
 
 

 

 
 

The inverse problem of the 
calculus of variations  
 

Introduction 

 Consider a system of second-order ordinary differential equations, 
solved with respect to second derivatives of the unknown curve xi = xi (t) ,  

(1)   !!x
j ! F j = 0,  

where  i, j = 1,2,…,m , and  F = F j (xi , !xi )  are given functions. Any collection 
of functions 

 
gjk = gjk (x

i , !xi ) , such that det gij ! 0 , defines an equivalent sys-
tem 

 
gij (!!x

j ! F j ) = 0 . The goal is to study the problem of existence of a func-
tion   � = �(xi , !xi )  such that  

(2)  
  
gij (!!x

j ! F j ) = ! !�
!xi

+ d
dt
!�
! !xi

,  

known as the inverse problem of the calculus of variations for the system 
(1). For historical reasons we also refer to this problem as the Sonin-
Douglas’s variationality problem, and call equations (2) the Sonin-
Douglas’s equation. Having in mind the correspondence with classical me-
chanics and differential geometry, we sometimes call the system F (resp. g) 
the force (resp. metric), the components gjk  are also called variational mul-
tipliers. If the function  �  exists, it is called the Lagrangian for the pair 
(F,g) . Denoting (conventionally with the minus sign)  

(3)  
 
! i = "gij (!!x

j " F j ),  

we can equivalently say that the functions ! i  are the Euler-Lagrange ex-
pressions of  � , or that the system of functions ! = ! i  is variational.  
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 First ideas related with variational origin of differential equations ap-
peared in Sonin 1866 [4], who studied the inverse problem for one second 
order equation and proved that all second order equations admit a Lagrangi-
an; for English translation of his work see 
 
  http://www.lepageri.eu/publications.html  
 
The author is indebted to Professor Skarzhinski for this reference, and for 
the discussions during the International Conference on Differential Geome-
try and its Applications, Brno, August 24 – 30, 1986. The same idea and ap-
proach has later appeared in Darboux (Lecons sur la Theorie Generale des 
Surfaces, Paris, 1894). In 1941 Douglas [2] obtained a complete classifica-
tion of the systems (2) for two equations, and provided numerous examples 
of non-variational systems; he already studied the same subject in 1939 and 
1940, but regarded these papers as preliminary notes (see References and 
Notes (1) and (3) in [2]). The results of Douglas have been further developed 
from geometrical point of view by Sarlet, Crampin and Martinez [9], Ander-
son and Thompson [5], Krupkova and Prince [25] and others (further refer-
ences can be found in the handbook D. Krupka, D. Saunders [1]).  
 The Sonin-Douglas’s problem is a special case of the problem of Helm-
holtz, formulated for general systems of ordinary second order equations in 
an implicit form  

(4)   ! i (x
j , !x j , !!x j ) = 0,  

where 1! i, j ! n  (Helmholtz 1887 [3]). For historical remarks and generali-
sations of the Helmholtz variationality conditions we refer to Krupkova, 
Prince 2008 [25] and D. Krupka, O. Krupkova, G. Prince and W. Sarlet 2007 
[22].  

 Remark 1  We do not consider in this work the systems of differential 
equations (3) and (4), such that the functions ! i  depend explicitly on the pa-
rameter t of the curves t! xi (t) ).  

 The Helmholtz conditions have been generalised to systems of higher 
order partial differential equations by Anderson, Duchamp 1980 [17], and 
Krupka 1981 [6]. As an illustrative example consider a system of second-
order equations of the form  

(5)  !" (x
i , y# , yj

# , yjk
# ) = 0,  

where 1! i ! n , 1!" ,# ! m , xi  are independent variables, y! , dependent 
variables, yj

!  yjk
!  the derivative variables, and !" = !" (x

i , y# , yj
# , yjk

# )  is a 
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given system of differentiable functions. The variationality conditions for 
this system read  

(6)  

!!"
!yqr

# $ !!#
!yqr

" = 0,

!!"
!yq

# + !!#
!yq

" $ 2dp
!!#
!ypq

" = 0,

!!"
!y#

$ !!#
!y"

+ dp
!!#
!yp

" $ 2dpdq
!!#
!ypq

" = 0.

 

If these conditions are satisfied, then a Lagrangian for the system !"  can be 
constructed by  

(7)  
 
�(xi , y! , yp

! , ypq
! ) = y! "! (x

i ,# y$ ,# yj
$ ,# yjk

$ )d#
0

1

% ,  

and is known as the Vainberg-Tonti Lagrangian (cf. [1]).  
 The problem of Helmholtz was extended to second-order systems of 
homogeneous ordinary differential equations by Urban, Krupka 2013 [10] by 
means of combination of the Helmholtz and the Zermelo (positive homoge-
neity) conditions.  
 The global inverse problem as considered in these lectures, is concerned 
with equations for extremals in the theory of integral variational functionals 
on fibred manifolds. Let Y be a fibred manifold over the base manifold X, 
where n = dim X , and let J rY  denote the r-jet prolongation of Y. Consider 
for simplicity a 1st order Lagrangian ! , that is, an n-form on J1Y  such that 
in any fibred coordinates (xi , y! )  on Y,  

(8)   ! = �" 0 ,  

where   ! 0 = dx
1!dx2 !…!dxn , and 

 
� = �(xi , y! , yj

! )  in the associated co-
ordinates (xi , y! , yj

! )  on J1Y  (the local Lagrange function). The Euler-
Lagrange form of !  is a globally well-defined (n +1) -form on J 2Y , de-
fined in the associated coordinates (xi , y! , yj

! , yjk
! )  as  

(9)    E(!) = E" (�)dy
" !# 0 ,  

where  E! (�)  are the Euler-Lagrange expressions,  

(10)  
 
E! (�) =

!�
!y!

" dk
!�
!yk

! .  
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These concepts define the (global) Euler-Lagrange mapping ! " E(!)  be-
tween the corresponding Abelian groups of differential forms, assigning to 
the Lagrangians the corresponding Euler-Lagrange forms.  
 On the other hand, on the 2nd jet prolongation J 2Y  we also have the 
source forms, the (n +1) -forms ! , locally expressible as  

(11)   ! = !"dy
" !# 0 .  

