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2  Contact forms on jet prolongations of 
    fibred manifolds  

 2.1 The trace decomposition of tensor spaces  This section is 
devoted to a specific topic of the tensor calculus, the trace decomposition 
theory. As a rule, this topic does not appear in standard textbooks and mon-
ographs on tensor algebra, and needs a detailed independent introduction; 
our exposition follows the paper D. Krupka, Trace decompositions of tensor 
spaces, Linear and Multilinear Algebra 54 (2006) 235-263. In the proofs we 
also need the Young decomposition theory of tensor spaces. In subsequent 
chapters we us the trace decomposition theory for the study of the structure 
of differential forms on jet prolongations of fibred manifolds.  
 Beside the usual index notation for the components of tensors, we also 
use multi-indices of the form  I = (i1i2…ik ) , where r and n are positive inte-
gers,  k = 0,1,2,…,r , and  1! i1,i2 ,…,ik ! n . The number k is called the 
length of I and is denoted by | I | . We use multi-indices with different 
lengths. For any index j, such that 1! j ! n  we denote by Ij  the multi-index 
 (i1i2…ik j) . The symbol  Alt(i1i2…ik )  (resp.  Sym(i1i2…ik ) ) denotes alterna-
tion (resp. symmetrisation) in the indices  i1,i2 ,…,ik .   Let E be an n-dimensional vector space, E *  its dual vector space, and 
let r and s be two non-negative integers; suppose that at least one of these 
integers is non-zero. Then by a tensor of type (r,s)  over E we mean a multi-
linear mapping  U :E *!E *!…! E *!E ! E !…! E" R  (r factors E * , s 
factors E); r (resp. s) is called the contravariant (resp. covariant) degree of 
U. A tensor of type (r,0)  (resp. (0,s) ) is called contravariant (covariant) of 
degree r (resp. s). The set of tensors of type (r,s)  considered with its natural 
real vector space structure, is called the tensor space of type (r,s)  over E, 
and is denoted by Ts

rE .  
 Let ei  be a basis of the vector space E, ei  the dual basis of E * . The 
tensors 

  
e j1!e j2!…!e jr!e

i1!ei2!…!eis ,  1! j1, j2 ,…, jr ,i1,i2 ,…,is ! n , 
form a basis of the vector space Ts

rE . Each tensor  u!Ts
rE  has a unique 

expression  

(1)  
  
U =U j1 j2… jr

i1i2…is
e j1!e j2!…!e jr!e

i1!ei2!…!eis ,  

where the numbers 
 
Ui1i2…ir

i1i2…is
 are the components of U in the basis ei .  

 Remark 1  If a basis of the vector space E is fixed, it is sometimes con-
venient to denote the tensors simply by their components; in this case a ten-
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sor U of type (r,s)  over E is usually written as  

(2)  
 
U =U j1 j2… jr

i1i2…is
.  

 Remark 2  The canonical basis of the vector space E = Rn  consists of 
the vectors  e1 = (1,0,0,…,0) ,  e2 = (0,1,0,0,…,0) ,  … ,  en = (0,0,…,0,1) . 
The basis of the tensor space Ts

rRn , associated with   (e1,e2,…,en )  is also 
called canonical. A tensor  U !Ts

rRn  can be expressed either by formula (1) 
or by (2); formula (2) defines the canonical identification of the vector space 
Ts

rRn  with the vector space RN  of the collections 
 
U =U j1 j2… jr

i1i2…is
. , where 

N = dimTs
rRn = nrs .  

 The Kronecker tensor over E is a (1,1) -tensor ! , defined in any basis of 
E as  

(3)  ! = ei" e
i .  

We can also write ! = ! j
i ei" e

j , where ! j
i  is the Kronecker symbol, ! i

i = 1  
and ! j

i = 0  if i ! j ; in components, ! = ! j
i . It is immediately seen that the 

tensor !  does not depend on the choice of the basis ei .  
 This definition can be extended to tensors of type (r,s)  for any positive 
integers r and s. Let !  and !  be integers such that 1!" ! r , 1! " ! s , and 
let ei  be a basis of E. We introduce a linear mapping !"

# :Ts$1
r$1E% Ts

rE  of 
tensor spaces as follows. For every  V !Ts!1

r!1E ,  

(4)  
  
V =V j1 j2… jr!1

i1i2…is!1
e j1!e j2!…!e jr!1!e

i1!ei2!…!eis!1 ,  

define a tensor  !"
#V !TsrE  by  

(5)  
  
!"
#V =W j1 j2… jr

i1i2…is
e j1!e j2!…!e jr!e

i1!ei2!…!eis ,  

where  

(6)  
 
W j1 j2… j!"1 j! j!+1… jr

i1i2…i#"1i#i#+1…is
= $ i#

j!V j1 j2… j!"1 j!+1… jr
i1i2…i#"1i#+1…is

.  

Thus,  

(7)  
  

!"
#V =V j1 j2… jr$1

i1i2…is$1
e j1!e j2!…!e j#$1

!es!e j#+1
!…!e jr

!ei1!ei2!…!ei"$1!es!ei"+1!…!eis
 

(summation through s on the right-hand side). It is easily verified that this 
tensor is independent of the choice of ei .  
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 The mapping !"
#  defined by formulas (5), (6) is the (! ," ) -canonical 

injection. A tensor  U !Ts
rE , belonging to the vector subspace generated by 

the subspaces 
 
!"
# (Ts$

r$E)!Ts
rE , where 1!" ! r  and 1! " ! s , is called a 

Kronecker tensor, or a tensor of Kronecker type.  
 A tensor  V !Ts

rE , 
 
V =V k1k2…kr

l1l2…ls
, is a Kronecker tensor if and only if 

there exist tensors  V(q)
( p) !Ts!1r!1E , 

 
V(q)
( p) =V(q)

( p) k1k2…kr!1
l1l2…ls!1

, where 1! p ! r , 
1! q ! s , such that 

 
V k1k2…kr

l1l2…ls
 can be expressed in the form 

(8)  

 

V j1 j2… jr
l1l2…ls

= ! l1
j1V(1)

(1) j2 j3… jr
l2l3…ls

+! l2
j1V(2)

(1) j2 j3… jr
l1l3…ls

+…+! ls
j1V(s )

(1) j2 j3… jr
l1l2…ls"1

+! l1
j2V(1)

(2) j1 j3… jr
l2l3…ls

+! l2
j2V(2)

(2) j1 j3… jr
l1l3…ls

+…+! ls
j2V(s )

(2) j1 j3… jr
l1l2…ls"1

+…

+! l1
jrV(1)

(r ) j1 j2… jr"1
l2l3…ls

+! l2
jrV(2)

(r ) j1 j2… jr"1
l1l3…ls

+…+! ls
jrV(s )

(r ) j1 j2… jr"1
l1l2…ls"1

.

 

 A tensor  U !Ts
rE  expressed as in (1), is said to be traceless, if its traces 

are all zero,  

(9)  

 

Usl1l2…lr!1
sj1 j2… js!1

= 0, Ul1sl2…lr!1
sj1 j2… js!1

= 0, …, Ul1l2…lr!1s
sj1 j2… js!1

= 0,

Usl1l2…lr!1
j1sj2… js!1

= 0, Ul1sl2…lr!1
j1sj2… js!1

= 0, …, Ul1l2…lr!1s
j1sj2… js!1

= 0,
…

Usl1l2…lr!1
j1 j2… js!1s

= 0, Ul1sl2…lr!1
j1 j2… js!1s

= 0, …, Ul1l2…lr!1s
j1 j2… js!1s

= 0.

 

 To prove a theorem of the decomposition of the tensor space Ts
rE , in-

cluding traceless tensors, recall that every scalar product g on E induces a 
scalar product on Ts

rE  as follows. Let g be expressed in a basis as  

(10)  g(!," ) = gij!
i" j ,  

where ! = ! i , ! = ! i . Let  U,V !Ts
rE  be any tensors, 

 
U =U j1 j2… jr

i1i2…is
, 

 
V =V i1i2…ir

j1 j2… js
. We set  

(11)  
 
g(U,V ) = gj1k1gj2k2…gjrkr g

i1l1gi2l2…gislsU j1 j2… jr
i1i2…is

V k1k2…kr
l1l2…lsl1l2…ls

.  

 Lemma 1  Formula (11) defines a scalar product on Ts
rE .  

 Proof  Only positive definiteness needs proof. If we choose a basis of E 
such that gjk = ! jk , (11) has an expression  



   D. Krupka 
 
90 

(12)  
 
g(U,V ) = U j1 j2… jr

l1l2…ls
V j1 j2… jr

l1l2…ls
l1,l2 ,…,ls
!

k1,k2 ,…,kr
! .  

Obviously, this is the Euclidean scalar product, which is positive definite.  

 Theorem 1 (The trace decomposition theorem)  The vector space 
Ts

rE  is the direct sum of its vector subspaces of traceless and Kronecker 
tensors.  
 Proof  We want to show that any tensor  W !Ts

rE , has a unique decom-
position of the form W =U +V , where U is traceless and V is of Kronecker 
type.  
 To prove existence, consider a scalar product g (12) on Ts

rE . It is im-
mediately seen that the orthogonal complement of the subspace of Kroneck-
er tensors coincides with the subspace of traceless tensors. If  U !Ts

rE , 

 
U =Ui1i2…ir

j1 j2… js
, and if a tensor  V !Ts

rE , 
 
V =V k1k2…kr

l1l2…ls
, satisfies condi-

tion (8), then  

(13)  

 

g(U,V ) =Umj2 j3… jr
ml2l3…ls

V(1)
(1) j2 j3… jr

l2l3…ls

+Umj2 j3… jr
i1mi3i4…is

V(1)
(1) k2k3…kr

l1l3l4…ls

+…+Umj2 j3… jr
i1i2…is!1m

V(s )
(1) k2k3…kr

l1l2…ls!1

+U j1mj3 j4… jr
mi2i3…is

V(1)
(2) k1k3k4…kr

l2l3…ls

+U j1mj3 j4… jr
i1mi3i4…is

V(1)
(2) k1k3k4…kr

l1l3l4…ls

+…+U j1mj3 j4… jr
i1i2…is!1m

V(s )
(2) k1k3k4…kr

l1l2…ls!1

+…

+U j1 j2… jr!1m
mi2i3…is

V(1)
(r ) k1k2…kr!1

l2l3…ls

+U j1 j2… jr!1m
i1mi3i4…is

V(1)
(1) k1k2…kr!1

l1l3l4…ls

+…+U j1 j2… jr!1m
i1i2…is!1m

V(s )
(r ) k1k2…kr!1

l1l2…ls!1
.

