

+ ∂ϑ
∂x

∂
∂ϑ

= sinϑ cosϕ ∂
∂r

− sinϕ
r sinϑ

∂
∂ϕ

+ 1
r
cosϑ cosϕ ∂

∂ϑ
,

∂
∂y

= ∂r
∂y

∂
∂r

+ ∂ϕ
∂y

∂
∂ϕ

+ ∂ϑ
∂y

∂
∂ϑ

= sinϑ sinϕ ∂
∂r

+ cosϕ
r sinϑ

∂
∂ϕ

+ 1
r
sinϕ cosϑ ∂

∂ϑ
∂
∂z

= ∂r
∂z
∂
∂r

+ ∂ϕ
∂z

∂
∂ϕ

+ ∂ϑ
∂z

∂
∂ϑ

= cosϑ ∂
∂r

− 1
r
sinϑ ∂

∂ϑ
,

 

Now the desired vector fields are  

(8)  

ξ = x ∂
∂y

− y ∂
∂x

= r sinϑ cosϕ sinϑ sinϕ ∂
∂r

+ r sinϑ cosϕ cosϕ
r sinϑ

∂
∂ϕ

+ 1
r
r sinϑ cosϕ sinϕ cosϑ ∂

∂ϑ
− r sinϑ sinϕ sinϑ cosϕ ∂

∂r

+ r sinϑ sinϕ sinϕ
r sinϑ

∂
∂ϕ

− 1
r
r sinϑ sinϕ cosϑ cosϕ ∂

∂ϑ

= ∂
∂ϕ
,

 

and 
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(9)  

ζ = y ∂
∂z

− z ∂
∂y

= r sinϑ sinϕ cosϑ ∂
∂r

− r sinϑ sinϕ 1
r
sinϑ ∂

∂ϑ

− r cosϑ sinϑ sinϕ ∂
∂r

− r cosϑ cosϕ
r sinϑ

∂
∂ϕ

− 1
r
r cosϑ sinϕ cosϑ ∂

∂ϑ

= −sinϕ sin2ϑ ∂
∂ϑ

− sinϕ cos2ϑ ∂
∂ϑ

− cotϑ cosϕ ∂
∂ϕ

= −sinϕ ∂
∂ϑ

− cotϑ cosϕ ∂
∂ϕ
,

 

and  

(10)  

λ = z ∂
∂x

− x ∂
∂z

= r cosϑ sinϑ cosϕ ∂
∂r

− r cosϑ sinϕ
r sinϑ

∂
∂ϕ

+ 1
r
r cosϑ cosϑ cosϕ ∂

∂ϑ

− r sinϑ cosϕ cosϑ ∂
∂r

+ r sinϑ cosϕ 1
r
sinϑ ∂

∂ϑ

= −cotϑ sinϕ ∂
∂ϕ

+ cosϕ ∂
∂ϑ
.

 

 
 Remark  The commutators of the vector fields ξ,ζ ,λ  are  

(11)  
ξ,ζ[ ] = −z ∂

∂x
+ x ∂
∂z

= −λ, ξ,λ[ ] = −z ∂
∂y

+ y ∂
∂z

= −ζ ,

λ,ζ[ ] = −y ∂
∂x

+ x ∂
∂y

= ξ.
 

5 Invariance: Killing equations  

 A (0,2) -tensor field g on a manifold X is said to be invariant with respect to 
a diffeomorphism τ :X→ X , if its pull back τ∗g  satisfies  

(1)  τ∗g = g.  

The definition is naturally extended to vector fields via its flow. We say that a 
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vector field ξ  on X is the generator of invariance  transformations of g, if the 
Lie derivative of g by ξ  vanishes, 

(2)  ∂ξ g = 0.  

Equation (2) is sometimes called the Killing equation.  
 Let (U,ϕ ) , ϕ = (xi ) , be a chart on X, and let  

(3)  
 
g = gijdx

i⊗dx j , ξ = ξ i ∂
∂xi

 

in this chart. Let α t  be a one-parameter group of ξ . Then  

(4)  

  

α t
∗g = (gij α t )d(x

i α t )⊗ d(x
j α t )

= (gij α t )
∂(xi α t )
∂xk

∂(x j α t )
∂xl

dxk ⊗ dxk .
 

Differentiating the coefficient with respect to t we get  

(5)  

 

d(gij α t )
dt

∂(xi α t )
∂xk

∂(x j α t )
∂xl

+ (gij α t )
∂
∂xk

d(xi α t )
dt

∂(x j α t )
∂xl

+ ∂(x
i α t )
∂xk

∂
∂xl

d(x j α t )
dt

⎛
⎝⎜

⎞
⎠⎟

=
∂(gij α t )
∂x p

d(x p α t )
dt

∂(xi α t )
∂xk

∂(x j α t )
∂xl

+ (gij α t )
∂
∂xk

d(xi α t )
dt

∂(x j α t )
∂xl

+ ∂(x
i α t )
∂xk

∂
∂xl

d(x j α t )
dt

⎛
⎝⎜

⎞
⎠⎟

 

because the partial derivatives commute. At t = 0  this expression becomes   

(6)  

∂gij
∂x p

ξ pδ k
iδ l

j + gij
∂ξ i

∂xk
δ l

j +δ k
i ∂ξ j

∂xl
⎛
⎝⎜

⎞
⎠⎟

= ∂gkl
∂x p

ξ p + gil
∂ξ i

∂xk
+ gkj

∂ξ j

∂xl
.

 

Thus, the Killing equation is of the form  

(7)  ∂gkl
∂x p

ξ p + gil
∂ξ i

∂xk
+ gkj

∂ξ j

∂xl
= 0.  

6 SO(3) -invariant (0,2) -tensors   
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 Now consider a metric field g on the manifold R3 \ {(0,0,0)} . In the first 
spherical chart (Section 2)  

(1)  
 

g = grrdr⊗ dr + grϕdr⊗ dϕ + grϑdr⊗ dϑ + gϕrdϕ⊗ dr + gϕϕdϕ⊗ dϕ
+ gϕϑdϕ⊗ dϑ + gϑrdϑ⊗ dr + gϑϕdϑ⊗ dϕ + gϑϑdϑ⊗ dϑ.

