The inverse problem of the calculus of variations 87

2 Contact forms on jet prolongations of
fibred manifolds

2.1 The trace decomposition of tensor spaces This section is
devoted to a specific topic of the tensor calculus, the trace decomposition
theory. As a rule, this topic does not appear in standard textbooks and mon-
ographs on tensor algebra, and needs a detailed independent introduction;
our exposition follows the paper D. Krupka, Trace decompositions of tensor
spaces, Linear and Multilinear Algebra 54 (2006) 235-263. In the proofs we
also need the Young decomposition theory of tensor spaces. In subsequent
chapters we us the trace decomposition theory for the study of the structure
of differential forms on jet prolongations of fibred manifolds.

Beside the usual index notation for the components of tensors, we also
use multi-indices of the form I =(ii,...i,), where r and n are positive inte-
gers, k=0,1,2,...,r, and 1<i,i,,....i, <n. The number k is called the
length of I and is denoted by |/|. We use multi-indices with different
lengths. For any index j, such that 1< j<n we denote by [j the multi-index
(@i,...i,j). The symbol Alt(ii,...i,) (resp. Sym(i,...i,)) denotes alterna-
tion (resp. symmetrisation) in the indices i,,i,,...,i, .

Let E be an n-dimensional vector space, E* its dual vector space, and
let r and s be two non-negative integers; suppose that at least one of these
integers is non-zero. Then by a tensor of type (r,s) over E we mean a multi-
linear mapping U :E*XE*X.. X E*XEXEX...XxE—R (r factors E*, s
factors E); r (resp. s) is called the contravariant (resp. covariant) degree of
U. A tensor of type (r,0) (resp. (0,s)) is called contravariant (covariant) of
degree r (resp. s). The set of tensors of type (r,s) considered with its natural
real vector space structure, is called the tensor space of type (r,s) over E,
and is denoted by 7E .

Let e; be a basis of the vector space E, ¢’ the dual basis of E*. The
tensors e, ®e, ®...Qe¢; Re'®e"®...0e" LS Jiodoseeosdislyslyseensi, S0,
form a basis of the vector space T/E . Each tensor u € T/E has a unique
expression
(1) U=Uj1jz--»jr ®e ® ®e ®e’|®e’z® ®e

iyl Ay J]

where the numbers U">" .. . are the components of U in the basis ¢, .

iiy.. Qg

Remark 1 If a basis of the vector space E is fixed, it is sometimes con-
venient to denote the tensors simply by their components; in this case a ten-
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sor U of type (r,s) over E is usually written as

() U =Uhiri

iy ®

Remark 2 The canonical basis of the vector space E=R" consists of
the vectors e, =(1,0,0,...,0), e,=(0,1,0,0,...,0), ..., e,=(0,0,...,0,1).
The basis of the tensor space T/R", associated with (ee,,...,e,) is also
called canonical. A tensor U € T/R" can be expressed either by formula (1)
or by (2); formula (2) defines the canonical identification of the vector space
T/R" with the vector space R" of the collections U = U’ i, > Where
N=dimT/R"=n". 5

The Kronecker tensor over E is a (1,1)-tensor 9 , defined in any basis of
E as

(3) d=¢®¢'.

We can also write § =8¢, ®e’, where &' is the Kronecker symbol, ! =1
and 0;=0 if i# j; in components, 6 =¢;. It is immediately seen that the
tensor 6 does not depend on the choice of the basis e, .

This definition can be extended to tensors of type (r,s) for any positive
integers r and s. Let o and 3 be integers such that 1< <r, 1< <s,and
let e; be a basis of E. We introduce a linear mapping 1; :T'E—>T'E of
tensor spaces as follows. For every V €T/ 'E,

4) V=V e, ®e,®...0¢; ®e'®e®..0e",

hipedsy 1

define a tensor 1V €T, E by

(5) RV =Whri e Qe ®.. 0 Qe .. .Qc",

iy d & )
where
(6) Wjl./2~~~./‘a71ja./.a+l~“./.r iliz.”i/;,liﬁiﬁﬂu.iXZ 6;[/;0(V./l./2~~~.ja7[./-a+l“'jr i g
Thus,

V=V e Qe ®...0e, QeRe, R..Qe€,
(7) 12 s—1 1 2 a-1 o+l r

Re'Re ®..0e" e’ R...Qe"

(summation through s on the right-hand side). It is easily verified that this
tensor is independent of the choice of e, .
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The mapping lg defined by formulas (5), (6) is the (o,f)-canonical
injection. A tensor U € T E , belonging to the vector subspace generated by
the subspaces 1;(7,” E)C T'E, where 1<a<r and 1< <y, is called a
Kronecker tensor, or a tensor of Kronecker type.

Atensor VET/E, V=Vhat 5o s a Kronecker tensor if and only if
there exist tensors V(”) eTE, V&”) VP ks w1 » Where 1< p<r,

1<g<s,such that V(k2 i 1,0, Can (l;)e exp(ge):ssed in the form
Vil Ll
— 511 ((11)) Jadze--Jr o, +5/1 (1) Jadz--Jr e + +511 (l) Jadseedr oL
®) 5/7‘/((1? Jjsdy e 5/21/(;2)> Jujsds 1113...1.‘+"‘+5ljszv(§2)) Dl by,
+...
+51{f‘/((1;) At his.. 5]"/((2? M Wyt T +61' V((sr)) Il bl ko

A tensor U € T/E expressed as in (1), is said to be traceless, if its traces
are all zero,

shiy.. 0, _ Lisly.. _ Ly d, s _
U Sfijaedsm 0’ U Sjifaedsor 0’ e U Sfijaedsmr 0’
shly.. 0, _ Lisly. 0,y _ Ul d, s _
(9) U JiSaeedsa 0’ U JiSyees 0’ e u JiShaedsa O’
shly.. 0, _ Lisly..d,_, _ Ll 0, s _
U Jaeedsas™ 0’ U JhaeedsasT 0’ e Y Jiaeedsas™ 0

To prove a theorem of the decomposition of the tensor space 7, E , in-
cluding traceless tensors, recall that every scalar product g on E induces a
scalar product on T E as follows. Let g be expressed in a basis as

(10)  g&.0)=g,E'C,

where {=¢&', {={'. Let UVET/E be any tensors, U=U"""
v=yi . Weset

(1 1) g(U’V) = gjlkl gjzkz . 'gjrkfgilllguz g s sU./]./Z Jr i Vk ko K, o

iy ds

Lemma 1 Formula (11) defines a scalar product on TE .

Proof Only positive definiteness needs proof. If we choose a basis of E

such that g, =0, , (11) has an expression
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(12)  gUV)= Y Y Ui ViR
I

Ky kg ks 1y

s

Obviously, this is the Euclidean scalar product, which is positive definite.

Theorem 1 (The trace decomposition theorem) The vector space
T'E is the direct sum of its vector subspaces of traceless and Kronecker
tensors.

Proof We want to show that any tensor W € T/ E , has a unique decom-
position of the form W =U +V , where U is traceless and V is of Kronecker
type.

To prove existence, consider a scalar product g (12) on 7/E . It is im-
mediately seen that the orthogonal complement of the subspace of Kroneck-
er tensors coincides with the subspace of traceless tensors. If U€T/E,
U=U"" ., andifatensor VET'E, V=V  satisfies condi-
tion (8), then

M) Jojse--r
miyls.. 1, V(l) Lis.. I,

g(U V) — Umjzjgmj,
b
mjsjs...J (1) koks.. .k,
+U ' iymisiy...d; (1) Ll 1

4+ .+ U"Uzjsu-jr (1) kaks...k,

iyly..dgym " (s) iyl

JiMizjae--Jy (2) kiksky.. .k,
+U miyiz..dg * (1) byly..

Gimjzja- ., (2) kiksky.. K,
+U iymiiy..d; ¥ (1) Lisly.. 1,
(13)

Jimj3ja---J, (2) kiksky.. .k,
totU iy dgym ¥ (s) L. 0

+...