Clearly, the Euler-Lagrange forms belong to the set of source forms. The 
(global) inverse problem consists in finding conditions ensuring that a given 
source form !  is an Euler-Lagrange form, that is, solves the equation  

(12)  ! = E(")  

with the Euler-Lagrange mapping on the right-hand side. A necessary condi-
tion for existence of a solution can be written as the system  

(13)  
 
!" = !�

!y"
# dk

!�
!yk

"  

for an unknown 
 
� = �(xi , y! , yj

! ) , for eny fibred coordinates (xi , y! ) . Its 
solvability is equivalent with the Helmholtz conditions (6); if (6) are satis-
fied for some fibred coordinates at any point of Y, we say that the source 
form (11) is locally variational.  
 The global inverse problem, however, is to find a global Lagrangian !  
solving (12). To this purpose we construct a sequence of classes of differen-
tial forms, the variational sequence, derived from the de Rham sequence of 
sheaves of forms on the domain J1Y  of ! , in which the Euler-Lagrange 
mapping represents one arrow (Krupka 1990 [21]). Then the cohomology of 
the complex of global sections of the variational sequence determines global 
properties of the Euler-Lagrange mapping, namely its image and kernel. In 
particular, we get as a consequence that for fibred manifolds Y such that the 
De Rham cohomology group H n+1Y  is trivial, that is,  

(14)  H n+1Y = 0,  

locally variational source forms are necessarily (globally) variational. The 
cohomology group H nY  is then responsible for the freedom in the choice of 
global Lagrangians. In this way we get a complete description of the solu-
tions of equation (12) on Y.  
 Main motivations for the variational sequence theory came from the 
theory of Lepage forms (see e.g. Krupka 1975 [14]), the work of Takens 
1979 [24] and the variational bicomplex theory (see references in [1]).  
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Part 1 

The inverse problem for second-order 
ordinary differential equations 

 
 In this part of the lectures systems of k second-order ordinary differen-
tial equations for k unknown functions are considered. We study the con-
ditions ensuring that such a system be expressible as the Euler-Lagrange 
equations for extremals of some integral variational functional. The prob-
lem how this variational functional can be recovered is also considered 
and the corresponding Lagrangian is constructed. The systems of the 
Sonin-Douglas type (solved with respect to the second derivatives of the 
unknown functions) and of the Helmholtz type (in an implicit form) are 
considered separately. 

1  The Sonin’s inverse problem  

 Given a function  F = F(t, x, !x) , the Sonin’s problem consists in finding 
a nonzero function  g = g(t, x, !x)  for which there exists a solution 
  � = �(t, x, !x)  of the equation  

(1)  
  
g(!!x ! F) = ! !�

!x
+ d
dt
!�
! !x
.  

Then if we have a solution, considering  �  as the Lagrange function of a 
variational principle, the corresponding Euler-Lagrange equation is  

(2)  
  

!�
!x

! d
dt
!�
! !x

= 0,  

and is equivalent with the equation  

(3)   !!x ! F = 0.  
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 Theorem 1  The Sonin’s problem has always a solution g.  
 Proof  Since g is supposed to be different from zero on its domain of 
definition, equation (1) is equivalent with the system  

(4)  
  
g = !

2�
! !x2

, ! gF = ! !�
!x

+ !
2�
!t ! !x

+ !
2�

!x! !x
!x.  

 The first equation can be solved immediately on any star-shaped domain 
with centre 0 in the variable  !x . We first solve the equation  

(5)  
 
g = !h

! !x
.  

The solution is  

(6)  
 
h = !x g(x,! !x)d!

0

1

" .  

Indeed, we have  

(7)  

 

!h
! !x

!
"

#
$ (x p , !x p )

= g(x,% !x)d%
0

1

& + !x !g
! !x

!
"

#
$ (x,% !x )

% d%
0

1

&

= g(x,% !x)+ !g
! !x

!
"

#
$ (x,% !x )

% !x!
"'

#
$(
d%

0

1

& = d
d%
(g(x,% !x)% )d%

0

1

&
= g(x, !x).

 

Then we solve the equation  

(8)  
  
h = !�

! !x
.  

We have a solution L, defined by  

(9)  
 
L = !xi h(x,! !x)d!

0

1

" .  

Substituting  

(10)  
 
h(x,! !x) = ! !x g(x,"! !x)d"

0

1

# ,  

we get 
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(11)  
 
L = !x ! !x g(x,"! !x)d"

0

1

#( )d!0

1

# = !x2 g(x,"! !x)d"
0

1

#( )! d!0

1

# .  

The general solution of the first equation (4) is  

(12)  
  
� = 1

2
!x2 g(x,!" !x)d!

0

1

#( )" d"0

1

# + A!x + B,  

where the functions A and B do not depend on  !x .  
 From (12) it is now sufficient to prove that the second equation (4) has a 
solution g. Following Sonin, we differentiate (4) with respect  !x . We get  

(13)  

  

!gF + !�
!x

! !
2�
!t ! !x

! !
2�

!x! !x
!x

= ! !g
! !x

F ! g !F
! !x

+ !2�
!x! !x

! !3�
!t ! !x2

! !3�
!x! !x2

!x ! !2�
!x! !x

= 0
 

hence g must satisfy  

(14)  
 

!g
! !x

F + g !F
! !x

+ !g
!t

+ !g
!x
!x = 0.  

Then, provided g > 0 , we get an equation  

(15)  
 

! f
! !x

F + !F
! !x

+ ! f
!t

+ ! f
!x
!x = 0  

for a function f = lng . (14) is a partial differential equation for g; such 
equations always have solutions, and can be solved by standard methods.  

2  Energy Lagrangians 

 Suppose we have a system of functions 
 
h = hjk (x

i , !xi ) , such that 
hjk = hkj , defined on an open set U !Rm , where U is an open set in Rm ; 
when no misunderstanding can arise we call g a metric on U !Rm . Consider 
a variational principle for curves in Rm , defined by the Lagrangian  

(1)  
  
� h =

1
2
hij !x

i !x j  

We call  � h  the energy Lagrangian, associated with the metric h. We intro-
duce a system of functions Cijk  by  
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(2)  
 
Cijk =

1
3
!hij
! !xk

+
!hjk
! !xi

+ !hki
! !x j

!
"#

$
%&
.  

The system of functions C = Cijk  is called the Cartan tensor, associated with 
h (or with the energy Lagrangian  � h ). Cijk  is defined by the decomposition  

(3)  
 

!hij
! !xk

= Cijk !
1
3
!hjk
! !xi

!
!hij
! !xk

"
#$

%
&'
! 1
3
!hki
! !x j

!
!hij
! !xk

"
#$

%
&'
.  

 Lemma 1  The Euler-Lagrange expressions of the Lagrangian (1) are  

(4)  

  

!� h

!xk
! d
dt
!� h

! !xk
= ! 1

2
!hik
!x j

+
!hjk
!xi

!
!hij
!xk

"
#$

%
&'
!xi !x j

! 1
2
!Cijk

!xs
!xs !xi !x j ! 1

2
!Cijk

! !xs
!xi !x j !!xs ! 2Cisk !x

i!!xs

+ 1
3
!
!xs

!hjk
! !xi

!
!hij
! !xk

"
#$

%
&'
!xs !xi !x j + 1

3
!
! !xs

!hjk
! !xi

!
!hij
! !xk

"
#$

%
&'
!xi !x j !!xs

! 1
3
!his
! !xk

! !hsk
! !xi

+ !hik
! !xs

! !hsk
! !xi

"
#

%
& !x

i!!xs ! hsk !!x
s .

