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I R

In this lecture we describe all metric tensor fields on the manifold
R’\{(0,0,0)} and Rx(R*\{(0,0,0)}), invariant with respect to rotations. The
rotations are elements of the group SO(3) of 3Xx3 matrices 7 such that the
transposed of 7 is equal to the inverse, 'T=7"", and det7 =1. We consider the
standard left action of SO(3) on R*\{(0,0,0)}, and call a metric tensor field g-
invariant with respect to rotations, if 7*g=g for all T € SO(3); this definition
also implies to the manifold R X (R’\{(0,0,0)}) via the second Cartesian factor.

Then we consider the standard Schwartzschild solution of the Einstein
equations. We give a geometric construction of a 2-dimensional manifold X,
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diffeomorphic with R, equipped with a metric g of Lorentz type, and satisfying
the following two conditions:

(a) X is the union of mutually disjoint open submanifolds P and Q and a 1-
dimensional closed submanifold S, and

(b) The restrictions of g to P and Q coincide with the Schwarzschild solution
of the Einstein equations.

This construction provides a new interpretation of the well-known “Kruskal-
Szekeres extension” as the globalization of local coordinate expressions of the
Schwarzschild metric field. The metric g on X, extending the Schwarzschild
metric, is given explicitly.

1 Introduction

Our aim in this lecture is to analyse the well-known relativistic concepts,
related with spherically symmetric solutions of the Einstein equations, namely the
Schwartzschild solution

r—2m r

dt@dt +

dr @dr+r*(dd @ dd+sin’ ¥ - do @ do),
r r—2m

6] 8n="

the “Kruskal-Szekeres coordinates”, and the “Kruskal-Szekeres extension”.

We use notations and standard terminology that allows us to restrict our
considerations to 2-dimensional underlying manifolds. In our constructions we
take over the well-known Schwarzschild, Kruskal and Szekeres coordinate
expressions, giving them, however, a different geometric meaning. However, our
basic results - an explicit manifold description of what could be called the
Kruskal-Szekeres spacetime, as well as the methods of its construction - differ
from the usual coordinate settings; formally, they seem to be closest to Kriele [4].

We consider the 2-dimensional manifold M =Rx(0,), its open
submanifolds P=RX(0,2m) and Q=RX(2m,e), and a metric field g, ,
defined on PUQ by

r_zmdt®dt+ r

r r—2m

dr®dr.

@2 g.=-

We call g, the Schwartzschild metric field. Our main objective is the discuss
properties of the points (z,2m) € M that do not belong to the open set PUQ .
Historically (indeed in the context of 4-dimensional relativistic spacetimes),
many authors regard the points (¢,2m) as “singular points” of the Schwartzschild
metric. There has been a permanent effort to find a way, how to include these
points into the domain of definition of g, or “remove” them from the underlying
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spacetime. The most well known tools have become the Kruskal-Szekeres
“coordinates”; the result is known as the “Kruskal-Szekeres extension” of the
underlying manifold and “extension of the Schwarzschild metric field” (see e.g.
De Felice and Clarke [3], and Kriele [4]). However, in spite of these discussions
it is obvious from (1) that g, cannot be extended to a continuous metric field,
defined everywhere on M, and the “singularity” cannot be “removed”.

Many questions concerned with these contradictory ideas, have been
presented by different authors with different understanding and different opinions
or criticism (see for instance Crothers [2] and references therein).

In this article we do not follow these lines. We regard g, to be a chart
expression of a metric field g, defined on another manifold X, not on M. We
construct a 2-dimensional manifold X, diffeomorphic with the Euclidean space
R?, and a metric field g of Lorentz type on X, with the following two properties:

(a) X is the union of mutually disjoint open submanifolds P and Q and a 1-
dimensional closed submanifold S, and

(b) the restrictions of g to P and Q coincide with the Schwarzschild solution
(1) of the Einstein equations.

Clearly, X will be determined up to a diffeomorphism. A concrete model for
X, P, and Q can easily be recognized from a diagram describing the Kruskal-
Szekeres coordinates (see [4]). The metric tensor field g, whose restrictions to P
and Q coincide with g, ,is given by

3  g=l6m’g,
where g, is a metric field on an open subset of R*, defined by

1

“Twavies U sdu-aveav),

“4) 8o

U and V are the canonical coordinates on R* and W is the Lambert function.

Note that the metric field g, is independent of the mass m. Two metric
fields, corresponding with different masses, are in conformal correspondence.

Our analysis has also some general aspects, namely, what kind of data we
have when we are given a solution of the Einstein equations. To give a sense to
these local data (metric fields defined in terms of coordinates), we need to embed
them in a concrete spacetime manifold, and then to globalize them in this
manifold. In this sense the method we use in this paper can also be regarded as an
example of globalization of the (local) Schwarzschild metric fields. The topology
of the resulting manifold is in this case the topology of R”.

From the nature of these results we prefer to use the phrase Kruskal-Szekeres
globalization instead of Kruskal-Szekeres extension.
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2 Rotations in Euler angles

Consider a rotation 7 of the Euclidean space R”, given in the canonical
coordinates as a mapping

(D) X=Xo0T, y=yoT, zZ=2zoT.

T can be characterized explicitly by means of three real parameters, the Euler
angles ®,, ®, and O ;equations of the rotation 7 are

X =(cos®, cos P, —sinP, cosOsin P, )- x
—(cos P, sin®, +sin®P, cosOcos P, )- y+sin®,sinO -z,
2) y = (sin®, cos P, +cos P, cosOsin®P, ) - x
+(—sin®, sin®, + cos ®, cosOcos D, )- y—cos P, sinO- z,
7 =sin®,sin®@-x+cosP,sin®-y+cosO-z.

The domain of definition of the mapping (2) is R” , and the mapping is composed
of periodic functions. We may restrict the domain of definition if suitable to the
sets where (2) is a three-parameter family of diffeomorphism. If we take for the
domain of definition of the parameters the set

3) <P <, —w<dD, <7, —%<®<§,

then the point (®,,P,,0)=(0,0,0) defines the identity rotation. The parameters
(©,,0,,0)=(0,2,,0), (9,,9,,0)=(0,0,0), (?,P,,0)=(®,,0,0) define
one-parameter families of rotations

X=cos®D, -x—sind, -y,
“) y=sin®,-x+cos®, -y,
2=z,
and
X=X,
(5) y=c0s0-y—sin®-z,
Z =sin®-y+cosO-z,

and
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X=cos®, -x—sin®, -y,
(6) y=sin®, -x+cos®, -y,
7=z

Note that multiplying these three matrices,

cos®, —sin®, 0 10 0 cos®, —sin®, 0
7 sin®, cos®, O 0 cos® —sin® sin®, cos®, 0 |,
0 0 1 0 sin® cos® 0 0 1

we get the matrix of the transformation equations (2).

One can directly verify that the rotation matrices do not commute. The
inverse of the rotation, given by the parameters (®,,®,,0), is the rotation given
by (—®,,—®,,—0). Indeed, we have from (2), replacing the triple (®,,P,,0)
with (-®,,-®,,-0),

X =(cos D, cos @, —sin®, cosOsin®P,)-x
+(cos D, sin®, +sin®P, cosOcosP,)-y +sin®P, sin®-z,
(8) y =—(sin®, cos®, +cos P, cosOsinP,)- X
+ (—sin®, sin®, + cos D, cosOcosD,)-y +cosD,sin®-z,

Z=sin®,sin®-X —cos®,sin@®-y +cosO 7.