 

We wish to find the solution  

(2)  grr ,grϕ ,grϑ ,gϕϕ ,gϕϑ ,gϑϑ  

of the Killing equations for the vector fields 

(3)  
ξ = ∂

∂ϕ
, ζ = −sinϕ ∂

∂ϑ
− cotϑ cosϕ ∂

∂ϕ
,

λ = cosϕ ∂
∂ϑ

− cotϑ sinϕ ∂
∂ϕ
,

 

 (a)  Writing (2) explicitly for the generator ξ  we get the system  

(4)  

∂grr
∂ϑ

ξϑ + ∂grr
∂ϕ

ξϕ + gϑr
∂ξϑ

∂r
+ gϕr

∂ξϕ

∂r
+ grϑ

∂ξϑ

∂r
+ grϕ

∂ξϕ

∂r
= 0,

∂grϕ
∂ϑ

ξϑ +
∂grϕ
∂ϕ

ξϕ + gϑϕ
∂ξϑ

∂r
+ gϕϕ

∂ξϕ

∂r
+ grϑ

∂ξϑ

∂ϕ
+ grϕ

∂ξϕ

∂ϕ
= 0,

∂grϑ
∂ϑ

ξϑ + ∂grϑ
∂ϕ

ξϕ + gϑϑ
∂ξϑ

∂r
+ gϕϑ

∂ξϕ

∂r
+ grϑ

∂ξϑ

∂ϑ
+ grϕ

∂ξϕ

∂ϑ
= 0,

∂gϕϕ
∂ϑ

ξϑ +
∂gϕϕ
∂ϕ

ξϕ + gϑϕ
∂ξϑ

∂ϕ
+ gϕϕ

∂ξϕ

∂ϕ
+ gϕϑ

∂ξϑ

∂ϕ
+ gϕϕ

∂ξϕ

∂ϕ
= 0,

∂gϕϑ
∂ϑ

ξϑ +
∂gϕϑ
∂ϕ

ξϕ + gϑϑ
∂ξϑ

∂ϕ
+ gϕϑ

∂ξϕ

∂ϕ
+ gϕϑ

∂ξϑ

∂ϑ
+ gϕϕ

∂ξϕ

∂ϑ
= 0,

∂gϑϑ
∂ϑ

ξϑ + ∂gϑϑ
∂ϕ

ξϕ + gϑϑ
∂ξϑ

∂ϑ
+ gϕϑ

∂ξϕ

∂ϑ
+ gϑϑ

∂ξϑ

∂ϑ
+ gϑϕ

∂ξϕ

∂ϑ
= 0,

 

Substituting for the components of ξ  we get  

(5)  ∂grr
∂ϕ

= 0,
∂grϕ
∂ϕ

= 0, ∂grϑ
∂ϕ

= 0,
∂gϕϕ
∂ϕ

= 0,
∂gϕϑ
∂ϕ

= 0, ∂gϑϑ
∂ϕ

= 0.  

 (b)  The same equations for the generator  ζ  
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(6)  

∂grr
∂ϑ

ζ ϑ + ∂grr
∂ϕ

ζϕ + gϑr
∂ζ ϑ

∂r
+ gϕr

∂ζ ϕ

∂r
+ grϑ

∂ζ ϑ

∂r
+ grϕ

∂ζ ϕ

∂r
= 0,

∂grϕ
∂ϑ

ζ ϑ +
∂grϕ
∂ϕ

ζϕ + gϑϕ
∂ζ ϑ

∂r
+ gϕϕ

∂ζ ϕ

∂r
+ grϑ

∂ζ ϑ

∂ϕ
+ grϕ

∂ζ ϕ

∂ϕ
= 0,

∂grϑ
∂ϑ

ζ ϑ + ∂grϑ
∂ϕ

ζϕ + gϑϑ
∂ζ ϑ

∂r
+ gϕϑ

∂ζ ϕ

∂r
+ grϑ

∂ζ ϑ

∂ϑ
+ grϕ

∂ζ ϕ

∂ϑ
= 0,

∂gϕϕ
∂ϑ

ζ ϑ +
∂gϕϕ
∂ϕ

ζϕ + gϑϕ
∂ζ ϑ

∂ϕ
+ gϕϕ

∂ζ ϕ

∂ϕ
+ gϕϑ

∂ζ ϑ

∂ϕ
+ gϕϕ

∂ζ ϕ

∂ϕ
= 0,

∂gϕϑ
∂ϑ

ζ ϑ +
∂gϕϑ
∂ϕ

ζϕ + gϑϑ
∂ζ ϑ

∂ϕ
+ gϕϑ

∂ζ ϕ

∂ϕ
+ gϕϑ

∂ζ ϑ

∂ϑ
+ gϕϕ

∂ζ ϕ

∂ϑ
= 0,

∂gϑϑ
∂ϑ

ζ ϑ + ∂gϑϑ
∂ϕ

ζϕ + gϑϑ
∂ζ ϑ

∂ϑ
+ gϕϑ

∂ζ ϕ

∂ϑ
+ gϑϑ

∂ζ ϑ

∂ϑ
+ gϑϕ

∂ζ ϕ

∂ϑ
= 0,

 

give  

(7)  

∂grr
∂ϑ

= 0,

∂grϕ
∂ϑ

sinϕ + grϑ cosϕ − grϕ cotϑ sinϕ = 0,

∂grϑ
∂ϑ

sinϕ − grϕ
cosϕ
sin2ϑ

= 0,

∂gϕϕ
∂ϑ

sinϕ + 2gϑϕ cosϕ − 2gϕϕ cotϑ sinϕ = 0,

∂gϕϑ
∂ϑ

sinϕ + gϑϑ cosϕ − gϕϑ cotϑ sinϕ − gϕϕ
cosϕ
sin2ϑ

= 0,

∂gϑϑ
∂ϑ

sinϕ − 2gϕϑ
cosϕ
sin2ϑ

= 0,

 

 (c)  Writing (2) for λ   
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(8)  

∂grr
∂ϑ

λϑ + ∂grr
∂ϕ

λϕ + gϑr
∂λϑ

∂r
+ gϕr

∂λϕ

∂r
+ grϑ

∂λϑ

∂r
+ grϕ

∂λϕ

∂r
= 0,

∂grϕ
∂ϑ

λϑ +
∂grϕ
∂ϕ

λϕ + gϑϕ
∂λϑ

∂r
+ gϕϕ

∂λϕ

∂r
+ grϑ

∂λϑ

∂ϕ
+ grϕ

∂λϕ

∂ϕ
= 0,

∂grϑ
∂ϑ

λϑ + ∂grϑ
∂ϕ

λϕ + gϑϑ
∂λϑ

∂r
+ gϕϑ

∂λϕ

∂r
+ grϑ

∂λϑ

∂ϑ
+ grϕ

∂λϕ

∂ϑ
= 0,

∂gϕϕ
∂ϑ

λϑ +
∂gϕϕ
∂ϕ

λϕ + gϑϕ
∂λϑ

∂ϕ
+ gϕϕ

∂λϕ

∂ϕ
+ gϕϑ

∂λϑ

∂ϕ
+ gϕϕ

∂λϕ

∂ϕ
= 0,

∂gϕϑ
∂ϑ

λϑ +
∂gϕϑ
∂ϕ

λϕ + gϑϑ
∂λϑ

∂ϕ
+ gϕϑ

∂λϕ

∂ϕ
+ gϕϑ

∂λϑ

∂ϑ
+ gϕϕ

∂λϕ

∂ϑ
= 0,

∂gϑϑ
∂ϑ

λϑ + ∂gϑϑ
∂ϕ

λϕ + gϑϑ
∂λϑ

∂ϑ
+ gϕϑ

∂λϕ

∂ϑ
+ gϑϑ

∂λϑ

∂ϑ
+ gϑϕ

∂λϕ

∂ϑ
= 0,

 

we have the system  

(9)  