+ Ujlj2~~~j/-—]m ) V(r) kiky.. .k,

miyiy...dg * (1) L.

JiJaee-jram (1) kiky.. kpy
+U hmisiy..d0g 7 (1) Lisly.. 0

+ .+ U]1jz<--j,-—1"’ V(’) kyky.. K,y

iyiy..dg_ym () L. 0"

Thus the vector subspace of tensors U such that g(U,V)=0 for all V, con-
sists of traceless tensors. The uniqueness of the direct sum follows from the
orthogonality of subspaces of traceless and Kronecker tensors in 7, E in the
scalar product g.

Theorem 1 states that every tensor W € T/E, W =W 4yl 1S €X-
pressible in the form
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iy d, 77
[ =umr Il 1

iy 7 (1) iyis..0, iy 7 (1) iyis...d, iy 7 (1) iyis..0,
+5 ]‘/(1) L. 1 +6 ‘/(2) II;...I\.+ +5 ]‘/(s) L.l

(14) 612 (2) iiz...Q, 612 (2) ijiy...Q, + .. 612 (2) ii3...d0,

Vi) (2) bl A,
+...

(r) iy (r) iyiy.. iy koy 7 (r) iy,
+ 6 ‘/(1) bl + 6 ‘/(2) hi5... + -t 6 ‘/(A) hly.. Ay

U,

by

where U =U">" 4., 1s a uniquely defined traceless tensor, and for every
p and ¢q such that i< p<r, 1<g<s, the tensor V((q’)’) V(ZI)') i W1, D€
longs to the tensor space TSCIIE .

Remark 3 The traceless component U™* i,.., and the complemen-
tary Kronecker component of the tensor W in (14) are determined unlquely
However, this does not imply, in general, that the tensors V(EI’;’ are unique. If
the contravariant and covariant degrees satisfy r+s<n+1, then the tensors
V(EI’;’ may not be unique.

Formula (14) is called the trace decomposition formula.

Denote by E. the vector subspace of tensors U =U""" . . in the

R A iy dy
tensor space T E , symmetric in the superscripts and skew-symmetric in the
subscripts. We wish to find the trace decomposition formula for these. Set

(15) tI'l]:l]kjljz--'j,_1

kiyiy..dg_y°

and

+1)(s+1 .. .

Sym(JIJZ e dra)-
These formulas define two linear mappings tr: E/ — E'"| and q:E/ — E .
Theorem 2 (a) Any tensor U € E! has a decomposition
a7) U=trqU +qtrU.
(b) The mappings tr and q satisfy
(18) trtrU =0, qqU =0.

Proof (a) We prove formula (17). Using the definition (16) of q we
have, with obvious notation,
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— S 723 dr S TI2030 T
oy AU T s GV mOUR

_ Shyyiisdra
5i3U I+

i3lg. gy

isi]) Sym(j, j, ..

iyi3...

_ _5/1 U./Z./}"'jl‘+l .
T l.&’+1

bhigls. . 2oy

Thus,

trqU = ;(5:(]1'2]'3---1”1

_ 5 szja---jm
23

nr—s byig. iy Vi Kisig..d
Ky 1d2dse--Jrnt _ Sk prisdea
5i3U inkigis.. iyttt 51':“ U byis...i k
+ 5j2Ukj3j4"'jr+l o _szUkjshmjm o
k Ipl3...dgy ip kisiy.. Qg
_ Shyrkizia-dea _ _ S 7kziaden
653 U Dkigis..igy " 6is+|U byiy..igk
+ 5j3Uj2kj4j5...j,+| o _6?3szkj4j5»<<j,+l o
k Tyls.. 0y iy kisiy. . dgyy
_ Sy 7 2KiadseJrs1 —_ S pyikiaise i
61'3 U ipkigis. dgyy  tt 61‘MU iyl gk
+ + 5j,-+1szj3»~fyk _ 5j,+|Uj2j3-~jrk o
te k iy gy ip kisiy. gy

_ S 7 iajze-rk
6i3r+U r

_ S yiadsdik
ipkigis.. iy tt 5;'&*, U i2i3...il,.k)

1 (nt2j3"'jr+1 o _Uj2j3'“jr+l _szjz---jm
n+r—s Bl3e gty

ipiziy. gy
_ N @ 927 JaJsja---Jrnt _ Shyrkizis-dm
(20) ..=U i2i3“.i5iﬁl+ U - 51'2 u
_ Shayrkiziadrm —_ S yrkaism
51'3 U T ki e 6i\+lU ipiy.. ik

+ U./z./3.l4./5 Jret _ 6_/3U/2 JaJs--Jr+1 pid i
b |

i3 gy

— 3] 2Kiads - Jrn — S ] Kadse v
61'3 U Tt SiMU ipis...ik

+...+ Uj2j3'--jrjr+l

— Sy aizdik
5i3r+ U r

inkigis. . iy
— Sy ]iaizedik
1 6i2 U Kizig. gy

Sy giadse-dik
éiﬁ,U i2i3..,ixk)

iy dgy

ipkiyis.. gy

= TS e _ 1 (S50 Woivinn

et r—s bisedon pyp_g b Kisiy. i
+ 51']3.2Ukj3j4mjr+l izki4i54..ib\.+]+ -t 6i{ilUkj3j4ij] iyiz...dgk
+ 5223U./'2k./'4./'5~»./}+1 k[3[4i5.“i:+l+ 6’23 U./zkj4./5~~~./r+1 il o
+...+ 6i{ilUfzkf4f5---jr+1 i2i3...ib\.k+ L+ 6i£r+|Uj2j3~-J}k iy i

Jra T 7ok e T T sk
+5l.;+ U " +"'+5i§+, U " i)

ipkiyis.. gy,

Further computations yield

kisiy. .oy

D. Krupka

'jr+1)‘

Dlslgls. gy
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PP rs ki
l ] — l JJ2J3-+-Jr41 e Y /) J3J4-+Jrst
trqU = " o i U " kg
21 s ptr—s 3

Sym(jyjs.. juy)  Altlhyis..0 ).

But by (15), the second term is exactly qtru , proving (17).
(b) Formulas (18) are immediate.

(17) is the trace decomposition formula for tensors U € E] .

The following assertion is an immediate consequence of Theorem 2. It
states, in particular, that the decomposition (17) of a tensor U € E] is
unique.

Theorem 3 (a) Equation qV+tW =U for unknown tensors V € E/"|
and W € E’}] has a unique solution such that ttV=0, qW =0 . This solu-
tion is given by V=tulU , W=qU .

(b) Let U € E!. Equation X =U has a solution X € E"} if and only
if QU =0 . If this condmon is satisfied, then X =trU is a solunon Any oth-

er solution is of the form X' = X+qY for some tensor Y €E.")

Proof (a)If qV+tuW=U, trV=0 then V=trqV=trU because
trrW=0;if qW=0,then W=qutW=q(U-qV)=qU .

(b) If equation qX=U has a solution U, then necessarily qU =0.
Conversely, if qU=0, then U=qtrU and X=trU solves equation
qX=U . Clearly, the tensors X'=X+qY, where Y € E/"} also solve this
equation.

Example 1 We find the trace decomposition formula (17) for r=1.
Writing U=U" ,, , ,we have ttU =U" and

iiy.. Iy kiyiy.. .0y

(22) qtrU—i(E“ L +SIU L+ SUN ).
kiyis. . Qg iy i kisiy. . Qg i iiy..dig_k
Analogously
2(s+1 .. . ..
qU = nil 3)5"U’2 iy AltG, . 0) Sym(jj,)
23 o/ur,, . -6, , —.=8"U",, ..
( ) n+l— S( i 1713.441\“ i Tjigig. . dgyy g4l I3
+OPUN L —8PUN L~ =8 U )

Dl3. Ay ) O3ty gy L+l Dl3.. A

hence
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1 , .
_ J J
trqU = ntl—s (nU*" gt (s—DHU* bisiy. . dyt
1 , . .
hyrk hyrk j k
(24) T tl—s (51‘22U ki;iA...i,\.H"'gi:U izki4i5..4is+,+---+6ij,U iy i k)
—J7
=U” hizedgy quy.

