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Preface 

 The inverse problem of the calculus of variations is the problem of 
finding conditions, ensuring that a given system of (ordinary or partial) dif-
ferential equations coincides with the system of Euler-Lagrange equations of 
an integral variational functional. Its origin, dated 1886, is connected with 
the names of Sonin and Helmholtz; a version for some specific systems of 
ordinary second order equations, using variational integrating factors, was 
presented by Douglas in 1941. Since then the problem, lying on the border 
of the calculus of variations, differential equations, differential geometry, 
and topology of manifolds was studied by many authors; however, in its 
generality it still waits for a complete solution.  
 The aim of these lectures is to give an introduction to the local and 
global inverse problem. First we consider the variationality problem for sys-
tems of ordinary second order differential equations; however, the inverse 
problem for vector fields on tangent bundles (sprays) is not included. We 
derive the Helmholtz variationality conditions and find integrability condi-
tions for the Douglas’s problem.  
 The global inverse problem is then formulated within the global varia-
tional theory, extending the classical calculus of variations from Euclidean 
spaces to smooth manifolds. The problem is to find conditions when a sys-
tem of equations on a manifold, which is locally variational, admits a global 
Lagrangian. We introduce underlying variational concepts in terms of differ-
ential forms, and study the theory of variational sequences, in which one ar-
row represents the Euler-Lagrange mapping of the calculus of variations. 
The sequence relates properties of the Euler-Lagrange mapping with the 
De Rham cohomology of the underlying manifold.  
  This text represents a course on the geometry of the local and global 
inverse problem of the calculus of variations, given at the Bahia Blanca Uni-
versity in June and July 2013. The author acknowledges support from the 
IRSES project GEOMECH (project no. 246981) within the 7th European 
Community Framework Program, making possible the author’s stay in Bahia 
Blanca. He is also grateful to Professor Hernan Cendra for many stimulating 
discussions and collaboration. 
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