∂grr
∂ϑ

= 0,

∂grϕ
∂ϑ

cosϕ − grϑ sinϕ − grϕ cotϑ cosϕ = 0,

∂grϑ
∂ϑ

cosϕ + grϕ
sinϕ
sin2ϑ

= 0,

∂gϕϕ
∂ϑ

cosϕ − 2gϑϕ sinϕ − 2gϕϕ cotϑ cosϕ = 0,

∂gϕϑ
∂ϑ

cosϕ − gϑϑ sinϕ − gϕϑ cotϑ cosϕ + gϕϕ
sinϕ
sin2ϑ

= 0,

∂gϑϑ
∂ϑ

cosϕ + 2gϕϑ
sinϕ
sin2ϑ

= 0.

 

 Summarizing, we have conditions (5) 

(10)  ∂grr
∂ϕ

= 0,
∂grϕ
∂ϕ

= 0, ∂grϑ
∂ϕ

= 0,
∂gϕϕ
∂ϕ

= 0,
∂gϕϑ
∂ϕ

= 0, ∂gϑϑ
∂ϕ

= 0,  

condition  

(11)  ∂grr
∂ϑ

= 0,  

from (7), and the remaining equations from (7) and (9), written in four 
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subsystems  

(12)  

∂grϕ
∂ϑ

sinϕ + grϑ cosϕ − grϕ cotϑ sinϕ = 0,

∂grϕ
∂ϑ

cosϕ − grϑ sinϕ − grϕ cotϑ cosϕ = 0,

∂grϑ
∂ϑ

sinϕ − grϕ
cosϕ
sin2ϑ

= 0,

∂grϑ
∂ϑ

cosϕ + grϕ
sinϕ
sin2ϑ

= 0,

 

and  

(13)  

∂gϕϕ
∂ϑ

sinϕ + 2gϑϕ cosϕ − 2gϕϕ cotϑ sinϕ = 0,

∂gϕϕ
∂ϑ

cosϕ − 2gϑϕ sinϕ − 2gϕϕ cotϑ cosϕ = 0,
 

and  

(14)  

∂gϕϑ
∂ϑ

sinϕ + gϑϑ cosϕ − gϕϑ cotϑ sinϕ − gϕϕ
cosϕ
sin2ϑ

= 0,

∂gϕϑ
∂ϑ

cosϕ − gϑϑ sinϕ − gϕϑ cotϑ cosϕ + gϕϕ
sinϕ
sin2ϑ

= 0,
 

and  

(15)  

∂gϑϑ
∂ϑ

sinϕ − 2gϕϑ
cosϕ
sin2ϑ

= 0,

∂gϑϑ
∂ϑ

cosϕ + 2gϕϑ
sinϕ
sin2ϑ

= 0.
 

 The last two equation in (12) imply  

(16)  ∂grϑ
∂ϑ

= 0, grϕ = 0,  

thus, subsystem (12) gives  

(17)  grϕ = 0, grϑ = 0.  

 Next two equations (13) imply  
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(18)  
∂gϕϕ
∂ϑ

− 2gϕϕ cotϑ = 0.  

Solving this equation we have, with the help of (10), we get  

(19)  gϕϕ = f (r)sin2ϑ.  

(13) also implies  

(20)  

∂gϕϕ
∂ϑ

sinϕ cosϕ + 2gϑϕ cos
2ϕ − 2gϕϕ cotϑ sinϕ cosϕ = 0,

∂gϕϕ
∂ϑ

cosϕ sinϕ − 2gϑϕ sin
2ϕ − 2gϕϕ cotϑ cosϕ sinϕ = 0,

 

hence  

(21)  gϑϕ = 0.  

Substituting from (20) and (21) back to (13) we get the identities.  
 Next two equations (14) now reduce to  

(22)  gϑϑ cosϕ − gϕϕ
cosϕ
sin2ϑ

= 0, − gϑϑ sinϕ + gϕϕ
sinϕ
sin2ϑ

= 0,  

and imply  

(23)  gϑϑ − gϕϕ
1

sin2ϑ
= 0.  

Then from (19)  

(24)  gϑϑ = f (r).  

 Finally, we have the subsystem (15), which reduces to one equation  

(25)  ∂gϑϑ
∂ϑ

= 0.  

 Summarizing (10), (11), (17), (19), (21), (24) and (25), we have the 
following formulas:  

(26)  
grr = P(r), grϕ = 0, grϑ = 0,

gϕϕ =Q(r)sin2ϑ, gϑϕ = 0, gϑϑ =Q(r).
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 Consequently, we have the following theorem.  
 
 Theorem 2  If a metric tensor field g on R3  is invariant with respect to 
rotations, then in the spherical coordinates it is of the form  

(27)   g = P(r)dr⊗ dr +Q(r)(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ ),  

where P and Q are  functions, depending  on r only.  
 
 Proof  We have from (24x)  

(28)  

 

g = grrdr⊗ dr + grϕdr⊗ dϕ + grϑdr⊗ dϑ + gϕrdϕ⊗ dr + gϕϕdϕ⊗ dϕ
+ gϕϑdϕ⊗ dϑ + gϑrdϑ⊗ dr + gϑϕdϑ⊗ dϕ + gϑϑdϑ⊗ dϑ
= grrdr⊗ dr + gϕϕdϕ⊗ dϕ + gϑϑdϑ⊗ dϑ

= P(r)dr⊗ dr +Q(r)(sin2ϑdϕ⊗ dϕ + dϑ⊗ dϑ ).

 

 This result coincides with F. De Felice and C.J.S. Clarke, Relativity on 
Curved Manifolds, Cambridge Monographs on Mathematical Physics, 1992, 
Section 10.1, p. 320. 

7 Globalization 

 We now formally describe the globalization of our local results to the whole 
manifold R3 \ {(0,0,0)} . We denote by (U,Φ) , Φ = (r,ϕ,ϑ ) , and (U,Φ) , 
Φ = (r ,ϕ ,ϑ ) , the first and the second spherical charts on R3 \ {(0,0,0)} ; these 
two charts form an atlas for R3 \ {(0,0,0)} . The transformation equations are 
given by  

(1)  r = r, cosϑ = −sinϑ sinϕ, tanϕ = cosϑ
sinϑ cosϕ

.  

(Section 2, (13)).  
 
 Theorem 3  Let  

(2)   gU = P(r)dr⊗ dr +Q(r)(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ ),  

be an SO(3) -invariant  metric field on U, and let  

(3)   gU = P(r )dr ⊗ dr +Q(r )(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ )  
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be an SO(3) -invariant  metric field on U . Then gU = gU  on  U ∩U  if and only if  

(4)  P(r (x)) = P(r(x)), Q(r (x)) =Q(r(x))  

for all   xU ∩U .  
 