 

 Proof  Differentiating (1) we have  

(5)  
  

!� h

!xk
= 1
2
!hij
!xk
!xi !x j , !� h

! !xk
= 1
2
!hij
! !xk
!xi !x j + hik !x

ii ,  

and  

(6)  

  

!� h

!xk
! d
dt
!� h

! !xk
= 1
2
!hij
!xk
!xi !x j ! 1

2
!2hij
!xs ! !xk

!xs +
!2hij
! !xs ! !xk

!!xs
"
#$

%
&'
!xi !x j

!
!hij
! !xk
!xi!!x j ! !hik

!xs
!xs + !hik

! !xs
!!xs"

#
%
& !x

i ! hik !!x
i

= ! 1
2
!hik
!x j

+
!hjk
!xi

!
!hij
!xk

"
#$

%
&'
!xi !x j ! 1

2
!2hij
!xs ! !xk

!xs !xi !x j

! 1
2
!2hij
! !xs ! !xk

!xi !x j + !his
! !xk

+ !hik
! !xs

"
#

%
& !x

i + hsk
"
#$

%
&'
!!xs .
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Since from (3)  

(7)  

 

!his
! !xk

+ !hik
! !xs

= Cisk !
1
3
!hsk
! !xi

! !his
! !xk

"
#$

%
&' !

1
3
!hki
! !xs

! !his
! !xk

"
#$

%
&'

+Ciks !
1
3
!hks
! !xi

! !hik
! !xs

"
#

%
& !

1
3
!hsi
! !xk

! !hik
! !xs

"
#$

%
&'

= 2Cisk +
1
3
!hik
! !xs

+ !his
! !xk

! 2 !hks
! !xi

"
#

%
& ,

 

we have  

(8)  

  

!� h

!xk
! d
dt
!� h

! !xk
= ! 1

2
!hik
!x j

+
!hjk
!xi

!
!hij
!xk

"
#$

%
&'
!xi !x j

! 1
2
!
!xs

Cijk !
1
3
!hjk
! !xi

!
!hij
! !xk

"
#$

%
&'
! 1
3
!hki
! !x j

!
!hij
! !xk

"
#$

%
&'

"
#$

%
&'
!xs !xi !x j

! 1
2
!
! !xs

Cijk !
1
3
!hjk
! !xi

!
!hij
! !xk

"
#$

%
&'
! 1
3
!hki
! !x j

!
!hij
! !xk

"
#$

%
&'

"
#$

%
&'
!xi !x j !!xs

! 2Cisk +
1
3
!hik
! !xs

+ !his
! !xk

! 2 !hks
! !xi

"
#

%
&

"
#

%
& !x

i"
#

%
& !!x

s ! hsk !!x
s

= ! 1
2
!hik
!x j

+
!hjk
!xi

!
!hij
!xk

"
#$

%
&'
!xi !x j

! 2Cisk !x
i!!xs ! 1

2
!Cijk

!xs
!xs !xi !x j ! 1

2
!Cijk

! !xs
!xi !x j !!xs

+ 1
3
!
!xs

!hki
! !x j

!
!hij
! !xk

"
#$

%
&'
!xs !xi !x j + 1

3
!
! !xs

!hjk
! !xi

!
!hij
! !xk

"
#$

%
&'
!xi !x j !!xs

! 1
3
!hik
! !xs

+ !his
! !xk

! 2 !hks
! !xi

"
#

%
& !x

i!!xs ! hsk !!x
s .

 

3  Integrability conditions  

 In this section we recall elementary theorems on integration of differen-
tial equations, appearing in this paper; essentially, we need simple systems 
of Frobenius type in Euclidean spaces Rn . All functions we consider are 
defined on a star-shaped neighbourhood U of the origin  0!Rn .  
 Suppose we have a system of functions A = Ak , 1! k ! n  defined on U, 
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and consider the differential equations  

(1)  Ak =
!P
!xk

 

for an unknown function P.  

 Lemma 2  (a) Equation (1) has a solution P if and only if the functions 
Ak  satisfy  

(2)  !Ak
!xl

! !Al
!xk

= 0.  

 (b)  If condition (2) is satisfied, then a solution P is given by  

(3)  P = xk Ak (! x
l )d!

0

1

" .  

 Proof  Necessity of condition (2) is obvious. To prove sufficiency, we 
differentiate P with respect to xi . We have  

(4)  

!P
!x p

= Ap (! x
l )d!

0

1

" + xk !Ak
!x p

#
$

%
& ! xl

! d!
0

1

"

= Ap (! x
l )d!

0

1

" + xk
!Ap

!xk
#
$'

%
&( ! xl

! d!
0

1

"

= d
d!
(Ap (! x

l )! )d!
0

1

" = Ap (x
l ).

 

 Remark 2  In case we have a system of differential equations of the 
form  

(5)  A(! )k =
!P(! )
!xk

,  

criterion (2) applies to each equation separately; we have  

(6)  
!A(! )k
!xl

"
!A(! )l
!xk

= 0.  

 Now suppose we have a system of functions A = Akl  defined on U, such 
that  
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(7)  Akl = !Alk .  

Consider the differential equations  

(8)  Akl =
!Ql

!xk
! !Qk

!xl
 

for unknown system of functions Q =Ql .  

 Lemma 3  (a) Equation (8) has a solution Q  if and only if the functions 
Akl  satisfy  

(9)  !Aks
!xl

+ !Asl
!xk

+ !Alk
!xs

= 0.  

 (b)  If condition (7) is satisfied, then a solution Q is given by  

(10)  Ql = x
p Apl (! x

i )! d!
0

1

" .  

 Proof  Necessity of condition (9) is immediate. To prove sufficiency, 
we differentiate Ql  with respect to xk . We have  
  

(11)  !Ql

!xk
= Akl (! x

i )! d!
0

1

" + x p
!Apl

!xk
#
$%

&
'( ! xi

! 2 d!
0

1

" ,  

and 

(12)  

!Ql

!xk
! !Qk

!xl
= Akl (" x

i )" d"
0

1

# + x p
!Apl

!xk
$
%&

'
() " xl

" 2 d"
0

1

#

! Alk (" x
i )" d"

0

1

# ! x p
!Apk

!xl
$
%&

'
() " xl

" 2 d"
0

1

#

= 2 Akl (" x
i )" d"

0

1

# + x p
!Apl

!xk
!
!Apk

!xl
$
%&

'
() " xl

" 2 d"
0

1

#

= 2 Akl (" x
i )" d"

0

1

# + x p
!Apl

!xk
+
!Akp
!xl

+ !Alk
!x p

$
%&

'
() " xl

" 2 d"
0

1

#

! x p !Alk
!x p

$
%

'
( " xl

" 2 d"
0

1

# .
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This formula can also be expressed in the form  

(13)  

!Ql

!xk
! !Qk

!xl
= !Akl

!x p
"
#

$
% & xl

x p& 2 + 2Akl (& x
i )&"

#'
$
%( d&0

1

)

= d
d&
(Akl (& x

i )& 2 )
0

1

) = Akl (x
i ).

 

4  Variational systems of differential equations  
    and the Helmholtz conditions  

 Let ! = ! i  be a system of functions  ! i = ! i (t, x
j , !x j , !!x j ) . We shall say 

that this system is variational, if there exists a function   � = �(t, x j , !x j )  such 
that  

(1)  
  
! i =

!�
!xi

" d
dt
!�
! !xi

.  

