The inverse problem of the
calculus of variations

Introduction

Consider a system of second-order ordinary differential equations,
solved with respect to second derivatives of the unknown curve x' = x'(t),

(1) ¥ —F/=0,

where i,j=1,2,....m,and F=F I(x",x") are given functions. Any collection
of functions g, =g, (x',x"), such that det g; # 0, defines an equivalent sys-
tem g, (X' —F’)=0.The goal is to study the problem of existence of a func-
tion & = $(x',%") such that

0% d 3%
ax' dt ax'’

2) g; (¥ —F)=~

known as the inverse problem of the calculus of variations for the system
(1). For historical reasons we also refer to this problem as the Sonin-
Douglas’s variationality problem, and call equations (2) the Sonin-
Douglas’s equation. Having in mind the correspondence with classical me-
chanics and differential geometry, we sometimes call the system F (resp. g)
the force (resp. metric), the components g, are also called variational mul-
tipliers. If the function & exists, it is called the Lagrangian for the pair
(F,g) . Denoting (conventionally with the minus sign)

3) g =—g,(X' = F),

we can equivalently say that the functions &, are the Euler-Lagrange ex-
pressions of &, or that the system of functions € = ¢, is variational.
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First ideas related with variational origin of differential equations ap-
peared in Sonin 1866 [4], who studied the inverse problem for one second
order equation and proved that all second order equations admit a Lagrangi-
an; for English translation of his work see

http://www .lepageri.eu/publications.html

The author is indebted to Professor Skarzhinski for this reference, and for
the discussions during the International Conference on Differential Geome-
try and its Applications, Brno, August 24 — 30, 1986. The same idea and ap-
proach has later appeared in Darboux (Lecons sur la Theorie Generale des
Surfaces, Paris, 1894). In 1941 Douglas [2] obtained a complete classifica-
tion of the systems (2) for rwo equations, and provided numerous examples
of non-variational systems; he already studied the same subject in 1939 and
1940, but regarded these papers as preliminary notes (see References and
Notes (1) and (3) in [2]). The results of Douglas have been further developed
from geometrical point of view by Sarlet, Crampin and Martinez [9], Ander-
son and Thompson [5], Krupkova and Prince [25] and others (further refer-
ences can be found in the handbook D. Krupka, D. Saunders [1]).

The Sonin-Douglas’s problem is a special case of the problem of Helm-
holtz, formulated for general systems of ordinary second order equations in
an implicit form

“) g(x,x',5')=0,

where 1<i,j<n (Helmholtz 1887 [3]). For historical remarks and generali-
sations of the Helmholtz variationality conditions we refer to Krupkova,
Prince 2008 [25] and D. Krupka, O. Krupkova, G. Prince and W. Sarlet 2007
[22].

Remark 1 We do not consider in this work the systems of differential
equations (3) and (4), such that the functions &, depend explicitly on the pa-
rameter ¢ of the curves t — x'(t) ).

The Helmholtz conditions have been generalised to systems of higher
order partial differential equations by Anderson, Duchamp 1980 [17], and
Krupka 1981 [6]. As an illustrative example consider a system of second-
order equations of the form

(5) £,(x".y".y; .y =0,

where 1<i<n, 1<o,v<m, x' are independent variables, y", dependent
variables, y; y} the derivative variables, and &, =¢,(x',y",y},y}) is a
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given system of differentiable functions. The variationality conditions for
this system read

de, dg, _
dy,, 9y, ’
©) dE, 68 ; de, —o.
o, o aypq
de, dg, de, Jdg, ~0
ayv ayc P ay;: r7q ay;rq '

If these conditions are satisfied, then a Lagrangian for the system &£, can be
constructed by

. 1 .
(7) LYYy ) =Y JO g, (x', Ty, Ty} Ty )dT,

and is known as the Vainberg-Tonti Lagrangian (cf. [1]).

The problem of Helmholtz was extended to second-order systems of
homogeneous ordinary differential equations by Urban, Krupka 2013 [10] by
means of combination of the Helmholtz and the Zermelo (positive homoge-
neity) conditions.

The global inverse problem as considered in these lectures, is concerned
with equations for extremals in the theory of integral variational functionals
on fibred manifolds. Let Y be a fibred manifold over the base manifold X,
where n=dim X , and let J'Y denote the r-jet prolongation of Y. Consider
for simplicity a Ist order Lagrangian A , that is, an n-form on J'Y such that
in any fibred coordinates (x',y°) on Y,

(8) A=%a,,

where ), dx Adx* A...Adx",and £ =L(x',y° ,y7) in the associated co-
ordlnates (x',y 7,y7) on J'Y (the local Lagrange function). The Euler-
Lagrange form of A is a globally well defined (n+1)-form on J?Y , de-
fined in the associated coordinates (x',y° 2V ,yjk) as

) E(A)=E,(£)dy° Nw,,
where E_(£) are the Euler-Lagrange expressions,

(10) Eo(g):a—%_dka—%'
dy A
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These concepts define the (global) Euler-Lagrange mapping A — E(A) be-
tween the corresponding Abelian groups of differential forms, assigning to
the Lagrangians the corresponding Euler-Lagrange forms.

