
 
 

Part 2 

The global inverse problem in fibred 
manifolds  

 In this part of the lectures we consider variational structures (Y ,!) , 
where Y is a fibred manifold over an n-dimensional, orientable base mani-
fold X, and !  is an n-form, defined on the r-jet prolongation J rY  of Y. 
Our objective is to study the inverse problem of the calculus of variations 
for integral, higher-order variational functionals, associated with the n-
forms ! . 
  To this purpose we first introduce the underlying geometric structures 
for these functionals – jet prolongations of fibred manifolds. Then, using 
the canonical jet projections ! r : J rY " X  and ! r ,s : J rY " J sY  between 
different order jet prolongations, we develop a canonical decomposition 
theory of differential forms on the jet prolongations. Of particular interest 
are the contact forms, annihilating integrable sections of the jet prolonga-
tions J rY . We also study the decompositions defined by the fibred ho-
motopy operators and state the corresponding fibred Poincare-Volterra 
lemma.  
 Then we introduce integral variational functionals, depending on sec-
tions of Y, defined by differential n-forms on J rY ; this general setting in-
cludes as a special case the functionals, given by the Lagrangians (consid-
ered as differential forms). To examine properties of the variational func-
tionals, we introduce variations of sections of the fibred manifold Y as 
vector fields, defined on Y. Then we explain the geometric theory of the 
first variation and higher variations, based on the concepts of the jet pro-
longation of a vector field and the Lie derivative. In order to derive a main 
theorem, describing the global structure of the first variation, namely the 
first variation formula, we introduce the concept of a Lepage form, gener-
alizing the well-known Cartan form used in classical mechanics. Lepage 
forms allow us to find the (global) infinitesimal first variation formula by 
means of standard geometric operations as the exterior derivative, Lie de-
rivative and the contraction of a form by a vector field. We complete in 
this way the integral first variation formula, used in the classical calculus 
of variation on Euclidean spaces.  
  A basic concept, essential for the formulation of the global inverse 
problem of the calculus of variations, is the Euler-Lagrange form, an 
(n+1) -form, defined on some J sY . As a principal part of the first varia-
tion formula, determined by ! , it describes the extremals of the underly-
ing variational functional; locally, the components of the Euler-Lagrange 
form are the Euler-Lagrange expressions. 
 Finally, we introduce the source (n+1) -forms on J sY  and study condi-
tions for these forms to be identical with the Euler-Lagrange forms. As a 
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natural aspect of the global setting of the inverse problem, we first need 
integrability conditions for the local inverse problem, ensuring that a 
source form can be modelled as an Euler-Lagrange form locally. To this 
purpose we derive a generalisation of the Helmholtz variationality condi-
tions, and find the underlying local variational functionals.  

1  Jet prolongations of fibred manifolds  

 1.1  Immersions, submersions  Recall that the rank of a linear 
mapping u :E! F  of vector spaces is defined to be the dimension of its 
image space, ranku = dimImu . This definition applies to tangent mappings 
of differentiable mappings of manifolds. Let f :X!Y  be a Cr mapping of 
smooth manifolds, where r !1 . We define the rank of f at a point  x! X  to 
be the rank of the tangent mapping Tx f :TxX! Tf (x )Y . We denote 
rank x f = dim imTx f .  The function x! rank x f , defined on X, with values 
in non-negative integers, is the rank function.  
 Elementary examples of real-valued functions f of one real variable 
show that the rank function is not, in general, locally constant. Our main ob-
jective in this section is to study differentiable mappings whose rank func-
tion is locally constant.  
 The proof of the following theorem is based on the rank theorem in Eu-
clidean spaces and a standard use of charts on a smooth manifold.  

 Theorem 1 (Rank theorem)  Let X and Y be manifolds, let n = dim X , 
m = dimY , and let q be a positive integer such that q !min(n,m) . Let 
 W ! X  be an open set, and let f :W !Y  be a Cr mapping. The following 
conditions are equivalent: 
 (1) f has constant rank on W equal to q.  
 (2) To every point  x0 !W  there exist a chart (U,! ) , ! = (xi )  at x0 , an 
open rectangle  P!R

n  with centre 0 such that !(U ) = P , !(x0 ) = 0 , a chart 
(V ,! ) , ! = (y" ) , at y0 = f (x0 ) , and an open rectangle  Q!R

m  with centre 
0 such that ! (V ) =Q , ! (y0 ) = 0 , and  

(2)  
 

y! ! f =
x! , ! = 1,2,…,q,
0, ! = q +1,q + 2,…,m.

"
#
$

%$
 

 Proof  1. Suppose that f has constant rank on W equal to q. We choose a 
chart (U,! ) , ! = (x i ) , at x0 , and a chart (V ,! ) , ! = (y" ) , at y0 , and set 
g =! f" #1 ; g is a Cr mapping from  ! (U )!R

n  into  ! (V )!R
m . Since for 

every tangent vector  ! !TxX  expressed as  
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(3)  ! = ! i !
!xi

"
#

$
% x
,  

we have  

(4)  Tx f !" = Di (y
# f$ %1)($ (x))" i !

!y#
&
'(

)
*+ f (x )

,  

the rank of f at x is rankTx f = rankDi (y
! f" #1)(" (x)) . Consequently, the 

rank of f is constant on the open set  ! (U )!R
n , and is equal to q. Shrinking 

U  to a neighbourhood U of x0  and V  to a neighbourhood V of y0  if neces-
sary we may suppose that there exist an open rectangle  P!R

n  with centre 
0, a diffeomorphism ! :" (U )# P , an open rectangle  Q!R

m  with centre 
0, and a diffeomorphism ! :" (V )#Q , such that in the canonical coordi-
nates on P and Q,  !g"

#1(z1,z2 ,…,zn ) = (z1,z2 ,…,zq ,0,0,…,0) . We set 
! ="! , ! = (xi ) , and ! = "! , ! = (y" ) . Then (U,! )  and (V ,! )  are 
charts on X and Y. In these charts, ! f"#1 = $! f" #1% #1 = $g% #1 ; thus, for 
every  x!U   

(5)  

 

! f (x) =! f"#1"(x) = $g% #1"(x)
= $g% #1(x1(x), x2 (x),…, xn (x))
= (x1(x), x2 (x),…, xq (x),0,0,…,0).

 

In components,  

(6)  
 

y! ! f (x) =
x! (x), ! = 1,2,…,q,
0, ! = q +1,q + 2,…,m,

"
#
$

%$
 

proving (2).  
 2. Conversely, suppose that on a neighbourhood of  x0 !W  the mapping 
f is expressed by (2). Then rankTx0 f = rankDi (y

! f"#1)("(x0 )) = q .  

 Let f :X!Y  be a Cr mapping, and let  x0 ! X  be a point. We say that f 
is a constant rank mapping at x0 , if there exists a neighbourhood W of x0  
such that the rank function x! rank x f  is constant on W. Then the charts 
(U,! )  and (V ,! )  in which the mapping f has an expression (2), are said to 
be adapted to f at x0 , or just f-adapted. A Cr mapping f that is a constant 
rank mapping at every point is called a Cr mappings of locally constant 
rank.  
 A Cr mapping f :W !Y  such that the tangent mapping Tx0 f  is injec-
tive is called an immersion at x0 . From the definition of the rank it is imme-
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diate that f is an immersion at x0  if and only if rank x0 f = n ! m . If f is an 
immersion at every point of the set W, we say that f is an immersion. 
 From the rank theorem we get the following criterion.  

 Theorem 2 (Immersions)  Let X and Y be manifolds, n = dim X , and 
m = dimY ! n . Let f :X!Y  be a Cr mapping,  x0 ! X  a point, and 
y0 = f (x0 ) . The following two conditions are equivalent: 
 (1) f is an immersion at x0 .  
 (2) There exist a chart (U,! ) , ! = (xi )  at x0 , an open rectangle 
 P!R

n   P!R
n  with centre 0 such that !(U ) = P  and !(x0 ) = 0 , a chart 

(V ,! ) , ! = (y" )  at y0 = f (x0 ) , and an open rectangle  Q!R
m  with centre 

0 such that ! (V ) =Q  and ! (y0 ) = 0 , such that in these charts f is expressed 
by  

(7)  
 

y! ! f =
x! , ! = 1,2,…,n,
0, ! = n +1,n + 2,…,m.

"
#
$

%$
 

 Proof  The matrix of the linear operator Tx0 f  in some charts (U,! ) , 
! = (xi ) , at x0  and (V ,! ) , ! = (y" ) , at y0  is formed by partial derivatives 
Di (y

! f"#1)("(x0 )) , and is of dimension n !m . If at x0 , rankTx0 f = n , then 
rankTx f = n,  on a neighbourhood of x0 , by continuity of the determinant 
function. Equivalence of conditions (1) and (2) is now an immediate conse-
quence of Theorem 1.  
 
 Let f :X!Y  be an immersion, let  x0 ! X  be a point, and let (U,! )  
and (V ,! )  be the charts from Theorem 2, (2). Shrinking P and Q if neces-
sary we may suppose without loss of generality that Q = P ! R , where R is 
an open rectangle in Rm!n . Then the chart expression ! f"#1 :P$ P % R  of 
f is the mapping  (x

1, x2 ,…, xn )! (x1, x2 ,…, xn ,0,0,…,0) . The charts (U,! ) , 
(V ,! )  with these properties are said to be adapted to the immersion f at x0 .  

 Example 1 (Sections)  Let s ! r , let f :X!Y  be a surjective mapping 
of smooth manifolds. By a Cr section, or simply a section of f we mean a 
Cr mapping ! :Y " X  such that  

(8)   f !! = idY .  

Every section is an immersion. Indeed, 
 
T! (y) f !Ty! = idTyY  at any point 

 y!Y . Thus, for any two tangent vectors !  satisfying Ty! "#1 = Ty! "#2 , we 
have 

 
T! (y) f !Ty! "#1 = T! (y) f !Ty! "#2  hence !1 = !2 .  

 A Cr mapping f :W !Y  such that the tangent mapping Tx0 f  is surjec-
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tive, is called a submersion at x0 . From the definition of the rank it is im-
mediate that f is a submersion at x0  if and only if rank x0 = m ! n . A sub-
mersion f :W !Y  is a Cr mapping that is a submersion at every point 
 x!W . 