The matrix of this transformation is transposed to the matrix of (2) so it coincides
with the inverse matrix of equations (2). On the other hand, it is by definition the
inverse of the matrix of (2), because the rotation (®,,®,,0) followed by the
rotation (—®,,—® ,—0) is the identity rotation.

For geometrical meaning of the Euler angles see e.g. I.M. Gelfand,
P.A.Minlos and Z.J. Shapiro, Representations of the rotation group and the
Lorentz group, GIFML, Moscow, 1958 (Russian).

Note that the choice of parameters ® =7x/2, ®,=—-x/2 defines a one-
parameter family of rotations around the y-axix,

=cos®-x+sin®-z,

y7
=—8in®-x+cos®-z.

=

®
z

Another useful example of a rotation, which is the composition of the
rotation ¢ around the z-axis and the rotation 3 around the x-axis. The matrix is
given by (7),
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1 0 0 cosax —sinax 0
0 cosf -—sinf sinoe  cosar 0O
0 sinf8 cosf 0 0 1

(10)
cosa —sino 0

cosf3sinoy  cosfBcosa —sinf

sinfsinay  sinfBcosar  cosf
Let v be the rotation, defined by o¢=7m and B=7m/2.Then v has a matrix

-1 0 0
(11) 0o 0 -1 |
0 -1 0

and the equations

(12) XoV=—Xx, yoV=-—z, zoV=-—).

Remark It follows from the decomposition (7) of any rotation that to prove
that a differential form is invariant with respect to all rotations it is sufficient to
prove its invariance with respect to rotations around the x-axis and z-axis.

3 Spherical coordinates

By the first spherical chart on the manifold R\ {(0,0,0)} we mean a chart
U.,®), ®=(r,p,1), where

() U={xy,2€R\{(0,0,0)}[x20,y=0}
and the coordinate functions are defined by

Z

(2) r=\¢x2+y2+zz, COSﬁZﬁ, tanq0=z.
XY +z X

The range of the chart in R is the set where

3) r>0, O0<v<m, O0<@<2rm.

The transformation equations to the canonical (Cartesian) coordinates are
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4) x=rsindcosp, y=rsindsing, z=rcos?.

We now introduce another chart on R*\{(0,0,0)} as a modification of the
first spherical chart. We use the mapping v, defined by the equations xov =—x
yov=—z, zov=-—y (Section 1, (12)) and set

U=v"'(U)={(x,y,2) €R*\{(0,0,0)} |v(x,y,2) €U}
5) ={(x,9,2) €R’\{(0,0,0)} | xov=0,yov =0}
={(x,y,2) €R’\{(0,0,0)}| x <0,z =0},

and ®=®dov=(7,p,9), where

F=rov=y(xov) +(yov) +(zov)’ =/x>+y* +2°,

Z
arcCOS —————= (o V
( X +y +7 )
(6)
= arccos(—zyzzj,
X4y +z

Q=@ov= (arctanz)ov = arctan(i).
x X

|

:190\/:

or, in short,

. — 2—_ _
@) YR +y " +z7, ¢ 5119}' 257 ganfaﬁ(p:i.

1 7 z
Then the paj (I.HQQ @,/—x(n.,@zi?) is a chart on R*\{(0,0,0)}, called the
second spher ca g[fiart

We determi ation of the transformation (7). We have
(8) cosp =,/1—
ave X+

from which we

cosd =— - -
\/x/+yc +Z z / z z

sindsin@ e = ZZV i

. Py A +NX Ty +z 1
) singd =, [1— § 5 2Z 5 3

= N x4+ Xy +z X X

SmﬁCO(p:\j 2 2 23 2 2:\7 2 2 2 ==

X H+y +z77Vx"+z X +y +z r

hence

(10) xz?simgcos(ﬁ, y:—Fcosg, z=7sin1§sin(ﬁ.
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In particular, the spherical charts (U,®) and (U,®) define an atlas, the
spherical atlas on R’\{(0,0,0)} . To see this, we find an explicit expression for
the coordinate transformation

a1 eWUNU)>(r,e,0) - (7.0,0) =00 (r,p,0) c DUNU).

We also determine for further use the corresponding Jacobi matrix explicitly.
If (x,y,z)eUNU , we have from (4) and (11)

rsin®cos@ = rsintycos P,
(12)  rsin®d¥sing =—7cos®,
rcos® =7 sindsin@.
From these equations we get the transformation law

(13)7=r, costy=—sind¥sing, tanp= .CL&.
sin?} cos @

Note an important consequence of formulas (12).

Theorem 1 At every point (x,y,z)eUNU
(14)  d¥®dd+sin’ 9de @ dp = d¥ @ dD +sin” ¥dp @ d.

Proof We differentiate both sides of (12) and apply to the left-hand side
expression a certain tensorial construction. Then we repeat the same for the right-
hand side and compare the resulting expressions.

Differentiating (12) we get

cos ¥ cos pd1} — sin ¥¥sin pd¢ = cos B cos pd) — sin ¥ sinPd,
(15)  cos®¥sin@d®} +sin®¥ cospdg = sin¥dv,
—sin¥d® = cos ¥ sin pd} + sin ¥ cos Pdp.

The linear forms on the left-hand side define a (0,2) -tensor



9 The Kruskal-Szekeres globalization

(cos ¥ cos pdP — sin ¥ sinpdp) & (cos ¥ cos pd v} — sin ¥sinpd)
+ (cos ¥ sin@pd v} +sin ¥ cos Pd@) @ (cos ¥ sind v} + sin ¥ cos pd )
+ sin ¥dY @ sin ¥d9
= cos’ B¥cos’ pd1 @ di¥ — cos ¥sin ¥ cos @ sin pd® @ do
(16) +cos’ ¥sin” d® @ d + cos ¥sin ¥sin @ cos pd v @ dp
+5sin 1 cos ¥ cos Psin@dp @ d¥ + sin® B¥-cos’ pdp @ d,
+sin’ 9dY ® d¥
= cos’ ¥d¥ ® d¥ +sin” ¥dp @ do + sin” ¥d @ d
= dV¥ ® dY +sin” ¥do @ do.
The same construction applied to the right-hand side yields
(cos ¥ cosPd} — sin ¥ sin PdP) @ (cos ¥ cos pd v} — sin ¥ sinPdp)
+(sin 9d®) ® (sin ¥dV)
+(cos ¥sin@dd + sin ¥ cos ) ® (cos ¥ sin@dd + sin ¥ cos pd)
= cos’ ¥ cos’ PdV @ di¥ — cos ¥ sin ¥ cos PsinPdv @ dp
—sin? cos ¥ cos PsinPdp) ® d +sin® ¥sin’ PdP) ® dp
an +sin’® 1§_d1§®sin_z§d5_ o )
+cos’ ¥sin’ P @ d¥ + cos ¥ sin ¥ cos P sin@dv @ dp
+sin 1} cos ¥ sin P cos pdP @ d>
+sin’ ¥ cos’ pdPp @ dp
= cos’ ¥ cos’ Ppdv @ dD + cos’ ¥ sin® pdv¥ ® d) + sin” ¥dV @ di¥
+sin’ ¥sin’ PdP @ d@ + sin® ¥ cos’ PdPp @ dp
=d0 ®@dVO +dPY @ dP +sin” 0dp ® dp.
This proves that dd®dd+sin’¥deRdp=dd®dO+sin>Vdp2dp as

required.