 

Thus the vector subspace of tensors U such that g(U,V ) = 0  for all V, con-
sists of traceless tensors. The uniqueness of the direct sum follows from the 
orthogonality of subspaces of traceless and Kronecker tensors in Ts

rE  in the 
scalar product g.  

 Theorem 1 states that every tensor  W !Ts
rE , 

 
W =W i1i2…ir

l1l2…ls
 is ex-

pressible in the form  
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(14)  

 

W i1i2…ir
l1l2…ls

=Ui1i2…ir
l1l2…ls

+! l1
i1V(1)

(1) i2i3…ir
l2l3…ls

+! l2
i1V(2)

(1) i2i3…ir
l1l3…ls

+…+! ls
i1V(s )

(1) i2i3…ir
l1l2…ls"1

+! l1
i2V(1)

(2) i1i3…ir
l2l3…ls

+! l2
i2V(2)

(2) i1i3…ir
l1l3…ls

+…+! ls
i2V(s )

(2) i1i3…ir
l1l2…ls"1

+…

+! l1
irV(1)

(r ) i1i2…ir"1
l2l3…ls

+! l2
irV(2)

(r ) i1i2…ir"1
l1l3…ls

+…+! ls
krV(s )

(r ) i1i2…ir"1
l1l2…ls"1

,

 

where 
 
U =Ui1i2…ir

l1l2…ls
  is a uniquely defined traceless tensor, and for every  

p and q such that 1! p ! r , 1! q ! s , the tensor 
 
V(q)
( p) =V(q)

( p) i1i2…ir!1
l1l2…ls!1

 be-
longs to the tensor space Ts!1

r!1E .  

 Remark 3  The traceless component 
 
Ui1i2…ir

l1l2…ls
 and the complemen-

tary Kronecker component of the tensor W in (14) are determined uniquely. 
However, this does not imply, in general, that the tensors V(q)

( p)  are unique. If 
the contravariant and covariant degrees satisfy r + s ! n +1 , then the tensors 
V(q)
( p)  may not be unique.  

 Formula (14) is called the trace decomposition formula.  
 Denote by Es

r  the vector subspace of tensors 
 
U =U j1 j2… jr

i1i2…is
 in the 

tensor space Ts
rE , symmetric in the superscripts and skew-symmetric in the 

subscripts. We wish to find the trace decomposition formula for these. Set  

(15)  
 
trU =Ukj1 j2… jr!1

ki1i2…is!1
,  

and  

(16)  
 

qU = (r+1)(s+1)
n+r!s

" i1
j1U j2 j3… jr+1

i2i3…is+1
Alt(i1i2…is+1)

Sym( j1 j2… jr+1).
 

These formulas define two linear mappings tr :Es
r ! Es"1

r"1  and q:Es
r ! Es+1

r+1 .  

 Theorem 2  (a) Any tensor  U ! Es
r  has a decomposition  

(17)  U = trqU + q trU.  

 (b) The mappings tr  and q  satisfy  

(18)  tr trU = 0, qqU = 0.  

 Proof  (a) We prove formula (17). Using the definition (16) of q  we 
have, with obvious notation,  
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(19)  

 

qU = r+1
n+r!s

(" i1
j1U j2 j3… jr+1

i2i3…is+1
!" i2

j1U j2 j3… jr+1
i1i3i4…is+1

!" i3
j1U j2 j3… jr+1

i2i1i4i5…is+1
!…!" is+1

j1 U j2 j3… jr+1
i2i3…isi1

) Sym( j1 j2… jr+1).
 

Thus,  

(20)  

 

trqU = 1
n+r!s

(" k
kU j2 j3… jr+1

i2i3…is+1
!" i2

kU j2 j3… jr+1
ki3i4…is+1

!" i3
kU j2 j3… jr+1

i2ki4i5…is+1
!…!" is+1

k U j2 j3… jr+1
i2i3…isk

+" k
j2Ukj3 j4… jr+1

i2i3…is+1
!" i2

j2Ukj3 j4… jr+1
ki3i4…is+1

!" i3
j2Ukj3 j4… jr+1

i2ki4i5…is+1
!…!" is+1

j2Ukj3 j4… jr+1
i2i3…isk

+" k
j3U j2kj4 j5… jr+1

i2i3…is+1
!" i2

j3U j2kj4 j5… jr+1
ki3i4…is+1

!" i3
j3U j2kj4 j5… jr+1

i2ki4i5…is+1
!…!" is+1

j3U j2kj4 j5… jr+1
i2i3…isk

+…+" k
jr+1U j2 j3… jrk

i2i3…is+1
!" i2

jr+1U j2 j3… jrk
ki3i4…is+1

!" i3
jr+1U j2 j3… jrk

i2ki4i5…is+1
!…!" is+1

jr+1U j2 j3… jrk
i2i3…isk

)

= 1
n+r!s

(nU j2 j3… jr+1
i2i3…is+1

!U j2 j3… jr+1
i2i3i4…is+1

!U j2 j3… jr+1
i2i3i4i5…is+1

!…!U j2 j3… jr+1
i2i3…isis+1

+U j2 j3 j4… jr+1
i2i3…is+1

!" i2
j2Ukj3 j4… jr+1

ki3i4…is+1

!" i3
j2Ukj3 j4… jr+1

i2ki4i5…is+1
!…!" is+1

j2Ukj3 j4… jr+1
i2i3…isk

+U j2 j3 j4 j5… jr+1
i2i3…is+1

!" i2
j3U j2kj4 j5… jr+1

ki3i4…is+1

!" i3
j3U j2kj4 j5… jr+1

i2ki4i5…is+1
!…!" is+1

j3U j2kj4 j5… jr+1
i2i3…isk

+…+U j2 j3… jr jr+1
i2i3…is+1

!" i2
jr+1U j2 j3… jrk

ki3i4…is+1

!" i3
jr+1U j2 j3… jrk

i2ki4i5…is+1
!…!" is+1

jr+1U j2 j3… jrk
i2i3…isk

)

= n+r!s
n+r!s

U j2 j3… jr+1
i2i3…is+1

! 1
n+r!s

(" i2
j2Ukj3 j4… jr+1

ki3i4…is+1

+" i3
j2Ukj3 j4… jr+1

i2ki4i5…is+1
+…+" is+1

j2Ukj3 j4… jr+1
i2i3…isk

+" i2
j3U j2kj4 j5… jr+1

ki3i4i5…is+1
+" i3

j3U j2kj4 j5… jr+1
i2ki4i5…is+1

+…+" is+1
j3U j2kj4 j5… jr+1

i2i3…isk
+…+" i2

jr+1U j2 j3… jrk
ki3i4…is+1

+" i3
jr+1U j2 j3… jrk

i2ki4i5…is+1
+…+" is+1

jr+1U j2 j3… jrk
i2i3…isk

)

 

Further computations yield  
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(21)  
 

trqU =U j2 j3… jr+1
i2i3…is+1

! rs
n+r!s

" i2
j2Ukj3 j4… jr+1

ki3i4…is+1

Sym( j2 j3… jr+1) Alt(i2i3…is+1).
 

But by (15), the second term is exactly q tru , proving (17).  
 (b) Formulas (18) are immediate.  

 (17) is the trace decomposition formula for tensors  U ! Es
r .  

 The following assertion is an immediate consequence of Theorem 2. It 
states, in particular, that the decomposition (17) of a tensor  U ! Es

r  is 
unique.  

 Theorem 3 (a) Equation qV + trW =U  for unknown tensors  V ! Es!1
r!1  

and  W ! Es+1
r+1  has a unique solution such that trV = 0 , qW = 0 . This solu-

tion is given by V = trU , W = qU .  
 (b) Let  U ! Es

r . Equation qX =U  has a solution  X ! Es!1
r!1  if and only 

if qU = 0 . If this condition is satisfied, then X = trU  is a solution. Any oth-
er solution is of the form !X = X + qY  for some tensor  Y ! Es!2

r!1 .  
 Proof  (a) If qV + trW =U , trV = 0  then V = trqV = trU  because 
tr trW = 0 ; if qW = 0 , then W = q trW = q(U ! qV ) = qU .  
 (b) If equation qX =U  has a solution U, then necessarily qU = 0 . 
Conversely, if qU = 0 , then U = q trU  and X = trU  solves equation 
qX =U . Clearly, the tensors !X = X + qY , where  Y ! Es!2

r!1  also solve this 
equation.  

 Example 1  We find the trace decomposition formula (17) for r = 1. 
Writing 

 
U =U j1

i1i2…is
, we have 

 
trU =Uk

ki1i2…is!1
 and  

(22)  
 
q trU = 1

n+1!s
(" i1

j1Uk
ki2i3…is

+" i2
j1Uk

i1ki3i4…is
+…+" is

j1Uk
i1i2…is!1k

).  

Analogously   

(23)  

 

qU = 2(s+1)
n+1!s

" i1
j1U j2

i2i3…is+1
Alt(i1i2…is+1) Sym( j1 j2 )

= 1
n+1!s

(" i1
j1U j2

i2i3…is+1
!" i2

j1U j2
i1i3i4…is+1

!…!" is+1
j1 U j2

i2i3…isi1

+" i1
j2U j1

i2i3…is+1
!" i2

j2U j1
i1i3i4…is+1

!…!" is+1
j2U j1

i2i3…isi1
)

 

hence 
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(24)  

 

trqU = 1
n+1!s

(nU j2
i2i3…is+1

! (s !1)U j2
i2i3i4…is+1

! 1
n+1!s

(" i2
j2Uk

ki3i4…is+1
+" i3

j2Uk
i2ki4i5…is+1

+…+" is+1
j2Uk

i2i3…isk
)

=U j2
i2i3…is+1

! q trU.

 

Formulas (24) and (26) yield U = trqU + q trU . In particular, if r = 1 and 
s = n , then 

 
U =U j

i1i2…in
, 
 
trU =Us

si1i2…in!1
 and qU = 0 .  Thus,  

(25)  
 

U = n! i1
jU s

si2i3…in
Alt(i1i2…in )

= ! i1
jU s

si2i3…in
+! i2

jU s
i1si3i4…in

+…+! in
jU s

i1i2…in"1s
.
 