 If conditions (4) are satisfied, then the formula  

(5)  
 
g(x) =

gU (x), xU
gU (x), xU

⎧
⎨
⎪

⎩⎪
 

defines an SO(3) -invariant (0,2) -tensor field on R3 \ {(0,0,0)} . The functions 
P , P , and Q, Q  define two functions p :R3 \ {(0,0,0)}→ R  and 
q :R3 \ {(0,0,0)}→ R  by  

(6)  
 
p(x) =

P(r(x)), xU,
P(r (x)), xU,

⎧
⎨
⎪

⎩⎪
q(x) =

Q(r(x)), xU,
Q(r (x)), xU.

⎧
⎨
⎪

⎩⎪
 

Conversely, any two functions p :R3 \ {(0,0,0)}→ R  and 
q :R3 \ {(0,0,0)}→ R  define an SO(3) -invariant (0,2) -tensor field by 
Theorem 3.  
 Thus, Theorem 3 constitutes a one-one correspondence between SO(3) -
invariant (0,2) -tensor fields on R3 \ {(0,0,0)}  and the pairs of functions (p,q) , 
defined on R3 \ {(0,0,0)} .  

8 SO(3) -invariant metric fields on R3 \ {(0,0,0)}  

 Denote M = R × (R3 \ {(0,0,0)}) . M is the product manifold, endowed with 
a left SO(3) -action  

(1)  
 

SO(3)× (R × (R3 \ {(0,0,0)})) (A,(t, x))
→ A ⋅(t, x) = (t,A ⋅ x)R × (R3 \ {(0,0,0)}),

 

induced by the action of SO(3)  on R3 \ {(0,0,0)} . We will consider M with the 
atlas, formed by two charts, whose domains of definition are R ×U  and R ×U , 
and whose coordinate functions are (t,(r,ϕ,ϑ ))  and (t,(r ,ϕ ,ϑ )) , where t is the 
canonical coordinate  on R ; these charts will be referred to as the first and the 
second spherical charts on M. Our aim in this section is to find all SO(3) -
invariant tensor fields of type (0,2)  on M.  
 We start with a tensor field  
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(2)   g = gttdt⊗ dt + gtrdt⊗ dr + grtdr⊗ dt + g0,  

where  

(3)  
 

g0 = grrdr⊗ dr + grϕdr⊗ dϕ + grϑdr⊗ dϑ + gϕrdϕ⊗ dr + gϕϕdϕ⊗ dϕ
+ gϕϑdϕ⊗ dϑ + gϑrdϑ⊗ dr + gϑϕdϑ⊗ dϕ + gϑϑdϑ⊗ dϑ.

 

The following assertion is immediate.  
 
 Theorem 4  The tensor field g (2) is SO(3) -invariant if and only if  

(4)  gtt = gtt (t,r), gtr = gtr (t,r),  

and g0  is SO(3) -invariant.  
 
 Proof  For any diffeomorphism α , defined by the group action (1),  

(5)    α
∗g = (gtt α )dt⊗ dt + (gtr α )dr⊗ dr + (grt α )dr⊗ dr +α∗g0,  

because SO(3)  acts trivially on the coordinate functions t and r. Thus, the 
invariance condition α∗g = g  is equivalent with  

(6)   gtt α = gtt , gtr α = gtr , α∗g0 = g0  

for all α . But from the generators of rotations, Section 3, (2),  

(7)  gtt = gtt (t,r), gtr = gtr (t,r)  

as required.   
 
 From Section 5, Theorem 3, we now conclude that any SO(3) -invariant 
tensor field of type (0,2)  on the manifold M is in the first spherical coordinates 
expressed as  

(8)  
 

g = J(r,t)dt⊗ dt + K(r,t)(dt⊗ dr + dr⊗ dt)
+ P(r,t)dr⊗ dr +Q(r,t)(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ ),

 

where J(r,t) , K(r,t) , P(r,t) , and Q(r,t)  are arbitrary functions of t and r on 
the domain of definition of the first spherical chart.  
 The following is an analogue of Theorem 3, Section 6.  
 
 Theorem 5  Let  
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(9)  
 

gU = J(r,t)dt⊗ dt + K(r,t)(dt⊗ dr + dr⊗ dt)
+ P(r,t)dr⊗ dr +Q(r,t)(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ )

 

be an SO(3) -invariant  metric field on U, and let  

(10)  
  

gU = J (r , t )dt ⊗ dt + K(r , t )(dt ⊗ dr + dr ⊗ dt )

+ P(r , t )dr ⊗ dr +Q(r , t )(d ϑ⊗ d ϑ + sin2 ϑdϕ⊗ dϕ )
 

be an SO(3) -invariant metric field on U . Then gU = gU  on  U ∩U  if and only if  

(11)  
J (r , t ) = J(r,t), K(r , t ) = K(r,t),
P(r , t ) = P(r,t), Q(r , t ) =Q(r,t).

 

for all   xU ∩U .  
 
 Proof  The assertion follows from the transformation equations between the 
first and the second spherical charts; in particular, from the equations r = r  and 
t = t , and from Section 2, Theorem 1.  
 
 Theorem 5 implies, in particular, that an SO(3) -invariant (0,2) -invariant 
tensor field defines and is defined by four functions J, K, P, and Q , defined on 
the quotient manifold R × (0,∞) = M / SO(3) .  
 
 Remark  Theorem 4 does not imply that the tensor field g be regular, or of 
certain signature. Assumptions of this kind should be applied independently.  
 
 Suppose that the matrix of the tensor field (8)  

(12)  

J(r,t) K(r,t) 0 0
K(r,t) P(r,t) 0 0
0 0 Q(r,t) 0
0 0 0 sin2ϑ ⋅Q(r,t)

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 

is non-singular. Then the determinant is  

(13)  

J K 0 0
K P 0 0
0 0 Q 0
0 0 0 sin2ϑ ⋅Q

= (JP − K 2 )Q2 sin2ϑ ≠ 0.  
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Thus, the components of g satisfy  

(14)  JP − K 2 ≠ 0, Q ≠ 0.  

 Note that we can write in this case  

(15)  

 

g = J(r,t)dt⊗ dt + K(r,t)(dt⊗ dr + dr⊗ dt)
+ P(r,t)dr⊗ dr +Q(r,t)(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ )

=Q(r,t) J(r,t)
Q(r,t)

⎛
⎝⎜

dt⊗ dt + K(r,t)
Q(r,t)

(dt⊗ dr + dr⊗ dt)

+ P(r,t)
Q(r,t)

dr⊗ dr + dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ⎞
⎠⎟

=Q(r,t)( j(r,t)dt⊗ dt + k(r,t)(dt⊗ dr + dr⊗ dt)
+ p(r,t)dr⊗ dr + dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ ).