We give a straightforward proof of the following necessary and sufficient 
conditions for !  to be variational.  

 Lemma 4  The system !  is variational if and only if  

(2)  
 

!! i
!!!xl

" !! l
!!!xi

= 0,  

(3)  
 

!! i
! !xl

+ !! l
! !xi

" d
dt

!! i
!!!xl

+ !! l
!!!xi

#
$

%
& = 0,  

and  

(4)  
 

!! i
!xl

" !! l
!xi

" 1
2
d
dt

!! i
! !xl

" !! l
! !xi

#
$

%
& = 0.  

 Proof  1. We show that if ! i  are expressible in the form (1), then condi-
tions (2), (3), and (4) hold. Using explicit expressions  

(5)  
  
! i =

!�
!xi

" !2�
!t ! !xi

" !2�
!xk ! !xi

!xk " !2�
! !xk ! !xi

!!xk  

we get  
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(6)  

  

!! i
!!!xl

= " !2�
! !xl ! !xi

,

!! i
! !xl

= !2�
! !xl !xi

" !3�
! !xl !t ! !xi

" !3�
! !xl !xk ! !xi

!xk " !2�
!xl ! !xi

" !3�
! !xl ! !xk ! !xi

!!xk ,

!! i
!xl

= !2�
!xl !xi

" !3�
!xl !t ! !xi

" !3�
!xl !xk ! !xi

!xk " !3�
!xl ! !xk ! !xi

!!xk .

 

Hence  

(7)  
  

!! i
!!!x j

"
!! j

!!!xi
= " !2�

! !x j ! !xi
+ !2�
! !x j ! !xi

= 0,  

and  

(8)  

  

!! i
! !xl

+ !! l
! !xi

" d
dt

!! i
!!!xl

+ !! l
!!!xi

#
$

%
&

= !2�
! !xl !xi

" !3�
! !xl !t ! !xi

" !3�
! !xl !xk ! !xi

!xk " !2�
!xl ! !xi

" !3�
! !xl ! !xk ! !xi

!!xk + !2�
! !xi !xl

" !3�
! !xi !t ! !xl

" !3�
! !xi !xk ! !xl

!xk " !2�
!xi ! !xl

" !3�
! !xi ! !xk ! !xl

!!xk

+ 2 !3�
!t ! !xl ! !xi

+ !3�
!xk ! !xl ! !xi

!xk + !3�
! !xk ! !xl ! !xi

!!xk
#
$'

%
&(
= 0.

 

Analogously  

(9)  

  

!! i
!xl

" !! l
!xi

" 1
2
d
dt

!! i
! !xl

" !! l
! !xi

#
$

%
&

= !2�
!xl !xi

" !3�
!xl !t ! !xi

" !3�
!xl !xk ! !xi

!xk " !3�
!xl ! !xk ! !xi

!!xk

" !2�
!xi !xl

+ !3�
!xi !t ! !xl

+ !3�
!xi !xk ! !xl

!xk + !3�
!xi ! !xk ! !xl

!!xk
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! 1
2
d
dt

!2�
! !xl !xi

! !3�
! !xl !t ! !xi

! !3�
! !xl !xk ! !xi

!xk ! !2�
!xl ! !xi

"
#$

! !3�
! !xl ! !xk ! !xi

!!xk ! !2�
! !xi !xl

+ !3�
! !xi !t ! !xl

+ !3�
! !xi !xk ! !xl

!xk + !2�
!xi ! !xl

+ !3�
! !xi ! !xk ! !xl

!!xk
%
&'

! !3�
! !xl ! !xk ! !xi

!!xk ! !2�
! !xi !xl

+ !3�
! !xi !t ! !xl

+ !3�
! !xi !xk ! !xl

!xk + !2�
!xi ! !xl

+ !3�
! !xi ! !xk ! !xl

!!xk
%
&'

= !2�
!xl !xi

! !3�
!xl !t ! !xi

! !3�
!xl !xk ! !xi

!xk ! !3�
!xl ! !xk ! !xi

!!xk

! !2�
!xi !xl

+ !3�
!xi !t ! !xl

+ !3�
!xi !xk ! !xl

!xk + !3�
!xi ! !xk ! !xl

!!xk

! !
!t

!2�
! !xl !xi

! !2�
!xl ! !xi

"
#$

%
&'
! !
!xk

!2�
! !xl !xi

! !2�
!xl ! !xi

"
#$

%
&'
!xk

! !
! !xk

!2�
! !xl !xi

! !2�
!xl ! !xi

"

#
$

%

&
' !!x

k = 0.

 

 2.  Conversely, we know that conditions (2), (3) and (4) ensure exist-
ence of a second-order Lagrangian   � = �(t, x j , !x j , !!x j )  such that  

(10)  
  
! i =

!�
!xi

" d
dt
!�
! !xi

+ d 2

dt 2
!�
!!!xi

 

(the Vainberg-Tonti Lagrangian, see e.g. Krupka, Saunders 2008 [1]); the 
right-hand side is polynomial in the variables  !!!x j ,  !!!!x j , but ! i  depends on 
 x

j , !x j , !!x j  only. Since  

(11)  

  

! i =
!�
!xi

" !2�
!x j ! !xi

!x j " !2�
! !x j ! !xi

!!x j " !2�
!!!x j ! !xi

!!!x j

+ d
dt

!2�
!x j !!!xi

!x j + !2�
! !x j !!!xi

!!x j + !2�
!!!x j !!!xi

!!!x j#
$%

&
'(
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= !�
!xi

! !2�
!x j ! !xi

!x j ! !2�
! !x j ! !xi

!!x j ! !2�
!!!x j ! !xi

!!!x j

+ d
dt

!2�
!x j !!!xi

!x j + !2�
!x j !!!xi

!!x j + d
dt

!2�
! !x j !!!xi

!!x j + !2�
! !x j !!!xi

!!!x j

+ d
dt

!2�
!!!x j !!!xi

!!!x j + !2�
!!!x j !!!xi

!!!!x j

 

then  

(12)  
  

!2�
!!!x j !!!xi

= 0,  

hence  

(13)  
  
! !2�
!!!x j ! !xi

+ !2�
! !x j !!!xi

= 0.  

Conditions (12) and (13) imply  

(14)  
  
� = A + Bi!!x

i , !
!Bj

! !xi
+ !Bi
! !x j

= 0, Bi =
!C
! !xi

,  

hence  

(15)  

  

� = A + !C
! !xi
!!xi = A ! !C

!xi
!xi + !C

!xi
!xi + !C

! !xi
!!xi

= A ! !C
!xi
!xi + dC

dt
= � 0 +

dC
dt
,

 

where  

(16)  
  
� 0 = A ! !C

!xi
!xi .  

Then, however, since on total derivatives the Euler-Lagrange expressions 
vanish,  

(17)  
  
! i =

!�
!xi

" d
dt
!�
! !xi

+ d 2

dt 2
!�
!!!xi

= !� 0

!xi
" d
dt
!� 0

! !xi
,  

and  � 0  is a first order Lagrangian for ! .  
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  Equations (2), (3), (4) are called the Helmholtz conditions.  
 Notice a special case when ! i  does not depend on  !!xs . Applying Lem-
ma 4, we get the following assertion.  