Formulas (24) and (26) yield U =trqU +qtrU . In particular, if r=1 and
s=n,then U=U", , ,uwU=U", , and qU=0. Thus,

oy

U=nd/U" ,, . Alt(ii,...i,)
(25) 1 243 n

— Sirrs irrs irrs
_5i1U si2i3<..i,,+5i2U ilsi3i4..4i,,+-~-+5inU iy

Example 2 Consider the decomposition (17) for r=2 and s=n-1,
and find explicit expressions for the traceless and Kronecker components
trqU and qtrU of the tensor U. Writing U =U"" and using the
proof of Theorem 2 we have

iiy.. 0,y

trqU = U*s iz
(26) - %(éizzUkjg kisigood, T 5ii2Ukj3 ipkigis.i, T oo T 6:{2Ukj3 iy dy_ ik
+ 6ié3Uj2k kisigis..q, T 5z€3Uj2k inkigis..q, T oo T 5;{3Uj2k i2i3...i,,_|k)
and
qtrU = 1(6:’2ka3 L ASPUN LU
3%, kiziy..i, 9y inkigis. i) T e T O gty dy ik
+ 5523U'j2k kisigis. i, T 6£§3Uj2k iphigis.i, T oo 6i:3U o izi},.in,,k)
(27) = %(&?Ukjs Kigiy..d, 6i§2Ukj3 Kigigis.. i, "t 6;{2Ukj3 Kiy...q\ iy
+ 5ii3Ukj2 Kigigis..d, anka Kiyigis..d,  **t (si{;}Uka ki}..in,,iz)

=@5£:Uk/s i SYMOjyjy)  AltGds..i,).

Let k and j be positive integers, j<k<n.Let X = X“Z'“l-"i i Dea
jibjae e .

tensor indexed with multi-indices 7 . of length r, and indices i, i,, ..., i,
such that 1<1,,i,,...i; <n; we suppose X to be symmetric in the superscripts
entering each of the multi-indices, and skewsymmetric in the subscripts. Our
objective will be to solve the system of homogeneous equations
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) il _ . .
28 p.5p2 5 ,A]_H,}]_Mk_o Al(p,py...Djlin 1)

Sym(11p1) Sym(Z,p,) ... Sym(]jpj)

for the unknown tensor X. In this formula, the alternation operation is ap-
plied to the subscripts, and the symmetrizations are to the superscripts.

Theorem 4 Let n, k, j, and r be rposztlve integers, and assume that
1<j<k<n.Then a tensor X=X hla- by i satisfies the system (28) if
and only if it is a Kronecker tensor.

Proof 1. We show that condition (28) implies that X is a Kronecker ten-
sor. Let I, I,, ...,Ij,and in, ij+2, ..., I, be given. Chopse Dis Dyseees
P, such that the s-tuple (p,,pz,...,pj,ij+],ij+2,...,ik) consists of mutually
different indices, and consider the expression on the left of (30) without the
summations defined by the trace operation,

, iy il d; .
@9) o8l ...5,.’/’X i, AWy B0
Sym(/,p,) Sym(l,p,) ... Sym(l_,-P_,-)-
Set i, =p,, L,=p, ... J = p,, and consider the summation prescribed by

the alternation Alt(z Lol ..1;) . Then the sum (29) splits in two groups of
summands. The first is glven by the factor 6'6,*...5," ; these are the sum-
mands in which all p,, p,, ..., p; are covariant 1ndlces in the Kronecker
O -tensors, i.e.,

1 py v hbed,
(30) 5! p] po 6 X sty Sym(/,p,)

Sym(l,p,) ... Sym(I;p,).

Further summations in th1s expression arise from the symmetrizations. Thus,
(30) is equal to cX i ! bt for some ¢>0. The second group of sum-
mands consists of all the remalnlng terms, in which at least one covariant
index in the product §,'67>...6," in (28) is replaced by some of the indices
T Y A & 111 'since all indices from the s- tuple
(PysDase - Pl jﬂ,lﬁz, .,i,) are mutually different, we have 5ﬁ =0 whenev-
er a€{p;pys->p;}» BELi i, -1, }. Consequently, the second group
consists of those terms, which are multlples of o5 with a¢ { PyPapeos oDt
Bedii o2 ..i,} . Now summations in (28) imply that X = X"
must contain at least one factor the Kronecker 6 -tensor.

2. Conversely, the alternatlon and the symmetrizations in (28) imply
that any Kronecker tensor X = X it .. solves (28).

[FRIACRE

IRICREA
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Corollary 1 Assume that in addition to the assumptions of Theorem 4,
the tensor X = X" . is traceless. Then

@By X"l =,

i jyae g

Proof This follows from Theorem 4, and from the orthogonality of
traceless and Kronecker tensors.

Example 3 We solve equations (28) for j=2 and g=3 for the trace-
less tensors X = X", . We have the system

(32) SIonX™ =0 Alt(p,p,i;) Sym(i,p,) Sym(i,p,).

The sum on the left-hand side of (32) can be written explicitly. We get an
expression

SIEXE £ 515X 4 SNSL X 4 85 X
—88X" — 58 S X — NG X~ 57 5 XW’ ,
DL XN R

+808 X" +§g§§%ﬁf;1+§£§2x%V//+§E§§%Zf:;
B L O e
The summations yield
X +@S<+@S<+V
)s< V X' - X

=(n* =2)X", - X", .

i3

(33)

(34)

Consequently, equation (28) implies (n* —2)X", - X" =0 so we get the
solution A

(35) X', =0.

1
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2.2 Contact forms Let Y be a fibred manifold with base X and pro-
jection 7, and let W be an open set in Y. Consider the exterior algebras
QW and Q'W and the horizontalisation Q'W > p — hp € Q"'W , intro-
duced in Section 1.5. Since 4 is a homomorphism, the kernel of h,

(1) Kerh={pe QW |hp =0},

is the ideal of the ring Q'W . Clearly, since the dimension of the basis X of
the fibred manifold Y is n, any g-form p € QW such that g=n+1 always
belongs to Kerh . If g <n,we define a g-form p € QW to be contact, if

2) hp=0.

It is easy to find the chart expression of a contact 1-form p (cf. 1.5,
Lemma 9). Writing p in a fibred chart (V,y), v =(x",y°), as

B3)  p=Ad'+ Y ¥ By .

0Sk<r ji<jp<..<ji

condition (2) yields

(4) A+ Z Bé]jzmjkyzjzu-j/\i =0,

0<k<r

or, equivalently,

&) BP0, A= 3 By

0<k<r-1

i

Thus, setting for all k, 0 <k<r—1,
(6) ijz...j,( = dy;)l-jz-“jk - yzjz---jkjdxj’

we see that p has the chart expression

(7 p= Z B(J;Jz...]szjzmjki.

0<k<r-1

In particular,

(8) ho’. =0,

JiJa---Jk

and a contact 1-form is always a linear combination of the forms (6).
These observations lead to the following assertion.
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Theorem 5 (a) For any fibred chart (V,y), l//:(xi,y"), on Y the
forms
(9) dxi’ wzjz»»ik’ dyl?-IZ"'I:—llr’
where 1<k<r-1, 1<i,j,<j,<..<j. [ S, <..<l <n,and 1<0<m,

constitute a basis of linear forms on the set V' .
(b) The forms ®F, . satisfy

c _ - l
(10) d(l)j,jz...jk __wj,jz...jkz/\dx . 0<k<r-2,
da)zjz.'.j,_l = _dyjljz--.j,,_ll /\dxl ,

and

(1)  hdw®, , =0

© If V), w=('y"), and (Vg5), §=(%,5°), are two fibred
chart on Y such that VNV #Q@, then

ay”
A _ PiPr---Pr =T
(12) wp]pzmpk - 2 =T w./]./2~~‘.fyn :

ishseSie O

@ 1f V), l//=(3€i,yg), and (V,W), w=(x',y%), are two fibred
chart on Y such that VNV #Q@, then

a/l
12 o, = Y S

PiP2---Px Jidaeedm
igisgic DV

Proof (a) Clearly, the form (3) is expressible as linear combinations of
the forms of the forms dx', ®¢ j s dyp
(b) Since h preserves exterior product (1 1) follows from (10).