The spherical atlas induces an atlas on the unique sphere in R*\{(0,0,0)} ,
S*={(x,y,2)ER’ | x*+y*+7°=1}. S’ is a submanifold of R*\{(0,0,0)}, given
in the spherical atlas by the equations

(18) r=1, rF=1.

Setting V = U_ﬂ§2 , Y=(p,0),and V=UNS>, ¥=(@,0), we get two charts
(V,¥) and (V,¥) on the sphere s?, forming the associated atlas on s2.
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Note we have the canonical identification 6 :R*\{(0,0,0)} = (0,00)x §*,
defined by

0(x,y,2)

(9) :(JT( - ) < ))

2+ 42 Ny 42 ey + 2

Denote

X y z

= . yO = N ZO - )
\/x2+y2+zz \/x2+y2+12 /x2+y2+zz

The first canonical coordinates of a point (x,y,z) are r(x,y,z), @(x,y,z), and
¥(x,y,z) while the image of this point 8(x,y,z) has the coordinates r(x,y,z), 1,
O(Xy,Y,20) = @(x,y,2) , and (x,,y,,2,) = 0(x,y,2) . Thus, the chart expression
of @ is the mapping (r,p,0)— (r,(1,0,1)) .

20) x,

Our aim now will be to find the Jacobian matrix of the coordinate
transformation (13). To this purpose we first compute from (9) the differentials.
We have

d cos ) = sin@ cos ¥d + sin ¥ cos pd

dcos dcos ¥
= do+
9o
Jd cotd) Jd cotd}
- +_

dd = —sinﬁﬁd(p—sinﬁﬁdﬂ,
0] v

21 dtan@ = dd
@1 ane dp cosQ ¢ 09 cos@
cotdsing 1
== 2 do— -2
cos” @ cos@sin”
=8tang0d¢+8tan(pdﬂ= 12_8—(pd(p+ 12_a_q>dﬁ’
o) v cos” ( 0 cos” @ 09

from which we conclude that

sin(pcosﬁ:—sinf}ﬁ, sinz?cosgoz—sinﬁ@,
v )

(22)

_cotdsing 1 9@ 1 1 dp

cos’ @ B cosz(ﬁﬁ’ - cos@sin’ ¥ - cosZ(ﬁ%'

In these formulas



11 The Kruskal-Szekeres globalization

sin® = /1 —sin” ¥sin’ @,

_ 1 1 cosQ
(23) COS2 = = = .
I+tan” @ cot cos” ¢ +cot
P ey [ cor9 Jeosgreor 0
cos’ @
hence
99 sinpcosd 99 sindcosg
(24) 00 l-sin®¥sin’p 9@  Jl—sin’Osin’@’
dp _ cotdsing 1 op 1 1

oQ cos¢p  Jeos’@+cot’ @z_sinzﬁ\/cos2(p+cotzl9’

These formulas define the Jacobi matrix of the coordinate transformation (13).

4 Generators of rotations

The generators of rotations around the coordinate axes are expressed by the
vector fields (4), (5), (9), Section 1

1 E=x—=y—, {=y——z—
y " ox 2 dy

Our aim now will be to find their expressions in the spherical coordinates. We
want to show that

E= i ¢ = _sin(pi—cotﬁcosgoi,

A= cosq)%—cotz‘)singu%,

We determine from the transformation formulas different derivatives:

ar X

— = =sindcoso,
Ix /x2+y2+zz ¢
ar y . .

3) — = =sin¥sing,
dy /x2+y2+zz o
ar z

—=——=———=cos?,
0z xX*+y'+7°
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and

“)

and

dp Iy y rsin¥sing
a__l+y72?__x2+y2__rzsinzﬂcosz(p+rZSin2ﬂsin2(p
x2
_ sindsing _ sing
T rsin’d rsind
op 1 1 X rsindcos@

Fl
1+
)C2

_sind}cosp _ cos@

rsin’®  rsin®’
0

% _.

9z

2 = . ] .
Y. x x’+y> r’sin’¥cos’@+r’sin’ ¥sin’ @
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X
9 _ ! N4y 2
0x z Xy +7
1- 2 2 2
X +y +z
1 X
N Zz \/x2+y2+zz(x2+y2+zz)
x2+y2+zz
1 2 1 r*cost¥sinddcosp 1
=\/ — 5 = > =—cosvcos o,
xX+y? x"+y +z° rsind r r
.
%_ 1 [x2+y2+Z2
dy 7 )c2+yz+z2
1- 2 2 2
X +y +z
1 Z
(5) = 2 2 2 2 2y 2 2 2
4y Y+ Y+
X4y 4
1 in ¥si A
SU S Z)ZI i _sin s1r.1(pcos ~Lingpcos.
Jxi+y? X4y 4z rsind} r

2
NS
v 1 Y I +y + 7

0z fa X +y 47
1- 2 2 2
X“+y +z
_ 1 x4y
)c2+y2 ()c2+y2+z2)\/x2+yz+z2
X +y 47

1 X’ +y Jx*+y? 1.
=TT 2.2 .2 2, 2 2, 2,2 =——sind.
J2+y Xy +z Y +z r

Altogether
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i =sin?dcose, ﬂ =sindsing, ﬂ =cosd,
dx dy dz

©) il __sing ] _ Cosg ) 0.

dx  rsin®d’ dy rsind’ 9z

@:lcosﬁcosq}, @:lsin(pcosﬁ, @:—1Sin19.
ox r dy r 0z r

From these formulas

9 _aro dpa 009

=——+ +—
dx Odxdr 9dxdp dx 90

. d i a 1 0
=smﬁcosq)——ﬂ—+—cosﬂcos<p—,
or rsinttaQ r 00

o _ora _apa 909

= + +—

7 dy dyadr dydp 0dy 09

=sinﬁsin(pi+ C9S(p i+lsin(pcosﬂi
or rsintdQ r 00

0 _ord opa 990

= +—Lt—+
dz dzdr 9z dp 0Jz 9V

=cosﬁi—isin19i,
ar r v

Now the desired vector fields are

E= xi—yi = rsinl?cos(psinﬁsingoi+rsinz?cos(p C(?S(P 9
or rsin? 0@

dy ~ox

1 . . d . L ad
+—rsintcos@sin@ cos} — —rsin¥sin@sin ¥ cosp—
r % ar

®) sinp 0 1 . d
—————rsind¥singcoscosp—
rsind 0 r 00

+rsindsing

and

14
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9 d
C—ya*Z—Za
. . ) . N ad
=rsindsin@cosy ——rsin¥sing —sint —
or r XV
) —rcosﬁsim‘}singoi—rcosﬁ CO,S(P i—lrcosz‘}sin(pcosﬁi
or rsintd dp r 00

= —singsin’ ﬂi— singcos’ ﬁi— cotz?cosq)i
99 90 9
. d d
=—sing——cotcosp —,
00 op

and

hend 0

51.nq> i+lrcosz3lcos19cos¢i
rsind 0 r ok,

= rcosﬁsinﬂcosq)ai— rcost

(10) ar 1 ad
—rsintcos@cos ¥ —+rsincos@—sinty —

or r ok

.40 ad
=—cot¥sing—+cosp—.