 Theorem 3 (Submersions)  Let X and Y be manifolds, let n = dim X , 
m = dimY . Let f :X!Y  be a Cr mapping, x0  a point of X, y0 = f (x0 ) . 
The following conditions are equivalent: 
 (1) f is a submersion at x0 . 
 (2) There exist a chart (U,! ) , ! = (xi ) , at x0 , an open rectangle 
 P!R

n  with centre 0 such that !(U ) = P , !(x0 ) = 0 , a chart (V ,! ) , 
! = (y" ) , at y0 = f (x0 ) , and an open rectangle  Q!R

m  with centre 0 such 
that ! (V ) =Q , ! (y0 ) = 0 , such that  
(9)   y

! ! f = x! , ! = 1,2,…,m.  

 (3) There exist a neighbourhood V of y0  and a Cr section ! :V "Y  
such that ! (y0 ) = x0 .  
 Proof  1. Suppose that f is a submersion at x0 . Then rankTx f = m  on a 
neighbourhood of x0 , and equivalence of conditions (1) and (2) follows 
from Theorem 1.  
 2. Suppose that condition (2) is satisfied. Consider the chart expression 
! f"#1 :P$Q  of the submersion f that is equal to the Cartesian projection 
 (x

1, x2 ,…, xm , xm+1, xm+1,…, xn )! (x1, x2 ,…, xm ) . ! f"#1  admits a Cr section 
! . Since 

 
! f"#1 !$ = idQ  hence  f!

"1 !# =$ "1 . Setting ! ="#1$%  we have 
f! = f"#1$% =% #1% = idV  proving that !  is a section of f. This proves (3). 

 3. If f admits a Cr section !  defined on a neighbourhood V of a point y, 
then  f !! = idV  and 

 
Ty ( f !! ) = Tx f !Ty! = Ty idV = idTyY , where x = ! (y) . 

Thus Tx0 f  must be surjective, proving (1).  

 Let !  be a Cr submersion, let  x0 ! X  be a point, and let (U,! )  and 
(V ,! )  be the charts from Theorem 3, (2). Shrinking P and Q if necessary we 
may suppose that the rectangle P is of the form P =Q ! R , where R is an 
open rectangle in Rn!m . Then the chart expression !  of the submersion f is 
the mapping  (x

1, x2 ,…, xm , xm+1, xm+1,…, xn )! (x1, x2 ,…, xm ) . The charts 
(U,! ) , (V ,! )  with these properties are said to be adapted to the submersion 
f at the point x0 . 

 Corollary 1  A submersion is an open mapping.  
 Proof  In adapted charts, a submersion is expressed as a Cartesian pro-
jection that is an open mapping. Corollary 1 now follows from the definition 
of the manifold topology in which the charts are homeomorphisms.  
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 Example 2 (Cartesian projections)  Cartesian projections of the prod-
uct of C! manifolds X and Y, pr1 :X !Y " X  and pr2 :X !Y "Y , are 
C! submersions. Indeed, to show it, we can use equations of pr1  and pr2 . If 
 (x, y)! X !Y  is a point and (U,! ) , ! = (xi )  (resp. (V ,! ) , ! = (y" ) ) is a 
chart at x (resp. y), we have on U !V , T pr1 :T (U !V )" TU ; thus, since 
pr1  is expressible as the mapping (xi , y! )" (xi ) , we have for every 
 ! !TxX , ! = ! i (!/ !xi ) , and every  ! !TyY ,  

(10)  T(x,y) pr1!(",# ) =
!xi

!xk
" k !
!xi

= " i !
!xi

.  

Consequently,  

(11)  T(x,y) pr1!(",# ) = ".  

In particular, T(x,y) pr1  is surjective, and pr1  is a surjective submersion.  

 Example 3  The tangent bundle projection is a surjective submersion. 
All tensor bundle projections are surjective submersions.  

 With the help of Corollary 1, submersions at a point can be character-
ized as follows.  

 Corollary 2  Let X and Y be manifolds, n = dim X ,m = dimY ! n . A 
Cr mapping f :X!Y  is a submersion at a point  x0 ! X  if and only if there 
exist a neighbourhood U of x0 , an open rectangle  R!R

n!m , and a dif-
feomorphism ! :U"Y #Rn$m  such that  pr1! ! = f .  
 Proof  1. Suppose f is a submersion at x0 , and choose some adapted 
charts (U,! ) , ! = (xi ) , at x0  and (V ,! ) , ! = (y" )  at y0 . Every point 
 x!U  has the coordinates  !(x) = (x

1(x), x2 (x),…, xm (x), xm+1(x),…, xn (x)) . 
We define a mapping ! :U"Y #Rn$m  by  

(12)   !(x) = ( f (x), x
m+1(x), xm+2 (x),…, xn (x)).  

Then  pr1! ! = f , and according to Corollary 1, f (U )  is an open set in Y. It 
remains to show that !  is a diffeomorphism. We easily find the chart ex-
pression of !  with respect to the chart (U,! )  and the chart (V !Rn"m ,#) , 
 ! = (y1, y2 ,…ym ,t1,t 2 ,…,t n"m ) , on Y !Rn"m , where t k  are the canonical co-
ordinates on Rn!m . We have for every  x!U , y! "(x) = y! f (x) = x! (x) , 
1!" ! m , and t k!(x) = xm+k (x) , 1! k ! n "m , that is,  

(13)  
 

yi! = xi , i = 1,2,…,m,
t k! = xm+k , k = 1,2,…,n "m,
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i.e.,  ! ! " =# . Thus ! ="#1$  is a diffeomorphism.   2. Conversely, if  pr1! ! = f , we have 
 
T! (x0 )

pr1!Tx0! = Tx0 f  and since !  
is a diffeomorphism, rankT! (x0 )

pr1 = rankTx0 f . But the rank of the projection 
pr1  is m (Example 2).  
 
 1.2  Fibred manifolds  By a fibred manifold structure on C! mani-
fold Y we mean a C! manifold X together with a surjective submersion 
! :Y " X  of class C! . A manifold Y endowed with a fibred manifold struc-
ture is called a fibred manifold of class C! , or just a fibred manifold. X is 
the base, and !  is the projection of the fibred manifold Y. 
 Let Y be a fibred manifold with base X and projection ! . Let 
dim X = n , and dimY = n +m . According to Theorem 3, to every point 
 y!Y  there exist a chart adapted to the submersion !  at y, a chart (V ,! ) , 
! = (ui , y" ) , at y , where 1! i ! n , 1!" ! m , and a chart (U,! ) , ! = (xi ) , 
at x = ! (y) , such that U = ! (V ) , and  x

i !! = ui . When using these charts, 
we conventionally write xi  instead of ui . We call a chart (V ,! )  with these 
properties a fibred chart on Y. The chart (U,! )  on X  is unique, and is said 
to be associated with (V ,! ) . It is convenient to write (V ,! ) , ! = (xi , y" ) , 
for a fibred chart.  

 Lemma 1  Every fibred manifold has an atlas consisting of fibred 
charts.  
 Proof  This is an immediate consequence of the definition of a submer-
sion.  

 A Cr section of the fibred manifold Y, defined on an open set  W ! X , is 
by definition a Cr section ! :W "Y  of the projection !  (cf. 1.1, Exam-
ple 1). In terms of a fibred chart (V ,! ) , ! = (xi , y" ) , and the associated 
chart (U,! ) , ! = (xi ) , such that  U !W  and  ! (U )!V , !  has equations of 
the form  

(1)   x
i !! = xi , y" !! = f " ,  

where f !  are real Cr functions, defined on U.  
 Let Y1  (resp. Y2 ) be a fibred manifold with base X1  (resp. X2 ) and pro-
jection !1  (resp. ! 2 ). A Cr mapping ! :W "Y2 , where W is an open set in 
Y1 , is called a Cr homomorphism of the fibred manifold Y1  into Y2 , if there 
exists a Cr mapping ! 0 :W0 " X2  where W0 = !1(W1) , such that  

(2)   ! 2 !" =" 0 !!1.  

Note that W0  is always an open set in X1  (Corollary 1). If ! 0  exists it is 
unique, and is called the projection of ! . We also say that !  is a homo-
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morphism over ! 0 . A homomorphism of fibred manifolds ! :Y1"Y2  that 
is a diffeomorphism is called an isomorphism; the projection of an isomor-
phism of fibred manifolds is a diffeomorphism of their bases. 
 If Y1 = Y2 = Y , then a fibred homomorphism ! :W "Y  is also called 
an automorphism of the fibred manifold Y.  
 We find the expression of a homomorphism in fibred charts. Consider a 
fibred chart (V1,! 1) , ! 1 = (x1

i , y1
" ) , on Y1  and a fibred chart (V2 ,! 2 ) , 

! 2 = (x2
p , y2

" ) , on Y2  such that  ! (V1)!V2 . We have the commutative dia-
gram  

(3)  
V1

!" #" V2
$ $

%1(V1)
!0" #" % 2 (V2 )

 

expressing condition (2). In terms of the charts we can write  

(4)  
 

! 0"1 =#2
$1 !#2! 0#1

$1 !#1"1% 1
$1 !% 1,

" 2! =#2
$1 !#2" 2% 2

$1 !% 2!% 1
$1 !% 1,

 

so the commutativity yields  

(5)   !2" 0!1
#1 !!1$1% 1

#1 =!2$ 2% 2
#1 !% 2"% 1

#1.  

Since we have fibred charts, !1"1# 1
$1  is the Cartesian projection 

(x1
i , y1

! )" (x1
i ) , and !2" 2# 2

$1  is the Cartesian projection (x2
p , y2

! )" (x2
p ) . 

Consequently, writing in components  

(6)  

 

!2" 0!1
#1 !!1$1% 1

#1(x1
i , y1

& ) =!2" 0!1
#1(x1

i ) = (x2
p" 0!1

#1(x1
i )),

!2$ 2% 2
#1 !% 2"% 1

#1(x1
i , y1

& )
=!2$ 2% 2

#1(x2
p"% 1

#1(x1
i , y1

& ), y2
'"% 1

#1(x1
i , y1

& ))
= (x2

p"% 1
#1(x1

i , y1
& )),

 

we see that condition (5) implies x2
p! 0"1

#1(x1
i ) = x2

p!$ 1
#1(x1

i , y1
% ) .This shows 

that the right-hand side expression is independent of the coordinates y1
! . 

Therefore, we conclude that the equations of the homomorphism !  in fibred 
charts are always of the form  

(7)  x2
p = f p (x1

i ), y2
! = F! (x1

i , y1
" ).  
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 Let Y be a fibred manifold with base X and projection ! . If !  is a tan-
gent vector to Y at a point  y!Y , then the tangent vector !  to X at 
 x = ! (y)! X  defined by 

(8)  Ty! "# = $,  

is called the ! -projection, or simply the projection of ! . By definition of 
the submersion, the tangent mapping of the projection !  at a point x, 
Ty! :TyY " T! (x )X , is surjective.  
 A tangent vector  !!TyY  is said to be ! -vertical, if 

(9)  Ty! "# = 0.  