(c) For any function f, defined on V",

af v

L. 0y

(n_rﬂ,r)*df=hdf+pdf=dl_f-dxi+ Z

0<ksr [ <hs... <1y ayl,zz.”/k

(13) =d f-di"+ Y Y

OSksr ji<jp<.. .<jy ymz -Jm

SRR Y WD . e R

Osksr jiSphs.. S [Shs. Sl ayl -y yjljz -Jm
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Setting f = y;]p,‘_'pk we get (12).
(d) Formula (12) can be obtained by a direct computation.

The basis of 1-forms (9) is called the contact basis.

Now we consider sections of the fibred manifold J'Y over the base X.
We say that a section 6 of J'Y , defined on an open set in X, is integrable,
or holonomic, if there exists a section ¥ of Y such that

(14  §=J'y.

Obviously, if 7 exists, then applying the projection 7" to both sides we get
n"’o8 =7 ,thus y is unique and is determined by

(15) y=n""08.

The following theorem describes the relations of the contact forms and
the holonomic sections of J'Y .

Theorem 6 Let (V,y), w =(x',y°), be a fibred chart on'Y.
(a) Every C'section y of Y, defined on an open subset of x" (W)C X,
satisfies

(16)  Jy*w’ . =0.

iy 0y

(b) Ifa C'section 6 :U— J'Y ,where UC n(V), satisfies
17 8%l , =0

iy,

for all k such that 0<k<r-1 and all 6 and i.,i,,...,i,, such that
1<o0<mand 1<i,i,,...,i, <n, then it is integrable.

Proof (a) By definition,
Jy *wi?.iz.uik = d(yfiz.,,iA oJ'y)— (ysiz.uikz OJ’.V)dxl

8(y7,...°J"Y)
18 — 192k
(18) ( o

=(D,D,...D, D,y oy)=D, D, ...D, D,(y’ oy))dx' =0.

- y:izmikl © er)dxl

(b) Using the definition of ®;, , ,we get

iy iy
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5*wfiz.“ik = d(yi(,;izmik 05)_()’;’,-2.“51 °8)dx'
(19) Ay’ . o8
:L (ytllz..J; )_yiai iloadel.
Ix 1+

Thus, condition (17) implies

a(yi(:ir..i,‘ 05) o

(20) ! ™ Yiiy..iyd 06 =0,

which can also be written as

Ay’ ed)
ax' ~¥0=0,
ay; °6) PGS
lil—yillo5=%_yillo5:0’
@D dx 0x" 0x
0y, i °0) 9'(y° 0 8) i
%_yilizmi,_1106= f iy i z_)’iliz..j,_lzoézo-
dx 0x" 0x"...0x"" dx

These conditions mean that the section § is of the form §=J" (7" 08) as
required.

Theorem 7 Let 1<k<n, and let pc QW . The following two condi-
tions are equivalent:

(a) p iscontact.

(b) In any fibred chart, p is expressible as

22)  p= ) @l A®L+ ) dwl NYPL,

0<lI<r-1 l=r-1

where ®! are (k—1)-forms, containing all exterior factors @9, and .
are (k—2)-forms, not containing any exterior factor @75, where
0<IJILr-1.

Proof We show that (a) implies (b). Express p in the contact basis of
1-forms (9). We get
23)  p= Y oA +p,
0<l/I<r-1

where the sum includes all terms, generated by the forms wf,
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0<IJI<r-1,and

1 . _ _
P’ = WAi,iz.,_ikdxl' ANdx? A, Ndx*
" (k 11)V1|A;ll iz"a‘--iAdyzl Adx® Ndx" A N dx"

(24) o ;), AL Ay A A A AN

1 )
- 1'(k—1)'A‘I’]l oo dyT AdYT AL AT Adx

1
+WA‘I’II Coeeg dy Ny NNy

with multi-indices of length r. Since % is an exterior algebra homomorphism,
we have from 1.5, Lemma 9

’_ 1 1 1 o 1 1 1 o ,,0
hp - k'O! Tyl 0y + (k_l)!lle-ll iziy“ikylll!] + (k_2)!2! ()'Il 0‘22 i3i4“jkyllll'ly12§2
1 I 1 Iy o) ,,0; o
(25) +...+ 1!(k—1)!A"I' ov o i i Yih Vi

1 i i i [’
+WA(§'l S YV s |dxt Adx® Adx® AL Adx",

thus, because the components of hp” are polynomials, condition (a) implies
iiyedy 0,
Al 00 =0 Sym(l,j) Alt(ii,...i,),

Al L8182 =0 Sym(lj) Sym(,j,) AliG,...i,),

O Oy I3lg...ip i)

20 Al 2 g 8166l =0 Sym(1j,) Sym(l,j,)
Sym(!, ,j,_,) AlGi,...i,),
Al 2. 868 =0 Sym(lj,) Sym(l,j,)
Sym(/,j,) AlGi,...i,).
Tl}e§e el:quations show that the coefficients A(',‘l bin iy > Aé‘l f;z b o

o orroo. ; must be of Kronecker type (Theorem 3). Expressing them as
Kronecker tensors and substituting to (24) we get (22).
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Conversely, since & is an exterior algebra homomorphism, (b) implies
(a) by Theorem 5.

Theorem 7 can also be restated in terms of the ideal Kerh C Q"W .

Theorem 8 (a) The contact k forms such that k<n, are locally gener-
ated by the forms @7, . and do?, .

(b) The ideal Kerh is closed under exterior derivative.

Proof (a) This assertion follows from Theorem 7.

(b) This follows from Theorem 7.

Since QW C Kerh for any g=n+1, the ideal Kerh is not generated
by the forms' o7, . nor by the forms a);.’j%_jk and dw?, . . On the other
hand, Theorem 5 (C) implies that the 1-forms ®¢ IR where 0 <k<r—1 ,
also define an ideal; however, this ideal is not integrable (see e.g. Theo-
rem 5, (b)). Its completion is an ideal, closed under exterior derivative opera-
tor. This ideal is locally generated by the forms a);fj%_ ;, and do? i, »and is
denoted by ““Q'W . Clearly, Q"W CKerh. '

We now extend the definition of contact forms to any g-forms p € Q'W
(see also Theorem 7, (22)); we shall say that a form p € QW is contact, if
p € YQW . Thus,ag-form p € QW is contact if and only if for any fibred
chart (V,y), vy = (xi,y") , such that V. C W , it is generated by the 1-forms
0] ,0<1J1<r—1,and 2-forms dw7 , 1J|I=r—1,thatis,

o

Q7)) p= Y oI ADL+ ), dwo AV,

0<lI<r-1 Wl=r-1

for some (g —1) -forms <I)cj, and (g—2)-forms ‘PCJ, .

2.3 The first canonical decomposition In Section 1.5 we intro-
r+l1

duced a vector bundle homomorphism # of the tangent bundle 7J""Y into
TJ'Y by the formula

(1) he=TJyoTrn ™ &,

r+l1

where & is a tangent vector to the manifold J™*'Y at a point J"'y . h makes

the following diagram
r+l1 h r
7Yy — T1JY
2) \’ A

r+l,r
gy L 5 gy
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commutative, and induces a decomposition of the tangent vectors T -&,

3) T -&=hE+p.

h& (resp. p&) is the horizontal (resp. contact) component of the vector & .
Recall that the horizontal and contact components satisfy

4) T -hE=Trn™"" &, Trn -hE=0

(1.5, Lemma 7).