Lo} o

Remark The commutators of the vector fields &,{,A are

d d 9 9
[&C]——Za‘”afz——/l’ [ga/l]——za*y‘ﬂ’afz——é,

(1)

[/I,C]=—y%+x%=é-

5 Invariance: Killing equations

A (0,2) -tensor field g on a manifold X is said to be invariant with respect to
a diffeomorphism 7:X — X , if its pull back 7*g satisfies

)] T'g=g.

The definition is naturally extended to vector fields via its flow. We say that a
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vector field & on X is the generator of invariance transformations of g, if the
Lie derivative of g by & vanishes,

2  9.=0.

Equation (2) is sometimes called the Killing equation.
Let (U,p), o= (x"), be a chart on X, and let

. . .0
3) g=gdx' @dx’, §=8&——
o0x
in this chart. Let ¢, be a one-parameter group of & . Then
arg=(g,°0, Yd(x' o, )Rd(x' oax,)

@) a(x' o0r,) A(x oar)
=(g;°0,) ax" ox'

dx* @ dx*.

Differentiating the coefficient with respect to ¢t we get

d(go0,)d(x' oat,) d(x’ oax,)

dt dx* ax'
9 dx'oa,)d(x o) dx'oar,) d d(x'oa,)
+(g1joa[)(a_k d o + Py F p
(5) X t . X . X X t
(g ea)d(x" o) d(x o) d(x' o)
dx? dt ax* dx'
0 d(x'oa,)d(x’oa,) dx'oa,) d d(x’ oa,))
+ .o _ + .
(8, ’)(ax" dr ox Xt ox  dt

because the partial derivatives commute. At ¢t =0 this expression becomes

agi' i aéi i iagj
oot Goror 155

6) ax*
_ 98y ag' g’
awr® TEp I e

Thus, the Killing equation is of the form

g, a&' G
LS P P

6 SO(3)-invariant (0,2)-tensors
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Now consider a metric field g on the manifold R’\{(0,0,0)} . In the first
spherical chart (Section 2)

" g§=8,dr@dr+g,,drodp+g,dr@dd+g,dp@dr+g,dp®dp
+ 8,pdQ 2 dV+ g, dY @ dr + g,,dV @ dp + g,,d¥ @ dP.

We wish to find the solution
() 8138102810800 8p0+8v0

of the Killing equations for the vector fields

a

¢

o =a(p, C=—sin(p£9—cotﬁcosg0£/),

] .0
A =cos@p— —cotsing—,
o ol0)
(a) Writing (2) explicitly for the generator & we get the system

+ +g. +g,—=0,
ar B gy T8 g T8,

08,0 20, 98,y 08" | 0gr o9& 0

—E G = g Pty ——t g, —+8,—=0

p ﬂé a(pcf 8op 5+ 8pp o T80 L

08,5 £+ 08,5 go aE” a&? aE” a&? “o

v ap

b2 [ s 4
Mo Bugr,, O, BB
ok, olo}

>

dp
+gw?+gw¥+gm£+gw§— ,

4)
08pp £o  V8pp zp 9’ g’ 9g” g
OO ED L ORES Ly T2 g 2y +g —=-=0,
5 ¢ a0 &7+ 84y 30 5w ap T8 p T8y
ag(pﬂ ¥ ag(pﬂ ] aéﬁ aé‘ﬂ agﬂ ag(p
S Y +g, —=—tg +g —==0,
aﬂg 6(p§ gw@q) gwa(p gwaﬂ gW&ﬂ

0899 zv , 8vo £o ag” g’ 9g” ag*
N+ 2 gt 8o T 8y T 89— =0,
aﬁé a<p5 gwaﬁ ngﬂ gw&ﬂ g”“’aﬁ

Substituting for the components of & we get

d ad d
5) Bu_g, Bw_g 98w_q Bw_g e _o 9w _g

1) 1) dp g ap o9

(b) The same equations for the generator §
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(6)

give

)

agrr ¥ agrr (0 aé‘ﬂ acw aCﬁ ag‘l’
S gy o -t
él é ﬂr }" g(pr a grl? a grq) ar
08, 1o 03, S SN/ <
—(Pg +—¢C(P 194) a +g<o(p a gn} a(p gr(p a(p
agrﬂ o agrﬁ ] aé‘ﬂ ac‘p acﬁ aC(P
o +— F 8yt Gyt Gyt 8y =
Z: 4 g 8po ar 8o 90 8rp 99

F b [ s (4
gwcjﬂ gwg(p A
90 Y op " ap " ap  °” ap
ag 0 0 ag 0 agﬂ ag(p aCﬁ agqj

- C - g(P ﬂﬂ—(p+g(pﬂ a(p gq)ﬁ 9 gqxp 9
ag o ag SN /4 og” 98" _
g +iclp+gw£+gw£+gw 90 T80 oq PE
98, _
a9 ’
0

8ro 49 COSQ—g, cot¥sing =0,
92,0 cosp
0 SINP =810 im0 sin®9

08y . o
¥s1n(p+2gﬂ¢ cosp—2g,, cotdsing =0,

cosQ

819 ’.sing + g, COSP — 8o COLDSINQ — g“""sn 5 =0,
g cosQ
81‘;" SinQP—2g,,—— - o =0,

(c) Writing (2) for A

0’

0’

18
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980 10, 980 50, azﬁ A At aAr

+g,—+ +g =0,
" ap or BTy T8 T ey,
98, 0 08 Y L Y Y LR YL
LA+ A+ + 8 ——+ +g,——=0,
a0 " T ap T8 gy T8m e T8 gy T8 0
02,0 50 08 o o
w204 98 g0y o 04 9,
s 7 9 0 gr 8w T T8 Ty T g

F 9 [ 9 [4
9800 50, o0 70, WM vy, Mg A My,
v aQp ap ap elo} elo}

0890 30, 980 30, ar’ A’ By AN’

gyt 8oyt 8y =0,
) ap B g TEe Tap T8 gy T8 Ty
0200 10, 08 A’ aAT  aAt  aar

AP 420 Lo T Lo T 4o T 4ge =0,
90 ap T8 gy T8 gy T8 gy T8 gy

we have the system

98, _
oLy, ’
agﬂ sinp—g,, cotdcosp =0,
0 n
gﬁ cosQ+g,, n% ,
€))

%cosw— 2gy,8inp—2g,, cotPcosp =0,

sing
819 % COSP — g,y SINQ — g0 COLDCOSQ+ g, o 19:(),
989

sing —0.
v

—%cosp + 2g¢,9 Sn’o

Summarizing, we have conditions (5)

d d d
(10) %:0’ g"P :0’ agrﬁ :O, g(P(P :0’ glPl? :0’ agﬂﬂ :0’
op ap op fol0) op o)
condition
dg
11 —r =0,
(11) 35

from (7), and the remaining equations from (7) and (9), written in four
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subsystems

12)

and

13)

and

(14)

and

15)

9g,,

5 sinp+g,,cosp—g,, cotdsing =0,

ng;p CosSQ—g,,8ingp—g,, cot¥cosp =0,
d . cos

i’; SO 8 sinz(g I

98,5 sing

— cosp+g. =0,

a0 P EvGinty

08y . .
Wsm(p+2gwp cosp—2g,,cotdsing =0,

a
ag—g"cos(p— 2gy,8Inp—2g,, cotcosp =0,

084s . . cosQ

a;;‘ sing + g,, cosp— g, cot¥singp—g,, il
080 . sing

81(; COSQ — g,, SINP— g, cotBcosp +g,,, o 0,
9840 singp—2g 25 _

ao PTGty T
9890 sing
—cosp+2g,,——-=0.

oo PTGy

The last two equation in (12) imply

(16)

agrl?