 Lemma 5  Let  ! = ! i (t, x
j , !x j )  be a system of functions. The following 

three conditions are equivalent:  
 (a) The system !  is variational.  
 (b) The functions ! i  satisfy  

(18)  
 

!! i
! !xl

+ !! l
! !xi

= 0,  

and  

(19)  
 

!! i
!xl

" !! l
!xi

" 1
2
d
dt

!! i
! !xl

" !! l
! !xi

#
$

%
& = 0.  

 (c) The functions ! i  are of the form  

(20)  
 
! k =

!P
!xk

+ !Ql

!xk
" !Qk

!xl
#
$

%
& !x

l ,  

where P = P(xl )  and Qk =Qk (x
l )  are arbitrary functions. The Lagrangian 

for these Euler-Lagrange expressions is  

(21)    � = P +Ql !x
l .  

 Proof  1. Equivalence of (a) and (b) follows from Lemma 4.  
 2.  We show that (b) implies (c). Equations (18) and (19) reduce to the 
subsystems  

(22)  

 

!! k
! !xl

+ !! l
! !xk

= 0, !! k
!xl

" !! l
!xk

" 1
2
!
!xs

!! k
! !xl

" !! l
! !xk

#
$

%
& !x

s = 0,

!
! !xs

!! k
! !xl

" !! l
! !xk

#
$

%
& = 0.

 

The first subsystem yields  

(23)  
 

!2! k
! !x j ! !xl

= " !2! l
! !x j ! !xk

=
!2! j

! !xl ! !xk
= " !2! k

! !xl ! !x j
= 0,  

hence  ! k = Ak + Aks !x
s , where Akl + Alk = 0 . Then the second subsystem reads  
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(24)  

 

!Ak
!xl

+ !Aks
!xl
!xs ! !Al

!xk
! !Als
!xk
!xs ! 1

2
!
!xs

(Akl ! Alk ) !x
s

= !Ak
!xl

! !Al
!xk

+ !Aks
!xl

! !Als
!xk

! !Akl
!xs

"
#

$
% !x

s = 0,
 

hence  

(25)  !Ak
!xl

! !Al
!xk

= 0, !Aks
!xl

+ !Asl
!xk

+ !Alk
!xs

= 0.  

These equations ensure existence of functions P and Qk  such that  

(26)  Ak =
!P
!xk

,  

and  

(27)  Aks =
!Qs

!xk
! !Qk

!xs
 

(Lemma 2 and Lemma 3).  

5  The Douglas’s problem  

 Suppose we are given two systems of functions 
 
g = gij (x

k , !xk )  and 
 F = F j (xk , !xk ) , defined on a set  U !V !Rn !Rn , where V is a star-shaped 
neighbourhood of the origin  0!Rn . Consider the Sonin-Douglas’s system 
of differential equations  

(1)  
  
gij (!!x

j ! F j ) = ! !�
!xi

+ !2�
!x j ! !xi

!x j + !2�
! !x j ! !xi

!!x j  

as a system for an unknown function  � . Clearly, in general, this system 
need not have a solution for given g and F; existence of a solution implies 
integrability conditions, satisfied by gij  and F j , and vice versa. Our main 
objective in this section is to determine integrability conditions for the pair 
(g,F) , ensuring existence of  � . 
 Equation (1) is equivalent with two equations  

(2)  
  
gij =

!2�
! !x j ! !xi
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and  

(3)  
  
gijF

j = !�
!xi

! !2�
!x j ! !xi

!x j .  

 First we solve the system (2).  

 Lemma 6  (a) Equation (2) has a solution  �  if and only if the functions 
gij  satisfy 

(4)  
 
gij = gij ,

!gij
! !xk

= !gik
! !x j

.  

 (b) If the functions gij  satisfy conditions (4), then every solution  �  of 
equation (2) is of the form  

(5)   � = � h + � 0 ,  

where  

(6)  
  
� h =

1
2
hij !x

i !x j , hij = 2 gij (x
p ,!" !x p )d!

0

1

#( )" dt0

1

# ,  

the functions hij  satisfy  

(7)  
 
hij = hij ,

!hij
! !xk

= !hik
! !x j

,  

and  

(8)    � 0 = A + Bi !x
i ,  

where A = A(xk ) , Bi = Bi (x
k ) .  

 Proof  1. If (4) holds, one can easily determine all solutions  �  of (2). 
(4) implies that  

(9)  
 
gij =

!hi
! !x j

 

for some functions hi ; hi  can be taken as  

(10)  
 
hi = !x

r gir (x
p ,! !x p )d!

0

1

" .  
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Indeed, hi  obviously satisfies (9):  

(11)  

 

!hi
! !x j

!
"

#
$ (x p , !x p )

= gij (x
p ,% !x p )d%

0

1

& + !xr !gir
! !x j

!
"

#
$ (x p ,% !x p )

% d%
0

1

&

= gij (x
p ,% !x p )+ !gir

! !x j
!
"

#
$ (x p ,% !x p )

% !xr!
"'

#
$(
d%

0

1

&

= gij (x
p ,% !x p )+

!gij
! !xr

!
"'

#
$( (x p ,% !x p )

% !xr
!
"'

#
$(
d%

0

1

&

= d
d%
(gij (x

p ,% !x p )% )d%
0

1

& = gij (x
p , !x p ).

 

Now we apply condition gij = gij  (4). We get the integrability condition  

(12)  
 

!hi
! !x j

=
!hj
! !xi

,  

ensuring existence of a function L  such that  

(13)  
 
hi = ! !L

! !xi
 

(with minus sign for convenience). A solution may be taken as  

(14)  
 
L = !xi hi (x

p ,! !x p )d!
0

1

" .  

Substituting from (10)  

(15)  
 
hi (x

p ,! !x p ) = ! !xr gir (x
p ,"! !x p )d"

0

1

# ,  

we get  

(16)  

 

L = !xi hi (x
p ,! !x p )d!

0

1

" = !xi ! !xr gir (x
p ,#! !x p )d#

0

1

"( )d!0

1

"
= !xi !x j gij (x

p ,#! !x p )d#
0

1

"( )! d!0

1

"
= 1
2
hij !x

i !x j ,

 

where  
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(17)  
 
hij = 2 gij (x

p ,!" !x p )d!
0

1

#( )" d"0

1

# .  

By construction (16), L coincides with the energy Lagrangian  � h  of the 
metric h = hij , and satisfies  

(18)  
  
gij =

!2� h

! !xi ! !x j
,  

and is equal to the energy Lagrangian  � h . The metric (17) satisfies  

(19)  
 
hij = hji ,

!hij
! !xk

= 2
!gij
! !xk

!
"#

$
%& (x p ,st!x p )

'( d'
0

1

)
!
"#

$
%&
( d(

0

1

) = !hik
! !x j

.  

 The general solution of equation (2) is  

(20)    � = � h + A + Bi !x
i ,  

where A = A(x j ) , Bi = Bi (x
j )  are arbitrary functions.  