On the other hand, on the 2nd jet prolongation J’Y we also have the
source forms, the (n+1) -forms ¢ , locally expressible as

(11) e=¢e,dy° Nw,.

Clearly, the Euler-Lagrange forms belong to the set of source forms. The
(global) inverse problem consists in finding conditions ensuring that a given
source form € is an Euler-Lagrange form, that is, solves the equation

(12)  €=EQ)

with the Euler-Lagrange mapping on the right-hand side. A necessary condi-
tion for existence of a solution can be written as the system

(13) g, = a—% —d, 8_55

dy 9y
for an unknown &= SB(xi,y",y;.’), for eny fibred coordinates (x',y?).Its
solvability is equivalent with the Helmholtz conditions (6); if (6) are satis-
fied for some fibred coordinates at any point of Y, we say that the source
form (11) is locally variational.

The global inverse problem, however, is to find a global Lagrangian A
solving (12). To this purpose we construct a sequence of classes of differen-
tial forms, the variational sequence, derived from the de Rham sequence of
sheaves of forms on the domain J'Y of A, in which the Euler-Lagrange
mapping represents one arrow (Krupka 1990 [21]). Then the cohomology of
the complex of global sections of the variational sequence determines global
properties of the Euler-Lagrange mapping, namely its image and kernel. In
particular, we get as a consequence that for fibred manifolds Y such that the
De Rham cohomology group H""'Y is trivial, that is,

(14) H"™'Y =0,

locally variational source forms are necessarily (globally) variational. The
cohomology group H"Y is then responsible for the freedom in the choice of
global Lagrangians. In this way we get a complete description of the solu-
tions of equation (12) on Y.

Main motivations for the variational sequence theory came from the
theory of Lepage forms (see e.g. Krupka 1975 [14]), the work of Takens
1979 [24] and the variational bicomplex theory (see references in [1]).
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Part 1

The inverse problem for second-order
ordinary differential equations

In this part of the lectures systems of k second-order ordinary differen-
tial equations for k unknown functions are considered. We study the con-
ditions ensuring that such a system be expressible as the Euler-Lagrange
equations for extremals of some integral variational functional. The prob-
lem how this variational functional can be recovered is also considered
and the corresponding Lagrangian is constructed. The systems of the
Sonin-Douglas type (solved with respect to the second derivatives of the
unknown functions) and of the Helmholtz type (in an implicit form) are
considered separately.

1 The Sonin’s inverse problem

Given a function F = F(t,x,X) , the Sonin’s problem consists in finding
a nonzero function g=g(t,x,x) for which there exists a solution
¥ =%(t,x,x) of the equation

9P d o
| i-py=_d= 4 0L
M S =)= s

Then if we have a solution, considering & as the Lagrange function of a
variational principle, the corresponding Euler-Lagrange equation is

and is equivalent with the equation

3) ¥—F=0.
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Theorem 1 The Sonin’s problem has always a solution g.

Proof Since g is supposed to be different from zero on its domain of
definition, equation (1) is equivalent with the system

> 0L *L e .
=0, —gF=——+ -+ - X.
ox dx 0tdx OJxox

“) 8

The first equation can be solved immediately on any star-shaped domain
with centre O in the variable X . We first solve the equation

_9h

(5) 8=77

The solution is
1
(6) h=x jo g(x,kx)dx.

Indeed, we have

oh d
(_) = J.lg(x,K')'C)dK‘+)'CJ.](—$) Kdx
ax (XI)’xP) 0 0 ax (x kx)

! . [98 . 1 d ,

7 = X,KX)+| —= Kx |dk = | —(g(x,kx)x)dK

@) L(ﬂ ) ( ax](m) j Jy oK)
= g(x,X).

Then we solve the equation

oY

(8) h FrR

We have a solution L, defined by
.l
9) L= h(x.ri)dz.
0
Substituting
(10) h(x,rx):rxj(:g(x,mx)d;c,

we get
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(11) L= x'[;(rxj; g(x,mfc)dic)dr =x° I;(f; g(x,mfc)drc)rdr.