The vector subspace of TyY  consisted of ! -vertical vectors, is denoted by 
VTyY . If !  is expressed in a fibred chart (V ,! ) , ! = (xi , y" ) , by 

(10)  ! = " i !
!xi

#
$

%
& y

+!' !
!y'

#
$(

%
&) y
,  

then by (8)  

(11)  ! = ! i !
!xi

"
#

$
% x

= 0.  

Thus, !  is ! -vertical if and only if  

(12)  ! = !" !
!y"

#
$%

&
'( y
.  

If in particular, dimY = n +m  and dim X = n , then dimVTyY = m . The sub-
set VTY  of the tangent bundle TY , defined by  

(13)  
  
VTY = VTyY

y!Y
! ,  

is a vector subbundle of TY , called the vertical subbundle.  
 A vector field !  on an open set W in Y is called ! -projectable, if there 
exists a vector field ! , defined on  ! (W )! X , such that  

(14)   T! "# = $ !! .  

If !  exists, it is unique and is called the ! -projection of ! ; we also say 
that !  covers ! . The vector field !  is called ! -vertical, if  
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(15)  T! "# = 0.  

 Let !  be a differential k-form, defined on an open set W in Y. We say 
that !  is ! -horizontal, of just horizontal, if it vanishes whenever one of its 
vector arguments is a ! -vertical vector. The same can be said in terms of 
the contraction of a form by a vector field requiring that !  be ! -horizontal 
if for every ! -vertical vector field !  on W  

(16)  i!" = 0.  

 The following lemma describes chart expressions of ! -horizontal 
forms.  

 Lemma 2  The form !  is ! -horizontal if and only if in any fibred chart 
(V ,! ) , ! = (xi , y" ) , it has an expression  

(17)  
  
! = 1

k!
!i1i2…ik

dxi1 !dxi2 !…!dxik .  

 Proof  Choose a point  y!V  and express the form !(y)  in the form 

(18)  

  

!(y) = 1
k!
!i1i2…ik

(y)dxi1 (y)!dxi2 (y)!…!dxik (y)+ dy1(y)! !1(y)

+ dy2 (y)! !2 (y)+…+ dym (y)! !m (y),
 

where the forms !1(y) , !2 (y) ,  … , !m (y)  do not contain dy1(y) , the forms 
!2 (y) , !3(y) ,  … , !m (y)  do not contain dy1(y)  and dy2 (y) , etc. Suppose 
that !  is ! -horizontal. Then contracting !(y)  by the vertical vector 
(!/ !y1)y  we get i(! /!y1 )y!(y) = !1(y) = 0 . Contracting !(y)  by the vertical 
vector (!/ !y2 )y  we get i(! /!y2 )y!(y) = !2 (y) = 0 , etc. Applying this procedure 
several times we get (17).  

 Example 4  Moebius band is a fibred manifold over the circle.  

 A form ! , defined on an open set W in Y, is said to be ! -projectable, 
or just projectable, if there exists a form !0 , defined on W0 = ! (W ) , such 
that  

(19)  ! = " *!0 .  

If the form !0  exists, it is unique and is called the ! -projection, of just the 
projection of ! .  
 Throughout, when using differential forms, we adopt the following con-
ventions:  
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 Conventions  (a) We express a differential (p + q) -form on the fibred 
manifold Y as  

(20)  

  

! = A"1"2…" p i1i2…iq
i1<i2<…<iq
# dy"1 !dy"2 !…!dy" p

"1<"2<…<" p
#

!dxi1 !dxi2 !…!dxiq ,
 

or equivalently, as 

(21)  
  
! = 1

p!q!
A"1"2…" p i1i2…,iq

dy"1 !dy"2 !…!dy" p !dxi1 !dxi2 !…!dxiq  

with summation through all double indices and coefficients, skew-symmetric 
in 

 
!1,!2 ,…,! p  and 

 
i1,i2 ,…,iq , separately.  

 (b) ! -projectable forms ! = " *!0  on Y can be canonically (that is via 
! ) identified with forms on X. To simplify notation, we sometimes denote 
the forms ! *"0  and !0  by the same symbol, !0 .  
 
 1.3  The contact of differentiable mappings  In this section X and 
Y are smooth manifolds, n = dim X  and m = dimY .  
 Let  x! X  be a point, W1 , W2  neighbourhoods of x, and let f1 :W1!Y  
and f2 :W2 !Y  be two mappings. Suppose that   W1!W2 !Ø . We say that 
f1  and f2  have the contact of order 0 at x, if  

(1)  f1(x) = f2 (x).  

Suppose that f1  and f2  are of class Cr , where r is a positive integer. We say 
that f1  and f2  have the contact of order r at x, if they have contact of order 
0, and there exist a chart (U,! ) , ! = (xi ) , at x and a chart (V ,! ) , ! = (y" ) , 
at f1(x)  such that  U !W1"W2 ,  f1(U ), f2 (U )!V , and for all k ! r , 

(2)  Dk (! f1"
#1)("(x)) = Dk (! f2"

#1)("(x)).  

We say that two C! mappings f1 :W1!Y  and f2 :W2 !Y , have the con-
tact of order !  at x, if they have the contact of order r for every r.  
 Writing in components ! f1"

#1 = (y$ f1"
#1) , ! f2"

#1 = (y$ f2"
#1) , we see 

at once that f1  and f2  have contact of order r if and only if f1(x) = f2 (x)  
and 

(3)  
 
Di1
Di2

…Dik
(y! f1"

#1)("(x)) = Di1
Di2

…Dik
(y! f2"

#1)("(x))  

for all  k = 1,2,…,r , 1!" ! m , and all  1! i1,i2 ,…,ik ! n  such 
 i1 ! i2 !…! ik .  
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 We claim that if f1 , f2  have contact of order r at a point x, then for any 
chart (U,! ) , ! = (x i ) , at x and any chart (V ,! ) , ! = (y" ) , at 
f1(x) = f2 (x) ,  

(4)  Dk (! f1"
#1)(" (x)) = Dk (! f2"

#1)(" (x))  

for all  k = 1,2,…,r . We can verify this formula by means of the chain rule 
for derivatives of mappings of Euclidean spaces. Using the charts (U,! ) , 
(V ,! )  we express the derivative 

(5)  
 

Di1
Di2

…Dik
(y! f1"

#1)(" (x))

= Di1
Di2

…Dik
(y!$ #1 !$ f1"

#1 !"" #1)(" (x))
 

as a polynomial in the variables Dj1
(y! f1"

#1)("(x)) , Dj1
Dj2
(y! f1"

#1)("(x)) , 
 … , 

 
Dj1

Dj2
…Djk

(y! f1"
#1)("(x)) . Then 

 
Di1
Di2

…Dik
(y! f2"

#1)(" (x))  is ex-
pressed by the same polynomial in the variables Dj1

(y! f2"
#1)("(x))  

Dj1
Dj2
(y! f2"

#1)("(x)) ,  … , 
 
Dj1

Dj2
…Djk

(y! f2"
#1)("(x)) . Clearly, equality 

(4) now follows from (3).  
 Fix two points  x! X ,  y!Y , and denote by C(x,y)

r (X,Y )  the set of 
Cr mappings f :W !Y , where W is a neighbourhood of x and f (x) = y . 
The binary relation “f, g have the contact of order r at x” on C(x,y)

r (X,Y )  is 
obviously reflexive, transitive, and symmetric, so is an equivalence relation. 
Equivalence classes of this equivalence relation are called r-jets with source 
x and target y. The r-jet whose representative is a mapping  f !C(x,y)

r (X,Y )  
is called the r-jet of f at x, and is denoted by Jx

r f . If there is no danger of 
misunderstanding, we call an r-jet with source x and target y an r-jet, or just 
a jet. The set of r-jets with source  x! X  and target  y!Y  is denoted by 
J(x,y)
r (X,Y ) .  

 Let X, Y, and Z be three finite-dimensional smooth manifolds. We say 
that two r-jets  A! J(x,u )

r (X,Y ) , A = Jx
r f , and  B! J(y,z )

r (Y ,Z ) , B = Jy
rg , are 

composable, if they have representatives which are composable (as map-
pings), i.e., if u = y ; this equality means that the target of A coincides with 
the source of B. In this case the composite  g ! f  of any representatives of A 
and B is a mapping of class Cr  defined on a neighbourhood of x.  
 It is easily seen that the r-jet  Jx

r (g ! f )  is independent of the representa-
tives of the r-jets A and B. If f  and g  are such that Jx

r f = Jx
r f  and 

Jx
rg = Jx

rg , then for any charts (U,! ) , ! = (xi )  at x, (V ,! ) , ! = (y" ) , at 
y = f (x) , and (W ,!) , ! = (z p ) , at z = g(y) , the derivatives 

 
Di1
Di2

…Dik
(z pgf!"1)(!(x))  are expressible in the form  

(6)  
 
Di1
Di2

…Dik
(z pgf!"1)(!(x)) = Di1

Di2
…Dik

(z pg# "1 !# f!"1)(!(x)).  
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for all  k = 1,2,…,r . By the chain rule for mappings of Euclidean spaces, 
these derivatives are polynomials in the derivatives 

 
D!1

D!2
…D!q

(z pg" #1)(" (y)) , 
 
Di1
Di2

…Dim
(y! f"#1)("(x)) , where m,q ! k . 

The same polynomial in the derivatives 
 
D!1

D!2
…D!q

(z pg" #1)(" (y)) , 

 
Di1
Di2

…Dim
(y! f"#1)("(x))  is obtained when expressing the derivative 

 
Di1
Di2

…Dik
(z pgf!"1)(!(x))  by means of the chain rule. Now since by defi-

nition 

(7)  
 

Di1
Di2

…Dim
(y! f"#1)("(x)) = Di1

Di2
…Dim

(y! f"#1)("(x)),

D!1
D!2

…D!q
(z pg$ #1)($ (y)) = D!1

D!2
…D!q

(z pg$ #1)($ (y)),
 

we have  

(8)  
 
Di1
Di2

…Dik
(z pgf!"1)(!(x)) = Di1

Di2
…Dik

(z pgf!"1)(!(x)).  

This proves, that the r-jet  Jx
r (g ! f )  is independent of the choice of A and B.  