 Example 2  Consider the decomposition (17) for r = 2  and s = n !1 , 
and find explicit expressions for the traceless and Kronecker components 
trqU  and q trU  of the tensor U. Writing 

 
U =U j1 j2

i1i2…in!1
 and using the 

proof of Theorem 2 we have 

(26)  

 

trqU =U j2 j3
i2i3…in

! 1
3
(" i2

j2Ukj3
ki3i4…in

+" i3
j2Ukj3

i2ki4i5…in
+…+" in

j2Ukj3
i2i3…in!1k

+" i2
j3U j2k

ki3i4i5…in
+" i3

j3U j2k
i2ki4i5…in

+…+" in
j3U j2k

i2i3…in!1k
)

 

and  

(27)  

 

q trU = 1
3
(! i2

j2Ukj3
ki3i4…in

+! i3
j2Ukj3

i2ki4i5…in
+…+! in

j2Ukj3
i2i3…in"1k

+! i2
j3U j2k

ki3i4i5…in
+! i3

j3U j2k
i2ki4i5…in

+…+! in
j3U j2k

i2i3…in"1k
)

= 1
3
(! i2

j2Ukj3
ki3i4…in

"! i3
j2Ukj3

ki2i4i5…in
"…"! in

j2Ukj3
ki3…in"1i2

+! i2
j3Ukj2

ki3i4i5…in
"! i3

j3Ukj2
ki2i4i5…in

"…"! in
j3Ukj2

ki3…in"1i2
)

= 2(n"1)
3

! i2
j2Ukj3

ki3i4…in
Sym( j2 j3) Alt(i2i3…in ).

 

 Let k and j be positive integers, j ! k ! n . Let 
 
X = X I1I2…I j

i j+1i j+2…ik  be a 
tensor indexed with multi-indices Iq , of length rq  and indices i1 , i2 ,  … , i j , 
such that 

 
1! i1, i2 ,…i j ! n ; we suppose X to be symmetric in the superscripts 

entering each of the multi-indices, and skewsymmetric in the subscripts. Our 
objective will be to solve the system of homogeneous equations 
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(28)  
 

! p1
p1! p2

p2…! pj
p j X I1I2…I j

i j+1i j+2…ik
= 0 Alt(p1p2…pji j+1i j+2…ik )

Sym(I1p1) Sym(I2p2 ) … Sym(I j pj )
 

for the unknown tensor X. In this formula, the alternation operation is ap-
plied to the subscripts, and the symmetrizations are to the superscripts.  

 Theorem 4  Let n, k, j, and r be positive integers, and assume that 
1! j < k ! n . Then a tensor 

 
X = X I1I2…I j

i j+1i j+2…ik  satisfies the system (28) if 
and only if it is a Kronecker tensor.  
 Proof  1. We show that condition (28) implies that X is a Kronecker ten-
sor. Let I1 , I2 ,  … , I j , and i j+1 , i j+2 ,  … , ik  be given. Choose p1 , p2 ,  … , 
pj  such that the s-tuple 

 
(p1, p2 ,…, pj ,i j+1,i j+2 ,…,ik )  consists of mutually 

different indices, and consider the expression on the left of (30) without the 
summations defined by the trace operation,  

(29)  
 

! i1
p1! i2

p2…! i j
p j X I1I2…I j

i j+1i j+2…is
Alt(i1i2…i ji j+1…ik )

Sym(I1p1) Sym(I2p2 ) … Sym(I j pj ).
 

Set i1 = p1 , i2 = p2 ,  … , i j = pj , and consider the summation prescribed by 
the alternation 

 
Alt(i1i2…i ji j+1…ik ) . Then the sum (29) splits in two groups of 

summands. The first is given by the factor 
 
! p1

p1! p2
p2…! pj

p j ; these are the sum-
mands in which all p1 , p2 ,  … , pj  are covariant indices in the Kronecker 
! -tensors, i.e.,  

(30)  

 

1
s!
! p1

p1! p2
p2…! pj

p j X I1I2…I j
i j+1i j+2…ik

Sym(I1p1)

Sym(I2p2 ) … Sym(I j pj ).
 

Further summations in this expression arise from the symmetrizations. Thus, 
(30) is equal to 

 
cX I1I2…I j

i j+1i j+2…ik  for some c > 0 . The second group of sum-
mands consists of all the remaining terms, in which at least one covariant 
index in the product 

 
! p1

p1! p2
p2…! pj

p j  in (28) is replaced by some of the indices 
i j+1 , i j+2 ,  … , ik . But since all indices from the s-tuple 

 
(p1, p2 ,…, pj ,i j+1,i j+2 ,…,ik )  are mutually different, we have !"

# = 0  whenev-
er 

   ! !{p1, p2 ,…, pj} , 
   ! !{iq+1iq+2…ik} . Consequently, the second group 

consists of those terms, which are multiples of !"
#  with 

   
! ! {p1, p2 ,…, pj} , 

   ! !{i j+1i j+2…ik} . Now summations in (28) imply that 
 
X = X I1I2…I j

i j+1i j+2…is  
must contain at least one factor the Kronecker ! -tensor.  
 2.  Conversely, the alternation, and the symmetrizations in (28) imply 
that any Kronecker tensor 

 
X = X I1I2…Iq

iq+1iq+2…is  solves (28).  
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 Corollary 1  Assume that in addition to the assumptions of Theorem 4, 
the tensor 

 
X = X I1I2…I j

i j+1i j+2…ik  is traceless. Then  

(31)  
 
X I1I2…I j

i j+1i j+2…ik
= 0.  

 Proof  This follows from Theorem 4, and from the orthogonality of 
traceless and Kronecker tensors.  
 
 Example 3  We solve equations (28) for j = 2  and q = 3  for the trace-
less tensors X = Xi1i2

i3
. We have the system  

(32)  ! p1
p1! p2

p2Xi1i2
i3
= 0 Alt(p1p2i3) Sym(i1p1) Sym(i2p2 ).  

The sum on the left-hand side of (32) can be written explicitly. We get an 
expression  

(33)  

! p1
p1! p2

p2Xi1i2
i3
+! p1

i1! p2
p2X p1i2

i3
+! p1

p1! p2
i2 Xi1p2

i3
+! p1

i1! p2
i2 X p1p2

i3

"! p2
p1! p1

p2Xi1i2
i3
"! p2

i1 ! p1
p2X p1i2

i3
"! p2

p1! p1
i2 Xi1p2

i3
"! p2

i1 ! p1
i2 X p1p2

i3

"! i3
p1! p2

p2Xi1i2
p1
" ! i3

i1! p2
p2X p1i2

p1
"! i3

p1! p2
i2 Xi1p2

p1
" ! i3

i1! p2
i2 X p1p2

p1

+! p2
p1! i3

p2Xi1i2
p1
+ ! p2

i1 ! i3
p2X p1i2

p1
+ ! p2

p1! i3
i2Xi1p2

p1
+ ! p2

i1 ! i3
i2X p1p2

p1

"! p1
p1! i3

p2Xi1i2
p2
"! p1

i1! i3
p2X p1i2

p2
" ! p1

p1! i3
i2Xi1p2

p2
" ! p1

i1! i3
i2X p1p2

p2

+! i3
p1! p1

p2Xi1i2
p2
+ ! i3

i1! p1
p2X p1i2

p2
+ ! i3

p1! p1
i2 Xi1p2

p2
+ ! i3

i1! p1
i2 X p1p2

p2
.

 

The summations yield  

(34)  

n2Xi1i2
i3
+ nXi1i2

i3
+ nXi1i2

i3
+ Xi1i2

i3

! nXi1i2
i3
! Xi1i2

i3
! Xi1i2

i3
! Xi2i1

i3

! Xi1i2
i3
!Xi1i2

i3
+ Xi1i2

i3
!nXi1i2

i3
! Xi1i2

i3
+ Xi1i2

i3

= (n2 ! 2)Xi1i2
i3
! Xi2i1

i3
.

 

Consequently, equation (28) implies (n2 ! 2)Xi1i2
i3
! Xi2i1

i3
= 0  so we get the 

solution  

(35)  Xi1i2
i3
= 0.  
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 2.2 Contact forms  Let Y be a fibred manifold with base X and pro-
jection ! , and let W be an open set in Y. Consider the exterior algebras 
!rW  and !r+1W  and the horizontalisation  !

rW ! "# h" "!r+1W , intro-
duced in Section 1.5. Since h is a homomorphism, the kernel of h,  

(1)    Kerh = {! !"rW |h! = 0},  

is the ideal of the ring !rW . Clearly, since the dimension of the basis X of 
the fibred manifold Y is n, any q-form  ! !"q

rW  such that q ! n +1  always 
belongs to Kerh . If q ! n , we define a q-form  ! !"q

rW  to be contact, if  

(2)  h! = 0.  

 It is easy to find the chart expression of a contact 1-form !  (cf. 1.5, 
Lemma 9). Writing !  in a fibred chart (V ,! ) , ! = (xi , y" ) , as  

(3)  
 
! = Aidx

i + B"
j1 j2… jk dyj1 j2… jk

"

j1< j2<…< jk
#

0$k$r
# ,   

condition (2) yields  

(4)  
 
Ai + B!

j1 j2… jk y j1 j2… jki
!

0"k"r
# = 0,   

or, equivalently,  

(5)  
 
B!

j1 j2… jr = 0, Ai = " B!
j1 j2… jk y j1 j2… jki

!

0#k#r"1
$ .   

Thus, setting for all k, 0 ! k ! r "1 , 

(6)  
 
! j1 j2… jk

" = dyj1 j2… jk
" # yj1 j2… jk j

" dx j ,  

we see that !  has the chart expression  

(7)  
 
! = B"

j1 j2… jk# j1 j2… jki
"

0$k$r%1
& .   

In particular,  

(8)  
 
h! j1 j2… jk

" = 0,  

and a contact 1-form is always a linear combination of the forms (6).  
 These observations lead to the following assertion.  
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 Theorem 5  (a) For any fibred chart (V ,! ) , ! = (xi , y" ) , on Y the 
forms 

(9)  
 
dxi , ! j1 j2… jk

" , dyl1l2…lr#1lr
" ,  

where 1! k ! r "1,  1! i, j1 ! j2 !…! jk ,l1 ! l2 !…! lr ! n , and 1!" ! m , 
constitute a basis of linear forms on the set V r . 
 (b) The forms 

 
! j1 j2… jk

"  satisfy  

(10)  
  

d! j1 j2… jk
" = #! j1 j2… jkl

" !dxl , 0 $ k $ r # 2,

d! j1 j2… jr#1
" = #dyj1 j2… jr#1l

" !dxl ,
 

and  

(11)  
 
hd! j1 j2… jk

" = 0.  