=0, =0,
90 8rp

thus, subsystem (12) gives

A7)

gr(p :0’ grz9 =0

Next two equations (13) imply

20
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g
(18) a—l‘;‘”—Zgwcotﬁzo.

Solving this equation we have, with the help of (10), we get
(19) 8pp = f(r)sin2 0.

(13) also implies

08y . 2 . 3
%sm(pcosq)+ 2g8y,c08" @ —2g, cot¥singcosp =0,

(20)

ag—l‘;“’cos(psin(p— 28y, sin® @ — 2g,,cotcos@sing =0,
hence
(21) g4, =0.

Substituting from (20) and (21) back to (13) we get the identities.
Next two equations (14) now reduce to

0D 40598, 5L =0, - g, s+ g, 2 =0,
and imply
(23)  8oo— 8pp ;2 =0.
sin” ¥
Then from (19)

(24) 8o = ().

Finally, we have the subsystem (15), which reduces to one equation

(25) 8w _g
a0

Summarizing (10), (11), (17), (19), (21), (24) and (25), we have the
following formulas:

grr=P(r)9 gr(p=0’ gn?=0’
(26) .
8pp = Q(r)sin” 9, 8vp = 0, 8oy = o(r).
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Consequently, we have the following theorem.

Theorem 2 If a metric tensor field g on R’ is invariant with respect to
rotations, then in the spherical coordinates it is of the form

(27)  g=P(r)dr@dr+Q(r)(dd®dd +sin’ 9de @ dp),
where P and Q are functions, depending on r only.

Proof We have from (24x)

g§=8,dr@dr+g,,dr@dp+g,dr@dd+g,dp@dr+g,dp®dp
+8,ydp @ dV + g, dV @ dr + g,,d0 @ dp + g,,d0 ® dV
=g, dr ®dr+g,,dp@dp + g,,d% ® dV
= P(r)dr @ dr + O(r)(sin’ vdo @de +dd @ dv).

(28)

This result coincides with F.De Felice and C.J.S.Clarke, Relativity on
Curved Manifolds, Cambridge Monographs on Mathematical Physics, 1992,
Section 10.1, p. 320.

7 Globalization

We now formally describe the globalization of our local results to the whole
manifold RS\{(O,O,O)} . We denote by (U,®), ®=(r,p,0), and (L_/,&)) ,
D= (7,@,5) , the first and the second spherical charts on RS\{(O,O,O)}; these
two charts form an atlas for R*\{(0,0,0)} . The transformation equations are
given by

(1) 7F=r, cost¥=-sindsing, tan§5=.cﬂ-
sin?} cos @

(Section 2, (13)).

Theorem 3 Let
) g, = P(r)dr @dr + Q(r)(d¥ @ dV + sin” ¥dp @ d),
be an SO(3) -invariant metric field on U, and let

(3) g, = P(r)dr @ dr + Q(¥ )(d¥ ® dV +sin’ 9dp © dp)
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be an SO(3) -invariant metric field on U . Then g, = gy on UNU ifand only if
“) P(F(x))=P(r(x)), O(F(x)=Q(r(x))

forall xeUNU .
If conditions (4) are satisfied, then the formula

gy(x), xeU

&) g(X)={ 7, (), xel

defines an SO(3) -invariant (0,2)-tensor field on R\ {(0,0,0)} . The functions
P, P, and Q, Q define two functions p:R*\{(0,0,0}) >R and
q:R’\{(0,0,0)} > R by

{ P(r(x)), x€U, { 0(r(x), x€U,
(6) p)=5 — _ — )=y -
P(r(x)), xeU, o (x)), xeU.
Conversely, any two functions p:R’\{(0,0,0)} >R and
¢:R°\{(0,0,0)} >R define anSO(3)-invariant (0,2)-tensor field by
Theorem 3.

Thus, Theorem 3 constitutes a one-one correspondence between SO(3)-
invariant (0,2)-tensor fields on R*\{(0,0,0)} and the pairs of functions (p,q) ,
defined on R*\{(0,0,0)} .

8 SO(@3)-invariant metric fields on R*\{(0,0,0)}

Denote M =R x(R*\ {(0,0,0)}) . M is the product manifold, endowed with
a left SO(3) -action

SOB3)x (Rx(R*\{(0,0,0)}))3 (A,(t,x))
S A-(t,0)=(t,A-x)eRx(R*\{(0,0,0)}),

induced by the action of SO(3) on R*\{(0,0,0)} . We will consider M with the
atlas, formed by two charts, whose domains of definition are RxU and RXx U,
and whose coordinate functions are (¢,(r,(,9)) and (t,(?,(ﬁ,g)) , Where ¢ is the
canonical coordinate on R; these charts will be referred to as the first and the
second spherical charts on M. Our aim in this section is to find all SO(3) -
invariant tensor fields of type (0,2) on M.

We start with a tensor field
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(2) g=gdt@dt+g,dt@dr+g,dredi+g,,
where

8 =8,dr®dr+g,drodp+g.,dr2dd+g,dpdr+g,,dp@dp

3
®) + 80P @ dO+ 8,0 @ dr + 8,0 @ d+ g,,dD @ dD.

The following assertion is immediate.

Theorem 4 The tensor field g (2) is SO(3) -invariant if and only if
@ g =80, 8 =g,r),
and g, is SO(3) -invariant.

Proof For any diffeomorphism ¢ , defined by the group action (1),
5 a*g=(g,ca)dt@dt+(g, ca)drdr+(g,ca)dr@dr+a’*g,,

because SO(3) acts trivially on the coordinate functions ¢ and r. Thus, the
invariance condition o*g =g is equivalent with

©  gica=g,, g,°0=g,, 007 =g,
for all ¢ . But from the generators of rotations, Section 3, (2),
(7 8, =8,.r), g, =8,tr)

as required.

From Section 5, Theorem 3, we now conclude that any SO(3) -invariant
tensor field of type (0,2) on the manifold M is in the first spherical coordinates
expressed as

g=J(r,t)dt@dt+ K(r,t)(dt @dr+dr @dt)

8
® + P(r,t)dr @ dr +Q(r,t)(dV ® d +sin”> ¥do @ do),

where J(r,t), K(r,t), P(r,t),and Q(r,t) are arbitrary functions of ¢ and r on
the domain of definition of the first spherical chart.
The following is an analogue of Theorem 3, Section 6.