 

Thus, each SO(3) -invariant regular tensor field of type (0,2)  on the manifold M 
is conformal with the metric field of the form  

(16)  
 

′g = j(r,t)dt⊗ dt + k(r,t)(dt⊗ dr + dr⊗ dt)
+ p(r,t)dr⊗ dr + dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ.

 

(for conformal metric fields of any signature see e.g. G.S. Hall, Symmetries and 
Curvature structure in General Relativity, WS Lecture Notes in Physics 46, 
World Scientific, 2004, p. 114).  

9 SO(3) -invariance and translation invariance 

 Consider an SO(3) -invariant regular metric field  

(1)  
 

g = J(r,t)dt⊗ dt + K(r,t)(dt⊗ dr + dr⊗ dt)
+ P(r,t)dr⊗ dr +Q(r,t)(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ )

 

(Section 7, (8)). By the translation in M = R × (R3 \ {(0,0,0)})  we mean any 
transformation of the form  

(2)  
 

R × (R × (R3 \ {(0,0,0)})) (trε ,(t, x))
→ trε (t, x) = (t + ε , x)R × (R3 \ {(0,0,0)}).

 

Clearly, translations define a left action of the additive group of real numbers R  
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on M = R × (R3 \ {(0,0,0)}) . The generator of the translations is the vector field  

(3)  ξ = ∂
∂t
.  

 
 Theorem 6  Each SO(3) -invariant translation invariant regular metric field 
on M is of the form  

(4)  
 

g = J(r)dt⊗ dt + K(r)(dt⊗ dr + dr⊗ dt)
+ P(r)dr⊗ dr +Q(r)(dϑ⊗ dϑ + sin2ϑdϕ⊗ dϕ ),

 

where J(r) , K(r) , P(r) , Q(r)  are arbitrary functions of the variable r.  
 
 Proof  The assertion is evident: In the Killing equation  

(5)  ∂gkl
∂x p

ξ p + gil
∂ξ i

∂xk
+ gkj

∂ξ j

∂xl
= 0  

(Section 4, (7)) we substitute from (3) from which we have from expression (1)  

(6)  ∂J(r,t)
∂t

= 0, ∂K(r,t)
∂t

= 0, ∂P(r,t)
∂t

= 0, ∂Q(r,t)
∂t

= 0.  

10 The Lambert function   

 To describe the structure of the Schwarzschild and Kruskal metric fields, we 
need solutions of the equation  

(1)  y =W (y)eW (y)  

for an unknown real function W of one real variable y, known as the Lambert 
function. To this purpose we present in this section basic properties of this 
function; for proofs and further comments see e.g. R.M. Corless, G.H. Gonnet, 
D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, On the Lambert W function, Advances 
in Computational Mathematics, Springer-Verlag, Berlin, New York, 5, 329-359), 
and http://mathworld.wolfram.com/LambertW-Function.html .  
 Clearly, if y = 0 , then W (0) = 0 . If y > 0 , then there exists a unique solution 
W (y)  which is positive. If −1/ e < y < 0 , then there are two solutions, W (y)  and 
W−1(y)  that satisfy W−1(y) <W (y) ; if y = −1/ e , then W−1(−1/ e) =W (−1/ e) . 
Equation (1) has no real solutions such that y < −1/ e . The following is a 
description of the solution W.  
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 Lemma 1  Equation (1) has a unique solution W, defined on the interval 
[−1/ e,∞) , such that  

(2)  W (y) ≥ −1.  

This solution satisfies  

(3)  W − 1
e( ) = −1, ImW = [−1,∞).  

 Condition (2) means that we take for W the principal branch of the real 
solution of equation (1). The solution described by Lemma 1 is known as the 
Lambert W-function.  
 The following are elementary properties of the Lambert W-function:  
 (a)  Equation y = x ex  holds for  x [−1,∞)  and  y [−1/ e,∞)  if and only if 
x =W (y) . In other words, W is the inverse of a function F, defined on (−∞,∞)  
by  

(4)  F(x) = x ex ,  

or more precisely, the inverse of its restriction  F |[−1,∞)  to the interval where F is 
increasing. Using F we can write  

(5)  F−1(y) =W (y).  

 (b) W has the following special values:  

(6)  W −1
e( ) = −1, W (0) = 0, W (1) = 1

e−W (1)
= 0,567143... .  

 (c)  The derivative of W is given by  

(7)  dW
dy

= W (y)
y(1+W (y))

.  

W is increasing and has an asymptote x = −1/ e .  
 (d)  From the definition  

(8)  ln y =W (y)+ lnW (y)  

on the set (0,∞) , and  

(9)  W (−y)eW (− y) = −W (y)eW (y) .  
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 We usually consider W as defined on the open interval (−1/ e,∞) . 
 As the first application of the Lambert W-function we find the inverse of a 
function G defined on (−∞,∞)  by  

(10)  G(x) = x e− x .  

Writing y = x e− x , we have to solve this equation with respect to x. We have 
−y = −x e− x , and this equation can be solved by means of W. We get 
−x =W (−y)  hence x = −W (−y)  whenever −y  belongs to the domain of 
definition [−1/ e,∞)  of W. Consequently, G−1(y) = −W (−y) . The domain of 
definition of G−1  consists of the points y such that −y  belongs to the domain of 
definition of W, i.e.,  −y [−1/ e,∞) . Then  −x =W (−y) ImW = [−1,∞)  hence 

 x = G
−1(y) (−∞,1] . Summarizing, we have the following lemma.  

 Lemma 2  The restriction  G |(−∞,1]  has the inverse G−1  defined by  

(11)  G−1(y) = −W (−y).  

The domain of definition of G−1  is the interval (−∞,1 / e] .  

 It follows from Lemma 2 that equation y = x e− x  holds for  x (−∞,1]  and 

 y (−∞,1 / e)  if and only if x = −W (−y) .  
 Now consider the functions  

(12)   (0,∞) x→ f (x) = x + ln xR  

and  

(13)   (0,∞) x→ g(x) = −x + ln xR,  

and determine the inverse functions f −1  and g−1 .  

 Lemma 3  (a) The inverse function f −1  is defined by  

(14)  f −1(y) =W (ey ).  

The domain of definition of f −1  is the interval (−∞,∞) .  
 (b) The inverse function g−1  is defined by  

(15)  g−1(y) = −W (−ey ).  

The domain of definition of g−1  is the interval (−∞,∞) .  

 Indeed, we have e f (x ) = x ex , so f −1  can be determined from the equation 
ey = f −1(y)e f

−1(y) . But the right-hand side is equal to F( f −1(y)) , and F−1 =W  by 
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Lemma 1, so we have W (ey ) = f −1(y)  by Lemma 1.  
 Similarly, we have eg(x ) = x e− x , so g−1  satisfies ey = g−1(y)e−g

−1(y) . The 
right-hand side is equal to G(g−1(y)) . But by Lemma 2, G−1(z) = −W (−z) , so for 
z = ey  we have G−1(ey ) = −W (−ey ) = g−1(y) .  