 (c) If (V ,! ) , ! = (xi , y" ) , and (V ,! ) , ! = (x i , y" ) , are two fibred 
chart on Y such that   V !V !Ø , then 

(12)  
 
! p1p2…pk

" =
!yp1p2…pk

"

!yj1 j2… jm
# ! j1 j2… jm

#

j1$ j2$…$ jk
% .  

 (d) If (V ,! ) , ! = (xi , y" ) , and (V ,! ) , ! = (x i , y" ) , are two fibred 
chart on Y such that   V !V !Ø , then 

(12)  
 
! p1p2…pk

" =
!yp1p2…pk

"

!yj1 j2… jm
# ! j1 j2… jm

#

j1$ j2$…$ jk
% .  

 Proof  (a) Clearly, the form (3) is expressible as linear combinations of 
the forms of the forms dxi , 

 
! j1 j2… jk

" , 
 
dyl1l2…lr!1lr

" .  
 (b) Since h preserves exterior product, (11) follows from (10).  
 (c) For any function f, defined on V r ,  

(13)  

 

(! r+1,r )*df = hdf + pdf = di f "dx
i + ! f

!yl1l2…lk
# $ l1l2…lk

#

l1%l2%…%lk
&

0%k%r
&

= dp f "dx
p + ! f

!yj1 j2… jm
' $ j1 j2… jm

'

j1% j2%…% jk
&

0%k%r
&

= dp f
!x p

!xi
dxi + ! f

!yl1l2…lk
#

!yl1l2…lk
#

!yj1 j2… jm
' $ j1 j2… jm

'

l1%l2%…%lk
&

j1% j2%…% jk
&

0%k%r
& .
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Setting 
 
f = yp1p2…pk

!  we get (12).  
 (d) Formula (12) can be obtained by a direct computation.  

 The basis of 1-forms (9) is called the contact basis.  
 Now we consider sections of the fibred manifold J rY  over the base X. 
We say that a section !  of J rY , defined on an open set in X, is integrable, 
or holonomic, if there exists a section !  of Y such that  

(14)  ! = J r" .  

Obviously, if !  exists, then applying the projection ! r .0  to both sides we get 
 !

r .0 !" = # , thus !  is unique and is determined by  

(15)   ! = " r .0 !# .  

 The following theorem describes the relations of the contact forms and 
the holonomic sections of J rY . 

 Theorem 6  Let (V ,! ) , ! = (xi , y" ) , be a fibred chart on Y.  
 (a) Every Cr section !  of Y, defined on an open subset of  !

r (W )! X , 
satisfies  

(16)  
 
J r! *" i1i2…ik

# = 0.  

 (b) If a Cr section ! :U" J rY , where  U !! (V ) , satisfies  

(17)  
 
! *" i1i2…ik

# = 0  

for all k such that 0 ! k ! r "1  and all !  and  i1,i2 ,…,ik , such that 
1!" ! m  and  1! i1,i2 ,…,ik ! n , then it is integrable.  
 Proof  (a) By definition,  

(18)  

 

J r! *" i1i2…ik
# = d(yi1i2…ik

# ! J r! )$ (yi1i2…ikl
# ! J r! )dxl

=
!(yi1i2…ik

# ! J r! )
!xl

$ yi1i2…ikl
# ! J r!

%
&'

(
)*
dxl

= (Di1
Di2

…Dik
Dl (y

# !! )$ Di1
Di2

…Dik
Dl (y

# !! ))dxl = 0.

 

 (b) Using the definition of 
 
! i1i2…ik

" , we get 
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(19)  

 

! *" i1i2…ik
# = d(yi1i2…ik

# !! )$ (yi1i2…ikl
# !! )dxl

=
!(yi1i2…ik

# !! )
!xl

$ yi1i2…ikl
# !!

%
&'

(
)*
dxl .

 

Thus, condition (17) implies  

(20)  
 

!(yi1i2…ik
! !" )
!xl

# yi1i2…ikl
! !" = 0,  

which can also be written as  

(21)  

 

!(y! !" )
!xl

# yl
! !" = 0,

!(yi1
! !" )
!xl

# yi1l
! !" = !

2 (y! !" )
!xi1 !xl

# yi1l
! !" = 0,

…

!(yi1i2…ir#1
! !" )
!xl

# yi1i2…ir#1l
! !" = !r (y! !" )

!xi1 !xi2…!xir#1 !xl
# yi1i2…ir#1l

! !" = 0.

 

These conditions mean that the section !  is of the form  ! = J r (" r ,0 !! )  as 
required.   

 Theorem 7  Let 1! k ! n , and let  ! !"k
rW . The following two condi-

tions are equivalent:  
 (a) !  is contact.  
 (b) In any fibred chart, !  is expressible as    

(22)  
 
! = " I

# !$#
I

0%|I |%r&1
' + d" I

# !(#
I

|I |=r&1
' ,  

where !"
J  are (k !1) -forms, containing all exterior factors ! J

" , and !"
I  

are (k ! 2) -forms, not containing any exterior factor ! J
" , where 

0 ! | J | ! r "1 .  
 Proof  We show that (a) implies (b). Express !  in the contact basis of 
1-forms (9). We get  

(23)  
 
! = " J

# !$#
J

0%|J |%r&1
' + (! ,  

where the sum includes all terms, generated by the forms ! J
" , 
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0 ! | J | ! r "1 , and  

(24)  

  

!" = 1
k!0!

Ai1i2…ik
dxi1 !dxi2 !…!dxik

+ 1
(k#1)!1!

A$1
I1

i2i3…ik
dyI1

$1 !dxi2 !dxi3 !…!dxik

+ 1
(k#2)!2!

A$1
I1

$ 2
I2

i3i4…ik
dyI1

$1 !dyI2
$ 2 !dxi3 !dxi4 !…!dxik

+…+ 1
1!(k#1)!

A$1
I1

$ 2
I2…$ k#1

Ik#1
ik
dyI1

$1 !dyI2
$ 2 !…!dyIk#1

$ k#1 !dxik

+ 1
0!k!

A$1
I1

$ 2
I2…$ k

Ik dyI1
$1 !dyI2

$ 2 !…!dyIk
$ k ,

 

with multi-indices of length r. Since h is an exterior algebra homomorphism, 
we have from 1.5, Lemma 9  

(25)  

  

h !" = 1
k!0!

Ai1i2…ik( + 1
(k#1)!1!

A$1
I1

i2i3…ik
yI1i1
$1 + 1

(k#2)!2!
A$1
I1

$ 2
I2

i3i4…ik
yI1i1
$1 yI2i2

$ 2

+…+ 1
1!(k#1)!

A$1
I1

$ 2
I2…$ k#1

Ik#1
ik
yI1i1
$1 yI2i2

$ 2 …yIk#1ik#1
$ k#1

+ 1
0!k!

A$1
I1

$ 2
I2…$ k

Ik yI1i1
$1 yI2i2

$ 2 …yIkik
$ k )dxi1 !dxi2 !dxi3 !…!dxik ,

 

thus, because the components of h !"  are polynomials, condition (a) implies 

(26)  

 

Ai1i2…ik
= 0,

A!1
I1

i2i3…ik
" i1

j1 = 0 Sym(I1 j1) Alt(i1i2…ik ),

A!1
I1

! 2
I2

i3i4…ik
" i1

j1" i2
j2 = 0 Sym(I1 j1) Sym(I2 j2 ) Alt(i1i2…ik ),

…

A!1
I1

! 2
I2…! k#1

Ik#1
ik
" i1

j1" i2
j2…" ik#1

jk#1 = 0 Sym(I1 j1) Sym(I2 j2 )
… Sym(Ik#1 jk#1) Alt(i1i2…ik ),

A!1
I1

! 2
I2…! k

Ik " i1
j1" i2

j2…" ik
jk = 0 Sym(I1 j1) Sym(I2 j2 )

… Sym(Ik jk ) Alt(i1i2…ik ).

 

These equations show that the coefficients 
 
A!1
I1

i2i3…ik
, 

 
A!1
I1

! 2
I2

i3i4…ik
,  … , 

 
A!1
I1

! 2
I2…! k"1

Ik"1
ik

 must be of Kronecker type (Theorem 3). Expressing them as 
Kronecker tensors and substituting to (24) we get (22).  
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 Conversely, since h is an exterior algebra homomorphism, (b) implies 
(a) by Theorem 5.  

 Theorem 7 can also be restated in terms of the ideal  Kerh!!rW .  

 Theorem 8  (a) The contact k-forms such that k ! n , are locally gener-
ated by the forms 

 
! j1 j2… jk

"  and 
 
d! j1 j2… jr"1

# .  
 (b) The ideal Kerh  is closed under exterior derivative.  
 Proof  (a) This assertion follows from Theorem 7.  
 (b) This follows from Theorem 7.  

 Since 
 
!q

rW !Kerh  for any q ! n +1 , the ideal Kerh  is not generated 
by the forms 

 
! j1 j2… jk

"  nor by the forms 
 
! j1 j2… jk

"  and 
 
d! j1 j2… jr"1

# . On the other 
hand, Theorem 5, (c) implies that the 1-forms 

 
! j1 j2… jk

" , where 0 ! k ! r "1 , 
also define an ideal; however, this ideal is not integrable (see e.g. Theo-
rem 5, (b)). Its completion is an ideal, closed under exterior derivative opera-
tor. This ideal is locally generated by the forms 

 
! j1 j2… jk

"  and 
 
d! j1 j2… jr"1

# , and is 
denoted by (c)!rW . Clearly,  

(c)!rW !Kerh .  
 We now extend the definition of contact forms to any q-forms  ! !"

rW  
(see also Theorem 7, (22)); we shall say that a form  ! !"

rW  is contact, if 
 ! !

(c)"rW . Thus, a q-form  ! !"
rW  is contact if and only if for any fibred 

chart (V ,! ) , ! = (xi , y" ) , such that  V !W , it is generated by the 1-forms 
! J

" , 0 ! | J | ! r "1 , and 2-forms d! J
" , | J | = r !1 , that is,  

(27)  
 
! = " J

# !$#
J

0%|J |%r&1
' + d" J

# !(#
J

|J |=r&1
'  

for some (q !1) -forms !"
J  and (q ! 2) -forms !"