 If X, Y, and Z are three manifolds and  A! J(x,y)
r (X,Y ) , A = Jx

r f , and 

 B! J(y,z )
r (Y ,Z ) , B = Jy

rg , are composable r-jets, i.e., y = f (x) , we define  

(9)   B !A = Jx
r (g ! f ),  

or, explicitly,  Jx
rg ! Jx

r f = Jx
r (g ! f ) . The r-jet  B !A  is called the composite 

of A and B, and the mapping  (A,B)! B !A  of J(x, f (x ))
r (X,Y )! J(y,g(y))

r (Y ,Z )  
into J(x,z )

r (X,Z ) , where z = g(y) , is the composition of r-jets.  
 A chart on X at the point x and a chart on Y at the point y induce a chart 
on the set J(x,y)

r (X,Y ) . Let (U,! ) , ! = (xi )  (resp. (V ,! ) , ! = (xi , y" ) ), be a 
chart on X (resp. Y). We assign to any r-jet  Jx

r f ! J(x,y)r (X,Y )  the numbers  

(10)  
 
z j1 j2… jk
! (Jx

r" ) = Dj1
Dj2

…Djk
(y! f#$1)(#(x)), 1% k % r.  

Then the collection of functions 
 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , such that  

(11)   1! j1 ! j2 !…! jk ! n, 1!" ! m,  

is a bijection of the set J(x,y)
r (X,Y )  and the Euclidean space RN  of dimen-

sion  

(12)  
 
N = n +m 1+ n + 2

n+1( ) + 3
n+2( ) +…+ r

n+r!1( )( ).  
Thus, the pair (J(x,y)

r (X,Y ),! r )  is a (global) chart on J(x,y)
r (X,Y ) . This chart 

is said to be associated with the charts (U,! )  and (V ,! ) .  
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 Lemma 3  (a) The associated charts (J(x,y)
r (X,Y ),! r ) , such that the 

charts (U,! )  and (V ,! )  belong to smooth structures on X and Y, form a 
smooth atlas on J(x,y)

r (X,Y ) . With this atlas, J(x,y)
r (X,Y )  is a smooth mani-

fold of dimension N (13).  
 (b) The composition of jets  

(13)  
  J(x,y)

r (X,Y )! J(y,z )
r (Y ,Z )! (A,B)" B !A" J(x,z )r (X,Z )  

is smooth.  
 Proof  1. One should proof that the transformation equations between 
the associated charts are of class C! . However this is obvious from (5).  
 2. (b) is an immediate consequence of formula (6).  
 
 1.4  Jet prolongations of fibred manifolds  In this section we ap-
ply the concept of contact of differentiable mappings (Section 1.3) to Cr sec-
tions of fibred manifolds. We study the structure of jets of sections and map-
pings of these jets.  
 Let Y be a fibred manifold with base X and projection ! , let n = dim X  
and m = dimY ! n . We denote by J rY , where r ! 0  the set of r-jets Jx

r!  of 
Cr sections !  of Y with source  x! X  and target  y = ! (x)!Y ; if r = 0 , 
then J 0Y = Y . Note that the representatives of an r-jet Jx

r!  are Cr sections 
! :W "Y , where W is an open set in X; condition that !  is a section,  

(1)   ! !" = idW ,  

implies that the target y = ! (x)  of the r-jet Jx
r!  belongs to the fibre 

 !
"1(x)!Y  over the source point x. For any s such that 0 ! s ! r  we have 

surjective mappings ! r ,s : J rY " J sY  and ! r : J rY " X , defined by  

(2)  ! r ,s (Jx
r" ) = Jx

s" , ! r (Jx
r" ) = x.  

These mappings are called the canonical jet projections.  
 The smooth structure of the fibred manifold Y induces by a canonical 
construction a smooth structure on the set J rY . Let (V ,! ) , ! = (xi , y" ) , be 
a fibred chart on Y, and let (U,! ) , ! = (xi ) , be the associated chart on X. 
We set V r = (! r ,0 )"1(V ) , and introduce, for all values of the indices, a family 
of functions, defined on V r ,  

(3)  

 

xi (Jx
r! ) = xi (x),

y" (Jx
r! ) = y" (! (x)),

yj1 j2… jk
" (Jx

r! ) = Dj1
Dj2

…Djk
(y"!#$1)(#(x)), 1% k % r.
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Then the collection of functions 
 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , where the 
indices satisfy  

(4)   1! i ! n, 1!" ! m, 1! j1 ! j2 !…! jk ! n, k = 2,3,…,r,  

is a bijection of the set V r  onto an open subset of the Euclidean space RN  
of dimension  

(5)  
 
N = n +m 1+ n + 2

n+1( ) + 3
n+2( ) +…+ r

n+r!1( )( ).  
In other words, the pair (V r ,! r ) , 

 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , is a chart 
on the set J rY . This chart is said to be associated with the fibred chart 
(V ,! ) , ! = (xi , y" ) .  

 Lemma 4 (Smooth structure on the set J rY )  The set of associated 
charts (V r ,! r ) , 

 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , such that the charts (V ,! )  
form an atlas on Y, is an atlas on J rY .  
 Proof  Let  �  be an atlas on Y whose elements are fibred charts (1.2, 
Lemma 1). One can easily check that  �  defines a topology on J rY  by re-
quiring that for any fibred chart (V ,! )  from this atlas 
 !

r :V r "! r (V r )!RN  is a homeomorphism; we consider the set J rY  with 
this topology.  
 It is clear that the associated charts with fibred charts from  �  cover the 
set J rY . Thus, to prove Lemma 4 it remains to check that the corresponding 
coordinate transformations are smooth.  
 Suppose we have two fibred chart on Y, (V ,! ) , ! = (xi , y" ) , and 
(V ,! ) , ! = (x i , y" ) , such that   V !V !Ø , and consider the associated 
charts on J rY , (V r ,! r ) , 

 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , and (V r ,! r ) , 

 
! r = (x i , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) . Let   Jx
r! !V r !V r . Let the coordinate trans-

formation !! "1  be expressed by the equations  

(6)  x i = f i (x j ), y! = g! (x j , y" ).  

Note that the functions f i  and g!  in formula (6) are formally defined by 
x i (x) = x i!"1(!(x)) = f i (!(x))  and y! (y) = y!" #1(" (y)) = g! (" (y)) . Thus  

(7)  

 

x i (Jx
r! ) = x i (x) = x i"#1("(x)) = x i"#1("(Jx

r! )),
y$ (Jx

r! ) = y$ (! (x))) = (y$% #1 !% )(! (x)) = y$% #1(% (Jx
r! )),

yj1 j2… jk
$ (Jx

r! ) = Dj1
Dj2

…Djk
(y$!" #1)(" (x))

= Dj1
Dj2

…Djk
(y$% #1 !%!"#1 !"" #1)(" (x)).
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From the chain rule it is now obvious that the right-hand sides, the coordi-
nates of the r-jet Jx

r!  in the chart (V r ,! r ) , depend smoothly on the coordi-
nates of Jx

r!  in the chart (V r ,! r ) .  

 From now on, we consider the set J rY  with the smooth structure, de-
fined by Lemma 4. We call J rY  the r-jet prolongation of the fibred mani-
fold Y. 

 Lemma 5  Each of the canonical jet projections (2) is smooth and de-
fines a fibred manifold structure on the manifold J rY .  
 Proof  Indeed, in the associated charts each of the canonical jet projec-
tions is expressed as a Cartesian projection which is smooth.  

 Every Cr section ! :W "Y , where W is an open set in X, defines a 
mapping  

(8)   W ! x! J r" (x) = Jx
r" " J rY ,  

called the r-jet prolongation of ! .  

 Example 5 (Coordinate transformations on J 2Y )  Consider two fi-
bred charts on a fibred manifold Y, (V ,! ) , ! = (xi , y" ) , and (V ,! ) , 
! = (x i , y" ) , such that   V !V !Ø . Suppose that the corresponding trans-
formation equations are expressed by the equations  

(9)  x i = x i (x j ), y! = y! (x j , y" ).  

Then the induced coordinate transformation on J 2Y  is expressed by the 
equations  

(10)  

x i = x i (x j ),
y! = y! (x j , y" ),

y j1
! = !y!

!xl
+ !y

!

!y"
yl
"#

$%
&
'(
!xl

!x j1
,

y j1 j2
! = !2 y!

!xl !xm
+ !2 y!

!xl !yµ
ym
µ + !2 y!

!xm !y"
yl
" + !y!

!yµ !y"
yl
" ym

µ#
$%

+ !y
!

!y"
ylm
" &
'(
!xm

!x j2

!xl

!x j1
+ !y!

!xl
+ !y

!

!y"
yl
"#

$%
&
'(

!2 xl

!x j1 !x j2
.

 

To derive these equations, we use the chain rule for partial derivative opera-
tors. Let   Jx

2! !V 2 !V 2 . The 2-jet Jx
2!  has the coordinates  
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(11)  
xi (Jx

2! ) = xi (x), y" (Jx
2! ) = y" (! (x)),

yj1
" (Jx

r! ) = Dj1
(y"!#$1)(#(x)), yj1 j2

" (Jx
r! ) = Dj1

Dj2
(y"!#$1)(#(x)),

 

and analogously for the chart (V ,! ) . Then  

(12)  

 

Dj1
(y!"# $1)(# (x)) = Dj1

(y!% $1 !%"#$1 !## $1)(# (x))

= Dk (y
!% $1)(%"#$1 !## $1)(# (x))Dj1

(xk"#$1 !## $1)(# (x))

+ D& (y
!% $1)(%"#$1 !## $1)(# (x))Dj1

(y&"#$1 !## $1)(# (x))

= Dk (y
!% $1)(%" (x))Dl (x

k"#$1)(## $1(# (x))Dj1
(xl# $1)(# (x))

+ D& (y
!% $1(%" (x))Dl (y

&"#$1)(## $1(# (x))Dj1
(xl# $1)(# (x))

= Dk (y
!% $1)(%" (x))' l

kDj1
(xl# $1)(# (x))

+ D& (y
!% $1)(%" (x))Dl (y

&"# $1)(#(x))Dj1
(xl# $1)(# (x))

= (Dl (y
!% $1)(%" (x))+ D& (y

!% $1)(%" (x))Dl (y
&"# $1)(#(x)))

(Dj1
(xl# $1)(# (x)),

 

proving the third one of equations (10). To prove the fourth one, we differ-
entiation (12) again and apply the chain rule. We can also derive the fourth 
equation by differentiating the third one. 
 