 Remark 3  Suppose that conditions (4) are satisfied,  

(21)  
 
gij = gij ,

!gij
! !xk

= !gik
! !x j

.  

Then the Euler-Lagrange expressions of the Lagrangian  �  (5) are deter-
mined by Lemma 6, (4). Computing from this formula the expression  

(22)  
  

!�
!xk

! !2�
!x j ! !xk

!x j  

entering equation (3), we get a first order expression  

(23)  

  

!�
!xk

! !2�
!x j ! !xk

!x j = !� h

!xk
! !2� h

!x j ! !xk
!x j + !A

!xk
+ !Bi
!xk

! !Bk
!xi

"
#

$
% !x

i

= ! 1
2
!hik
!x j

+
!hjk
!xi

!
!hij
!xk

"
#&

$
%'
!xi !x j ! 1

2
!Cijk

!xs
!xs !xi !x j

+ !A
!xk

+ !Bi
!xk

! !Bk
!xi

"
#

$
% !x

i ,

 

where Cijk  is the Cartan tensor of the metric h = hij .  
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 Lemma 6 shows that any solution of the Sonin-Douglas’s problem must 
be of the form  

(24)   � = � h + � 0 ,  

where  � h  is completely determined by the metric gij , satisfying  

(25)  
 
gij = gij ,

!gij
! !xk

= !gik
! !x j

.  

It remains to determine the second summand  

(26)    � 0 = A + Bi !x
i ,  

with unknown functions A = A(xl )  and Bi = Bi (x
l ) .  � 0  should be deter-

mined from equation (3), which is now of the form  

(27)  
  
gijF

j = !� h

!xi
! !2� h

!x j ! !xi
!x j + !� 0

!xi
! !2� 0

!x j ! !xi
!x j .  

Setting  

(28)  
  
fi = gijF

j , Pi = fi !
!� h

!xi
+ !2� h

!x j ! !xi
!x j ,  

and substituting into (27) we get an equivalent equation  

(29)  
 
Pi =

!A
!xi

+
!Bj

!xi
! !Bi
!x j

"
#$

%
&'
!x j .  

 Lemma 7  The following conditions are equivalent:  
 (a) Equation (27) has a solution  � 0 .  
 (b) Equation (29) has a solution A, Bl .  
 (c) The system P = Pl  satisfies  

(30)  
 

!Pk
! !x j

+
!Pj
! !xk

= 0,  

and  

(31)  
 

!Pk
!xl

! !Pl
!xk

! 1
2
!
!x j

!Pk
! !xl

! !Pl
! !xk

"
#

$
% !x

j = 0.  
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 (d) The function fi  and gij satisfy  

(32)  
 

1
2
! fi
! !xl

+ ! fl
! !xi

!
"

#
$ +

!gil
!x j
!x j = 0,  

(33)  
 

! fi
!xl

! ! fl
!xi

! 1
2
!
!x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% !x

j = 0,  

(34)  
 

1
2
!
! !x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% +

!gij
!xl

!
!glj
!xi

= 0.  

Proof  1. Suppose that condition (a) is satisfied. Then since (27) has a 
solution  � 0 , the system P = Pl  is variational. But expressions Pl  are of the 
first order, thus by Lemma 2,  � 0  may be of the form (26), proving condi-
tion (b).  
 2.  Suppose that (b) is satisfied and consider a solution A, Bl  of equa-
tion (29). Then by a direct computation  

(35)  
 

!Pk
! !xl

+ !Pl
! !xk

= !Bl
!xk

! !Bk
!xl

+ !Bk
!xl

! !Bl
!xk

= 0,  

and  

(36)  

 

!Pk
!xl

! !Pl
!xk

! 1
2
!
!x j

!Pk
! !xl

! !Pl
! !xk

"
#

$
% !x

j

= !2A
!xl !xk

+ !
!xl

!Bj

!xk
! !Bk
!x j

"
#&

$
%'
!x j ! !2A

!xl !xk

! !
!xk

!Bj

!xl
! !Bl
!x j

"
#&

$
%'
!x j ! 1

2
!
!x j

!Bl
!xk

! !Bk
!xl

! !Bk
!xl

+ !Bl
!xk

"
#

$
% !x

j

= ! !2Bk
!xl !x j

!x j + !2Bl
!xk !x j

!x j ! !
!x j

!Bl
!xk

! !Bk
!xl

"
#

$
% !x

j = 0.

 

 3.  Suppose that (c) holds. Then (30) implies  

(37)  
 

!2Pi
! !x j ! !xk

= !
!2Pj
! !xk ! !xi

= !2Pk
! !xi ! !x j

= ! !2Pi
! !x j ! !xk

= 0,  

and a straightforward computation shows that (30) and (31) are exactly the 
Helmholtz conditions for the functions Pi  :  
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(38)  
 

!Pk
! !x j

+
!Pj
! !xk

= 0,  

and  

(39)  

 

!Pi
!xl

! !Pl
!xi

! 1
2
d
dt

!Pi
! !xl

! !Pl
! !xi

"
#

$
%

= !Pi
!xl

! !Pl
!xi

! 1
2
!
!x j

!Pi
! !xl

! !Pl
! !xi

"
#

$
% !x

j ! 1
2
!
! !x j

!Pi
! !xl

! !Pl
! !xi

"
#

$
% !!x

j

= 0.

 

 Computing from (28)  

(40)  

  

!Pi
! !xl

= ! fi
! !xl

! !2� h

! !xl !xi
+ !3� h

! !xl !x j ! !xi
!x j + !2� h

!xl ! !xi
,

!Pl
! !xi

= ! fl
! !xi

! !2� h

! !xi !xl
+ !3� h

! !xi !x j ! !xl
!x j + !2� h

!xi ! !xl
,
 

we get  

(41)  

  

!Pi
! !xl

+ !Pl
! !xi

= ! fi
! !xl

! !2� h

! !xl !xi
+ !3� h

! !xl !x j ! !xi
!x j + !2� h

!xl ! !xi

+ ! fl
! !xi

! !2� h

! !xi !xl
+ !3� h

! !xi !x j ! !xl
!x j + !2� h

!xi ! !xl

= ! fi
! !xl

+ ! fl
! !xi

+ 2 !gil
!x j
!x j = 0,

 

proving (32).  
 Since  

(42)  

  

!Pi
! !xl

! !Pl
! !xi

= ! fi
! !xl

! !2� h

! !xl !xi
+ !3� h

! !xl !x j ! !xi
!x j + !2� h

!xl ! !xi

! ! fl
! !xi

+ !2� h

! !xi !xl
! !3� h

! !xi !x j ! !xl
!x j ! !2� h

!xi ! !xl

= ! fi
! !xl

! ! fl
! !xi

! 2 !2� h

! !xl !xi
! !2� h

!xl ! !xi
"
#$

%
&'
,

 

and  
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(43)  

  

!Pi
!xl

! !Pl
!xi

= !
!xl

fi !
!� h

!xi
+ !2� h

!x j ! !xi
!x j"

#$
%
&'

! !
!xi

fl !
!� h

!xl
+ !2� h

!x j ! !xl
!x j"