The horizontalization % also induces a decomposition of each of the
modules of g-forms QW . Suppose that g=>1. Let p€ QW be a g-form,
Jy e W™ Consider “the pull-back (z"*'")* p, the form (71:’+1 "y p(JMy)
at a point J'"'y , and the value (z"*'")* p(J”'}/)(fl :£,5...,€,) on any tangent
vectors &, &, , ..., & of J™Y at JM'y . We write for each [,

5) Tn™'-& =h& + pé,,

and substitute these vectors in the pull-back (7""'")* p . Since by definitions

(@) p(I Y NE 6y e 5E,)
(6) =py)Tr™" & Ta™"-&,,...Ta™" &)
= p(Jy)hg, + p&,,hE, + p&, . "’héq + péq)e

we get, collecting together all terms homogeneous of degree k in the contact
components p&,, pé,, ..., p&, of the vectors &, &, ...&, , where
k=0,1,2,...,q ,ag-form p,p on W , defined by

PPUTYE L6

%) e
_ 28]"2“"““*““"'P(JQV)(P@. e ..,péjk ,héjm . ..,hqu ),

(summation through j, <j, <...<j, and ,,, <j, <...<j,), or equivalent-
ly, by

PPN Es 8

(8) 1 T2,
= i PUYIDE; PE), v DS, hE B
(summation through all values of the indices ji, jy, «-es Jis Josrs -oes Jy)-

The form p, p is called the k-contact component of the form p .
If (x7""")*p=p,p or, which is the same, if p;p=0 forall j#k,then
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the integer k is called the degree of contactness of the form p . The degree
of contactness of the g-form p=0 is equal to k for every k=0,1,2,...,q9
We say that p is of degree of contactness =2k ,if p,p=0, pp=0,

PP =0.
We usually write

©)  pp=hp

and call this form the horizontal component of p . Then
(10)  hp(J YN .6s 58, = PUIYIRE, RS, .. hE,).
We also introduce the contact component of p by

(11) pPP=ppPtp,p+...+p,p.

We shall say that p is k-contact, if

(12)  (=@"™")*p=pp.

Summarizing, any g-form p € QW , where g 21, can be expressed as

q q
(13) (@) *p=hp+pp=hp+Y pp=.p;p.

i=1 i=0

This formula will be referred to as the first canonical decomposition of the
form p (note however, the decomposition concerns rather the pull-back
(r™'")* p than p itself).

We extend these definitions to O-forms (functions). We define the hori-
zontal and contact components of a function f: W™ — R as

(14 B =@")*f, pf=0.

Clearly, then the first canonical decomposition (13) remains valid.
The following observation is immediate.

Lemma 2 If g—k>n, then

(15)  hp=0, pp=0, pp=0, ... p,,,=0.

Proof Indeed, expression p(J;y)(pE; ,pS, ».- - pé}k hE, hf ) in (8)
is a (q—k)-linear function of vectors § i =T77: , Zf e = T &

Jit1 kw2

e i =Trn"™"- 6 , belonging to the tangent space 7 X . Consequently, if
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g—k>n=dimX ,then p,p(J."Y)&.5,.....6,)=0.

One can determine the chart expressions of contact components of a
form by means of the formula (77:”")*dyll,2 PR dx' . To this
purpose it will be convenient to use the multi-index notation; the results can
immediately be restated in the standard index notation.

We introduce multi-indices I = (iji,...i,), where k=0,1,2,...,r and the
entries are indices such that 1<i,,i,,...,i, <n.The number k is the length of
I and is denoted by | /1. If i is any integer such that 1<i<n, we denote by
Ii the multi-index Ii = (ii,...i,i) ; the length of Ii is |lil=k+1.

We also introduce the symbol Alt(ii,...i,) to denote alternation in the
indices i,i,,...,i, ; writing U"** Alt(ii,...i,) we mean the skew-symmetric
component of U™

The following is a chart expression formula for the k-contact compo-
nents of some special g-forms.

Lemma 3 Let W be an open set in Y, an integer, p€ QW a form, and
let V), v= (x ,Y°), be a fibred chart on Y such that VCW Assume
that p has on V' the chart expression

q
o P A e 7 AT A
Adx™ Adx ™ A.. Ndx",

with multi-indices of length r. Then the k-contact component p,p of p has
on V™' the chart expression

1 I, I I o o [
p— 112 k 1 2 k
(17) PP = k!(q—k)!BU‘ 0t 0 igigsady D1 NOLT N NO
i i i
Adx™ Ndx"> N\...Ndx"“,
where
I] IZ II\
Bo'l 03" " O dilpra-- iy
N q—k L T I
Iy I Iy Ty o s Okt Oki2 O
(18) 2( )Ao'l 03" " Op Opyt Opan” " 'Oy Lt y’k+1’k+1ylk+7’k+z : 'yl,tis
=k
Al g - Bl 1),
l I I, I I 1 . .
and A} ..k ks . are traceless components of the coefficients

o, *Op Opsl Ogen” " Oy igupigin..d
A’] I F II<+] e K ?
0 02" " Of Opyy Opan” " Oy liiinenidy
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r+l1

Proof To derive formula (17), we pull-back p to V'™ and express the
form (z"")* p in terms of the contact basis; in the multi-index notation the
transformation equations are

(19)  dx'=dx', & =w!+yldx', 0<III<r
(Theorem 5). Thus, we set in (16)
(20) dyy' = @] +yydx",

and consider the terms such that s >1. Then the form dy;' Ady> A...Ady]"
is equal to ’

21) (@] +y dx" ) A (@7? + Y72 dX® )AL A (@] + 7 dx®).

Collecting together all terms homogeneous of degree k in the 1-forms ;"

we get ( k) summands with exactly k entries the contact 1-forms ;" Thus

using symmetry properties of the components A" ok i in (16) and
s Ustlis+2000tg

interchanging multi-indices, we see the terms contalnlng k entries (021 are,
for fixed s and each k=1,2,...,s , given by

1 S I, I 1
1 12 s Okt Oki2 Os )01 o3 Oy
(22) S!(q—s)!(k)Aol 0" " Oy gyl y’A+|’k+1y’k+7’k+z : 'y’.\-i\(oll /\a)’z /\"'/\w’k

Adxt Adx' e AL A Ndx Adx't AL A dx"

Expressing the factor as

1 v 1 K@=k st 1 gk
23) s!(q—s)!(k) "~ kNg—k)! s/(g—9)! k!(s—k)! k!(q—k)!(q_s)

we can write expression (21) as

1 —k\ 41, 1 I, . . ) .
(24) W(?]_S)AGII 2 10, i yZil’IkﬂyZijkq : 'yzi.;wzl /\0)2‘

A AOT A Ndx' AL Ndx Adx™ Adx AL Adx"

Formula (24) is valid for each s=1,2,...,¢q and each k=1,2,...,s , and
we need the sum of all these terms to get expression (16). To this purpose we
shall use the summation defined as follows. Instead of the summation
through the pairs (s,k), given by the table
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s‘l 2 3 .. qg—1 q

(25)
k’l 1,2 1,2,3 ... 1,2.3,....q-1 1,2.3,....q

we pass to the summation over the pairs (k,s) given by

k\ 1 2 3 . g-1 ¢

(26)
s’1,2,3,...,q 2,3,....q 3,4,....q ... q—1,q ¢q

Now we can substitute from (24) back to (16). We have, with multi-
indices of length r,

pziA dx' Ndx® A...Adx"

[

q s
1 _k)
q I I I (o) Oy O
(27) +zz k'(q_k)!(q_s AO'] 0'22 1Oy g d yl/\illkuylkijmz ) 'yl\i\-
s=1 k=1 " :

O] NGO AN\ Adx™ Adx AL AN dxt Adx AL A\ dx'

hence
1 i
pP=—4A,. ldx‘ Adx™ A.. Ndx"
q-
N N I I I
2 s Okt Oy Oy
(28) +; k'(q k)! Z( ) 0'| 02" "0y dypigsa. -y ylkil’knylkizflm : 'yl.\-i‘
a)}’]‘ Aw;’; /\.../\(UZ‘ Adx' Ndx™> AL Adx"
Note that in (18) the coefficients A f’j (';k ;’;A‘ (’;AZ > o, CAn be re-
placed with their fraceless components A '2 L 7 F . Indeed,

"0 Opat Opan” " 'O Ll

applying to these coefficients the first trace decomposmon theorem, we easi-
ly see that the Kronecker components vanish identically. Moreover, if one of
the traces vanishes, then using index symmetries we see that all the traces
must also vanish.