 1.5  The horizontalisation  As before, let Y be a fibred manifold 
with base X and projection ! , and let J rY  be the r-jet prolongation of Y. 
Denote dim X = n  and dimY = n +m . Recall that for any open set  W !Y , 
W r  denotes the open set (! r ,0 )"1(W )  in J rY . !0

rW  denotes the ring of 
Cr functions on W r , and !k

rW  the !0
rW -module of k-forms on W r . The 

exterior algebra of W r  is denoted by !rY . We show in this section that the 
fibred manifold structure of Y induces a canonical vector bundle homomor-
phism between the tangent bundles TJ r+1Y  and TJ rY  and an exterior alge-
bra homomorphism of !rY  into !r+1Y .  
 Let Jx

r+1!  be a point of the manifold J r+1Y . We assign to any tangent 
vector !  of J r+1Y  at Jx

r+1!  a tangent vector of J rY  at ! r+1,r (Jx
r+1" ) = Jx

r"  
by  

(1)   h! = TxJ
r" !T# r+1 $!.  

We get a vector bundle homomorphism h :TJ r+1Y ! TJ rY  over the projec-
tion ! r+1,r , called ! -horizontalisation, or simply the horizontalisation. 
Sometimes we call h!  the horizontal component of !  (note, however, that 
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the terminology is not standard since the vectors !  and h!  do not belong to 
the same vector space). Using a complementary construction, one can also 
assign to every tangent vector  ! !TJ

r+1Y  at a point  Jx
r+1! ! J r+1Y  a tangent 

vector  p! !TJ
rY  at Jx

r!  by the decomposition  

(2)  T! r+1,r "# = h# + p#.  

p!  is sometimes called the contact component of the vector ! .  

 Lemma 6  The horizontal and contact components satisfy  

(3)  T! r "h# = T! r+1 "#, T! r " p# = 0.  

 Proof  The first property follows from (1). Then, however,  

(4)  
 

T! r " p# = T! r "T! r+1,r "# $T! r "h#
= T! r+1 "# $T! r "TxJ

r% !T! r+1 "# = 0.
 

 Remark 1  If h! = 0 , then necessarily T! r+1 "# = 0  so !  is ! r+1 -
vertical. This observation may serve as a motivation why h!  is called the 
horizontal component of ! .  

 One can easily find the chart expressions for the vectors h!  and p! . If 
in a fibred chart (V ,! ) , ! = (xi , y" ) , !  has an expression 

(5)  
 

! = ! i !
!xi

"
#

$
% Jxr+1&

+ ' j1 j2… jk
(

j1) j2)…) jk
*

k=0

r+1

* !
!yj1 j2… jk

(

"
#+

$
%, Jxr+1&

,  

then 

(6)  
 

h! = ! i !
!xi

"
#

$
% Jxr&

+ yj1 j2… jki
' !

!yj1 j2… jk
'

"
#(

$
%) Jxr&j1* j2*…* jk

+
k=0

r

+
"

#
(

$

%
) ,  

and  

(7)  
 

p! = (" j1 j2… jk
# $ yj1 j2… jki

# ! i )
j1% j2%…% jk
&

k=0

r

& !
!yj1 j2… jk

#

'
()

*
+, Jxr-

.  

 The horizontalisation h :TJ r+1Y ! TJ rY  induces a mapping of the exte-
rior algebra !rY  into !r+1Y , denoted by the same letter h, as follows. We 
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set for any differential k-form !  on W r , any point  Jx
r+1! !W r+1  and any 

tangent vectors  !1,!2 ,…,!k  to J r+1Y  at Jx
r+1!  

(8)   h!(Jx
r+1" )(#1,#2 ,…,#k ) = !(Jx

r" )(h#1,h#2 ,…,h#k ).   

We extend the definition to 0-forms (functions); we set for every function 
f :W r ! R   

(9)   hf = f !! r+1,r .   

The mapping  !
rW ! "# h" "!r+1W  is called the ! -horizontalisation, or 

just the horizontalisation (of differential forms).  

 Lemma 7  (a) For all  !1,!,! !"k
rW  and  f !!0

rW   

(10)   h(!1 + !2 ) = h!1 + h!2 h( f !) = ( f !" r+1,r )h!.   

 (b) For all  ! !" p
rW  and  !!"q

rW  

(11)   h(!!") = h!!h".   

 Proof  Both assertions (a) and (b) is immediate. To prove formally (b), 
we use the definition of the exterior product  

(12)  

  

(!!")(Jx
r# )($1,$ 2 ,…,$ p ,$ p+1,$ p+2 ,…,$ p+q )

= sgn% &
%
' !(Jx

r# )($% (1),$% (2),…,$% ( p) )"(Jx
r# )($% ( p+1),…,$% ( p+q) )

  

(summation through the permutations !  of the set   {1,2,…, p + q}  such that 
 ! (1) < ! (2) <…< ! (p)  and  ! (p +1) < ! (p + 2) <…< ! (p + q) ). Then  

(13)  

  

h(!!")(Jx
r+1# )($1,$2 ,…,$ p ,$ p+1,$ p+2 ,…,$ p+q )

= (!!")(Jx
r+1# )(h$1,h$2 ,…,h$ p ,h$ p+1,h$ p+2 ,…,h$ p+q )

= sgn% &
%
' !(Jx

r# )(h$% (1),h$% (2),…,h$% ( p) )

&"(Jx
r# )(h$% ( p+1),h$% ( p+2),…,h$% ( p+q) )

= sgn% &
%
' h!(Jx

r+1# )($% (1),$% (2),…,$% ( p) )

&h"(Jx
r+1# )($% ( p+1),$% ( p+2),…,$% ( p+q) )

= (h!(Jx
r+1# )!h"(Jx

r+1# ))($1,$2 ,…,$ p ,$ p+1,$ p+2 ,…,$ p+q ).
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 In the following lemma we summarize basic rules for computations with 
the horizontalisation and formal derivatives. First consider a 1-form ! , ex-
pressed in a fibred chart (V ,! ) , ! = (xi , y" ) , by  

(14)  
 
! = Aidx

i + B"
j1 j2… jk dyj1 j2… jk

"

j1< j2<…< jk
#

0$k$r
# .   

By definition, we have at any point  Jx
r+1! !V r+1  and tangent vector !  at 

Jx
r+1!  

(15)  

 

h!(Jx
r+1" )(# ) = !(Jx

r" )(h# ) = Ai (Jx
r" )dxi (Jx

r" )(h# )

+ B$
j1 j2… jk (Jx

r" )dyj1 j2… jk
$ (Jx

r" )(h# )
j1< j2<…< jk
%

0&k&r
%

= Ai (Jx
r" )+ B$

j1 j2… jk (Jx
r" )yj1 j2… jki

$ (Jx
r+1" )

j1< j2<…< jk
%

0&k&r
%'

()
*
+,
# i ,

  

thus, since ! i = dxi (Jx
r+1" )(! ) ,  

(16)  
 
h! = Ai + B"

j1 j2… jk y j1 j2… jki
"

j1< j2<…< jk
#

0$k$r
#%

&'
(
)*
dxi .   

 In particular, for any function f :W r ! R   

(17)  hdf = di f !dx
i ,   

where  

(18)  
 
di f =

! f
!xi

+ ! f
!yj1 j2… jk

! yj1 j2… jki
!

j1< j2<…< jk
"

0#k#r
" .  

The function di f :V
r+1! R  is called the i-th formal derivative of f with re-

spect to the fibred chart (V ,! ) . Note that formal derivatives (18) are com-
ponents of an invariant object, namely the 1-form hdf .  
 
 Lemma 8  Let (V ,! ) , ! = (xi , y" ) , be a fibred chart on Y.  
 (a) The horizontalisation h satisfies  

(19)  
 

hdxi = dxi , hdy! = yi
!dxi , hdyj1

! = yj1i
! dxi ,

hdyj1 j2
! = yj1 j2i

! dxi , …, hdyj1 j2… jr
! = yj1 j2… jri

! dxi .
 

 (b) The coordinate functions 
 
yj1 j2… jk
!  satisfy 
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(20)  
 
dix

j = ! i
j , diyj1 j2… jk

" = yj1 j2… jki
" .  

 (c) If (V ,! ) , ! = (x i , y" ) , is another chart on Y such that   V !V !Ø , 
then for every function  f :V

r !V r ! R , 

(21)  di f = dj f !
!x j

!x i
.  

 (d) For any two functions f , g :V r ! R , 

(22)  di ( f !g) = g !di f + f !dig.  

 (e) For every function f :V r ! R  and every section  ! :U"V !Y , 

(23)  
 
di f ! J

r+1! = !( f ! J
r! )

!xi
.  

 Proof  (a) and (b) follow from (17) and (18). To derive (21), we write  

(24)  hdf = di f !dx
i = di f !

!xi

!x j dx
j = dj f !dx

j .   

(d) and (e) are immediate.  

 The following can be considered as a local definition of the homomor-
phism h :!rW "!r+1W .  

 Theorem 4  (Local definition of horizontalisation) There exists a 
unique linear over the ring of functions, exterior-product-preserving map-
ping of the exterior algebra !rW  into !r+1W , such that for any fibred chart 
(V ,! ) , ! = (xi , y" ) , where  V !W , and any function f :W r ! R   

(25)   hf = f !! r+1,r , hdf = di f "dx
i ,   

where  

(26)  
 
di f =

! f
!xi

+ ! f
!yj1 j2… jk

! yj1 j2… jki
!

j1< j2<…< jk
"

0#k#r
" .  

 Proof  Clearly, formulas (25) and (26) locally define a unique mapping 
from !rW  to !r+1W , satisfying conditions (10) and (11) of Lemma 7 (the 
horizontalisation).  
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 Remark 2  By (20), 
 
yj1 j2… jk
! = djk

yj1 j2… jk"1
! . Thus, applying (21) to coordi-

nates, we obtain the following prolongation formula for coordinate trans-
formations in jet prolongations of fibred manifolds  

(27)  
 
yj1 j2… jk
! = diyj1 j2… jk"1

! # !x
i

!x jk
.  

 Remark 3  If two functions f ,g :V r ! R  coincide along a section 
J r! , that is,  f ! J

r! = g ! J r! , then their formal derivatives coincide along 
the (r +1) -prolongation J r+1! ,  

(28)   di f ! J
r+1! = dig ! J

r+1! .  

This is an immediate consequence of formula (23).  
 