Theorem 5 Let
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gy =J(rt)dt @dt+ K(r,t)(dt @ dr+dr ®dt)

9
) + P(r,t)dr @ dr + Q(r,t)(d9 ® d + sin” ¥do ® do)

be an SO(3) -invariant metric field on U, and let

g; =J(F,1)dt ®di +K(F,1)(dt ®@dr +dr ®dr)

(10) _ L .
+P(7,0)dr @dr +Q(r,1 ) (dV ® dd +sin” ¥dp @ dp)

be an SO(3) -invariant metric field on U . Then g, = gz onUN U ifand only if

J(F,t)=J(rt), KF,0)=K(,t),

(1) — o
P(r,t)=P(.t), OF,t)=0(,1).

forall xeUNU .

Proof The assertion follows from the transformation equations between the
first and the second spherical charts; in particular, from the equations 7 =r and
t =t ,and from Section 2, Theorem 1.

Theorem 5 implies, in particular, that an SO(3) -invariant (0,2) -invariant
tensor field defines and is defined by four functions J, K, P, and Q , defined on

the quotient manifold R X (0,00)= M /SO(3) .

Remark Theorem 4 does not imply that the tensor field g be regular, or of
certain signature. Assumptions of this kind should be applied independently.

Suppose that the matrix of the tensor field (8)

J(rt) K@) 0 0

K(r,t) P(r,) 0 0

a12) 0 0 Q) 0
0 0 0 sin* - Q(r.t)

is non-singular. Then the determinant is

13)

S OXR N~
© o WX

0
0
0 |FUP-KHQsin’9£0.
219.

0
0
o
0 0

sin
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Thus, the components of g satisfy
(14) JP-K*#0, Q=0.
Note that we can write in this case

g=J(r,t)dtRdt+ K(r,t)(dt @dr+drQdt)
+ P(r,t)dr @ dr + Q(r,t)(d¥ ® di + sin” ¥do @ do)

_ J(r,t) K(r,p)
= Q(r’t)(Q(r,t) dt@dt+ 001)
P(r,r)

dr @ dr+dd ® dd +sin’ 9do ® d(pj
O(r.1)

=Q@r,H)(j(r,t)dt @ dt + k(r,t)(dt @ dr +dr @ dt)
+ p(r,t)dr @ dr + dY ® do +sin” ¥do @ dp).

(dt @dr+dr@dt)
(15)
+

Thus, each SO(3) -invariant regular tensor field of type (0,2) on the manifold M
is conformal with the metric field of the form
g = jr,t)dt @dt + k(r,t)(dt @ dr + dr @ dt)

16
(1o + p(r.0)dr @ dr +dV¥ ® d +sin® ¥de @ de.

(for conformal metric fields of any signature see e.g. G.S. Hall, Symmetries and
Curvature structure in General Relativity, WS Lecture Notes in Physics 46,
World Scientific, 2004, p. 114).

9 SO(@)-invariance and translation invariance

Consider an SO(3) -invariant regular metric field

g=J(r,t)dt @dt+ K(r,t)(dt @ dr + dr ® dt)

1
M + P(r.t)dr @ dr +Q(r,t)(dV ® di + sin” ¥do @ do)

(Section 7, (8)). By the translation in M =Rx(R’\{(0,0,0)}) we mean any
transformation of the form

Rx (RX(R*\{(0,0,0)})) > (tr, ,(t,x))

2
@) St (t,x) =t +£,x) € RX(R*\{(0,0,0)}).

Clearly, translations define a left action of the additive group of real numbers R
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on M =Rx(R’\{(0,0,0)}). The generator of the translations is the vector field

ad

3 ‘f=a-

Theorem 6 Each SO(3) -invariant translation invariant regular metric field
on M is of the form

g=J(r)dt @dt+ K(r)(dt @ dr+dr @ dt)

4
@ +P(r)dr @ dr + Q(r)(dd @ dd +sin” 9do ® dp),
where J(r), K(r), P(r), Q(r) are arbitrary functions of the variable r.

Proof The assertion is evident: In the Killing equation

dg ag'  ag
5) ﬁé:“rgu@JrgkjW:O

(Section 4, (7)) we substitute from (3) from which we have from expression (1)
AK(r,t) _ P(r,t)

A o 0 o, P00 _
ot ot ot ot

(6) 0.

10 The Lambert function

To describe the structure of the Schwarzschild and Kruskal metric fields, we
need solutions of the equation

(1 y=we"?

for an unknown real function W of one real variable y, known as the Lambert
function. To this purpose we present in this section basic properties of this
function; for proofs and further comments see e.g. R.M. Corless, G.H. Gonnet,
D.E.G. Hare, D J. Jeffrey, and D.E. Knuth, On the Lambert W function, Advances
in Computational Mathematics, Springer-Verlag, Berlin, New York, 5, 329-359),
and http://mathworld.wolfram.com/LambertW-Function.html .
Clearly, if y=0,then W(0)=0.If y>O0,then there exists a unique solution
W (y) which is positive. If —1/e <y <0, then there are two solutions, W(y) and
W_ (y) that satisfy W_(y)<W(y); if y=-1/e, then W_ (-1/e)=W(-1/e).
Equation (1) has no real solutions such that y<—1/e. The following is a
description of the solution W.
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Lemma 1 Equation (1) has a unique solution W, defined on the interval
[-1/e,o0), such that

2  Wwy=z-L

This solution satisfies

3) W(—l)z—l, ImW =[-1,0).

Condition (2) means that we take for W the principal branch of the real
solution of equation (1). The solution described by Lemma 1 is known as the
Lambert W-function.

The following are elementary properties of the Lambert W-function:

(a) Equation y=xe" holds for x €[—1,) and y€[—1/e,o0) if and only if
x=W(y). In other words, W is the inverse of a function F, defined on (—oo,c0)
by

“4) F(x)=xe",

or more precisely, the inverse of its restriction F|_ ., to the interval where F is
increasing. Using F we can write

S  F')=W.

(b) W has the following special values:

(©6) W(—1)=—1, W(0)=0, W(1)=6L=0,567143....

e W

(c) The derivative of W is given by

aw _ W)

(7 =
dy y(1+W())

W is increasing and has an asymptote x=—1/e .
(d) From the definition
®) Iny=W@+InW(y)

on the set (0,e°) , and

©  W(E=pe" P =-Ww(ye".
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We usually consider W as defined on the open interval (—1/e,o0) .
As the first application of the Lambert W-function we find the inverse of a
function G defined on (—eo,o0) by

(10)  Gx)=xe™.

Writing y=xe™, we have to solve this equation with respect to x. We have
—y=—xe ", and this equation can be solved by means of W. We get
—x=W(-y) hence x=-W(—y) whenever —y belongs to the domain of
definition [-1/e,) of W. Consequently, G‘l(y):—W(—y). The domain of
definition of G™' consists of the points y such that —y belongs to the domain of
definition of W, ie., —y€[-1/e,). Then —x=W(—y)€ImW =[-1,e0) hence
X = G'l(y) € (—oo,1]. Summarizing, we have the following lemma.

Lemma 2 The restriction G |_.,, has the inverse G™' defined by
an - G'mM=-W(-y).
The domain of definition of G is the interval (—oo,1/¢€].