This proves formulas (17) and (18).

It remains to prove invariance of the forms (17); their independence on
fibred charts is, however, an immediate consequence of the properties of
contact basis (Theorem 5).

The operators p,, p,, p,, ..., p, defined by formula (17), behave like
projectors:



108 D. Krupka

Corollary 1 We have for any k and [

(nr+2,r+1 ) %

0, k=#l.

PP, k=1,
(29) pkp1p={ P

The following observation is an application of Lemma 3 to the exterior
derivative operator.

Corollary 2 We have for any k
(30) ("2 pdp = pdp,,p+pdp.p.

Proof The first canonical decomposition applied to both sides of the
identity d(""'")*p=(n""")*dp gives
pydp+pdp+pdp+...+pdp+p,.dp

D
=dp,p+dp,p+dp,p+...+dp, ,p+dp,p.

But from Lemma 3, the decomposition of p,dp depends only on p,dp, ,p
and p,dp,p, and pdp=pd,_pp+pdp,p. Decomposing both sides of
(31) and applying Corollary 1 we get (7> )* p.dp = p,dp,_ P+ p.dp.p -

The following theorem describes the local structure of the horizontaliza-
tion.

Theorem 9 Let W be an open set in the fibred manifold Y. Then the
horizontalization QW > p —hp € Q™'W is a unique R -linear, exterior-
product-preserving mapping such that for any function f:W"—> R, and
any fibred chart (V. W), y =(x',y°), with VCW,

(32) hf = for™, hdf =d.f-dx',
where

o o

S did

0
(33) dif=a—£+ >

o
JiSh<. <j ayj]j2,,,jk

Proof The proof that /, defined by (10) and (14), has the desired prop-
erties, is standard. To prove uniqueness, note that (32) and (33) imply

(34) hdx' =dx', hdy]

o
.. =Yy.. ..dx
J2-e-Jk y]l]szkl
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Now it is easy to check that any two mappings A, , h, satisfying the assump-
tions of Theorem 9, which agree on functions and their exterior derivatives,
coincide.

Remark 4 The mapping p,: QW — Q™'W is a homomorphism of
exterior algebras. For any positive integer &, the mapping
P QW = QW satisfies

(35) Pk(P+77)=PkP+Pk77, pk(fp)=(f°7rr+l’r)pkp

for any function f € QW ,but is not a homomorphism of exterior algebras.

2.4 Contact components and geometric operations The fol-
lowing theorem summarizes basic properties of contact components of a
form with respect to differential-geometric operations, such as the wedge
product A, the contraction i, of a form by a vector £, and the Lie deriva-
tive d, by a vector field & .

Theorem 10 Let p and N be two differential forms on W™ CJ'Y,
J'yelJ'Y a point, Z a m"'-vertical, """ -projectable vector field on
W™ with """ -projection Z,, and E a 1 -projectable vector field on Y.
Let o be an automorphism of Y. Then for every k such that the correspond-
ing expressions are defined,

(1) ppA= Y ppApm,

i
(2) IPP = Picilz, P>

(3) p(Ja*p)y=J"a* p;p,
“4) pi(0,.P)=0 .. PP,

®) Lz PP = P2 P)-

Proof Formulas (1) —(5) are immediate consequences of definitions:
To get (1) we express the pull-back (""" )*(pAn)=(x""")*p A(x™")*n
and apply 2.3, Corollary 1. (2) follows from the definition of the horizontali-
zation of vectors. Formulas (3) and (4) follow immediately from the commu-
tativity property (z""")*J'a*p=J""oo*(x""'")* p . Finally, (5) follows
from (2).
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2.5 The second canonical decomposition The following asser-
tion, describing a decomposition of differential forms on the r-jet prolonga-
tions J'Y , relative to a given fibred chart, plays a basic role in the proofs.

Theorem 11 (Second canonical decomposition) Let g be arbitrary,
and let p€ QW be a g-form. Let (V,y), y = (x",¥%), be a fibered chart
on Y such that VCW .Then p hason V' a unique expression

(1 pP=pi+p,+pP,

with the following properties:
(a) p, is generated by contact 1-forms @7 with 0<1JI<r—1.
(b) p, is generated by contact 2-forms dw; with |I1=r—1 and does
not contain any factor @9 , that is,
py= Y Bl ek doy Ndw} A...Ado)’

Vi vt 'Vp Up+| U[H»Z‘ Troy i»+1i»+2'~iQ

2) _ , ,
Ady]™ Ndy;"? AL Ady] NS NS AL A dX?,

where the summation is taking place through p=1, q=p+Q, the multi-
indices satisfy

3) 01 LI, Lo I NS =1, T LU e U =,

p+l p+2 oo pts

Jy Ty ‘,P 1P+l 1P+2 Ip
and the components B,'}.. G Gt G i pipsaed

(c) P has an expression

are completely traceless.

p=C,, ,dx" Ndx" A...\ dx"

+C L dyy Adx NdxS AN dx"
4) +Cp 2 i dy Adyr Adx® Ndx" AL Adx"

Fo A Ch L Ay NdY A Ady Adx

102°°°0, I,

+Cfl;I f,zzf,’] dyz‘ /\dyZ2 /\.../\dyZ“,

1 I, I
whereII {1 L2, 1,... .1, I=r, and all the components C, iy €0\ 0y i,
cr2..m . are completely traceless.

v Oy 05" " "0y byiz..dy
Proof Express p in the contact basis. Then p=u,+u’, where 4, is
generated by contact 1-forms @7 with 0<IJI<r—1 and y’ is of the form
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:u/ = 1112 dy dx Adxlz A.. /\dx"
+AL . dyy AN N AL N dx
(5) +A(€'1| f;z 1213 t dy /\dyZZ /\dxf3 /\dxi4 /\.../\dxiq

+o AL LAYT Ay AN dyr Adx
+Afl,‘I f;z...g"q dyZ' /\dyZ2 /\.../\dy;:",

where 1 11, 1,...l1, II=r Applying to the coefficients Aé‘ biyed,
é‘l('; i 1‘ 1’ ! L, the complete trace decomposition theorem, we

get formuia (D) satlsfylng ‘conditions (a), (b), and (c).

Formula (1) is the second canonical decomposition of the form p . The
form p is defined in a given fibred chart uniquely, and is sometimes called
the traceless component of p .

2.6 Fibred homotopy operators In this section we study differen-
tial forms, defined on the trivial fibred manifold U XV , whose base U is an
open set in R", and V is an open ball in R™ with centre at the origin. Our
aim will be to investigate properties of the exterior derivative operator and
differential equations, related with this operator. As a particular case we dis-
cuss the fibred homotopy operator on the s-jet prolongation W* = J*(U xV)
of the Cartesian product W =U XV .

First we consider a differential form p on an open ball V in the Euclid-
ean space R" with centre at the origin. We shall study the equation

ey dn=p

for an unknown (k—1)-form 1 on V; if n exists, it is called a solution of
equation (1).