The general solution of the first equation (4) is

(12) F= %x .f (.f g(x, KTx)dK)‘L'dT+Ax+B

where the functions A and B do not depend on X .
From (12) it is now sufficient to prove that the second equation (4) has a
solution g. Following Sonin, we differentiate (4) with respect X . We get

0L *YL L .
—gF+————— X
ox 0tdx 0xox

g GFM K4

—_%8p_,%" S —0
a5 59 Fhox 0tdr oxdr . Aiok

hence g must satisfy

adg

—=F+ a—F+6’—g+a—gjc
ox

14
(14 8ox " or  ox

=0.

Then, provided g >0, we get an equation

af

—F+a—F+ﬂ+ﬂx
ox

15
(15) 0x Jt ox

=0

for a function f=Ing. (14) is a partial differential equation for g; such
equations always have solutions, and can be solved by standard methods.

2 Energy Lagrangians

Suppose we have a system of functions h=h, (x',x'), such that
hjk =hkj, defined on an open set U xXR™, where U is an open set in R";
when no misunderstanding can arise we call g a metric on U XR™ . Consider
a variational principle for curves in R™, defined by the Lagrangian

(1) £, = %h,_,x"x-f

We call &, the energy Lagrangian, associated with the metric 2. We intro-
duce a system of functions C;, by



8 D. Krupka
1(dh, oh, Gh.)

2 Cop== —+—+—2|.

@) " 3(8)&" ax'  ox’

The system of functions C =C,, is called the Cartan tensor, associated with
h (or with the energy Lagranglan £,). C;, is defined by the decomposition

oh, 1(0h, h,\ 1(0h, Oh,
3 o | A T
©) axk " 3(35& ax") 3(8)&’ ax")

Lemma 1 The Euler-Lagrange expressions of the Lagrangian (1) are

0L, _d o, l(%_,_ e _%)xixf
- k

axk dr oxt ax’  ax' ox
0Cy . .. ¢ /
1 T ijk i _l ik _xl_x X —2Cisk)'c’)'és
@ ) ox’ 2 9x’
+l J ah./-k _ (‘)hl:/. xsxixj +l 0 ahjk _% xijcjjés
3oxai 9 398 9k 9

Gx ax'  ox’  ox' s

Proof Differentiating (1) we have

£, lahij i agh 1ahu
) ot " 2ax Y g Tagp
and
agh_iagh —lahl/ xlxj 1 a h 'S a h "S xlxj
ax* dr 0x* 2 9x* dx* ox* ax ax*
oh. . . A . , .
— —(a—hkx +%x)x —h ¥
©) ox ox ox
oh.  oh, Oh.\ . . a*h.
1 L P X%
0x Jdx'  ox 20x*dx

9°h,
_ l : ljk 1 j+(ah +ahzk) +h
20x°0x ax*  ax
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Since from (3)

oh

Ohy  Ohy _ _1(%_%%)_1(&3kf_6_%)

ax* axt ™ 3lax dx* ) 3lax\ a9
1(0h, oh,\ 1(dh/ ,

7 ve ) —kf——"‘)—( _ig]

) iks 3(ax’ ax* ) 3\gxF 9

:2Cisk+1(%+a—hh_2%)’

3\ ax" 9" ox!
we have
0L, doZ, __1(3;1”( +8hjk —%)x"xf
axt ar ax* 2 ax’  ax'  axt
oh, Oh, . 9h. o
-3 as Cijk_l —Jlk_—l/jc -1 %",’——i X' x'x
29x 3 9% 9% 3l ox/  9x
J oh;  Oh; oh, b\ ...
~3ae\ G 3l ar an )l e ) JEEE
2 0x° Y 3V 9axt ox 3\ 9x!  9x
—(20 +1(ah’*+%—2%)jx’)f—h 5
8) “T3lax ot ok ¢
200x7  ax' 9xt
—oc s -1 9C i 19Cu i
o 2 ax* 2 9x°
. Ok - oh, Oh.\ .
+l a ahkl_—lljc xsxtx./_i_l a .]{(_—.l]j( ).CI.X"/XX
3ox’\ ox)  0x 39x° L ax'  Odx
(i oy oY
3 axs axk axl s

3 Integrability conditions

In this section we recall elementary theorems on integration of differen-
tial equations, appearing in this paper; essentially, we need simple systems
of Frobenius type in Euclidean spaces R". All functions we consider are
defined on a star-shaped neighbourhood U of the origin 0 € R".

Suppose we have a system of functions A=A, , 1<k <n defined on U,
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and consider the differential equations

oP
1 A =—r-
(D e
for an unknown function P.