#$
%
&'

= ! fi
!xl

! ! fl
!xi

+ !
!x j

!2� h

!xl ! !xi
! !2� h

!xi ! !xl
"
#$

%
&'
!x j ,

 

then  

(44)  

  

!Pi
!xl

! !Pl
!xi

! 1
2
d
dt

!Pi
! !xl

! !Pl
! !xi

"
#

$
%

= ! fi
!xl

! ! fl
!xi

+ !
!x j

!2� h

!xl ! !xi
! !2� h

!xi ! !xl
"
#&

$
%'
!x j

! 1
2
d
dt

! fi
! !xl

! ! fl
! !xi

! 2 !2� h

! !xl !xi
! !2� h

!xl ! !xi
"
#&

$
%'

"
#&

$
%'

= ! fi
!xl

! ! fl
!xi

! 1
2
d
dt

! fi
! !xl

! ! fl
! !xi

"
#

$
% +

!
!x j

!2� h

!xl ! !xi
! !2� h

!xi ! !xl
"
#&

$
%'
!x j

! !
!x j

!2� h

!xl ! !xi
! !2� h

!xi ! !xl
"
#&

$
%'
!x j ! !

! !x j
!2� h

!xl ! !xi
! !2� h

!xi ! !xl
"
#&

$
%'
!!x j

= ! fi
!xl

! ! fl
!xi

! 1
2
!
!x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% !x

j ! 1
2
!
! !x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% !!x

j

! !
! !x j

!2� h

!xl ! !xi
! !2� h

!xi ! !xl
"
#&

$
%'
!!x j

= ! fi
!xl

! ! fl
!xi

! 1
2
!
!x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% !x

j ! 1
2
!
! !x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% !!x

j

!
!gij
!xl

!
!glj
!xi

"
#&

$
%'
!!x j = 0.

 

This proves (33) and (34).  
 4.  (c) is obviously equivalent with (d). Thus, (32), (33) and (34) are 
exactly the Helmholtz conditions for the expressions Pi , so there exists a 
Lagrangian  � 0  for Pi  hence for (27); we may take for  � 0  the Vainberg-
Tonti Lagrangian  
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(45)  
  
� 0 = x

i Pi (! x
j ,! !x j )d!

0

1

" .  

 Now we are in a position to formulate main results of this section. Re-
call that by (28),  

(46)  fl = gklF
k ,  

where gkl  are variational integrating factors and F = Fk  is the force entering 
the Sonin – Douglas’s equation (1). The following two theorems give us a 
solution of the Sonin – Douglas’s problem in terms of a system of differen-
tial equations.  

 Theorem 2  The following conditions are equivalent:  
 (a) The Sonin-Douglas’s equation (1) has a solution  � .  
 (b) The function gij  and fi  satisfy  

(47)  
 
gij = gij ,

!gij
! !xk

= !gik
! !x j

,  

and  

(48)  
 

!
! !xl

fi !
1
2
! fi
! !x j

!
! f j
! !xi

"
#$

%
&'
!x j"

#$
%
&'
+
!glj
!xi
!x j = 0,  

(49)  
 

! fi
!xl

! ! fl
!xi

! 1
2
!
!x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% !x

j = 0,  

(50)  
 

1
2
!
! !xl

! fi
! !x j

!
! f j
! !xi

"
#$

%
&'
+ !gil
!x j

!
!glj
!xi

= 0.  

 Proof  1. We show that condition (34) is a consequence of (32). Consid-
er equation (32) 

(51)  
 

1
2
! fi
! !xl

+ ! fl
! !xi

!
"

#
$ +

!gil
!x j
!x j = 0.  

Differentiating  

(52)  
 

1
2
!
! !x j

! fi
! !xl

+ ! fl
! !xi

!
"

#
$ +

!2gil
! !x j !xs

!xs + !gil
!x j

= 0.  



26   D. Krupka 
 
Write these equations as  

(53)  

 

1
2
!
! !x j

! fi
! !xl

+ ! fl
! !xi

!
"

#
$ +

!2gil
! !x j !xs

!xs + !gil
!x j

= 0,

1
2
!
! !xl

! f j
! !xi

+ ! fi
! !x j

!
"%

#
$&
+
!2gji
! !xl !xs

!xs +
!gji
!xl

= 0,

1
2
!
! !xi

! fl
! !x j

+
! f j
! !xl

!
"%

#
$&
+
!2glj
! !xi !xs

!xs +
!glj
!xi

= 0.

 

Combining these formulas we have  

(54)  

 

1
2
!
! !x j

! fi
! !xl

+ ! fl
! !xi

!
"#

$
%& +

!2gil
! !x j !xs

!xs + !gil
!x j

+ 1
2
!
! !xl

! f j
! !xi

+ ! fi
! !x j

!
"#

$
%&

+
!2gji
! !xl !xs

!xs +
!gji
!xl

' 1
2
!
! !xi

! fl
! !x j

+
! f j
! !xl

!
"#

$
%&
'
!2glj
! !xi !xs

!xs '
!glj
!xi

= 0,

 

and, with different indexing,  

(55)  

 

!2 fi
! !x j ! !xl

+ !2gil
! !x j !xs

!xs + !gil
!x j

+
!gji
!xl

!
!glj
!xi

= 0,

!2 f j
! !xi ! !xl

+
!2gjl
! !xi !xs

!xs +
!gjl
!xi

+
!gji
!xl

! !gli
!x j

= 0.
 

Subtracting the second equation from the first one we get  

(56)  

 

!2 fi
! !x j ! !xl

+ !2gil
! !x j !xs

!xs + !gil
!x j

+
!gji
!xl

!
!glj
!xi

!
!2 f j
! !xi ! !xl

!
!2gjl
! !xi !xs

!xs !
!gjl
!xi

!
!gji
!xl

+ !gli
!x j

= 1
2
!
! !xl

! fi
! !x j

!
! f j
! !xi

"
#$

%
&'
+ !gil
!x j

!
!glj
!xi

= 0.

 

which is exactly condition (34).  
 Substituting from (56) back to (51)  
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(57)  

 

1
2
! fi
! !xl

+ ! fl
! !xi

!
"

#
$ +

!gil
!x j
!x j

= 1
2
! fi
! !xl

+ ! fl
! !xi

!
"

#
$ %

1
2
!
! !xl

! fi
! !x j

%
! f j
! !xi

!
"&

#
$'
!x j +

!glj
!xi
!x j

= 1
2
! fi
! !xl

+ ! fl
! !xi

!
"&

#
$' %

1
2
!
! !xl

! fi
! !x j

%
! f j
! !xi

!
"&

#
$'
!x j!

"&
#
$'

+ 1
2
! fi
! !xl

% ! fl
! !xi

!
"&

#
$' +

!glj
!xi
!x j

= !
! !xl

fi %
1
2
! fi
! !x j

%
! f j
! !xi

!
"&

#
$'
!x j!

"&
#
$'
+
!glj
!xi
!x j = 0.