J .  
 
 2.3  The first canonical decomposition  In Section 1.5 we intro-
duced a vector bundle homomorphism h of the tangent bundle TJ r+1Y  into 
TJ rY  by the formula  

(1)   h! = TxJ
r" !T# r+1 $!,  

where !  is a tangent vector to the manifold J r+1Y  at a point Jx
r+1! . h makes 

the following diagram  

(2)  
TJ r+1Y h! "!! TJ rY

# #

J r+1Y $ r+1,r

! "!! J rY
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commutative, and induces a decomposition of the tangent vectors T! r+1 "# ,  

(3)  T! r+1,r "# = h# + p#.  

h!  (resp. p! ) is the horizontal (resp. contact) component of the vector ! . 
Recall that the horizontal and contact components satisfy  

(4)  T! r "h# = T! r+1 "#, T! r "h# = 0  

(1.5, Lemma 7).  
 The horizontalization h also induces a decomposition of each of the 
modules of q-forms !q

rW . Suppose that q !1 . Let  ! !"q
rW  be a q-form, 

 Jx
r+1! !W r+1 . Consider the pull-back (! r+1,r )*" , the form (! r+1,r )*"(Jx

r+1# )  
at a point Jx

r+1! , and the value 
 
(! r+1,r )*"(Jx

r+1# )($1,$2 ,…,$q )  on any tangent 
vectors !1 , !2 ,  … , !q  of J r+1Y  at Jx

r+1! . We write for each l,  

(5)  T! r+1,r "#l = h#l + p#l ,  

and substitute these vectors in the pull-back (! r+1,r )*" . Since by definitions  

(6)  

 

(! r+1,r )*"(Jx
r+1# )($1,$2 ,…,$q )

= "(Jx
r# )(T! r+1,r %$1,T!

r+1,r %$2 ,…,T! r+1,r %$q )

= "(Jx
r# )(h$1 + p$1,h$2 + p$2 ,…,h$q + p$q ),

 

we get, collecting together all terms homogeneous of degree k in the contact 
components p!1 , p!2 ,  … , p!q  of the vectors !1 , !2 ,  … !q , where 
 k = 0,1,2,…,q , a q-form pk!  on W r+1 , defined by 

(7)  
 

pk!(Jx
r+1" )(#1,#2 ,…,#q )

= $ j1 j2… jk jk+1… jq!(Jx
r" )(p# j1

,…, p# jk
,h# jk+1

,…,h# jq
)% ,

 

(summation through  j1 < j2 <…< jk  and 
 k+1

< jk+2 <…< jq ), or equivalent-
ly, by  

(8)  

 

pk!(Jx
r+1" )(#1,#2 ,…,#q )

= 1
k!(q$k)!

% j1 j2… jk jk+1… jq!(Jx
r" )(p# j1

, p# j2
,…, p# jk

,h# jk+1
,…,h# jq

)
 

(summation through all values of the indices j1 , j2 ,  … , jk , jk+1 ,  … , jq ). 
The form pk!  is called the k-contact component of the form ! .  
 If (! r+1,r )*" = pk"  or, which is the same, if pj! = 0  for all j ! k , then 
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the integer k is called the degree of contactness of the form ! . The degree 
of contactness of the q-form ! = 0  is equal to k for every  k = 0,1,2,…,q . 
We say that !  is of degree of contactness ! k , if p0! = 0 , p1! = 0 ,  … , 
pk!1" = 0 .  

 We usually write  

(9)  p0! = h!  

and call this form the horizontal component of ! . Then  

(10)  
 
h!(Jx

r+1" )(#1,#2 ,…,#q ) = !(Jx
r" )(h#1,h#2 ,…,h#q ).  

We also introduce the contact component of !  by  

(11)  
 
p! = p1! + p2! +…+ pq!.  

We shall say that !  is k-contact, if  

(12)  (! r+1,r )*" = pk".  

 Summarizing, any q-form  ! !"q
rW , where q !1 , can be expressed as  

(13)  (! r+1,r )*" = h" + p" = h" + pi
i=1

q

# " = pi
i=0

q

# ".  

This formula will be referred to as the first canonical decomposition of the 
form !  (note however, the decomposition concerns rather the pull-back 
(! r+1,r )*"  than !  itself). 
 We extend these definitions to 0-forms (functions). We define the hori-
zontal and contact components of a function f :W r ! R  as  

(14)  hf = (! r+1,r )* f , pf = 0.  

Clearly, then the first canonical decomposition (13) remains valid.  
 The following observation is immediate.  

 Lemma 2  If q ! k > n , then  

(15)  
 
h! = 0, p1! = 0, p2! = 0, …, pq"n"1 = 0.  

 Proof  Indeed, expression
 
!(Jx

r" )(p# j1
, p# j2

,…, p# jk
,h# jk+1

,…,h# jq
)  in (8) 

is a (q ! k) -linear function of vectors ! jk+1
= T" r+1 #$ jk+1

, ! jk+2
= T" r+1 #$ jk+2

, 
 … , ! jq

= T" r+1 #$ jq
, belonging to the tangent space TxX . Consequently, if 



The inverse problem of the calculus of variations   
 

105 

q ! k > n = dim X , then 
 
pk!(Jx

r+1" )(#1,#2 ,…,#q ) = 0 .  

 One can determine the chart expressions of contact components of a 
form by means of the formula 

 
(! r+1,r )*dyi1i2…ik

" =# i1i2…ik
" + yi1i2…ikl

" dxl . To this 
purpose it will be convenient to use the multi-index notation; the results can 
immediately be restated in the standard index notation.  
 We introduce multi-indices  I = (i1i2…ik ) , where  k = 0,1,2,…,r  and the 
entries are indices such that  1! i1,i2 ,…,ik ! n . The number k is the length of 
I and is denoted by | I | . If i is any integer such that 1! i ! n , we denote by 
Ii  the multi-index  Ii = (i1i2…iki) ; the length of Ii  is | Ii | = k +1 .  
 We also introduce the symbol  Alt(i1i2…ik )  to denote alternation in the 
indices  i1,i2 ,…,ik ; writing  U

i1i2…ik Alt(i1i2…ik )  we mean the skew-symmetric 
component of  Ui1i2…ik .  
 The following is a chart expression formula for the k-contact compo-
nents of some special q-forms.  

 Lemma 3  Let W be an open set in Y, an integer,  ! !"q
rW  a form, and 

let (V ,! ) , ! = (xi , y" ) , be a fibred chart on Y such that  V !W . Assume 
that !  has on V r  the chart expression 

(16)  

  

! = 1
s!(q"s)!

A#1
I1

# 2
I2…# s

Is
is+1is+2…iq

s=0

q

$ dyI1
#1 !dyI2

# 2 !…!dyIs
# s

!dxis+1 !dxis+2 !…!dxiq ,
 

with multi-indices of length r. Then the k-contact component pk!  of !  has 
on V r+1  the chart expression  

(17)  

  

pk! = 1
k!(q"k)!

B#1
I1

# 2
I2…# k

Ik
ik+1ik+2…iq

$ I1
#1 !$ I2

# 2 !…!$ Ik
# k

!dxik+1 !dxik+2 !…!dxiq ,
 

where  

(18)  

 

B!1
I1

! 2
I2…! k

Ik
ik+1ik+2…iq

= q"s
q"k( ) !A!1

I1
! 2
I2…! k

Ik
! k+1

Ik+1
! k+2

Ik+2…! s

Is
is+1is+2…iq

yIk+1ik+1
! k+1 yIk+2ik+2

! k+2 …yIsis
! s

s=k

q

#
Alt(ik+1ik+2…isis+1…iq ),

 

and 
 
!A!1
I1

! 2
I2…! k

Ik
! k+1

Ik+1
! k+2

Ik+2…! s

Is
is+1is+2…iq

 are traceless components of the coefficients 

 
A!1
I1

! 2
I2…! k

Ik
! k+1

Ik+1
! k+2

Ik+2…! s

Is
is+1is+2…iq

.  
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 Proof  To derive formula (17), we pull-back !  to V r+1  and express the 
form (! r+1,r )*"  in terms of the contact basis; in the multi-index notation the 
transformation equations are 

(19)  dxi = dxi , dyI
! =" I

! + yIi
!dxi , 0 # | I | # r  

(Theorem 5). Thus, we set in (16)  

(20)  dyIl
! l =" Il

! l + yIlil
! l dxil ,  

and consider the terms such that s !1 . Then the form 
  
dyI1

!1 !dyI2
! 2 !…!dyIs

! s  
is equal to  

(21)  
  
(! I1

"1 + yI1i1
"1 dxi1 )! (! I2

" 2 + yI2i2
" 2 dxi2 )!…! (! Is

" s + yIsis
" s dxis ).  

Collecting together all terms homogeneous of degree k in the 1-forms ! Il
" l  

we get k
s( )  summands with exactly k entries the contact 1-forms ! Il

" l . Thus, 
using symmetry properties of the components 

 
A!1
I1

!1
I1…! s

Is
is+1is+2…iq

 in (16) and 
interchanging multi-indices, we see the terms containing k entries ! Il

" l  are, 
for fixed s and each  k = 1,2,…,s , given by 

(22)  

  

1
s!(q!s)! k

s( )A"1
I1

" 2
I2…" s

Is
is+1is+2…iq

yIk+1ik+1
" k+1 yIk+2ik+2

" k+2 …yIsis
" s# I1

"1 !# I2
" 2 !…!# Ik

" k

!dxik+1 !dxik+2 !…!dxis !dxis+1 !dxis+2 !…!dxiq .
 

Expressing the factor as  

(23)  1
s!(q!s)! k

s( ) = 1
k!(q!k)!

k!(q!k)!
s!(q!s)!

s!
k!(s!k)!

= 1
k!(q!k)! q!s

q!k( ),  
we can write expression (21) as  

(24)  

  

1
k!(q!k)! q!s

q!k( )A"1
I1

" 2
I2…" s

Is
is+1is+2…iq

yIk+1ik+1
" k+1 yIk+2ik+2

" k+2 …yIsis
" s# I1

"1 !# I2
" 2

!…!# Ik
" k !dxik+1 !dxik+2 !…!dxis !dxis+1 !dxis+2 !…!dxiq .