11 The Kruskal-Szekeres embeddings 

 In this section we consider two manifolds, M = R × (0,∞)  and R2 . To any 
real number m > 0  (mass) we assign the subset   {(t,r)R × (0,∞)| r ≠ 2m}  of M 
and construct its embedding into R2 ; the embedding is defined by means of the 
“Kruskal-Szekeres coordinates”, and is indeed not canonical.  
 Denote by t, r the canonical coordinates on M, and by U, V the canonical 
coordinates on R2 . m defines a mapping  R × (2m,∞) (t,r)→Φm

(+ ) (t,r)R2  by 
the equations  

(1)  

 

U Φm
(+ ) (t,r) = r

2m
−1e

r
4m cosh t

4m
⎛
⎝

⎞
⎠ ,

V Φm
(+ ) (t,r) = r

2m
−1e

r
4m sinh t

4m
⎛
⎝

⎞
⎠ .

 

Note that the sign of  U Φm
(+ ) (t,r)  (resp.  V Φm

(+ ) (t,r) ) coincides with the sign of 
cosh(t / 4m)  (resp. sinh(t / 4m) ); in particular,  U Φm

(+ )  is always positive, and 
the sign of  V Φm

(+ )  coincides with the sign of the argument t.  
 m also defines a mapping  R × (−∞,2m) (t,r)→Φm

(− ) (t,r)R2  by  

(2)  

 

U Φm
(− ) (t,r) = 1− r

2m
e

r
4m sinh t

4m
⎛
⎝

⎞
⎠ ,

V Φm
(− ) (t,r) = 1− r

2m
e

r
4m cosh t

4m
⎛
⎝

⎞
⎠ .

 

 We usually write equations (1) and (2) in a simplified form  

(3)  U = r
2m

−1e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ , V = r

2m
−1e

r
4m sinh t

4m
⎛
⎝

⎞
⎠ ,  

and  

(4)  U = 1− r
2m

e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ , V = 1− r

2m
e

r
4m cosh t

4m
⎛
⎝

⎞
⎠ .  
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 Lemma 4  (a) The mapping Φm
(+ )  is a bijection of the set R × (2m,∞)  and the 

set  

(5)    ImΦm
(+ ) = {(U,V )R2 |U > 0,U 2 −V 2 > 0}.  

The inverse mapping (Φm
(+ ) )−1  is given by the equations  

(6)  t = 4marc tanh V
U( ), r = 2m 1+W U 2 −V 2

e
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
.  

 (b) The mapping Φm
(− )  is a bijection of the set   and the set  

(7)    ImΦm
(− ) = {(U,V )R2 |V > 0,−1<U 2 −V 2 < 0}.  

The inverse mapping (Φm
(− ) )−1  is given by the equations  

(8)  t = 4marc tanh U
V( ), r = 2m 1+W U 2 −V 2

e
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
.  

 Proof  (a)  First we determine the image set ImΦm
(+ ) , which consists of the 

points  (U,V )R
2  such that equations (3) have a solution (t,r) , where 

 r (2m,∞) . To this purpose it is convenient to use graphs of the hyperbolic 
functions cosh , tanh , and the Lambert function W.  
 Suppose we have a point  (U,V ) ImΦm

(+ ) . Then since cosh  is always 
positive, U > 0  from (3). Since (U,V )  satisfies  

(9)  V
U

= tanh t
4m

⎛
⎝

⎞
⎠ ,  

and Im(tanh) = (−1,1) , the number V /U  belongs to the interval (−1,1)  hence 
 V  (−U,U ) . We want to show that for any (U,V )  satisfying these two 
conditions U > 0  and  V  (−U,U ) , equations (3) have a solution (t,r) , such that 
 r (2m,∞) ; this will prove that   ImΦm

(+ ) = {(U,V )R2 |U > 0,V  (−U,U )} .  
 Condition (9) written as arctan(V /U ) = t / 4m , determines t. Condition 
 V  (−U,U )  implies U 2 −V 2 > 0 ; but from (3)  

(10)  

U 2 −V 2

e
= 1
e

r
2m

−1⎛
⎝

⎞
⎠ e

r
2m cosh2 t

4m
⎛
⎝

⎞
⎠ − sinh

2 t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= 1
e

r
2m

−1⎛
⎝

⎞
⎠ e

r
2m = r

2m
−1⎛

⎝
⎞
⎠ e

r
2m

−1
,

 

hence 
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(11)  r
2m

−1=W U 2 −V 2

e
⎛
⎝⎜

⎞
⎠⎟
.  

Since the Lambert function is positive and increasing on (0,∞) , there exists 
exactly one number (r − 2m) / 2m  solving (6), and  (r − 2m) / 2m (0,∞) ; then, 
however,  r (2m,∞) .  
 Summarizing, we see that   ImΦm

(+ ) = {(U,V )R2 |U > 0,V  (−U,U )}, and in 
ImΦm

(+ )  there exists exactly one pair (t,r)  solving (3); from (9) and (11), (t,r)  is 
given by (6).  
 (b) ImΦm

(− )  is the set of points  (U,V )R
2  such that equations (4) have a 

solution (t,r) , where  r (−∞,2m) . If  (U,V ) ImΦm
(− )  is a point, then since 

cosh  is always positive, we have V > 0 . Then equations (4) imply  

(12)  U
V

= tanh t
4m

,  

and since Im(tanh) = (−1,1) , we get  U  (−V ,V ) . It is clear that equation (12) 
determines t.  
 Condition  U  (−V ,V )  implies V 2 −U 2 > 0 . Computing V 2 −U 2  from (4),  

(13)  
V 2 −U 2 = 1− r

2m
⎛
⎝

⎞
⎠ e

r
2m cosh2 t

4m
⎛
⎝

⎞
⎠ − sinh

2 t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= 1− r
2m

⎛
⎝

⎞
⎠ e

r
2m = e 1− r

2m
⎛
⎝

⎞
⎠ e

r
2m

−1
,

 

hence  

(14)  r
2m

−1=W U 2 −V 2

e
⎛
⎝⎜

⎞
⎠⎟
.  

But this formula restricts possible image points (U,V )  because 0 < r < 2m  and 
the left-hand side is always negative: we have −1< (r − 2m) / 2m < 0 . Thus, from 
the properties of W,  (U

2 −V 2 ) / e (−1/ e,0)  and  V
2 −U 2  (0,1) . Summarizing, 

if (U,V )  belongs to the set ImΦm
(− ) , then necessarily V > 0 ,  U  (−V ,V ) , and 

0 <V 2 −U 2 <1 . Note that the third condition 0 <V 2 −U 2  already implies the 
second one, so we can say that if  (U,V ) ImΦm

(− ) , then V > 0  and 
0 <V 2 −U 2 <1 .  