Lemma 2 (a) Equation (1) has a solution P if and only if the functions
A, satisfy

dA, 0JA
2 —k_—1=0
) ax' ox"
(b) If condition (2) is satisfied, then a solution P is given by
() P=x'[ At

Proof Necessity of condition (2) is obvious. To prove sufficiency, we
differentiate P with respect to x' . We have

P (1 9A,
W—J.OAP(TX )dT+x J-O(w ”’TdT

1 1 0A
4) = jo A, (1x")dT +x* jo[a—x;’) dt

1d
= [, = 4,6,

Remark 2 In case we have a system of differential equations of the
form

JoP

— (o)
(5) A(a)k - W’

criterion (2) applies to each equation separately; we have
©) aA(al)k B BA(?, _o.

Jdx 0x
Now suppose we have a system of functions A=A, defined on U, such
that
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7 A, =-A,.
Consider the differential equations

90, 90
® =i

for unknown system of functions O =0, .

Lemma 3 (a) Equation (8) has a solution Q if and only if the functions
A, satisfy

9A, 4 04, + 04, _

0.
ax  ax* ax'

©)

(b) If condition (7) is satisfied, then a solution Q is given by

10 :x”J;Ap,(Txi)TdT.

Proof Necessity of condition (9) is immediate. To prove sufficiency,
we differentiate Q, with respect to x*. We have

a0, ! ; » dA,, )
(11) W—J‘OAM(TX )TdT+X J‘(W ”iT dr,

1
0

and
g—gf - ?9—% = Ll A, (rxHrdT+x” ‘[;((%Z’jnl T’ dt
- .[01 A, (tx)TdT— X" '[01 [?T’}k)”l T’ dt
(12) = ZI;Ak,(Txi)TdT+xPJ:(%— aaip," ]”1 i dt

aAkp J0A

1 , 1 0A
= 2]0 Akz(fx’)rdr+x1’j0( ax’;’ T axﬁj lTZdT

—x"jl 94 2 dr
o\ dx? ) ¢ '
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This formula can also be expressed in the form

99, 90, - Jl((%) xPT? +2Ak,(1xi)fjdr

ax*  ax! o\ \ dx?

(13)
- .[Ii(Akz(Txi)Tz) = Akz(xi)'
odrt

4 Variational systems of differential equations
and the Helmholtz conditions

Let €=¢, be a system of functions &g, = 8l.(t,xj X% . We shall say
that this system is variational, if there exists a function & = £(¢,x’,x’) such
that

_ 0L d o
ax'  dr 9x'’

ey g

We give a straightforward proof of the following necessary and sufficient
conditions for £ to be variational.

Lemma 4 The system € is variational if and only if

Jde, 0€

2 —tL__"L—,

) ax 9y

3) a_?;ﬁ_*‘f{_i(a_f;ﬁ_?):o,
ax'  ox' dr\odx' X'

and

@ 6_8;_6_9_11(3_3_%):0
dx'  odx' 2dt\ox ox'

Proof 1. We show that if &, are expressible in the form (1), then condi-
tions (2), (3), and (4) hold. Using explicit expressions

0L *L L . L
=T i akait T oikaut
dx' Orox' ox odx Jax" ox

(5) g

we get



The inverse problem of the calculus of variations

o,
95!
—i=
6) 0x
9, _
ax'
Hence
J€,

7 —L
m
and

o,

ax'
(8)
Analogously

o,

ax'
9

agi —

R

ax'ox'’

;e 9L Y e 4

ax'ax'  9x'9rox’  9x'9x* ox’ dx' 9x'
¥ o

9x' 9x* ax'

4 P ’>L ’>L

I ndi .l T Dl kA T o dakaadX

ox ox'  Jx J0tdx' Ox O0x 0x 0ox ox" 0x
, %, PZL N ’L

9’ ax’ox'  ox'oxt

de, d(ae 68,)

< I+ e

ox' dt 0x

A A A
T o ox  0x 0rox. ox ox' or—. A% ox
N A
T o A ox 0% oron.
\63\ o ’> \agz/xk

ax' axé)\“l\ ﬁ/ax M"\l\

S S S L 0L )

atax% ax* axa\\ Frr Ay
_%_ld(aei_%)

ax' 2det\ox' ox'

9 3L ’>L R A
= ia0 o T S T kA T o dakaadX
ox dx'  Ox J0tdx' Ox O0x 0x ox ox" 0x
REN 3L ’>L ’>L
_il+i -l+ik-l‘x+i-k~1x
ox'0x Odx' dtox  Ox'dx ox ox' ox" 0x

13
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i( T el L 9
di\ (03 ax X IO, AX0x P ox' OF
_\é3\/ > +\8\3;M

i ox! Mf/at\aﬁ
\193\/ 9L \193\58/)

+ + +
Mé\x"’i Ix' 9x' M"ax

2 3
_\a\/ PR +\6\;M
xkax ox ox' MM
3 3
+\.é\g/x"+ \a\gg/
Y O G PP
_ R i o R N
ax . AFoF  axOx or— |ox' 9% ox

B N T = i I
ox XL AR DO IR | 0x X F

s e e o)

2 2
_i[ o2 | afg.]x":o.

ax | |ox' ax'| |ox' 9x'
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1
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Equations (2), (3), (4) are called the Helmholtz conditions.
Notice a special case when &, does not depend on X’ . Applying Lem-
ma 4, we get the following assertion.