 1.6  Jet prolongations of automorphisms	  	  Let r be a positive in-
teger. Consider an open set W in the fibred manifold Y and a Cr automor-
phism ! :W "Y  with projection ! 0 :W0 " X , defined on an open set 
W0 = ! (W ) . In this section we suppose that the projection ! 0  is a Cr dif-
feomorphism.  
 Every section ! :W0 "Y  defines the mapping  !"! 0

#1 =! !" !! 0
#1 ; it is 

easily seen that this mapping is a section of Y over the open set  ! 0 (W0 )! X : 
indeed, using properties of homomorphisms and sections of fibred mani-
folds, we get 

 
! !"#" 0

$1 =" 0 !! !# !" 0
$1 =" 0 !" 0

$1 = idW0
. Then, however, the 

r-jets of the section x!"#" 0
$1(x)  are defined and are elements of the set 

J rY . Consider the r-jet J!0 (x )
r !"! 0

#1 . It is immediately seen that this r-jet 
depends only on the r-jet Jx

r! , that is, it is independent of the choice of a 
representative ! : indeed, applying the jet composition, we can write 

 
J!0 (x )
r !"! 0

#1 = J" (x )
r ! ! Jx

r" ! J!0 (x )
r ! 0

#1  and, since the right-hand side depends 
on Jx

r!  only, the r-jet J!0 (x )
r !"! 0

#1  does not depend on the choice of ! .  
 Now we denote W r = (! r ,0 )"1(W ) , and set for every 
 Jx

r! !W r = (" r ,0 )#1(W )  

(1)  J r! (Jx
r" ) = J!0 (x )

r !"! 0
#1.  

This formula defines a mapping J r! :W r " J rY , called the r-jet prolonga-
tion, or just prolongation of the Cr automorphism ! .  
 Note an immediate consequence of the definition (1). Given a Cr sec-
tion ! :V "Y , then we have  J

r! ! J r" = J r!"! 0
#1 !! 0  so the r-jet prolonga-

tion J r!"! 0
#1  of the section !"! 0

#1  satisfies 

(2)   J
r! ! J r" !! 0

#1 = J r!"! 0
#1  
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on the set ! 0 (V ) . In particular, this formula shows that the r-jet prolonga-
tions of automorphisms carry sections of Y into sections of J rY  (over X).  
 We find the chart expression of the mapping J r! .  

 Lemma 9  Suppose that in two fibred charts on Y, (V ,! ) , ! = (xi , y" ) , 
and (V ,! ) , ! = (x i , y" ) , on Y the Cr automorphism ! , restricted to V, is 
expressed by equations  

(3)   x
i !! (y) = f i (x j (x)), y" !! (y) = F" (x j (x), y# (y)).  

Then for every point  Jx
r! !V r , the transformed point J r! (Jx

r" )  has the co-
ordinates  

(4)  

 

x i ! J r! (Jx
r" ) = f i (x j (x)),

y# ! J r! (Jx
r" ) = F# (x j (x), y$ (" (x))),

yj1 j2… jk
# ! J r! (Jx

r" )

= Dj1
Dj2

…Djk
(y#!% &1 !%"'&1 !'! 0

&1' &1)(' (! 0 (x))), 1( k ( r.

 

 Proof  We have  

(5)  

 

x i ! J r! (Jx
r" ) = x i !! 0 (x) = x

i! 0#
$1(#(x)) = f i (x j (x)),

y% ! J r! (Jx
r" ) = y% !! (" (x)) = y%!& $1(& (" (x)))

= F% (x j (x), y' (" (x))),
 

and by definition  

(6)  

 

yj1 j2… jk
! ! J r" (Jx

s# ) = yj1 j2… jk
! (J"0 (x )

s "#" 0
$1)

= Dj1
Dj2

…Djk
(y! !"#" 0

$1% $1)(% (" 0 (x)))

= Dj1
Dj2

…Djk
(y!"& $1 !&#%$1 !%" 0

$1% $1)(% (" 0 (x))).

 

 Formula (4) contains partial derivatives of the functions f i  and F! , 
and also partial derivatives of the functions gk , representing the chart ex-
pression !" 0

#1! #1  of the inverse diffeomorphism ! 0
"1 , and defined by  

(7)   x
k !! 0

"1( #x ) = gk (x l ( #x )).  

To obtain explicit dependence of the coordinate function 
 
yj1 j2… jk
! (J r" (Jx

r# ))  
on the coordinates of the r-jet Jx

r! , we have to use the chain rule k times, 
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which leads to polynomial dependence of 
 
yj1 j2… jk
! (J r" (Jx

r# ))  on the jet coor-
dinates yi1

! (Jx
r" ) , yi1i2

! (Jx
r" ) ,  … , 

 
yi1i2…ik
! (Jx

r" ) . This shows, in particular, that 
if !  is of class Cr , then J r!  is or class C 0 ; if !  is of class Cs , where 
s ! r , then J r!  is of class Cs!r .  
 Equations (4) can be viewed as recurrence formulas for the chart ex-
pression of the mapping J r! . Writing  

(8)  
 
yj1 j2… jk!1
" ! J r# (Jx

r$ ) = (yj1 j2… jk!1
" ! J r# ! J r$ !%!1 !%# 0

!1% !1)(% (# 0 (x))),  

we have  

(9)  

 

yj1 j2… jk
! ! J r" (Jx

r# )

= Djk
(yj1 j2… jk$1

! ! J r" ! J r# !%$1 !%" 0
$1% $1)(% (" 0 (x)))

= Dl (yj1 j2… jk$1
! ! J r" ! J r# !%$1)(%(x))Djk

(xl" 0
$1% $1)(% (" 0 (x))).

 

Thus, if we already have the functions 
 
yj1 j2… jk!1
" ! J r# , then the functions 

 
yj1 j2… jk
! ! J r"  is determined by (4).  

 As an example we derive explicit expressions for the second jet prolon-
gation J 2! .  

 Example 6 (Second order prolongation of an automorphism)  Let 
r = 2 . We have from (3)  

(10)  

 

yj1
! ! J 2" (Jx

r# ) = Dj1
(y!"$ %1 !$#&%1 !&" 0

%1& %1)(& (" 0 (x)))

= Dk (y
!"$ %1)($# (x))' l

kDj1
(xl" 0

%1& %1)(& (" 0 (x)))

+ D( (y
!"$ %1)($# (x))yl

( (Jx
r# )Dj1

(xl" 0
%1& %1)(& (" 0 (x)))

= (Dl (y
!"$ %1)($# (x))+ D( (y

!"$ %1)($# (x))yl
( (Jx

s# ))
)Dj1

(xl" 0
%1& %1)(& (" 0 (x))),

 

or, in a different notation,  

(11)  
 
yj1
! ! J 2" (Jx

r# ) = dlF
! (Jx

r# ) !gl

!x j1

$
%&

'
()* ("0 (x ))

,  

where dl  is the formal derivative operator. Differentiating formula (10) or 
(11) again we get the following equations for the 2-jet prolongation J 2!  of 
the automorphism !   



The inverse problem of the calculus of variations   
 

75 

(12)  
x i = f i (xi ), y! = F! (xi , y" ), yj1

! = dk1F
! # !g

k1

!x j1
,

yj1 j2
! = dk1dk2F

! # !g
k1

!x j1

!gk2

$x j2
+ dk1F

! # !2gk1

!x j1 !x j2
,

 

where dk  denotes the formal derivative operator (Section 1.5).  

 Using our previous notation we can easily prove the following state-
ments.  

 Lemma 10  (a) For any s, 0 ! s ! r ,  

(13)   !
r ! J r" =" 0 !!

r , ! r ,s ! J r" = J s" !! r ,s .  

 (b) If two Cr automorphisms !  and !  of the fibred manifold Y are 
composable, then 

(14)   J
r! ! J r" = J r (! !" ).  

 (c) For any Cr+1automorphism !  of Y, and any differential form !  on 
J rY , 

(15)  J r+1! *h" = hJ r! *".  

 Proof  All these assertions are easy consequences of definitions.  

 Formula (13) shows that J r!  is an Cr automorphism of the r-jet pro-
longation J rY  of the fibred manifold Y, whose projection is a dif-
feomorphism ! 0 . We call this Cr automorphism the r-jet prolongation of 
! .  
 
 1.7  Jet prolongations of vector fields  Let Y be a fibred manifold 
with base X and projection ! . In this section we apply the theory of jet pro-
longations of automorphisms of fibred manifolds to local flows of vector 
fields, defined on Y.  
 Let !  be a Cr vector field on Y, let  y0 !Y  be a point, and consider a 
local flow !" : (#$ ,$ )%V &Y  of !  at y0 . As usual, define the mappings 
! t

"  and ! y
"  by  

(1)  !"(t, y) =! t
"(y) =! y

"(t).  

Then for any point  y!V  the mapping t!" y
#(t)  is an integral curve of !  

passing through y at t = 0 , i.e.,  
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(2)  Tt! y
" = "(! y

"(t)), ! y
"(0) = y.  

Moreover, shrinking the domain of definition (!" ," )#V  of !"  to a subset 
 (!" ," )#W ! (!$ ,$ )#V , where W is a neighbourhood of the point y0 , we 
have  

(3)  !"(s + t, y) =!"(s,!"(t, y)), !"(#t,!"(t, y)) = y  

for all  (s,t)! (!" ," )  and  y!W  or, which is the same.  

(4)  ! s+t
" (y) =! s

"(! t
"(y)), !# t

"! t
"(y) = y.  

Note that the second formula implies  

(5)  (! t
" )#1 =!# t

" .  

 In the following lemma we study properties of flows of a ! -projectable 
vector field.  

 Lemma 11  Let !  be a Cr vector field on Y. The following two condi-
tions are equivalent:  
 (1) The local 1-parameter groups of !  consist of Cr automorphisms of 
the fibred manifold Y.  
 (2) !  is ! -projectable.  

 Proof  1. Let  y0 !Y  be a point and let x0 = ! (y0 ) . Choose a local flow 
!" : (#$ ,$ )%V &Y  at y0 , and suppose that the mappings ! t

" :V #Y  are 
Cr automorphisms of Y. Then for each t there exists a unique Cr mapping 
! t :U" X , where U = ! (V )  is an open set, such that  

(6)   ! !" t
# =" t !!  

on V. Setting ! (t, x) =! t (x)  we get a mapping ! : ("# ,# )$U% X . It is 
easily seen that this mapping is of class Cr . Indeed, there exists a Cr section 
! :U"Y  such that ! (x0 ) = y0  (Section 1.1, Theorem 3); using this section 
we can write  ! (t, x) =! t (x) = " !! t

# !$ (x) = " !!#(t,$ (x)) , so !  can be 
expressed as the composite of Cr -mappings. Since !  satisfies ! (0, x) = x , 
setting  

(7)  !(x) = T0" x #1  

we get a Cr!1 vector field on U.  
 On the other hand, formula (6) implies  ! !"