 We call the mappings Φm
(+ )  and Φm

(− )  the Kruskal-Szekeres embeddings.  
 The set ImΦm

(+ )  is defined by the inequalities U > 0 , U 2 −V 2 > 0 , i.e., 
U > 0  and −U <V <U , so is an open positive cone in R2  along the U-axis. The 
set ImΦm

(− )  is defined by V > 0  and −1<U 2 −V 2 < 0 . The second inequality is 
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equivalent to two inequalities V 2 <U 2 +1  and U 2 <V 2 ; altogether, ImΦm
(+ )  is 

the intersection of three sets, defined by V > 0 , V < U 2 +1 , and −V <U <V . 
Thus ImΦm

(+ )  is the subset of the open positive cone along the V-axis, consisting 
of the points under the hyperbola V = U 2 +1 .  
 The common boundary of these two sets is the set of points (U,V )  such that 
U =V > 0 .  

12 The Kruskal-Szekeres spacetime 

 Consider the canonical metric field of Lorentz type, defined on R2  by  

(1)   h = dU⊗ dU − dV ⊗ dV .  

We wish to compute the pull-backs (Φm
(+ ) )*h  and (Φm

(− ) )*h .  

 Lemma 5  (a)  The pull-back (Φm
(+ ) )*h  has an expression  

(2)  
 
(Φm

(+ ) )*h = 1
16m2

r
2m

e
r
2m − r − 2m

r
dt⊗ dt + r

r − 2m
dr⊗ dr( ).  

 (b) The pull-back (Φm
(− ) )*h  has an expression  

(3)  
 
(Φm

(− ) )*h = 1
16m2

r
2m

e
r
2m − r − 2m

r
dt⊗ dt + r

r − 2m
dr⊗ dr)( ).  

 Proof  (a)  We have from equations (1) or (3), Section 3,  
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(4)  

 

dU = r
2m

−1e
r
4m �

�t
cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt + cosh

t
4m

⎛
⎝

⎞
⎠

�
�r

r
2m

−1e
r
4m⎛

⎝⎜
⎞
⎠⎟ ⋅dr

= 1
4m

r
2m

−1e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ cosh t
4m

⎛
⎝

⎞
⎠ ⋅

1
2m

1

2 r
2m

−1
e

r
4m + 1

4m
r
2m

−1e
r
4m⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dr

= 1
4m

r
2m

−1e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ 1
4m

r
2m

−1e
r
4m cosh t

4m
⎛
⎝

⎞
⎠

1
r
2m

−1
+1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
dr

= 1
4m

r
2m

−1e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ ⋅dtdt

+ 1
4m

r
2m

−1e
r
4m cosh t

4m
⎛
⎝

⎞
⎠

r
r − 2m

dr,

 

and  

(5)  

 

dV = r
2m

−1e
r
4m �

�t
sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt + sinh

t
4m

⎛
⎝

⎞
⎠

�
�r

r
2m

−1e
r
4m⎛

⎝⎜
⎞
⎠⎟ ⋅dr

= 1
4m

r
2m

−1e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ sinh t
4m

⎛
⎝

⎞
⎠

1
2m

1

2 r
2m

−1
e

r
4m + 1

4m
r
2m

−1e
r
4m⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dr

= 1
4m

r
2m

−1e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ 1
4m

r
2m

−1e
r
4m sinh t

4m
⎛
⎝

⎞
⎠

1
r
2m

−1
+1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
dr

= 1
4m

r
2m

−1e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ 1
4m

r
2m

−1e
r
4m sinh t

4m
⎛
⎝

⎞
⎠

r
r − 2m

dr,

 

hence 
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(6)  
dU = 1

4m
r
2m

−1e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt +

r
r − 2m

cosh t
4m

⎛
⎝

⎞
⎠ dr

⎛
⎝

⎞
⎠ ,

dV = 1
4m

r
2m

−1e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt +

r
r − 2m

sinh t
4m

⎛
⎝

⎞
⎠ dr

⎛
⎝

⎞
⎠ .

 

Now  

(7)  

 

(Φm
(+ ) )*h

= 1
16m2 e

r
2m r
2m

−1( ) sinh t
4m

⎛
⎝

⎞
⎠ ⋅dt +

r
r − 2m

cosh t
4m

⎛
⎝

⎞
⎠ dr

⎛
⎝

⎞
⎠

⎛
⎝

⊗ sinh t
4m

⎛
⎝

⎞
⎠ ⋅dt +

r
r − 2m

cosh t
4m

⎛
⎝

⎞
⎠ dr

⎛
⎝

⎞
⎠

− cosh t
4m

⎛
⎝

⎞
⎠ ⋅dt +

r
r − 2m

sinh t
4m

⎛
⎝

⎞
⎠ dr

⎛
⎝

⎞
⎠

⊗ cosh t
4m

⎛
⎝

⎞
⎠ ⋅dt +

r
r − 2m

sinh t
4m

⎛
⎝

⎞
⎠ dr

⎛
⎝

⎞
⎠
⎞
⎠ ,

 

so we get  

(8)  

 

(Φm
(+ ) )*h

= 1
16m2 e

r
2m r
2m

−1( ) sinh2 t
4m

⎛
⎝

⎞
⎠ − cosh

2 t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ dt⊗

⎛
⎝ dt

+ r
r − 2m

sinh t
4m

⎛
⎝

⎞
⎠ cosh

t
4m

⎛
⎝

⎞
⎠ − cosh

t
4m

⎛
⎝

⎞
⎠ sinh

t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ dt⊗ dr

+ r
r − 2m

cosh t
4m

⎛
⎝

⎞
⎠ sinh

t
4m

⎛
⎝

⎞
⎠ − sinh

t
4m

⎛
⎝

⎞
⎠ cosh

t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ dr⊗ dt

+ r2

(r − 2m)2
cosh2 t

4m
⎛
⎝

⎞
⎠ − sinh

2 t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ dr⊗ dr

⎞
⎠

= 1
16m2 e

r
2m r − 2m

2m
−dt⊗ dt + r2

(r − 2m)2
dr⊗ dr⎛

⎝⎜
⎞
⎠⎟

= 1
32m3 r e

r
2m − r − 2m

r
dt⊗ dt + r

r − 2m
dr⊗ dr( ).