Lemma 5 Let € =¢,(t,x',x') be a system of functions. The following
three conditions are equivalent:

(a) The system € is variational.

(b) The functions €, satisfy

Jde,  0€

18 —+ =0,

(18) ax'  9x'

and

(19) Q%—Qﬂ—lﬁ(ﬁ%—aﬂjzo
dx'  odx' 2dt\ox ox'

(¢) The functions €, are of the form

_op (aQ,_@)x,

20 & =——+
20) k ax*  ax'

~oxt

where P=P(x') and 0,=0, (x") are arbitrary functions. The Lagrangian
for these Euler-Lagrange expressions is

21) P=P+Qi.

Proof 1.Equivalence of (a) and (b) follows from Lemma 4.
2. We show that (b) implies (c). Equations (18) and (19) reduce to the
subsystems

dg,  0¢g,
St =0 e
ox"  ox ox ox" 20x

d (dg, 0¢g
s T 0
J0x’ \ dx ox

The first subsystem yields

de, 0¢, 18(88,; ael,{)f:o,
ax  0x

(22)

2 2 2 2
de,  d¢g  0¢ d°e,

23 Sk~ % —— =
23) ax’ 9x' ax’axt  ox'ax* dx' ox’

’

hence ¢, = A, + A, %", where A, +A, =0 . Then the second subsystem reads
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0A, 04, ., 04, 0A, e 1 s
oxl al‘x—a— ak Zas(ld Ap)x
24) X X X X
04, 04, (BA,(, 0A, c')A,d) s
=—*_ 14 e x'=0,
axl dx* ax' oxt  oax'
hence
J0A, 0A 04,, 0A, aA
25) - =0, 4+ —+——F=0.
Jdx'  ox ox dx ax

These equations ensure existence of functions P and Q, such that

P
26 A =—o,
(26) oaxk
and
(27) A _%_%

ks k S
Toaxt ox’

(Lemma 2 and Lemma 3).

5 The Douglas’s problem

Suppose we are given two systems of functions g= gu(x ,X*) and
F =F/(x",x"), defined on a set UxV C R"xR", where V is a star- shaped
neighbourhood of the origin 0 € R". Consider the Sonin-Douglas’s system
of differential equations

. . agg A o A
1 (G —Fl)=— L g 9L
M 8 =i Vavar Y Tavon

as a system for an unknown function &£ . Clearly, in general, this system
need not have a solution for given g and F; existence of a solution implies
integrability conditions, satisfied by g, and F 7, and vice versa. Our main
objective in this section is to determine integrability conditions for the pair
(g,F) , ensuring existence of & .

Equation (1) is equivalent with two equations

9L
ax’ 9x'

2) 8=
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and

3) g”Fj_asg i’
i

=—— = 3.
ox'  dx’ox'

First we solve the system (2).

Lemma 6 (a) Equation (2) has a solution ¥ if and only if the functions
g; satisfy
98; _ 98y

@ &=8 T

(b) If the functions g, satisfy conditions (4), then every solution & of
equation (2) is of the form

(%) =L, +2,,

where
6 9 =Yniivi n=2(([ g kri")dx|rd
(6) p =y A hy = .[o(.[ogif'(x ,KTX") K')T t,

the functions h; satisfy

ahi‘ ahik
D hy=hy =g

and
(8) £O=A+B,.xi,

where A=A(x"), B,=B,(x").

Proof 1.If (4) holds, one can easily determine all solutions & of (2).
(4) implies that

_oh,

) 8i =5

for some functions A, ; h; can be taken as

(10) =i [ g,(c Ki")dx.
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Indeed, h; obviously satisfies (9):
oh, 1 ) (1 0g; )
—L = (xPkxP)dx+x"| | =% Kdx
(axj )(Xﬁ ,fc”) J‘O gl]( ) J.O ( axj (XIJ ,lel)

1 g,
= (X KXY+ 2 kx' |dx
Jo(g,]( ) ( PyY )() )

(11)
! v agl] .7
=_[ 8y (X" KX )+ —~ Kx |ldx
0 0x (x k2"
= [L (g, (x7 i) dK = g, (67 37
odi U AN

Now we apply condition g, = g; (4). We get the integrability condition

oh, _ Oh,

ax’  9x'

(12)

’

ensuring existence of a function L such that

oL
13 h =——
(13) ' ox'

(with minus sign for convenience). A solution may be taken as

.l
(14)  L=x'] h( zit)dr.
Substituting from (10)

1
(15) h(x",Tx")=1X%" JO g, (x" xTx")dx,
we get
L= )‘c"J-lhA(x” tx")dt = xi'[l(rxr.[lg. (x? er”)drc)dr
o 7 0 oI

i P P

(16) =x'x L(L g, (x" ,KTxX )dK)‘L'dT
= ',

where

19
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17y k=2 ([ g,(" xTi”)dx|rd
(17) = '[O(jog,j(x KTX") K')T T.