 

 Formula (24) is valid for each  s = 1,2,…,q  and each  k = 1,2,…,s , and 
we need the sum of all these terms to get expression (16). To this purpose we 
shall use the summation defined as follows. Instead of the summation 
through the pairs (s,k) , given by the table  



The inverse problem of the calculus of variations   
 

107 

(25)  
 

s 1 2 3 … q !1 q
k 1 1,2 1,2,3 … 1,2,3,…,q !1 1,2,3,…,q

 
we pass to the summation over the pairs (k,s)  given by  

(26)  
 

k 1 2 3 … q !1 q
s 1,2,3,…,q 2,3,…,q 3,4,…,q … q !1,q q

 
 Now we can substitute from (24) back to (16). We have, with multi-
indices of length r,   

(27)  

  

! = 1
q!
Ai1i2…iq

dxi1 !dxi2 !…!dxiq

+ 1
k!(q"k)! q"s

q"k( )A#1
I1

# 2
I2…# s

Is
is+1is+2…iq

yIk+1ik+1
# k+1 yIk+2ik+2

# k+2 …yIsis
# s

k=1

s

$
s=1

q

$
%& I1

#1 !& I2
# 2 !…!& Ik

# k !dxik+1 !dxik+2 !…!dxis !dxis+1 !…!dxiq

 

hence  

(28)  

  

! = 1
q!
Ai1i2…iq

dxi1 !dxi2 !…!dxiq

+ 1
k!(q"k)! q"s

q"k( )A#1
I1

# 2
I2…# s

Is
is+1is+2…iq

s=k

q

$ yIk+1ik+1
# k+1 yIk+2ik+2

# k+2 …yIsis
# s

%
&'

(
)*k=1

q

$
+, I1

#1 !, I2
# 2 !…!, Ik

# k !dxik+1 !dxik+2 !…!dxiq .

 

 Note that in (18) the coefficients 
 
A!1
I1

! 2
I2…! k

Ik
! k+1

Ik+1
! k+2

Ik+2…! s

Is
is+1is+2…iq

 can be re-
placed with their traceless components 

 
!A!1
I1

! 2
I2…! k

Ik
! k+1

Ik+1
! k+2

Ik+2…! s

Is
is+1is+2…iq

. Indeed, 
applying to these coefficients the first trace decomposition theorem, we easi-
ly see that the Kronecker components vanish identically. Moreover, if one of 
the traces vanishes, then using index symmetries we see that all the traces 
must also vanish.  
 This proves formulas (17) and (18).  
 It remains to prove invariance of the forms (17); their independence on 
fibred charts is, however, an immediate consequence of the properties of 
contact basis (Theorem 5).  

 The operators p0 , p1 , p2 ,  … , pq  defined by formula (17), behave like 
projectors:  
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 Corollary 1  We have for any k and l  

(29)  pk pl! =
(" r+2,r+1)* pk!, k = l,
0, k # l.

$
%
&

'&
 

 The following observation is an application of Lemma 3 to the exterior 
derivative operator.  

 Corollary 2  We have for any k  

(30)  (! r+2,r+1)* pkd" = pkdpk#1" + pkdpk".  

 Proof  The first canonical decomposition applied to both sides of the 
identity d(! r+1,r )*" = (! r+1,r )*d"  gives  

(31)  
 

p0d! + p1d! + p2d! +…+ pqd! + pq+1d!
= dp0! + dp1! + dp2! +…+ dpq"1! + dpq!.

 

But from Lemma 3, the decomposition of pkd!  depends only on pkdpk!1"  
and pkdpk! , and pkd! = pkdk"1p! + pkdpp! . Decomposing both sides of 
(31) and applying Corollary 1 we get (! r+2,r+1)* pkd" = pkdpk#1" + pkdpk" .  

 The following theorem describes the local structure of the horizontaliza-
tion.  

 Theorem 9  Let W be an open set in the fibred manifold Y. Then the 
horizontalization  !

rW ! "# h" "!r+1W  is a unique R -linear, exterior-
product-preserving mapping such that for any function f :W r ! R , and 
any fibred chart (V ,! ) , ! = (xi , y" ) , with  V !W , 

(32)   hf = f !! r+1,r , hdf = di f "dx
i ,  

where 

(33)  
 
di f =

! f
!xi

+ ! f
!yj1 j2… jk

!
j1" j2"…" jk
# yj1 j2… jki

! .  

 Proof  The proof that h, defined by (10) and (14), has the desired prop-
erties, is standard. To prove uniqueness, note that (32) and (33) imply  

(34)  
 
hdxi = dxi , hdyj1 j2… jk

! = yj1 j2… jki
! dxi .  
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Now it is easy to check that any two mappings h1 , h2  satisfying the assump-
tions of Theorem 9, which agree on functions and their exterior derivatives, 
coincide. 

 Remark 4  The mapping p0 :!
rW "!r+1W  is a homomorphism of 

exterior algebras. For any positive integer k, the mapping 
pk :!

rW "!r+1W  satisfies  

(35)   pk (! +") = pk! + pk", pk ( f !) = ( f !#
r+1,r )pk!  

for any function  f !!0
rW , but is not a homomorphism of exterior algebras.  

 
 2.4  Contact components and geometric operations  The fol-
lowing theorem summarizes basic properties of contact components of a 
form with respect to differential-geometric operations, such as the wedge 
product  ! , the contraction i!  of a form by a vector ! , and the Lie deriva-
tive !"  by a vector field ! .  

 Theorem 10  Let !  and !  be two differential forms on  W
r ! J rY , 

 Jx
r! ! J rY  a point, !  a ! r+1 -vertical, ! r+1,r -projectable vector field on 

W r+1  with ! r+1,r -projection !0 , and !  a ! -projectable vector field on Y. 
Let !  be an automorphism of Y. Then for every k such that the correspond-
ing expressions are defined,  

(1)  
 
pk (!!") = pi!! pj"

i+ j=k
# ,  

(2)  i! pk" = pk#1i!0",  

(3)  pk (J
r! *") = J r+1! * pk",  

(4)  pk (!J r" #) = !J r+1" pk#,  

(5)  iJ r+1!pk" = pk (iJ r!").  

 Proof  Formulas (1) – (5) are immediate consequences of definitions: 
To get (1) we express the pull-back  (!

r+1,r )*("!#) = (! r+1,r )*"! (! r+1,r )*#  
and apply 2.3, Corollary 1. (2) follows from the definition of the horizontali-
zation of vectors. Formulas (3) and (4) follow immediately from the commu-
tativity property (! r+1,r )* J r" *# = J r$1" *(! r+1,r )*# . Finally, (5) follows 
from (2).  
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 2.5  The second canonical decomposition  The following asser-
tion, describing a decomposition of differential forms on the r-jet prolonga-
tions J rY , relative to a given fibred chart, plays a basic role in the proofs.  

 Theorem 11  (Second canonical decomposition)  Let q be arbitrary, 
and let  ! !"q

rW  be a q-form. Let (V ,! ) , ! = (xi , y" ) , be a fibered chart 
on Y such that  V !W . Then !  has on V r  a unique expression  

(1)   ! = !1 + !2 + !!,  

with the following properties:  
 (a) !1  is generated by contact 1-forms ! J

"  with 0 ! | J | ! r "1 .   
 (b) !2  is generated by contact 2-forms d! I

"  with | I | = r !1  and does 
not contain any factor ! J

" , that is,  

(2)  
  

!2 = B"1
J1

"2
J2…" p

J p
# p+1

I p+1
# p+2

I p+2…# s

Is
is+1is+2…iQ

d$ J1
"1 !d$ J2

"2 !…!d$ Lp
" p%

!dyIp+1
# p+1 !dyIp+2

# p+2 !…!dyIs
# s !dxis+1 !dxis+2 !…!dxiQ ,

 

where the summation is taking place through p !1 , q = p +Q , the multi-
indices satisfy  

(3)  
 
0 ! | J1 |, | J2 |,…, | J p | ! r "1, | I p+1 |, | I p+2 |,…, | I p+s | = r,  

 and the components 
 
B!1
J1

!2
J2…! p

J p
" p+1

I p+1
" p+2

I p+2…" p

I p
il+p+1il+p+2…iQ  are completely traceless.  

 (c)  !!  has an expression  

(4)  

  

!! = Ci1i2…iq
dxi1 !dxi2 !…!dxiq

+C"1
I1

i2i3…iq
dyI1

"1 !dxi2 !dxi3 !…!dxiq

+C"1
I1

" 2
I2

i2i3…iq
dyI1

"1 !dyI2
" 2 !dxi3 !dxi4 !…!dxiq

+…+C"1
I1

" 2
I2…" q#1

Iq#1
iq
dyI1

"1 !dyI2
" 2 !…!dyIq#1

" q#1 !dxiq

+C"1
I1

" 2
I2…" q

Iq dyI1
"1 !dyI2

" 2 !…!dyIq
" q ,

 

where 
 
| I1 |,| I2 |,…,| Iq!1 | = r , and all the components 

 
C!1

I1
i2i3…iq

, 
 
C!1

I1
! 2
I2

i2i3…iq
, 

 … , 
 
C!1

I1
! 2
I2…! q"1

Iq"1
i2i3…iq  are completely traceless.  

 Proof  Express !  in the contact basis. Then ! = µ0 + "µ , where µ0  is 
generated by contact 1-forms ! J

"  with 0 ! | J | ! r "1 and !µ  is of the form  
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(5)  

  

!µ = Ai1i2…iq
dxi1 !dxi2 !…!dxiq

+ A"1
I1

i2i3…iq
dyI1

"1 !dxi1 !dxi2 !…!dxiq

+ A"1
I1

" 2
I2

i2i3…iq
dyI1

"1 !dyI2
" 2 !dxi3 !dxi4 !…!dxiq

+…+ A"1
I1

" 2
I2…" q#1

Iq#1
iq
dyI1

"1 !dyI2
" 2 !…!dyIq#1

" q#1 !dxiq

+ A"1
I1

" 2
I2…" q

Iq dyI1
"1 !dyI2

" 2 !…!dyIq
" q ,

 

where 
 
| I1 |,| I2 |,…,| Iq!1 | = r . Applying to the coefficients 

 
A!1
I1

i2i3…iq
, 

 
A!1
I1

! 2
I2

i2i3…iq
,  … , 

 
A!1
I1

! 2
I2…! q"1

Iq"1
iq  the complete trace decomposition theorem, we 

get formula (1) satisfying conditions (a), (b), and (c).  