 

This formula proves (2).  
(b)  From (2) or (4), Section 3  
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(9)  

 

dU = 1− r
2m

e
r
4m �

�t
sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt + sinh

t
4m

⎛
⎝

⎞
⎠

�
�r

1− r
2m

e
r
4m⎛

⎝⎜
⎞
⎠⎟ dr

= 1
4m

1− r
2m

e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ sinh t
4m

⎛
⎝

⎞
⎠ − 1

2m
1

2 1− r
2m

e
r
4m + 1

4m
1− r
2m

e
r
4m⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dr

= 1
4m

1− r
2m

e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ 1
4m

sinh t
4m

⎛
⎝

⎞
⎠ e

r
4m − 1

1− r
2m

+ 1− r
2m

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dr

= 1
4m

1− r
2m

e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt

− 1
4m

1− r
2m

r
2m − r

sinh t
4m

⎛
⎝

⎞
⎠ e

r
4m dr,

 

and  

(10)  

 

dV = 1− r
2m

e
r
4m �

�t
cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt + cosh

t
4m

⎛
⎝

⎞
⎠

�
�r

1− r
2m

e
r
4m⎛

⎝⎜
⎞
⎠⎟ dr

= 1
4m

1− r
2m

e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ cosh t
4m

⎛
⎝

⎞
⎠ ⋅ − 1

2m
1

2 1− r
2m

e
r
4m + 1

4m
1− r
2m

e
r
4m⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dr

= 1
4m

1− r
2m

e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt

+ 1
4m

e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅ − 1

1− r
2m

+ 1− r
2m

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dr

= 1
4m

e
r
4m 1− r

2m
sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt

− 1
4m

e
r
4m 1− r

2m
cosh t

4m
⎛
⎝

⎞
⎠ ⋅

r
2m − r

dr.

 

Thus  
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(11)  
dU = 1

4m
1− r
2m

e
r
4m cosh t

4m
⎛
⎝

⎞
⎠ ⋅dt −

r
2m − r

sinh t
4m

⎛
⎝

⎞
⎠ ⋅dr

⎛
⎝

⎞
⎠ ,

dV = 1
4m

1− r
2m

e
r
4m sinh t

4m
⎛
⎝

⎞
⎠ ⋅dt −

r
2m − r

cosh t
4m

⎛
⎝

⎞
⎠ ⋅dr

⎛
⎝

⎞
⎠ .

 

Now  

(12)  

 

(Φm
(− ) )*h

= 1
16m2 e

r
2m 1− r

2m( ) cosh t
4m

⎛
⎝

⎞
⎠ ⋅dt −

r
2m − r

sinh t
4m

⎛
⎝

⎞
⎠ ⋅dr

⎛
⎝

⊗ cosh t
4m

⎛
⎝

⎞
⎠ ⋅dt −

r
2m − r

sinh t
4m

⎛
⎝

⎞
⎠ ⋅dr

⎛
⎝

⎞
⎠

− sinh t
4m

⎛
⎝

⎞
⎠ ⋅dt −

r
2m − r

cosh t
4m

⎛
⎝

⎞
⎠ ⋅dr

⎛
⎝

⎞
⎠

⊗ sinh t
4m

⎛
⎝

⎞
⎠ ⋅dt −

r
2m − r

cosh t
4m

⎛
⎝

⎞
⎠ ⋅dr

⎛
⎝

⎞
⎠
⎞
⎠

 

hence  

(13)  

 

(Φm
(− ) )*h = 1

16m2 1−
r
2m( )e r

2m

⋅ cosh2 t
4m

⎛
⎝

⎞
⎠ − sinh

2 t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝ dt⊗ dt

+ r
2m − r

−cosh t
4m

⎛
⎝

⎞
⎠ sinh

t
4m

⎛
⎝

⎞
⎠ + sinh

t
4m

⎛
⎝

⎞
⎠ cosh

t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ dt⊗ dr

+ r
2m − r

−sinh t
4m

⎛
⎝

⎞
⎠ cosh

t
4m

⎛
⎝

⎞
⎠ + cosh

t
4m

⎛
⎝

⎞
⎠ sinh

t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ dr⊗ dt

+ r2

(2m − r)2
sinh2 t

4m
⎛
⎝

⎞
⎠ − cosh

2 t
4m

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ dr⊗ dr

⎞
⎠

= 1
16m2 1−

r
2m( )e r

2m dt⊗ dt − r2

(2m − r)2
dr⊗ dr)⎛

⎝⎜
⎞
⎠⎟ .

 

This expression can also be written as  

(14)  
 
(Φm

(− ) )*h = 1
16m2

1
2m

r e
r
2m − r − 2m

r
dt⊗ dt + r

r − 2m
dr⊗ dr)( )  

as required.  
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 Note that the coefficient in expressions (2) and (3), Lemma 5, can be 
expressed in terms of coordinates U and V on R2 ; from Lemma 4  

(15)  r
2m

e
r
2m = 1+W U 2 −V 2

e
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
e
1+W U 2−V 2

e
⎛
⎝⎜

⎞
⎠⎟ .  

The right-hand side has sense for each (U,V )  such that (U 2 −V 2 ) / e  belongs to 
the domain of definition of W, i.e., to the interval [−1/ e,∞) . Equivalently, 
 U

2 −V 2  [−1,∞) , or U 2 −V 2 +1≥ 0 . Thus, (U,V )  should satisfy V 2 ≤U 2 +1  
or, equivalently, the inequalities − U 2 +1 ≤V ≤ U 2 +1 , defining the region 
between two branches of the hyperbola V 2 =U 2 +1 . On the hyperbola,  

(16)  1+W U 2 −V 2

e
⎛
⎝⎜

⎞
⎠⎟
= 0  

so the coefficient (15) becomes zero. Using these observations we set  

(17)  

 

g = 1

1+W U 2 −V 2

e
⎛
⎝⎜

⎞
⎠⎟
e
−1−W U 2−V 2

e
⎛
⎝⎜

⎞
⎠⎟ (dU⊗ dU − dV ⊗ dV ).  

g is a Lorentz metric field on the set  

(18)  − U 2 +1 <V < U 2 +1.  

 From Lemma 5 we now have the following result.  

 Theorem 7  (Kruskal-Szekeres spacetime)  There exists a manifold X, 
diffeomorphic with R2 , a Lorentz metric field g on X, two diffeomorphisms 
Φm
(+ ) :Wm

(+ ) → X  and Φm
(− ) :Wm

(− ) → X , and a closed 1-dimensional submanifold Z 
of X with the following properties:  
 (a)  Z is diffeomorphic with the real line R .  
 (b)  The sets Ψm

(+ ) (Wm
(+ ) ) , Ψm

(− ) (Wm
(+ ) ) , and Z are mutually disjoint and  

(19)   X = Ψm
(+ ) (Wm

(+ ) )∪Ψm
(− ) (Wm

(− ) )∪Z.  

 (c)  The pull-back metric fields (Φm
(+ ) )*g  and (Φm

(− ) )*g  are the 
Schwartzschild metric field on Wm

(+ )  and Wm
(− ) .  

 Proof  We take for X the connected open set in R2 , defined by the 
inequalities −U <V < U 2 +1 , and apply Lemma 5.  

 X can be represented by the region between the brown lines V = −U  and 
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V = U 2 +1  in the diagram  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly, applying a diffeomorphism, one can take for X the entire manifold R2 .  
 