By construction (16), L coincides with the energy Lagrangian &£, of the
metric h= hij , and satisfies

— azi’Ph

B

as) g

and is equal to the energy Lagrangian &£, . The metric (17) satisfies

(19) h;=h;, % = 2J‘;(J‘;(%)(w,w) KT dicjrdr = %
The general solution of equation (2) is

(20) £=%,+A+Bi,

where A= A(x’), B, = B,(x’) are arbitrary functions.
Remark 3 Suppose that conditions (4) are satisfied,

08 _ 08y

@D 8=8 G

Then the Euler-Lagrange expressions of the Lagrangian &£ (5) are deter-
mined by Lemma 6, (4). Computing from this formula the expression
E A

22 = = %
22) ax*  9x’ ax*

entering equation (3), we get a first order expression

ok IL , ¥, L, ., 0A (IB, 9B\ .,
P e e b b R e e CT o X
Jx"  ox’ox 0x 0x’ dx ox Jx"  ox

() 13C

oS Qe

2

0A (aBl. aBk) ¥
tox Tt o T [
dx Jax"  Ox

23 = : : —
(23) (ax’ ax' axt 2 9x*

where C;; is the Cartan tensor of the metric h=#h; .
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Lemma 6 shows that any solution of the Sonin-Douglas’s problem must
be of the form

Q4  L=%,+%,
where &, is completely determined by the metric g, , satisfying

agi‘ ag,

It remains to determine the second summand
(26) £, =A+B,.)'ci,

with unknown functions A= A(x') and B, = Bi(x’). £, should be deter-
mined from equation (3), which is now of the form

L. .
Jx'  dx’ox' ox'  dx’ox'

Q7)) gF' =

Setting

0L, 9L,

. b,
Jx' dx’ox'

(28)  fi=gF, P=f-

and substituting into (27) we get an equivalent equation

JB,. .
(29) P,:‘M+( %—a—a)xk
ox' Jx' ox’

Lemma 7 The following conditions are equivalent:
(a) Equation (27) has a solution £, .

(b) Equation (29) has a solution A, B, .

(c) The system P =P satisfies

oF, | b

—ky T,
ax’  9x*
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1

(32) 1(6—@+a—ﬁ)+aﬁ%xi:o,
20ai" " ai' ) ax’

(d) The function f, and g;satisfy

(33) a_ft]_%_li(a_le_%jx/ =0,
dx  o0x' 29dx’\ox’ ox'

) dg. 0g,.
(34) lg(%_%)+ig_ig=
20x’\ox' ox Jx  ox

D. Krupka

Proof 1. Suppose that condition (a) is satisfied. Then since (27) has a
solution £, the system P = F, is variational. But expressions F, are of the
first order, thus by Lemma 2, &£, may be of the form (26), proving condi-

tion (b).

2. Suppose that (b) is satisfied and consider a solution A, B, of equa-

tion (29). Then by a direct computation

sy OB, OB _9B 9B 0B B
Jax  ox dx dx Jdx'  ox

and
LN A
ax' ax* 20x/\ax" axt
0 o (8B, 9B, \., 9
= + — ——— | X —
2 axt  ox'\ ax ox’
(36)
_0[(2,_m), 10 on b
ax*\ ox\ ox’ 29x' Lax*  ax'
LB g PP (08
dx' dx’ dx* 9x’ dx’ \ ax*

3. Suppose that (c) holds. Then (30) implies

e PE__Th 0ROk

1 k
X' 0x

0 o o oxr  oxar  orart

9B,

ax' o axt

jxf =0.

and a straightforward computation shows that (30) and (31) are exactly the

Helmbholtz conditions for the functions P, :
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opP. dP,

38 —k4 10,
38) ax’ 9
and
w_ﬂ;ggpﬂ_w)
ax' ax' 2dr\ox' 9x
dP. 0P o (0P 0P
(39) :—;——’.—1 ( : jx —=
ox'  ox' 29x’\ax éx’
Computing from (28)
o _3 T, 0T, 0,
(40) ax'  ax' ox'ax’  9x'9ox’9x’ ax'ox'’
oP_of 9%, ’>e, . 9L,
— = n + X'+ - .
ax'  ax' ax'ox'  ox' axfax dx ox'
we get