 Formula (1) is the second canonical decomposition of the form ! . The 
form  !!  is defined in a given fibred chart uniquely, and is sometimes called 
the traceless component of ! .  
 
 2.6  Fibred homotopy operators  In this section we study differen-
tial forms, defined on the trivial fibred manifold U !V , whose base U is an 
open set in Rn , and V is an open ball in Rm  with centre at the origin. Our 
aim will be to investigate properties of the exterior derivative operator and 
differential equations, related with this operator. As a particular case we dis-
cuss the fibred homotopy operator on the s-jet prolongation W s = J s (U !V )  
of the Cartesian product W =U !V . 
 First we consider a differential form !  on an open ball V in the Euclid-
ean space Rn  with centre at the origin. We shall study the equation  

(1)  d! = "  

for an unknown (k !1) -form !  on V; if !  exists, it is called a solution of 
equation (1).  
 Consider an open ball  V !R

m  with centre 0, and denote by y!  the ca-
nonical coordinates on V. Define a mapping ! : 0,1[ ]"V #V  by 

(2)  !(s, y" ) = (sy" ).  

Then 

(3)  ! *dy" = y"ds + sdy" .  

For any k-form !  on V, where k !1 , consider the pull-back ! *"  which is 
a k-form on the set 0,1[ ]!V . Obviously, there exists a unique decomposi-
tion  
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(4)   ! *" = ds! " (0) (s)+ #" (s),  

such that the k-forms ! (0) (s)  and !" (s)  do not contain ds . Note that by (3), 
!" (s)  arises from !  by replacing each factor dy!  with sdy! , and by replac-

ing each coefficient f with  f ! ! . Thus, !" (s)  obeys 

(5)  !" (1) = ", !" (0) = 0.  

 Let k be a positive integer. Define for every k-form !  

(6)  I! = ! (0) (s)
0

1

" ,  

where the expression on the right-hand side means integration of the coeffi-
cients in the form ! (0) (s)  over s from 0 to 1.  

 Lemma 4  Let V be an open ball in Rm  with centre 0. 
 (a) For every differentiable function f :V ! R ,  

(7)  f = Idf + f (0).  

 (b) Suppose that k !1 . Then for any differential k-form !  on V, 

(8)  ! = Id! + dI!.  

 Proof  1. If f is a function, then df = (! f / !y! )dy! , and we have by (3) 
 ! *df = ((! f / !y

" )! ! ) #(y"ds + sdy" ) . Consequently,  

(9)  
 
Idf = y! ! f

!y!
! "#

$%
&
'(
ds

0

1

) .  

Now (7) follows from the identity 

(10)  

  

f ! f (0) = ( f ! " )|s=1 !( f ! " )|s=0=
d( f ! " )
ds

ds
0

1

#
= y$ ! f

!y$
! "%

&'
(
)*
ds

0

1

# .
 

 2.  Let k = 1 . Then !  has an expression ! = B"dy
" , and the pull-back 

! *"  is given by  ! *" = y# (B# ! ! )ds + (B# ! ! )sdy
# . Differentiating we 

get from this formula  
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(11)  

   

! *d" = d! *" = ds! #d(y$ (B$ ! ! )+
((B$ ! ! )s)

s
dy$%

&'
(
)*

+ s (B$ ! ! )
y+

dy+ !dy$ ,
 

hence  

(12)  
 
I! = y" B" ! # $ds

0

1

% .  

Thus,  

(13)  
 
Id! = !((B" ! # )s)

!s
$ !(y

% &B% ! # )
!y"

'
()

*
+,
ds

0

1

- &dy" ,  

and 

(14)  
 
dI! = !(y" #B" ! $ )

!y%
ds

0

1

& #dy% .  

Consequently, 

(15)  

  

Id! + dI! = !((B" ! # )s)
!s

$
%

&
' ds0

1

( )dy"

= ((B" ! # ) s)|s=1 *(B" ! # ) s)|s=0 )dy
"

= !.  

 3. Let k ! 2 . Write !  in the form 

(16)   ! = dy" !#" ,  

and define differential forms !"
(0) (s)  and !"# (s)  by  

(17)   ! *"# = ds!"#
(0) (s)+ $"# (s).  

Then 

(18)  

 

! *" = (sdy# + y#ds)!(ds!$#
(0) (s)+ %$# (s))

= sdy# !(ds!$#
(0) (s)+ %$# (s))+ y

#ds! %$# (s)
= ds!("sdy# !$#

(0) (s)+ y# %$# (s))+ sdy
# ! %$# (s).
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Thus, 

(19)  
 
I! = ("sdy# !$#

(0) (s)+ y# %$# (s))0

1

& .  

 To determine Id! , we compute ! *d" . We get 

(20)  

 

! *d" = d! *"
= #ds! (sdy$ !d%$

(0) (s)+ dy$ ! &%$ (s)+ y
$d &%$ (s))

# dy$ !d(s &%$ (s)))
= ds! #sdy$ !d%$

(0) (s)# dy$ ! &%$ (s)(
# y$d &%$ (s)+ dy

$ !
!(s &%$ (s))

!s
'
( # dy

$ !dy) ! !(s &%$ (s))
!y)

,

 

where !!(s) / !s  denotes the form, arising from !(s)  by differentiation with 
respect to s, followed by multiplication by ds . Now by (20) and (6), 

(21)  

 

Id! = "dy# ! sd$#
(0) (s)

0

1

% " dy# ! &$# (s)0

1

%
" y# d &$# (s)0

1

% + dy# ! !(s &$# (s))
!s0

1

%
 

It is important to notice that the exterior derivatives d!"
(0) (s) , and d !"# (s)  

have the meaning of the derivatives with respect to y!  (the terms containing 
ds  are cancelled; see the definition of I (4), (6)).  
 Now we easily get 

(22)  
 
Id! + dI! = dy" ! !(s #$" (s))

!s0

1

% .  

Remembering that the integral symbol denotes integration of coefficients in 
the corresponding forms with respect to the parameter s from 0 to 1, and us-
ing (5), one obtains 

(23)  
 

Id! + dI! = dy" !(1# $%" (1)& 0 # $%" (0))
= dy" ! $%" (1) = dy

" !%" = !,  

as desired.  

 As an immediate consequence, we get the following statement.  



The inverse problem of the calculus of variations   
 

115 

 Lemma 5 (The Volterra-Poincare lemma)  Let V be an open ball in 
Rm  with centre 0, !  a differential k-form on V, where k !1 . The following 
two conditions are equivalent:  
 (a) There exists a form !  on V such that 

(24)  d! = "  

 (b) !  satisfies  

(25)  d! = 0.  

 Proof  If d! = "  for some ! , we have d! = dd" = 0 . Conversely, if 
d! = 0 , we take ! = I"  in Lemma 4.  

 Condition (25) is sometimes called integrability condition for the differ-
ential equation (24).  
 We now consider differential equations for differential forms, defined 
on the Cartesian product of open sets in Euclidean spaces, more general than 
equations (1). We suppose we are given an open set U in Rn , and an open 
ball V in Rm  with centre at the origin. We denote by !  the first Cartesian 
projection of U !V  onto U. Let k be a positive integer, and let !  be a k-
form on U !V . We study the equation  

(26)  d! +" *!0 = #  

for the unknowns a (k !1) -form !  on U !V , and a k-form !0  on U. Any 
pair (!,!0 )  satisfying (26) is called a solution of equation (26). 
 We denote by (xi , y! )  the canonical coordinates on U !V , and by 
! :U"U #V  the constant zero section of U !V . We define a mapping 
! :[0,1]"U "V #U "V  by 

(27)  !(s,(xi , y" )) = (xi ,sy" ).  

Then  

(28)  ! *dxi = dxi , ! *dy" = y"ds + sdy" .  

For any k-form !  on U !V , where k !1 , consider the pull-back ! *"  
which is a k-form on the set [0,1]!U !V . Obviously, there exists a unique 
decomposition  

(29)   ! *" = ds! " (0) (s)+ #" (s)  

such that the k-forms ! (0) (s)  and !" (s)  do not contain ds . Note that by 
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(28), !" (s)  arises from !  by replacing each factor dy!  by sdy! , and by 
replacing each coefficient f by  f ! ! ; the factors dxi  remain unchanged. 
Thus, !" (s)  obeys 

(30)  !" (1) = ", !" (0) = # *$ *".  

 Let k !1 . We define  

(31)  I! = ! (0) (s)
0

1

" ,  

where the expression on the right means integration of the coefficients in the 
form ! (0) (s)  over s from 0 to 1.  

 Theorem 12  Let  U !R
n  be an open set, and let  V !R

m  be an open 
ball with centre 0.  
 (a) For every differentiable function f :U !V " R ,  

(32)  f = Idf +! *" * f .  

 (b) Let k !1 . Then for every differential k-form !  on U !V , 

(33)  ! = Id! + dI! +" *# *!.  

 Proof  1. We have 

(34)  df = ! f
!xi

dxi + ! f
!y!

dy! ,  

and by (28)  

(35)  
 
! * f = ! f

!xi
! !"

#
$
% dx

i + ! f
!y&
! !"

#'
$
%(
(y&ds + sdy& ).  

Now the identity 

(36)  

  

f !" *# * f = f ! $ |s=1 ! f ! $ |s=0

= d( f ! $ )
ds

ds
0

1

% = y& ! f
!y&
! $'

()
*
+,
ds

0

1

% = Idf ,
 

which follows from (31), gives the result. 
 2.  Consider the case k = 1 . Then the form !  has an expression 
! = Aidx

i + B"dy
" , thus 
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(37)  
 

! *" = (Ai ! ! )dx
i + (B# ! ! )(sdy

# + y#ds)
= y# (B# ! ! )ds + (Ai ! ! )dx

i + (B# ! ! )sdy
# ,

 

and  

(38)  

  

! *d" = d! *"

= ds! #d(y$ (B$ ! ! ))+
!(Ai ! ! )
!s

dxi + !((B$ ! ! )s)
!s

dy$%
&

'
(

+ !(Ai ! ! )
!x j

dx j + !(Ai ! ! )
!y)

dy)%
&*

'
(+
!dxi

+ s !(B$ ! ! )
!x j

dx j + !(B$ ! ! )
!y)

dy)%
&*

'
(+
!dy$ ,

 

hence 

(39)  
 
I! = y" B" ! # $ds

0

1

% ,  

and 

(40)  

 

Id! = !(Ai ! " )
!s

# !(y
$ %B$ ! " )
!xi

&
'(

)
*+
ds

0

1

, %dxi

+ !((B- ! " )s)
!s

# !(y
$ %B$ ! " )
!y-

&
'(

)
*+
ds

0

1

, %dy- ,
 

and 

(41)  
 
dI! = y" !(B" ! # )

!xi
ds

0

1

$ %dxi + !(y& %B& ! # )
!y"

ds
0

1

$ %dy" .  