#(t, y) =" (t,! (y)) , that is, 

 
! !" y

# ="! (y) . Then from (2) 
 
Tt (! !" y

# ) = T
" y

# (t )! $#(" y
#(t)) = Tt"! (y)  and se 
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have at the point t = 0   

(8)  T0!" (y) = Ty" #$(y).  

Combining (7) and (8),  

(9)  !(" (y)) = Ty" #$(y).  

This proves ! -projectability of !  on V. ! -projectability of !  (on Y) now 
follows form the uniqueness of the ! -projection.  
 2. Suppose that !  is ! -projectable and denote by !  its ! -projection. 
Then 

(10)  Ty! "#(y) = $(! (y))  

at every point of Y. The local flow !"  satisfies equation (2) 
Tt! y

" = "(! y
"(t)) . Applying the tangent mapping T!  to both sides we get  

(11)  
 
Tt (! !" y

# ) = T
" y

# (t )! $#(" y
#(t)) = %(! (" y

#(t))).  

This equality means that the curve t!" (# y
$(t)) =#" (y)

% (t)  is an integral 
curve of the vector field ! . Thus, denoting by !"  the local flow of !  at the 
point x0 = ! (y0 ) , we have  

(12)  ! ("#(t, y)) ="$ (t,! (y))  

as required.  

 Let !  be a ! -projectable Cr vector field on Y, !  its ! -projection, ! t
"  

(resp. ! t
" ) the local 1-parameter group of !  (resp. ! ). Since the mappings 

! t
"  are Cr diffeomorphisms, for each t the Cr automorphism ! t

"  can be pro-
longed to the jet prolongation J sY  of Y, for any s, 0 ! s ! r . The prolonged 
mapping is an automorphism of the fibred manifold J sY  over X, defined by  

(13)  J s! t
"(Jx

r# ) = J
! t

$ (x )
s ! t

"#!% t
$ ,  

the s-jet prolongation of ! t
" .  

 It is easily seen that there exists a unique Cs vector field on J sY  whose 
integral curves are exactly the curves t! J s" t

#(Jx
r$ ) . This vector field is 

defined by  

(14)  J s!(Jx
r" ) = d

dt
J s# t

!(Jx
r" )$

%
&
' 0
,  
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and is called the r-jet prolongation of ! . It follows from the definition that 
J s!  is ! s -projectable (resp. ! r ,s -projectable for any s, 0 ! s ! r ) and its 
! r -projection (resp. ! r ,s -projection) is !  (resp. J s! ). 
 The following lemma describes the local structure of the jet prolonga-
tions of projectable vector fields.  

 Lemma 12  Let !  be a ! -projectable vector field on Y, (V ,! ) , 
! = (xi , y" ) , a fibred chart on Y, and let !  be expressed by 

(15)  ! = " i !
!xi

+!# !
!y#

.  

Then J s!  is expressed with respect to the associated chart (V s ,! s )  by 

(16)  
 
J s! = " i !

!xi
+!# !

!y#
+ ! j1 j2… jk

#

j1$ j2$…$ jk
%

k=1

s

% !
!yj1 j2… jk

# ,  

where the components 
 
! j1 j2… jk

"  are determined by the recurrence formula 

(17)  
 
! j1 j2… jk

" = djk
! j1 j2… jk#1

" # yj1 j2… jk#1i
" !$ i

!x jk
.  

 Proof  For sufficiently small t we can express the local 1-parameter 
group of !  in one chart only. Replacing !  with ! t

" , ! 0  with ! t
"  and ! 0

"1  
with !" t

#  we get the following equations of the Cr automorphism ! t
" :  

(18)   x
i !! t

"(y) = xi! t
# (x), y$ !! t

"(y) = y$! t
"(y).  

Thus the components of the vector field !  can be written as  

(19)  ! i (y) = dxi" t
! (x)
dt

#
$%

&
'( 0
, )* (y) = dy*" t

)(y)
dt

#
$%

&
'( 0
.  

 To determine the components of J s!  we use 1.6, Lemma 9. The 1-
parameter group of J s!  has the equations  

(20)  

 

xi ! J r! t
"(y) = xi! t

# (x),
y$ ! J r! t

"(y) = y$! t
"(y),

yj1 j2… jk
$ ! J r! t

"(Jx
r% )

= Dj1
Dj2

…Djk
(y$! t

"& '1 !&%('1 !(!' t
# ('1)(((! t

# (x))), 1) k ) s,
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so by (18) it is sufficient to determine 
 
! j1 j2… jk

" . By definition,  

(21)  
 
! j1 j2… jk

" (Jx
r# ) = d

dt
(yj1 j2… jk

" ! J r$ t
! )(Jx

r# )%
&

'
( 0
.  

But  

(22)  

 

yj1 j2… jk!1
" ! J r# t

$(Jx
r% )

= Dj1
Dj2

…Djk!1
(y"# t

$& !1 !&%'!1 !'#! t
( '!1)('(# t

( (x)))

= yj1 j2… jk!1
" ! J r# t

$ ! J r% !#! t
( '!1('(# t

( (x))),

 

thus,  

(23)  

 

yj1 j2… jk
! ! J r" t

#(Jx
r$ )

= Djk
(yj1 j2… jk%1

! ! J r" t
# ! J r$ !&%1 !&"% t

' &%1)(&(" t
' (x)))

= Dl (yj1 j2… jk%1
! ! J r" t

# ! J r$ !&%1)(&(x))Djk
(xl"% t

' &%1)(&(" t
' (x))).

 

 To obtain (21) we differentiate in this formula the function 

(24)  
 
(t,!(x))" (yj1 j2… jk#1

$ ! J r% t
& ! J r' !!#1)(!(x)) = yj1 j2… jk#1

$ ! J r% t
&(Jx

r' )  

with respect to t and xl . Since the partial derivatives commute, we can first 
differentiate with respect to t at t = 0 . We get the expression 

 
! j1 j2… jk"1

# (Jx
r$ ) . 

Subsequent differentiation yields  

(25)  
 
Dl (! j1 j2… jk"1

# ! J r$ !%"1)(%(x)) = dl! j1 j2… jk"1
# ! J r+1$ ,  

where dl  is the formal derivative operator (Section 1.5, Lemma 8).  
 We should also differentiate expression Djk

(xl!" t
# $"1)($(! t

# (x)))  with 
respect to t. We write the identity  Dl (x

k!" t
# $"1 !$! t

#$"1)($(x)) = % l
k  as  

(26)  Dj (x
k!" t

# $"1)($! t
# (x))Dl (x

j! t
#$"1)($(x)) = % l

k .  

From this formula  

(27)  

d
dt
Dj (x

k!" t
# $"1)($! t

# (x)) %Dl (x
j! t

#$"1)($(x))

+ Dj (x
k!" t

# $"1)($! t
# (x)) % d

dt
Dl (x

j! t
#$"1)($(x)) = 0,
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thus, at t = 0  

(28)  d
dt
Dj (x

k!" t
# $"1)($! t

# (x))%
&

'
( 0

)* l
j +* j

kDl#
j ($(x)) = 0,  

hence  

(29)  d
dt
Dl (x

k!" t
# $"1)($! t

# (x))%
&

'
( 0

= "Dl#
k ($(x)).  

 Now we can complete the differentiation of formula (23) at t = 0 . We 
have  

(30)  

 

! j1 j2… jk
" (Jx

r# ) = d
dt
(yj1 j2… jk

" ! J r$ t
! )(Jx

r# )%
&

'
( 0

= (dl! j1 j2… jk)1
" ! J r# )(x)Djk

(xl*)1)(*(x))

) Dl (yj1 j2… jk)1
" ! J r# !*)1)(*(x)Djk

+ l (*(x))

= dl! j1 j2… jk)1
" (Jx

r# ), jk
l ) yj1 j2… jk)1l

" (Jx
r# )Djk

+ l (*(x))

= djk
! j1 j2… jk)1

" (Jx
r# )) yj1 j2… jk)1l

" (Jx
r# )Djk

+ l (*(x)),

 

which coincides with (17).  

 Remark 4  Sometimes it is convenient to express tangent vectors and 
vector fields on J rY  with different summation convention. We can formally 
introduce the convention as follows. Let !  be a tangent vector at a point 
 Jx

r! ! J rY . In a fibred chart at this point 

(31)  

 

! = " i !
!xi

#
$

%
& Jxr'

+!( !
!y(

#
$)

%
&* Jxr'

+ ! j1 j2… jk
(

j1+ j2+…+ jk
,

k=1

s

, !
!yj1 j2… jk

(

#
$)

%
&* Jxr'

,
 

where 
  !

i ,"# ," j1 j2… jk
# !R . In this formula we sum through non-decreasing k-

tuples  j1 j2… jk ; we want to extend the summation to all k-tuples. Since for 
any element !  of the symmetric group Sk  the coordinate functions 

 
yj! (1) j! (2 )… j! ( k )
"  are defined and are equal to 

 
yj1 j2… jk
! , with  j1 ! j2 !…! jk , set-

ting 
 
! j" (1) j" (2 )… j" ( k )

# = ! j1 j2… jk
#  we can write  
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(32)  

  

! = " i !
!xi

#
$

%
& Jxr'

+!( !
!y(

#
$)

%
&* Jxr'

+ 1
k!
! j+ (1) j+ (2 )… j+ ( k )

(

+!Sk
,

k=1

s

, !
!yj+ (1) j+ (2 )… j+ ( k )

(

#

$
)

%

&
*
Jx
r'

= " i !
!xi

#
$

%
& Jxr'

+!( !
!y(

#
$)

%
&* Jxr'

+ 1
k!
! j1 j2… jk

(

k=1

s

, !
!yj1 j2… jk

(

#
$)

%
&* Jxr'

 

with the summation understood through all j1 , j2 ,  … , jk . This implies, in 
particular, to jet prolongations of vector fields; formula (16) can also be 
written as  

(33)  
 
J s! = " i !

!xi
+!# !

!y#
+ 1

k!
! j1 j2… jk

# !
!yj1 j2… jk

#
k=1

s

$ .  

 
 Example 7 (Second jet prolongation of a vector field)  If a ! -
projectable vector field !  is expressed by  

(34)  ! = " i !
!xi

+!# !
!y#

,  

then 

(35)  J 2! = " i !
!xi

+!# !
!y#

+! j
# !
!yj

# + ! jk
#

j$k
% !

!yjk
# ,  

where  

(36)  ! j
" = dj!

" # yi
" !$ i

!x j
, ! jk

" = djdk!
" # yij

" !$ i

!xk
# yik

" !$ i

!x j
# yi

" !2$ i

!x j !xk
.  