Consider an open ball V C R" with centre 0, and denote by y° the ca-
nonical coordinates on V. Define a mapping y :[0,1]xV —V by

2 x(s.y7) = (sy7).

Then

3) x*dy’ =y°ds+sdy’.

For any k-form p on V, where k=1, consider the pull-back y * p which is

a k-form on the set [0,1]xV . Obviously, there exists a unique decomposi-
tion
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) x*p=dsAp(s)+p’(s),

such that the k-forms p(o)(s) and p’(s) do not contain ds . Note that by (3),
p’(s) arises from p by replacing each factor dy’ with sdy° , and by replac-
ing each coefficient f with foy .Thus, p’(s) obeys

(&) p'M=p, p'(0)=0.

Let & be a positive integer. Define for every k-form p

©  Ip=]p"G).

where the expression on the right-hand side means integration of the coeffi-
cients in the form p(o)(s) over s fromOto 1.

Lemma 4 Let V be an open ball in R"™ with centre 0.
(a) For every differentiable function f:V —-R,

(7 f=1df + f(0).
(b) Suppose that k21 . Then for any differential k-form p on'V,
8) p=Idp+dlp.

Proof 1.1If fis a function, then df =(df/dy°)dy’, and we have by (3)
x*df =((0f19y°)o x)-(y°ds+sdy’) . Consequently,

&
9) 1df=y"j0(ay]: o;()ds.

Now (7) follows from the identity

f_f(0)=(fox)|s=l _(fOX)’sz(): J‘ld(fol)ds

0 ds
-l

2. Let k=1.Then p has an expression p= B_dy’, and the pull-back
x*p is given by x*p=y°(B,ox)ds+ (B, ))sdy’ . Differentiating we
get from this formula

10)

af
o) |ds.
ayd Z] S
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Z*dp:dx*pzds/\[—d(yc(Boo%)+Mdy0J
(11) ’
+s—(B":X)dyvAdy",

hence

o 1
(12)  Ip=y JOBGox~ds.
Thus,

[ d((B,ox)s) 9(y"-B,ox) -
13)  Idp= o - VO ) sy
(13) p J;( ” oy ) 5-dy
and

(14) d[pz-'.(:wds.dyf’_

ay°
Consequently,
Ldp+dip= J:(W)ds dy°
s
(15) :((BO'O%.S)‘S=1 _(BO'OZ.S)‘:=O)dyU

=p.
3.Let k=2 .Write p in the form

(16)  p=dy’ AY,,

and define differential forms ‘P;O)(s) and W, (s) by

A7) x*W¥,=ds ANPY(s)+W (s).

Then

X*p=(sdy” +y7ds) A(ds AN () + ¥, (5)
(18) = sdy’ A(ds NP (s)+ W2 () +y ds ANV (s)

=ds N\(—sdy” NP (5)+y" W () + sdy® ANWL(s).

113
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Thus,
1
(19)  Ip= jo (=sdy® AP (s)+y W’ (s)).

To determine Idp , we compute y *dp . We get

x*dp=dy*p
=—ds N\ (sdy’ Ad¥Y (s)+dy’ NV, (s)+ Yy d¥’ ()
(20) —dy’ Nd(s¥5(s))
=ds N\(—sdy® Nd¥Y(s)—dy’ AW, (s)
8(s‘1’;(s))) I(s¥5(5)
as

—y7d¥Y, (s)+dy° A ”
dy

—dy° Ndy' N ,

where d1(s)/ds denotes the form, arising from 1(s) by differentiation with
respect to s, followed by multiplication by ds . Now by (20) and (6),

Idp=—dy® A jlsd‘l’f)(s)—dy" A j'\y' (s)
@1 a(s\y' )

—y j AW’ (s)+dy° /\j

It is important to notice that the exterior derivatives d‘Pg))(s) ,and d¥/ (s)
have the meaning of the derivatives with respect to y’ (the terms containing
ds are cancelled; see the definition of I (4), (6)).

Now we easily get

22)  Idp+dip=dy° AJM

Remembering that the integral symbol denotes integration of coefficients in
the corresponding forms with respect to the parameter s from O to 1, and us-
ing (5), one obtains

o3 Idp+dip=dy’ AN(1-¥, (1)-0-¥(0))
=dy’ N\P.(D)=dy’ N\, =p,
as desired.

As an immediate consequence, we get the following statement.
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Lemma 5 (The Volterra-Poincare lemma) Ler V be an open ball in
R™ with centre 0, p a differential k-form on V, where k =1. The following
two conditions are equivalent:

(a) There exists a form 1 on 'V such that

@4  dn=p
(b) p satisfies
(25) dp=0.

Proof If dn=p for some 1, we have dp=ddn=0. Conversely, if
dp=0,wetake n=1p in Lemma 4.

Condition (25) is sometimes called integrability condition for the differ-
ential equation (24).

We now consider differential equations for differential forms, defined
on the Cartesian product of open sets in Euclidean spaces, more general than
equations (1). We suppose we are given an open set U in R", and an open
ball Vin R" with centre at the origin. We denote by 7 the first Cartesian
projection of U XV onto U. Let k be a positive integer, and let p be a k-
form on U XV . We study the equation

(26) an+r*n,=p

for the unknowns a (k—1)-form 1 on U XV, and a k-form 7, on U. Any
pair (n,m,) satisfying (26) is called a solution of equation (26).

We denote by (x',y°) the canonical coordinates on UxV , and by
{:U—>UXV the constant zero section of UXV . We define a mapping
x:[0,1]xUXV = UXV by

Q7 xGs,(xLyT ) =(xsy7).

Then

(28) x*¥dx' =dx', x*dy’ =y°ds+sdy’.

For any k-form p on UXV , where k=1, consider the pull-back y*p
which is a k-form on the set [0,1]xU XV . Obviously, there exists a unique
decomposition

(29) x*p=dsAps)+p'(s)

such that the k-forms p(o) (s) and p’(s) do not contain ds. Note that by



116 D. Krupka

(28), p’(s) arises from p by replacing each factor dy’ by sdy°, and by
replacing each coefficient f by foy; the factors dx' remain unchanged.
Thus, p’(s) obeys

(30)  p'M=p, pO)=r**p.
Let k>1. We define

Gh  Ip=[ p“s).

where the expression on the right means integration of the coefficients in the
form p(o)(s) over s fromOto 1.

Theorem 12 Let U CR" be an open set, and let V CR"™ be an open
ball with centre 0.
(a) For every differentiable function f:UXV — R,

(32) f=lf+n*{*f.

(b) Let k=1.Then for every differential k-form p on UXV ,
(33) p=Ildp+dlp+m*{*p.

Proof 1. We have

af

(34) df = a—f.dx" +——dy’,
ax' dy

and by (28)

(35) Z*fz(%ox)dxi+( 6]: o;()(y”ds+sdyc).
x dy

Now the identity
f=m*l*f=Ffoxla—foxl

36 1d(fo 1 a
(36) Z"'O(];Y”dszyaj‘o(a;;oljdszldf,

which follows from (31), gives the result.
2. Consider the case k=1. Then the form p has an expression
p=Adx'+ B_dy’ , thus



The inverse problem of the calculus of variations 117

X Pp=(A o x)dx +(B, o x)(sdy’ +y°ds)

37 .