Consequently, 

(42)  
  

Id! + dI! = Ai ! " |s=1 #Ai ! " |s=0 +(B$ ! " % s)|s=1 #(B$ ! " % s)|s=0
= ! #& *' *!.

 

 Let k ! 2 . Write !  in the form  ! = dxi !"i + dy
# !$# , and define 

differential forms !i
(0) (s) , !"i (s) , !"

(0) (s)  by 

(43)   ! *"i = ds!"i
(0) (s)+ #"i (s), ! *$% = ds!$%

(0) (s)+ #$% (s).  
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Then 

(44)  

 

! *" = dxi ! (ds!#i
(0) (s)+ $#i (s))

+ (sdy% + y%ds)! (ds!&%
(0) (s)+ $&% (s))

= ds! ('dxi !#i
(0) (s)' sdy%&%

(0) (s)+ y% $&% (s))
+ dxi ! $#i (s)+ sdy

% + sy% $&% (s)).

 

Thus, 

(45)  
 
I! = "dxi ! #i

(0) (s)
0

1

$ " dy% ! (s&%
(0) (s)+ y% '&% (s))ds0

1

$ .  

 To determine Id! , we compute ! *d" . We get  

(46)  

 

! *d" = d! *"
= #ds! (dxi !d$i

(0) (s))+ sdy% !d&%
(0) (s)+ dy% ! '&% (s)

+ y%d '&% (s))# dx
i !d '$i (s)# dy

% !d(s '&% (s)))

= ds! #dxi!d$i
(0)(s))+dxi!! '$i (s)

!s
(
)* # sdy% !d&%

(0) (s)

# dy% ! '&% (s)# y
%d '&% (s)+ dy

% !
!(s '&% (s))

!s
+
,

# dxi ! dx j ! ! '$i (s)
!x j

+ dy- ! ! '$i (s)
!y-

(
)*

+
,.

# dy% ! dx j ! !(s '&% (s))
!x j

+ dy- ! !(s '&% (s))
!y-

(
)*

+
,.
,

 

where  !!(s)/!s  denotes the form, arising by differentiation of !(s)  with 
respect to s, followed by multiplication by ds . Now by (45) and (30), 

(47)  

 

Id! = "dxi ! d#i
(0) (s)

0

1

$ " dy% ! sd&%
(0) (s)

0

1

$ " dy% ! '&% (s)0

1

$
" y% d '&% (s)0

1

$ + dxi ! ! '#i (s)
!s0

1

$ + dy% ! !(s '&% (s))
!s

.
0

1

$
 

Note that the expressions d!i
(0) (s) , d!"

(0) (s) , and d !"# (s)  have the mean-
ing of the exterior derivatives with respect to xi , y!  (the terms containing 
ds  are cancelled; see the definition of I (30), (31)).  
 Now we easily get 
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(48)  
 
Id! + dI! = dxi ! ! "#i (s)

!s0

1

$ +dy% ! !(s "&% (s))
!s0

1

$ ,  

and using formula (30), one obtains 

(49)  

 

Id! + dI! = dxi ! ( "#i (1)$ "#i (0))+dy% ! (1& "'% (1)$ 0 & "'% (0))
= dxi ! "#i (1)+dy% ! "'% (1)$ dx

i ! "#i (0)
= dxi !#i +dy% !'% $ dxi !( *) *#i

= ! $( *) *!.

 

 As a consequence, we have the following statement.  

 Theorem 13 (The fibred Volterra-Poincare lemma)  Let  U !R
n  be 

an open set,  V !R
m  an open ball with centre 0. Let k be a positive integer, 

and let !  be a differential k-form on U !V . The following two conditions 
are equivalent:  
 (a) There exist a (k !1) -form !  on U !V  and a k-form !0  on U such 
that 

(50)  d! +" *!0 = #.  

 (b) The form d!  is ! -projectable.  

 Proof  Suppose we have some forms !  and !0  satisfying condition (a). 
Then d! = d" *#0 = " *d#0  proving (b). Conversely, if d!  is ! -
projectable, then by the definition of I, Id! = 0 , and then (a) follows from 
the identity ! = Id! + dI! +" *# *! = d$ +" *$0  (Theorem 12).  

 We also get two assertions that concern projectability of forms, and 
non-uniqueness of solutions of equation (26).  

 Corollary 1  Let  U !R
n  be an open set,  V !R

m  an open ball with 
centre the origin 0, !  a differential form on U !V . The following two con-
ditions are equivalent: 
 (1) There exists a form !  on U such that ! = "#$ . 
 (2) Id! + dI! = 0 .  
 Proof  This follows from Theorem 12.  

 Corollary 2  Suppose that the form d!  is ! -projectable. Let (!,!0 )  
and  ( !!, !!0 )  be two solutions of equation (26). Then there exist a (p !1) -
form !  on U !V  and a (p !1) -form !  on U such that  
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(51)   !! =! +" *# + d$ , !!0 =!0 % d#.  

 Proof  By hypothesis,  

(52)   d! +" *!0 = #, d !! +" * !!0 = #.  

These equations imply  d! +" *!0 = d !! +" * !!0  hence  ! *d"0 = ! *d !"0 . 
But for any section !  of the projection ! ,  

(53)   ! *" *d#0 = d#0 = ! *" *d !#0 = d !#0 .  

Thus, by the Volterra-Poincaré lemma,  !!0 "!0 = d#  for some ! . Then, 
however,  d! +" *!0 = d !! +" *(!0 + d# ) , and  

(54)   d(! " !! "# *$ ) = 0  

Applying the Volterra-Poincaré lemma again we get (51).  

 Remark 5  Let X be an n-dimensional manifold. Every point  x! X  has 
a neighbourhood U such that the decomposition of forms, given in Lemma 4, 
is defined on U. Indeed, if (U,! )  is a chart at x such that !(U )  is an open 
ball with centre  0!Rn , then formulas ! =" *µ  and (!"1)*# = µ  establish 
a bijective correspondence between forms on U and !(U ) , that commutes 
with the exterior derivative d. Note, however, that in general, this corre-
spondence does not allow us to construct solutions of exterior differential 
equations (1) and (26), defined globally on X. 

 In our subsequent constructions we need the fibred homotopy operator 
on the s-jet prolongation W s = J s (U !V )  of the Cartesian product 
W =U !V ; explicitly,   

(55)  
 
W s =U !V ! L(Rn ,Rm )! Lsym

2 (Rn ,Rm )!…! Lsym
s (Rn ,Rm ),  

where Lsym
k (Rn ,Rm )  is the vector space of k-linear, symmetric mappings 

from Rn  to Rm . The Cartesian coordinates on V and the associated jet coor-
dinates on W s  are denoted by xi , y!  and 

 
xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… js

! , respec-
tively. We have a mapping ! s  from the set [0,1]!W s  to W s , given by 

(56)  
 
! s (t,(x

i , y" , yj1
" , yj1 j2

" ,…, yj1 j2… js
" )) = (xi ,ty" ,tyj1

" ,tyj1 j2
" ,…,tyj1 j2… js

" ).  

! s  defines the fibered homotopy operator Is , assigning to a k-form !  on 
V s , where k !1 , a (k !1) -form Is!  on W s . To recall the definition of Is , 
it is convenient to use a multi-index notation. Suppose we have a form 

 ! !"q
sW , expressed by  
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(57)  

  

! = 1
j!(q" j)!

A#1
I1

# 2
I2…# j

I j
i j+1i j+2…ik

0$ j$q
% dyI1

#1 !dyI2
# 2 !…!dyI j

# j

!dxij+1 !dxij+2 !…!dxiq ,
 

where the multi-indices are of the form  I = (p1p2…pk ) , and | I | = k  is the 
length of I; the summation in (57) is taking place through multi-indices of 
length ! s . Then  

(58)  Is! = Is,0!0

1

"  

(integration through t from 0 to 1), where Is,0!  is defined by the decomposi-
tion  

(59)  
 
!*

s
" = dt! Is,0" + #Is"  

such that the forms Is,0!  and !Is"  do not contain dt . The mapping ! s  satis-
fies  

(60)  
!*

s
dxi = dxi , !*

s
dyJ

" = yJ
"dt + tdyJ

" , 0 # | J | # s,

!*
s
$ J

" = yJ
"dt + t$ J

" , 0 # | J | # s %1.
 

We have from (60)  

(61)  

  

!*
s
" = 1

j!(q# j)!
A$1
I1

$ 2
I2…$ j

I j
i j+1i j+2…iq

j=1

q

% ! ! s &(yI1
$1dt + tdyI1

$1 )

! (yI2
$ 2dt + tdyI2

$ 2 )!…! (yI j
$ j dt + tdyI j

$ j )!dxij+1 !dxij+2 !…!dxiq ,
 

hence  

(62)  

  

Is,0! = 1
( j"1)!(q" j)!

yI1
#1A#1

I1
# 2
I2…# j

I j
i j+1i j+2…iq

j=1

q

$ ! % s & t
j"1

&dyI2
# 2 !dyI3

# 3 !…!dyI j
# j !dxij+1 !dxij+2 !…!dxiq ,

 

and  
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(63)  

  

Is! = yI1
"1 1

( j#1)!(q# j)!
A"1
I1

" 2
I2…" j

I j
i j+1i j+2…iq

! $ s % t
j#1 dt

0

1

&
j=1

q

'
%dyI2

" 2 !dyI3
" 3 !…!dyI j

" j !dxij+1 !dxij+2 !…!dxiq .
 

 In the following theorem !  is the zero section of W s  over U.  

 Theorem 14  (a)  The mapping ! s  satisfies  

(64)  ! = Isd! + dIs! + (" s )*# *!.  

 (b) If d! = 0 , then there exists a (q !1) -form !  such that   

(65)  ! = d".  

 Proof  For the proof see Theorem 13. Clearly, condition d! = 0  implies 
d! *" = 0 ; thus, to prove (65) we can integrate the form ! *"  by means of 
the standard Volterra-Poincaré lemma, and then apply formula (64).  