JP, a_P A TR
FYou T ox Tafoxar . T ax o
@D af, }'\se CL, L, OE
ax ox' (%L\ 9x 9x’ ox' ﬂ/ax
:-§4;+~Q444-25E34x1
ox  ox' ox’

=0,

proving (32).
Since

9P 9P, _of 9°%, \91;/;/ P,

ox ox o axlax T o= axlow
LA P2, TP,

/

—+
ax'  9x' 9x' M’\ dx ox'
SR .

ax' ax' ax'ox’  ax'ox' )

(42)

and
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o0 WL Ly
ax' axt oax' X ox’ 0x

0 %{ A _

43 A by Z h s

(43) ax' (fl xh ax! 9x'! )
_of_f 0 (FE, FE, )
Tox ox ov\axor axor )

then

E_%_ld(ap o)
ax' ax' 2dt X!

_0f ¥y, 0 (OF, I,
ax ax'ax'  ax'9x’

axl ax'
U, 3y (3L, I,
2 dt ax' ox' ax'ox’  ax'9x'

D. Krupka

2

b |4

:% of, (8f of,

2
’ax) axl i ox

___Edt Tos )
0? ,
(44) -2 _55{1[ 5
dx’ c')x E)x é)x’ ox
A _a_f_l d (af 8fj 1&(%_%)55;
Coxt oxt 20x/\axt X 29x' \ox'  o9x'
_i 82311 _ a2‘$h X/

ax’\ox'ax"  oax'ox'
_Af_0f 19 (af 6fj 1&(%_8_17)xf
Tox' ox' 20x\ 9% ox 29x' \ax'  ox'

(98985,
ax' 9x’

This proves (33) and (34).

4. (c) is obviously equivalent with (d). Thus, (32), (33) and (34) are
exactly the Helmholtz conditions for the expressions P, so there exists a

Lagrangian & for P, hence for (27); we may take for £

Tonti Lagrangian

the Vainberg-
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(45)  £,=x[ P(xl Til)dr.

Now we are in a position to formulate main results of this section. Re-
call that by (28),

(46) 5 :glek’

where g,, are variational integrating factors and F = F* is the force entering
the Sonin — Douglas’s equation (1). The following two theorems give us a
solution of the Sonin — Douglas’s problem in terms of a system of differen-
tial equations.

Theorem 2 The following conditions are equivalent:
(a) The Sonin-Douglas’s equation (1) has a solution & .
(b) The function g, and f; satisfy

9g; 08y
N r e
and
~of ) .\ dg,. .
(48) i_l(fi_l(&_ﬁ_i)xfj_,_il{xf:o’
0x 2\ ox’  ox' ox'

af, 0 d (df 0 '
(49) _f’]__fll_l_(_fll__f/ljxl :O’
Jdx  dx' 20x’\ox' ox

- 9f, 9,
(50) 1%(%—4}‘&_&1:
29x'\dx’ odx') dx! ox'

Proof 1. We show that condition (34) is a consequence of (32). Consid-
er equation (32)

(51) 1(a—ﬁ+a—ﬁ)+a;"”.xf =0.
2\ax" oax') ox’
Differentiating

2
P LA N S

208\ 9%’ ox' ) 0x’/9x’ ox’
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Write these equations as

1 (af+aﬁ)+ &ljg+ﬁﬁ:0’
295 \ox' 0% 9x’ 9x°* dx’
: g dg .
(53) %, f)+ 8oy B8,
26x 9x' 8x" ox' ox’ 0x
2
Lg (af’ +a—]_%)+—(9_.g’j v+ 28,
205\ 0%’ ox ox' 0x’ ox'

Combining these formulas we have

i)

295 ox'

S
Mx\ dx'

J’ 8
dx’ ax*

, af .
xs+ag”. +li,l f’ + af’.
ox’ 29x' \ Ax" ox’

(54)

\%/ gz % 98y .
2 8x ox'
and, with different indexing,

a%f" az.g"’ i+ ag"’. + 98, —% =

dx’ ax' ax-' ax’' ax’ ax' ax'
(55)

T, Ve x“‘+agf.’ +ag’f _ 98 ),

dx ox' ax ax’ Jox'  Jox  ox’

Subtracting the second equation from the first one we get

9 f, W ag,z g/ _ g,
ax’ 0x' M/a;‘\ ox’ x ox
(56) f W agjl agjl agll
0% 0’ M'/ax\ dx' ifx
( f af ) agil _ﬁ =0
28x ax’ k) ox’ ax'

which is exactly condition (34).
Substituting from (56) back to (51)