 In the following lemma we study the Lie bracket of r-jet prolongations 
of projectable vector fields, and the Lie derivatives by these vector fields.  

 Lemma 13  (a) Let !  and !  be two ! -projectable vector fields. Then 
the Lie bracket !,"[ ]  is also ! -projectable, and 

(37)  J r !,"[ ] = J r!, J r"[ ].  
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 (b) For any ! -projectable vector field ! , and any differential form !  
on J rY , 

(38)  !J r+1"h# = h!J r" #.  

 Proof  1. First we prove (a) for r = 1; the proof in a fibred chart consists 
of checking formula (37) and is trivial. Suppose we have in a fibred chart  

(39)  ! = " i !
!xi

+!# !
!y#

, $ = % k !
!xk

+$& !
!y&

.  

Then  

(40)  
J1! = " i !

!xi
+!# !

!y#
+! j

# !
!yj

# ,

J1$ = % i !
!xi

+$# !
!y#

+$ j
# !
!yj

# ,
 

where  

(41)  ! j
" = dj!

" # yi
" !$ i

!x j
, % j

" = dj%
" # yi

" !& i

!x j
,  

and  

(42)  

[J1!, J1"] = !# i

!xl
$ l % !$

i

!xl
# l&

'(
)
*+
!
!xi

+ !",

!xl
$ l + !"

,

!y-
!- % !!

,

!xl
# l % !!

,

!y-
"-&

'(
)
*+
!
!y,

+
!" j

,

!xl
$ l +

!" j
,

!y-
!- +

!" j
,

!yl
- !l

- %
!! j

,

!xl
# l %

!! j
,

!y-
"- %

!! j
,

!yl
- " l

-&
'(

)
*+
!
!yj

, .

 

On the other hand, denoting ! = [",#]  we have  

(43)  ! =" ii !
!xi

+!# !
!y#

,  

where  
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(44)  ! i = !"
i

!xs
# s $ !#

i

!xs
" s , %& = !'

&

!xs
# s + !'

&

!y(
)( $ !)

&

!xs
" s $ !)

&

!y(
'( ,  

and  

(45)  J1! =" i !
!xi

+!# !
!y#

+! j
# !
!yj

# ,  

where  

(46)  ! j
" = dj!

" # yi
" !$ i

!x j
.  

Comparing formulas (35) and (45) we see that to prove assertion (a) for 
r = 1 it is sufficient to show that  

(47)  

dj
!!"

!xs
# s + !!

"

!y$
%$ & !%

"

!xs
' s & !%

"

!y$
!$(

)*
+
,-

& yi
" !
!x j

!' i

!xs
# s & !#

i

!xs
' s(

)*
+
,-

=
!! j

"

!xl
# l +

!! j
"

!y$
%$ +

!! j
"

!yl
$ %l

$ &
!% j

"

!xl
' l &

!% j
"

!y$
!$ &

!% j
"

!yl
$ ! l

$ .

 

 We we consider the lef-hand side and the right-hand side of this formula 
separately. The left-hand side can be expressed as  

(48)  

dj
!!"

!xs
# s + !!

"

!y$
%$ & !%

"

!xs
' s & !%

"

!y$
!$(

)*
+
,-

& yi
" !
!x j

!' i

!xs
# s & !#

i

!xs
' s(

)*
+
,-

= dj
!!"

!xs
# s + !!

"

!xs
!# s

!x j
+ dj

!!"

!y$
%$ + !!

"

!y$
dj%

$

& dj
!%"

!xs
' s & !%

"

!xs
!' s

!x j
& dj

!%"

!y$
!$ & !%

"

!y$
dj!

$

& yi
" !2' i

!x j !xs
# s + !'

i

!xs
!# s

!x j
& !2# i

!x j !xs
' s & !#

i

!xs
!' s

!x j
(
)*

+
,-
.
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The right-hand side of (47) is  

(49)  

!! j
"

!xl
# l +

!! j
"

!y$
%$ +

!! j
"

!yl
$ %l

$ &
!% j

"

!xl
' l &

!% j
"

!y$
!$ &

!% j
"

!yl
$ ! l

$

= dj
!!"

!xl
& yi

" !2' i

!xl !x j
(
)*

+
,-
# l + dj

!!"

!y$
%$ + !

!yl
$ dj!

" & yi
" !' i

!x j
(
)*

+
,-
%l

$

& dj
!%"

!xl
& yi

" !2# i

!xl !x j
(
)*

+
,-
' l & dj

!%"

!y$
!$ & !

!yl
$ dj%

" & yi
" !# i

!x j
(
)*

+
,-
! l

$

= dj
!!"

!xl
& yi

" !2' i

!xl !x j
(
)*

+
,-
# l + dj

!!"

!y$
%$ + dj%

$ & yi
$ !# i

!x j
(
)*

+
,-
!!"

!y$

& dl%
" & yi

" !# i

!xl
(
)*

+
,-
!' l

!x j

& dj
!%"

!xl
& yi

" !2# i

!xl !x j
(
)*

+
,-
' l & dj

!%"

!y$
!$ & dj!

$ & yi
$ !' i

!x j
(
)*

+
,-
!%"

!y$

+ dl!
" & yi

" !' i

!xl
(
)*

+
,-
!# l

!x j
.

 

In this formula  

(50)  

dl!
" !# l

!x j
$ yi

% !# i

!x j
!!"

!y%

= !!
"

!xl
!# l

!x j
+ !!

"

!y%
yl
% !# l

!x j
$ yi

% !# i

!x j
!!"

!y%

= !!
"

!xl
!# l

!x j
,

 

and  

(51)  

!dl"
# !$ l

!x j
+ yi

% !$ i

!x j
!"#

!y%

= ! !"
#

!xl
!$ l

!x j
! !"

#

!y%
yl
% !$ l

!x j
+ yi

% !$ i

!x j
!"#

!y%

= ! !"
#

!xl
!$ l

!x j
,
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thus,  

(52)  

!! j
"

!xl
# l +

!! j
"

!y$
%$ +

!! j
"

!yl
$ %l

$ &
!% j

"

!xl
' l &

!% j
"

!y$
!$ &

!% j
"

!yl
$ ! l

$

= dj
!!"

!xl
& yi

" !2' i

!xl !x j
(
)*

+
,-
# l + dj

!!"

!y$
%$ + dj%

$ !!"

!y$
+ yi

" !# i

!xl
!' l

!x j

& dj
!%"

!xl
& yi

" !2# i

!xl !x j
(
)*

+
,-
' l & dj

!%"

!y$
!$ & dj!

$ !%"

!y$
& yi

" !' i

!xl
!# l

!x j
.

+ !!
"

!xl
!# l

!x j
& !%

"

!xl
!' l

!x j
.

 

This is, however, exactly expression (47), proving (a) for r = 1 .  
 2.  In this part of the proof we consider the r-jet prolongation J r!1Y  as a 
fibred manifold with base X and projection ! r"1 : J r"1Y # X , and the 1-jet 
prolongation of this fibred manifold, J1J r!1Y . Namely, we study the canoni-
cal injection  

(53)   J
rY ! Jxr! "#(Jx

r! ) = Jx
1J r$1! " J1J r$1Y .  

Obviously, !  is compatible with jet prolongations of automorphisms !  of Y 
in the sense that  

(54)   ! ! J
r" = (J1J r#1" )!!.  

Indeed, we have for any point Jx
r!  from the domain of J r!   

(55)  !(J r" (Jx
r# )) = !(J"0 (x )

r "#" 0
$1) = J"0 (x )

1 (J r$1"#" 0
$1),  

and also  

(56)  
 
J1J r!1" (#(Jx

r$ )) = J1J r!1" (Jx
1J r!1$ ) = J"0 (x )

1 (J r!1" ! J r!1$ !" 0
!1).  

Thus (54) follows from 1.6, (2).  
 Then, however, applying (56) to local 1-parameter groups of a ! -
projectable vector field ! , we get ! -compatibility of J1J r!1"  and J r! ,  

(57)   J
1J r!1"!# = T# $ J r".  

Since for any two ! -projectable vector fields !  and !  the vector fields 
J1J r!1"  J r!  and J1J r!1"  and J r!  are ! -compatible, the corresponding 
Lie brackets are also ! -compatible and we have  
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(58)   [J
1J r!1", J1J r!1#]!$ = T$ %[J r", J r#].  

 3. Using Part 1 of this proof, we now express the vector field on the left-
hand side of (58) in a different way. First note that  

(59)  [J1J r!1", J1J r!1#] = J1[J r!1", J r!1#].  

But we may suppose for induction that [J r!1", J r!1#] = J r!1[",#] , thus  

(60)  [J1J r!1", J1J r!1#] = J1J r!1[",#]. .  

Restricting both sides by !  and applying (54), 

(61)   [J
1J r!1", J1J r!1#]!$ = J1J r!1[",#]!$ = T$ % J r[",#].  

Now from (59) and (61) we conclude that T! "([J r#, J r$]% J r[#,$]) = 0 . 
This implies, however, [J r!, J r"]# J r[!,"] = 0  because T!  is at every 
point injective.  
 This completes the proof of assertion (a).  
 4. (b) follows from 1.6, Lemma 10.  

 Now we consider restrictions of jet prolongations of projectable vector 
fields to jet prolongations of sections. 

 Remark 5  We find the chart expression of the canonical injection !  
(50). Any fibred chart (V ,! ) , ! = (xi , y" ) , on Y induces a fibred chart 
(V r ,! r ) , 

 
! = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , on J rY . We also have a fibred 
chart on J1J r!1Y , induced by the fibred chart (V r!1," r!1) , 

 
! = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr#1

" ) , on J r!1Y . We denote this fibred chart by 
(W ,!) , where the coordinate functions are denoted as  

(63)  
 
! = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr#1

" , y" ,k, yj1,k
" , yj1 j2 ,k

" ,…, yj1 j2… jr#1,k
" ).  

Then by definition  

(64)  
 

yj1 j2… js ,k
! !"(Jx

r# ) = Dk (yj1 j2… js
! ! J r$1# !%$1)(%(x))

= DkDj1
Dj2

…Djs
(y!#%$1)(%(x)) = yj1 j2… jsk

! (Jx
r# )

 

for all  s = 1,2,…,r !1 , so the canonical injection !  is expressed by  

(65)  
 

xi !! = xi , y" !! = y" , yj1 j2… js
" !! = yj1 j2… js

" , 1# s # r $1,

yj1 j2… js ,k
" !! = yj1 j2… jsk

" , 1# s # r $1.
 