It follows from Lemma 2 that equation y=xe ™ holds for x & (—eo,I] and
y€(—oo,1/e) if and only if x=-W(-y).
Now consider the functions

(12) (0,0)3x—> f(x)=x+InxeR

and

(13) (0,0)5x—> g(x)=—x+Inx R,

and determine the inverse functions f~' and g'.

Lemma 3 (a) The inverse function f~' is defined by
(14 fTy=weE).

The domain of definition of f~' is the interval (—oo,00) .
(b) The inverse function g~ is defined by

(15) gy =-W(=¢e).

The domain of definition of g™ is the interval (—o,0) .
Indeed, we have e/’ =xe*, so f' can be determined from the equation
e’ = f"'(y)e/ . But the right-hand side is equal to F(f™'(y)),and F'=W by
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Lemma 1, so we have W(e”)= f"l(y) by Lemma 1.

Similarly, we have e’ =xe™, so g satisfies e’ = g"(y)e"fl(") . The
right-hand side is equal to G(g™'(y)) . But by Lemma 2, G™'(z)=-W(-z) , so for
z=¢’ wehave G'(e")=-W(-e')=g"'(y).

11 The Kruskal-Szekeres embeddings

In this section we consider two manifolds, M =R x(0,.) and R*. To any
real number m >0 (mass) we assign the subset {(#,7) € RX(0,00)|r #2m} of M
and construct its embedding into R”; the embedding is defined by means of the
“Kruskal-Szekeres coordinates”, and is indeed not canonical.

Denote by ¢, r the canonical coordinates on M, and by U, V the canonical
coordinates on R” . m defines a mapping R X (2m,00) 3 (¢,r) = @;f)(t,r) €R® by
the equations

r — t
Uo® W (t,r)=,/——1e*n cosh(—),
2m 4dm
(1) )
) r T !
Vo “(t,r)=,/7———1e*"sinh| —|.
2m 4dm

Note that the sign of U o (Df:)(t,r) (resp. V o@iﬂ”(z‘,r)) coincides with the sign of
cosh(z /4m) (resp. sinh(z/4m)); in particular, Uod)f:) is always positive, and
the sign of Vo®" coincides with the sign of the argument 7.

m also defines a mapping R X (—e0,2m) > (t,r) — d)fn")(t,r) €R’ by

Uo®O(t,r)=,[l-——e*n sinh(L],
2m 4m

(@)

VodO(r,r)=,[1-——e*n cosh[L).
2m 4dm

We usually write equations (1) and (2) in a simplified form

3) U=4/L—1emcosh(L), V=, —let sinh(L),
2m 4dm 2m 4m

and

@ U= f1-Lem sinh(L), V=4/1—Lemcosh(L).
2m 4dm 2m 4m
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Lemma 4 (a) The mapping ®'" is a bijection of the set R x(2m,o) and the
set

(3) Im®” =((U,V)eR*|U>0,U>-V*>0}.

The inverse mapping (D7) is given by the equations

2y
(6) t:4marctanh(5), rzzm(“_W(U VD

e
(b) The mapping @' is a bijection of the set and the set
(7 Im®’ =((U,V)ER*|V>0,-1<U*-V*<0).

The inverse mapping (®)" is given by the equations

2y
8 t:4marctanh(%), rzzm(“_W(U 1% D
e

Proof (a) First we determine the image set Im(D;f) , Which consists of the
points (U,V)ER® such that equations (3) have a solution (f,r), where
r €(2m,o) . To this purpose it is convenient to use graphs of the hyperbolic
functions cosh, tanh, and the Lambert function W.

Suppose we have a point (U,V)€Im®'’ . Then since cosh is always
positive, U >0 from (3). Since (U,V) satisfies

Vv t
(9) 5 = tanh(a) ,

and Im(tanh)=(-1,1), the number V /U belongs to the interval (—1,1) hence
Ve(U,U). We want to show that for any (U,V) satisfying these two
conditions U >0 and V € (-U,U) , equations (3) have a solution (z,r), such that
r € (2m,o) ; this will prove that In®" = {(U,V)eR*|U >0,V € (-U,U)} .

Condition (9) written as arctan(V/U)=t/4m , determines ¢. Condition
V €(=U,U) implies U>—V?* >0 ; but from (3)

2 2 r
vV =1(L—1]e2”‘(coshz(Lj—sinh2(LD
e e\2m 4m 4dm
:1(L_1)efm :(L_l)eiﬁ
e\2m 2m

(10)

hence
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2 2
(11) L—I:W(U -V )
2m e

Since the Lambert function is positive and increasing on (0,c0), there exists
exactly one number (r—2m)/2m solving (6), and (r—2m)/2m € (0,0); then,
however, r € (2m,) .

Summarizing, we see that Im d)f;> ={(U,V)eR*|U >0,V €(-U,U)},and in
Im (Di:) there exists exactly one pair (¢,r) solving (3); from (9) and (11),(¢,r) is
given by (6).

(b) Im(Din') is the set of points (U ,V)ER? such that equations (4) have a
solution (z,r), where r &€ (—e,2m). If (U,V)EImd)(y;) is a point, then since
cosh is always positive, we have V >0 . Then equations (4) imply

(12) g= tanhL,
\%4 4dm

and since Im(tanh)=(-1,1), we get U €(-V,V). It is clear that equation (12)
determines ¢.
Condition U € (=V,V) implies V> —U’ >0 . Computing V> —U” from (4),

Vi_U?= (1 - Ljeﬁ [coshz (Lj— sinh’ (LD
2m 4dm 4m

(13) ! '
:(I_Ljeﬁ:e(l_L)eﬁl’
2m 2m
hence
2 _yy2
(14) L—I:W(U 4 )
2m e

But this formula restricts possible image points (U,V) because 0<r <2m and
the left-hand side is always negative: we have —1 < (r—2m)/2m <0 . Thus, from
the properties of W, (U>-V?)/ec(~1/e,0) and V> -U” €(0,1). Summarizing,
if (U,V) belongs to the set Im(Din') , then necessarily V>0, Ue€(-V,V), and
0<V?-U’<1. Note that the third condition 0<V>—U’ already implies the
second one, so we can say that if (U,V)€Im®'’, then V>0 and
0<V?-U*<I1.

We call the mappings @ and @'’ the Kruskal-Szekeres embeddings.

The set Im®'” is defined by the inequalites U>0, U’-V?>>0, ie.,
U>0 and -U <V <U , s0 is an open positive cone in R* along the U-axis. The
set Im®'’ is defined by V>0 and —1<U’-V? <0 . The second inequality is
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equivalent to two inequalities V> <U?+1 and U® <V?*; altogether, In®" is
the intersection of three sets, defined by V>0, V <~U +1,and -V<U<V.
Thus Im®'" is the subset of the open positive cone along the V-axis, consisting
of the points under the hyperbola V =~vU>+1 .

The common boundary of these two sets is the set of points (U,V) such that
U=V>0.

12 The Kruskal-Szekeres spacetime

Consider the canonical metric field of Lorentz type, defined on R* by
(1) h=dU®dU—-dV®dV.
We wish to compute the pull-backs ((I)f;))*h and ((I)f;))*h .