=y° (B, o y)ds+(A; o x)dx' +(B, o x)sdy’,
and

x*dp=dy*p
=ds /\(—d(y"(Ba o x))+ A7) dx' + (B, 1)) dy")
ds as
(38) +(8(Ai O.X) dx’ + UA %) dyvj/\a’xi
ax’ ay"
+s 9B, > 1) c?%)dxj +LB" c)%)dyv)/\dy",
ax’ ay”
hence
o 1
(39)  Ip=y jOBGox-ds,
and
Idp = j'(a(Af"%)_ oy 'BY°")jds.dx"
0 ds ox'
(40)
1 o V. o
(A 007 B o)y e
0 as ay°
and
__,C ]a(Bo'OZ) i Ia(yv.BvO%) o

41 d[p—y J.OTdS'dX +J.0Td5'dy .
Consequently,
(42) Idp+d1p = Ai OZ |s:l _Ai O% ‘szO +(B0' o% .S) ’s:l _(BO' O% ’ S) ‘szO

Let k>2. Write p in the form p=dx' A®,+dy° AW

=p-m*{*p.

and define

o

differential forms <I)f.0)(s), Di(s), ‘P;O)(s) by

(43)

XED, =ds ANO (5)+ D(s), x*W, =ds NP (5)+ W, (s).
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Then
x*p=dx A(ds AN®(s)+DI(s))
" +(sdy® +y°ds) A (ds NP (s)+ W (s))
=ds N\ (—dx' AN®(s5)— sdy” P (s)+y W, (s))
+dx' AND(s)+ sdy® +sy" W7 (s)).
Thus,

45)  Ip=—dx' A jol DO (5)— dy” A jo' (P (5)+ Y W (5))ds.

To determine Idp , we compute y *dp . We get
x*dp=dy*p
=—ds \(dx' NdD” (5))+ sdy’ NdPY (s)+dy’ ANV’ (s)
+y7d¥! (s))—dx' N dD)(s)— dy" Nd(sY, (s)))

(46) =ds/\( dx' NdD (5))+dx’ /\ ( )_ sdy® Ad¥(s)

—dy’ NV ()= y7d¥,(s)+dy° A LS\E" (s)))
S

—dx"/\(dxf D) gy /\aq)/(s)J

ox’ ay”
IR PRING.AC NG AG)]
ox’ dy

where d71(s)/ds denotes the form, arising by differentiation of 7(s) with
respect to s, followed by multiplication by ds . Now by (45) and (30),

Idp=—dx' A joldcpg‘”(s) —dy° A jl sdP O (s)—dy’ A '[l‘l” (s)
47 a(s‘{" ()

3" [ ¥ (s)+dx’ /\jolaq;l;( sdy A

Note that the expressions ddbﬁo)(s) , d‘Pg))(s) ,and d¥/ (s) have the mean-
ing of the exterior derivatives with respect to x', y° (the terms containing
ds are cancelled; see the definition of I (30), (31)).

Now we easily get
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48)  Idp+dip=dx' AL‘%H@G A jw

and using formula (30), one obtains
Idp+dlp =dx' A(®](1)~ @(0)+dy’ A(L- ¥, (1)~ 0-¥,(0)
=dx' AD(1)+dy° AP/ (1)—dx' AD/(0)
=dx' N, +dy° NV, —dx' A\m*{* D,
=p-mw*{*p.

(49)

As a consequence, we have the following statement.

Theorem 13 (The fibred Volterra-Poincare lemma) Ler U CR" be
an open set, VCR™ an open ball with centre 0. Let k be a positive integer,
and let p be a differential k-form on U XV . The following two conditions
are equivalent:

(a) There exist a (k—1)-form 1 on UXV and a k-form 1, on U such
that

(50) dn+r*n,=p.
(b) The form dp is m -projectable.

Proof Suppose we have some forms 1 and 1), satisfying condition (a).
Then dp=dr*n,=n*dn, proving (b). Conversely, if dp is x-
projectable, then by the definition of /, Idp =0, and then (a) follows from
the identity p=Idp+dlp+n*{*p=dn+n*n, (Theorem 12).

We also get two assertions that concern projectability of forms, and
non-uniqueness of solutions of equation (26).

Corollary 1 Let U CR" be an open set, VCR" an open ball with
centre the origin 0, p a differential form on U XV . The following two con-
ditions are equivalent:

(1) There exists a form M on U such that p=7m"n .

(2) ldp+dip=0.

Proof This follows from Theorem 12.
Corollary 2 Suppose that the form dp is w-projectable. Let (1,1,)

and (1,1,) be two solutions of equation (26). Then there exist a (p—1) -
form Tt on UXV anda (p—1)-form ) on U such that
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(51) n=n+n*y+dr, 1n,=n,-dx.

Proof By hypothesis,
(52) dn+r*n,=p, di+m*n,=p.

These equations imply dn+m*n,=dn+mn*n, hence x*dn,=r*dn,.
But for any section 6 of the projection 7 ,

(53)  S*m*dn, =dn, =8*n*di, =df,.

Thus, by the Volterra-Poincaré lemma, 7], —1,=dy for some y . Then,
however, dn+n*n,=dnN+nx*(M,+dy),and

(54)  dn--m*x)=0
Applying the Volterra-Poincaré lemma again we get (51).

Remark 5 Let X be an n-dimensional manifold. Every point x € X has
a neighbourhood U such that the decomposition of forms, given in Lemma 4,
is defined on U. Indeed, if (U,p) is a chart at x such that ¢(U) is an open
ball with centre 0 € R", then formulas p=¢@*u and (¢~')* p=u establish
a bijective correspondence between forms on U and ¢(U), that commutes
with the exterior derivative d. Note, however, that in general, this corre-
spondence does not allow us to construct solutions of exterior differential
equations (1) and (26), defined globally on X.

In our subsequent constructions we need the fibred homotopy operator
on the s-jet prolongation W?*=J(UxV) of the Cartesian product
W =U XV ; explicitly,

(55) W =UxVxLR"R")xL (R"R")x..xL (R"R™),

sym sym

where Lﬁym (R",R™) is the vector space of k-linear, symmetric mappings
from R" to R™. The Cartesian coordinates on V and the associated jet coor-
dinates on W° are denoted by x',y° and xi,y“,yz,yzjz,...,yzjz"‘j\ , respec-
tively. We have a mapping y, from the set [0,1]xW* to W', given by

(o}

(56) X, (XYY Y N =Ty Ly ).

X, defines the fibered homotopy operator I_, assigning to a k-form p on
V’,where k>1,a (k—1)-form I ,p on W*. To recall the definition of /_,
it is convenient to use a multi-index notation. Suppose we have a form
p €W , expressed by
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1 L I

J [ef} P o
S Ag Gros i V1 NV NNy

p= .
(57) OS,Z&, Jg=)!
Adx™ Ndx"™ A N dx" ’

where the multi-indices are of the form I=(p,p,...p,), and |Il=k is the
length of I; the summation in (57) is taking place through multi-indices of
length <s.Then

1
(58) Icp: JO Ix,Op

(integration through 7 from O to 1), where I p is defined by the decomposi-
tion

(59 x*p=diNl,p+Ip

such that the forms / (p and I]p do not contain df . The mapping y, satis-
fies

xrdx' =dx', yxrdy] =yjdi+tdy], 0<IJI<s,

(60)
27 =yjdt+tw], 0<IJI<s—1.

We have from (60)

q
1 1, 1 I; o (oF
k= 1 b j ° . 1 1
(61) Z s p - z:]!(q_])!A0'| 02" "0 Tjijin-- g Xs (yll dt+tdy1] )
j=

AN+ 1dy )N A Gy dr+ ady] ) N Adx™ AL Adx”

hence

q
Al Ll !
(62) JZ‘ (.] 1)'(61 .])'yll 01 0270 ipnijia.-dy Xs

dyp NdyP A Ady] A Ndx AL A d

and
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q 1 J
I I j

1 A
Ip=y7 ) | AN oyt dt
(63) P y"%ﬁ—l)!(q—j)!k o0 bt

dyp NdyPE A Ady) AT Ndx AL A
In the following theorem § is the zero section of W* over U.
Theorem 14 (a) The mapping ), satisfies
64)  p=ILdp+dlp+(m)*{*p.
(b) If dp=0, then there exists a (q—1) -form 1 such that
(65) p=dn.

Proof For the proof see Theorem 13. Clearly, condition dp =0 implies
d¢* p=0; thus, to prove (65) we can integrate the form {* p by means of
the standard Volterra-Poincaré lemma, and then apply formula (64).