D. Krupka
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ox  dx' dax’

1(af afj 1a[af,. af) +—xf
ax') 20x'\ ax’ o9x' ax'
o (- )
X ax'\\ax/ ox'
(-
X 8x

:i.,(f (af afj j+—’fx-/':o.
ox ax’  ox' ax'

Thus (a) implies (50) (i.e. (34)) and (48).
2. Conversely, we show that (50) and (48) imply (32). Indeed, we have
from (50)

0 . . g, .
(58) li(ﬂ__f) J Lgl{xj_il{j/.]:o‘
ox’  ox' ox’ ox'

Substituting in (48)

"~ of. ) . Jdg, .
25122 )
0x 2\ 90x’ ox 0x

. : . - af .
ox' 2\a9x ox' 29x \ ox’ ax ax’
= af;] (af afjxj+ gllx 0
0x ax'  ox' ox’

Theorem 3 For any metric g; such that

9g; _ (9gi,f
axk  ox’’

60 g;=g,

equations (48) and (50) have a solution f; .

1

Proof Let g, be given. Equation (48) is equivalent with the system

9
S A L

o T 70
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1(9f; af).»
62 D =f+—| —L L%/,
©2) = Z(ax' a5 )
Since
S TRv)
Jdx"\ dx Jx' \ dx
(63)

2 2
_ 9gy i 98u 985 o _ 98

- : A A =0,
9x* 9x' ax'  9x' ox’ dx’

there exist functions ®, satisfying (61). Equation (62) becomes an equation
for the functions f; .
Equation (50) can be written as a system

100, 9dg; 98,

64 "+ -—2=0,
&) 2 9% ox' ax'
af, adf,
65 o, =L 2L
(©3) ek oax!
From (60),
0 (0g. 0g,. d (dg, 0
(66) —.k( o glﬁj=f( 6],
ox"\ox" oOx ox’\ox"  ox

the integrability condition for equation (64) is satisfied. Thus, (64) has a so-
lution @, and (65) becomes an equation for f;.

Thus, given @, and @, , satisfying (61) and (64), we search for a solu-
tion f, of the system (62), (65). We set

1

1 L
69)  f=®— D,

Then
o0, 00, 0% 19, 1 10D, Ly
(70) ax' ox ax' 9% 2 ax' 2 "2 9% 2

_ 0P, 0P, 1
ax'  ax' 2

(aq?lsi - aq-)fl )xs +@,
0x ax
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— (_ agxl_+ agﬂ ) S _( agsl 1l agsl )
- i !
ox ox % E

=0,.

Thus, f; satisfies (62) and (65).

1

Example 1 (Geodesic equations in Riemannian geometry) Given a
regular metric g= 8, » We set, using standard notation,

i _ 1 gip(agrp + agl"l’ _ agr:j

) ax’  ax"  ax’

- dg,. 0g.
T =grl :;( grj‘l‘ gv/_%]

(71

Jrs Ui rs axs axr axj

We prove by a direct verification of conditions (47) — (50) of Theorem 2 that
the system of functions,

(72) &=-g,(¥+T %)

defining the geodesic equations in Riemann geometry, is variational.
We set

(73)  f,=T, &%

Conditions (47) are satisfied trivially. Substituting for I' ;| to (48), (49) and
(50) yields

0 ,
i.z(fﬁ /9% )+ 81 4
ax 0% 9% ox'
ar’ X)) odg., .
SN O AL SV 4 2 PV N T
ox 2 ax' ax’ dax'

Z_%M—}_(F/nx D{) /)_+_ gjl ..

Jd ) d .
i)+ S =—§%<(F,ﬂ+rﬂ,>x Oy

(714)

(F

jrl
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(1—*]” rll)x +agrl
(o) s ) )
=0,

%_%_11(% af,)xj

ax' ax' 20x/\ax'  ox'
ar o7 .S rrs r .8 a
=— P t;s b +—axll +3_(F”’x mx )X
( artrs arlrs arirl al_‘lri) ores
=| - + ; + P s XX
dx 0x

1 a ( ri si a rs) a ( rl sl a rv)
= |-57 %g{* —%ﬁ + g%*%—%
2\ ox! dx

+ a ( i +%_ rlj ( rl agll ))
ox’ %x% ox” x( ax* ( % E
=0,
and
li(é)f,. _6ﬁ)+agij_8g,j
29x'\ox" o0x') ox'  ox'
d ) dg. Jg,.
_f(rirlx' _rlrixr)-‘r gl; _ﬁ
ax’ Jdx ox'
dg, 9g;
(75) =—(T,-T, -4

1 i
et
2\ Bx x’ 0x 0x x’ X X 0x
=0.