Lemma 5 (a) The pull-back ((I)E;))*h has an expression

@ (@)rh= L Leﬁ(—r_zmdzg)dﬁ 4

d d).
16m* 2m r r—2m redr

(b) The pull-back ((I)E;))*h has an expression

3 (@))*h=

1 r 2'—( r—=2m r )
—e2m|— dt@dt + dr®dr)).
16m* 2m r ® r—=2m redr

Proof (a) We have from equations (1) or (3), Section 3,
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dU:JL—lemﬂcosh(L)'dt+cosh(L)
2m 1% 4m 4m
L L—le“’”smh( ! jdr
4m\ 2m 4m

b
I

(/L_lem
r\\V2m

+COSh(Lj' L;em_;ri L_]em dr
m

2m2 Ty 4m\ 2m
2m
4) ! L—le“msmh( ! jdt
+ L L_lez;mcosh(Lj ar
dm N 2m 4m L—l
2m
! 4,L—le“ms1nh(ij-dtdt
4m 2m 4dm

+L L—lemcosh(Lj dr,
dm N 2m dm)r—2m

and
dv = /L—lemgsinh(L)dH-sinh(L)E
2m I 4m 4m )r
L d —le*m cosh( ! j-dt
4dm 2m 4m
dm )| 2m r 4m\N 2m
2, —-1
2m
1
) L—le“”’cosh(t -dt
4m 2m 4m
+L ——1e4'”smh(L)
dm N 2m 4dm L—l
=L r e4m COSh(L) dt
dm 2m 4m
L ——le’"sinh(L _—
dm \ 2m dm)r—2m

hence

()

dr

).dr

dr
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dUZL L et (sinh(L)~dt+ d cosh(L)drj,
dm\ 2m 4m r—2m 4m
(6) { , : t
AV =— |1 _1etn (cosh(—]-dt+ d sinh(—jdrj.
4m N\ 2m 4m r—2m 4m
Now

(@) *h
- 2eﬂ(L—l)((sinh(L]-dt+ . cosh(L)dr)
16m 2m 4dm r—=2m 4m
@) (smh( )dt+ cosh( )drj
r—2m 4m
(cos ( )dt+ s1nh( )a’rj
r—2m 4m
(cosh( ! ) dt + s1nh(L)dr ),
4m r— 2m 4m

<<D:;)>*h

e (——1)((smh ( ! j coshz( Ddi@dt
16m 4dm dm
(smh( )cosh( j cosh( ! )smh( Ddt@dr
r—2m 4m 4m
r (cosh( ! )smh(L)—Sinh( ! )cosh( Ddr@dt
r—2m 4dm 4dm 4dm 4m
2
+r72(cosh2(Lj—sinhz(LDdr@)drj
(r—2m) 4dm dm

so we get

+

®) +

1 “r-2m r?
= 2m —dtQdt+———dr®d
16m* 2m ( (r=2m)* " rj
1 . m
= 2m dr@dt + di d).
32m’ ¢ ( r ® r—2m redr

This formula proves (2).
(b) From (2) or (4), Section 3
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dU=4/l—LemEsinh(L
2m |:|t 4m

1
dm 2m

2,/1

©)] 1 T cosh(

- 4dm 2m

— I—Lem COSh(

)~dt+sinh(

Ljdr
4m

. ( t ) 1 1
+sinh| — || ~———F——
dm 2m T

r
eing L
4m

2m

Ljd[
4dm

)t

(/1_Leﬁ
2m

r

1 — L e4m dr
2m

+Lsinh(LjeW SR S R
4m 4dm T 2m

! I—Lemcosh(
2

“am\ 2m

_E 2m2m—r

m
and
dv = 1—Lemgcosh(L)dt+cosh(
V' oom D 4m 4
:L I—Lemsinh(L)dt
4dm 2m 4dm
+Cosh(4j. I S S
4m 2m r 4m
2, /1——
m
(10) - 1—Lemsinh(Lj-dt
4dm 2m 4dm

1—

2m

L]dr
4m

! 1—L d sinh(ijemdr,

t
m

Iz

)

+LeTmcosh(L)- —éh}l—L dr
4m 4m T 2m

1-—

=L 1—Lsinh(
4m 2m

_ I_Lcosh(
2

4dm m

Thus

m

4dm

2m

d j'dt

L) " ar
2m-—r
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v =1 1—Lem(cosh(ij-dz— r sinh(Lj.dr),
4dm 2m 4dm 2m-—r 4m

4dm 2m

(1)

Now

(@) *h
- 2E:E(I—L)(cosh(L)-dt— . sinh(L)-dr
16m 2m 4m 2m-—r 4m

(12) ®(cosh(ﬁ)~dt— zm’_r sinh(ﬁ)-dr

—(sinh(%)‘dt—z ! cosh(%)-drj
m m—r m
®(sinh(%)‘dt—2 ! cosh %)dr))
m m—r m
hence
1 r\ -
O k) = (1_7) 2m
@)= g\
-((cosh2 (%) sinh? (%))d ® dt
m
+ 4 ( cosh( )smh( +smh( )cosh( Ddt@dr
(13) 2m—r 4dm

=)
+2mr_r(—sinh( )cosh( j cosh( )smh(;m Ddr@dt
+(2mrir)( nh( ) cosh( Ddr@drj

15
- = e drod—— " aredn).
16m*\ 2m)° ( Qm-r2 " r]

This expression can also be written as

a4 @ yrh= Lo (22

re2m

dtdt+
16m* 2m @

r r—2m

dr® dr))

as required.
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Note that the coefficient in expressions (2) and (3), Lemma5, can be
expressed in terms of coordinates U and V on R’ ; from Lemma 4

L 2_y? 1+Wﬂ
(15) rCZmZ(l_}’_W(H)je [ € )
2m

(&

The right-hand side has sense for each (U,V) such that (U>—~V?*)/e belongs to
the domain of definition of W, i.e., to the interval [—1/e,o). Equivalently,
U?>-V?*€[-1,00), or U>~V*+1=0 . Thus, (U,V) should satisfy V> <U>+1
or, equivalently, the inequalities U1V VU +1, defining the region
between two branches of the hyperbola V> =U” +1 . On the hyperbola,

2 2
(16) 1+W(U -V ):0
c

so the coefficient (15) becomes zero. Using these observations we set

U-v?

1 —l—W[ . J
(17)  g=——F—753~¢ dU®dU—-dV ®dV).

2 2
1+w[U v )
€

g is a Lorentz metric field on the set

(18) —~NU*+1<V<~NU*+1.

From Lemma 5 we now have the following result.

Theorem 7 (Kruskal-Szekeres spacetime) There exists a manifold X,
diffeomorphic with R*, a Lorentz metric field g on X, two diffeomorphisms
(D(nf) :W,L+> — X and (D(n:) :W,L_> — X, and a closed 1-dimensional submanifold Z
of X with the following properties:

(a) Zis diffeomorphic with the real line R .

(b) The sets ¥ W), YO W), and Z are mutually disjoint and

19 X=YrPwHurwHuz.

(¢c) The pull-back metric fields ((I)f;))*g and ((I)f;))*g are the
Schwartzschild metric field on W'" and W' .

Proof We take for X the connected open set in R, defined by the
inequalities —U <V <~U” +1 , and apply Lemma 5.

X can be represented by the region between the brown lines V =-U and
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V=~U’+1 in the diagram

Clearly, applying a diffeomorphism, one can take for X the entire manifold R” .