 

Thus (a) implies (50) (i.e. (34)) and (48).  
 2.  Conversely, we show that (50) and (48) imply (32). Indeed, we have 
from (50)  

(58)  
 

1
2
!
! !xl

! fi
! !x j

!
! f j
! !xi

"
#$

%
&'
!x j + !gil

!x j
!x j !

!glj
!xi
!x j = 0.  

Substituting in (48)  

(59)  

 

!
! !xl

fi !
1
2
! fi
! !x j

!
! f j
! !xi

"
#$

%
&'
!x j"

#$
%
&'
+
!glj
!xi
!x j

= ! fi
! !xl

! 1
2
! fi
! !xl

! ! fl
! !xi

"
#

%
& !x

j ! 1
2
!
! !xl

! fi
! !x j

!
! f j
! !xi

"
#$

%
&'
!x j +

!glj
!xi
!x j

= ! fi
! !xl

! 1
2
! fi
! !xl

! ! fl
! !xi

"
#

%
& !x

j + !gil
!x j
!x j = 0.

 

 Theorem 3  For any metric gij  such that  

(60)  
 
gij = gij ,

!gij
! !xk

= !gik
! !x j

,  

equations (48) and (50) have a solution fi .  
 Proof  Let gij  be given. Equation (48) is equivalent with the system  

(61)  
 

!!i

! !xl
+
!gjl
!xi
!x j = 0,  
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(62)  
 
!i = fi +

1
2
! f j
! !xi

" ! fi
! !x j

#
$%

&
'(
!x j .  

Since  

(63)  

 

!
! !xk

!gjl
!xi
!x j!

"#
$
%&
' !
! !xl

!gjk
!xi
!x j!

"#
$
%&

=
!2gjl
! !xk !xi

!x j + !gkl
!xi

'
!2gjk
! !xl !xi

!x j ' !glk
!xi

= 0,
 

there exist functions !i  satisfying (61). Equation (62) becomes an equation 
for the functions fi .  
 Equation (50) can be written as a system  

(64)  
 

1
2
!!il

! !x j
+
!gij
!xl

"
!glj
!xi

= 0,  

(65)  
 
!il =

! fi
! !xl

" ! fl
! !xi

.  

From (60),  

(66)  
 

!
! !xk

!gij
!xl

!
!glj
!xi

"
#$

%
&'
= !
! !x j

!gik
!xl

! !glk
!xi

"
#

%
& .  

the integrability condition for equation (64) is satisfied. Thus, (64) has a so-
lution !il  and (65) becomes an equation for fi .  
 Thus, given !il  and !i , satisfying (61) and (64), we search for a solu-
tion fi  of the system (62), (65). We set  

(69)  
 
fi = !i "

1
2
! ji !x

j .  

Then  

(70)  

 

! fi
! !xl

! ! fl
! !xi

= !"i

! !xl
! !"l

! !xi
! 1
2
!" ji

! !xl
!x j ! 1

2
"il +

1
2
!" jl

! !xi
!x j + 1

2
"il

= !"i

! !xl
! !"l

! !xi
! 1
2
!"si

! !xl
! !"sl

! !xi
#
$

%
& !x

s +"il
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= ! !gsl
!xi

+ !gsi
!xl

"
#

$
% !x

s ! ! !gsl
!xi

+ !gil
!xs

+ !gsi
!xl

! !gil
!xs

"
#&

$
%'
!xs +(il

= ! !gsl
!xi

+ !gsi
!xl

"
#

$
% !x

s ! ! !gsl
!xi

+ !gsi
!xl

"
#

$
% !x

s +(il

= (il .

 

Thus, fi  satisfies (62) and (65).  
 
 Example 1 (Geodesic equations in Riemannian geometry)  Given a 
regular metric g = gij , we set, using standard notation,  

(71)  
!rs
i = 1

2
gip

!grp
!xs

+
!gsp
!xr

" !grs
!x p

#
$%

&
'(
,

! jrs = gij!rs
i = 1

2
!grj
!xs

+
!gsj
!xr

" !grs
!x j

#
$%

&
'(
.
 

We prove by a direct verification of conditions (47) – (50) of Theorem 2 that 
the system of functions,  

(72)   ! l = "gli (!!x
i + #rs

i !xr !xs )  

defining the geodesic equations in Riemann geometry, is variational.  
 We set  

(73)  
 
f j = ! jrs !x

r !xs .  

Conditions (47) are satisfied trivially. Substituting for ! jrs  to (48), (49) and 
(50) yields  

(74)  

 

!
! !xl

fi +
1
2
! f j
! !xi

! ! fi
! !x j

"
#$

%
&'
!x j"

#$
%
&'
+
!gjl
!xi
!x j

= ! !
! !xl

( irs !x
r !xs + 1

2
!( jrs !x

r !xs

! !xi
! !( irs !x

r !xs

! !x j
"
#$

%
&'
!x j

"
#$

%
&'
+
!gjl
!xi
!x j

= ! !
! !xl

(( irs !x
r !xs + (( jri !x

r ! ( irj !x
r ) !x j )+

!gjl
!xi
!x j

= ! !
! !xl

(( jri !x
r !x j )+

!gjl
!xi
!x j = ! 1

2
!
! !xl

((( jri + (rji ) !x
r !x j )+

!gjl
!xi
!x j
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= !(" lri + "rli ) !x
r + !grl
!xi
!xr

= !
1
2
!grl
!xi

+ !gil
!xr

! !gri
!xl

#
$%

&
'( !

1
2
!grl
!xi

+ !gir
!xl

! !gli
!xr

#
$%

&
'( +

!grl
!xi

#
$%

&
'(
!xr

= 0,

 

  

 

! fi
!xl

! ! fl
!xi

! 1
2
!
!x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% !x

j

= ! !& irs

!xl
!xr !xs + !& lrs

!xi
!xr !xs + !

!x j
(& irl !x

r ! & lri !x
r ) !x j

= ! !& irs

!xl
+ !& lrs

!xi
+ !& irl

!xs
! !& lri

!xs
"
#

$
% !x

r !xs

= 1
2

! !
!xl

!gri
!xs

+ !gsi
!xr

! !grs
!xi

"
#'

$
%( +

!
!xi

!grl
!xs

+ !gsl
!xr

! !grs
!xl

"
#'

$
%(

"
#'

+ !
!xs

!gri
!xl

+ !gli
!xr

! !grl
!xi

"
#'

$
%( !

!
!xs

!grl
!xi

+ !gil
!xr

! !gri
!xl

"
#'

$
%(
$
%(
!xr !xs

= 0,

 

and  

(75)  

 

1
2
!
! !x j

! fi
! !xl

! ! fl
! !xi

"
#

$
% +

!gij
!xl

!
!glj
!xi

= ! !
! !x j

(& irl !x
r ! & lri !x

r )+
!gij
!xl

!
!glj
!xi

= !(& ijl ! & lji )+
!gij
!xl

!
!glj
!xi

= ! 1
2
!gji
!xl

+ !gli
!x j

!
!gjl
!xi

!
!gjl
!xi

! !gil
!x j

+
!gji
!xl

"
#'

$
%(
+
!gij
!xl

!
!glj
!xi

= 0.

 


