3 Variational structures on fibred manifolds

3.1 Variational structures By a *variational structure* we mean in this work a pair (Y,ρ) , where Y is a fibred manifold over an *n*-dimensional manifold X with projection π and ρ is an *n*-form on the *r*-jet prolongation $J^{r}Y$.

Suppose that we have a variational structure (Y,ρ) . Let $W \subset Y$ be an open set, and let $\Omega \subset \pi(W)$ be a compact, *n*-dimensional submanifold of *X* with boundary (a *piece* of *X*). Denote by $\Gamma_{\Omega,W}(\pi)$ the set of smooth sections of π over Ω , such that $\gamma(\Omega) \subset W$. Then for any section $\gamma \in \Gamma_{\Omega,W}(\pi)$ of *Y*, the pull-back $J^r \gamma^* \rho$ is an *n*-form on a neighbourhood of Ω . Integrating $J^r \gamma^* \rho$ on Ω , we get a real function $\Gamma_{\Omega,W}(\pi) \ni \gamma \to \rho_{\Omega}(\gamma) \in \mathbf{R}$, defined by

(1)
$$\rho_{\Omega}(\gamma) = \int_{\Omega} J^r \gamma * \rho.$$

 ρ_{Ω} is called the *variational functional*, associated with (Y, ρ) (over Ω).

The objective of the variational analysis on fibred manifolds is to study the behaviour of variational functionals ρ_{Ω} on the set of sections $\Gamma_{\Omega}(\pi)$, or on subsets of this set, defined by some additional conditions (*constraints*). In general, the set $\Gamma_{\Omega}(\pi)$ has no natural algebraic and topological structure; this fact prevents, in particular, to immediately apply to ρ_{Ω} the methods of the differentiation theory in topological vector spaces. Instead, the *variational method* is used, which consists of the study of the behaviour of each section $\gamma \in \Gamma_{\Omega}(\pi)$ on its 1-parameter deformations (variations) within $\Gamma_{\Omega}(\pi)$, and of the corresponding induced deformations (variations) of the value $\rho_{\Omega}(\gamma)$ of ρ_{Ω} . The variational geometry studies geometric, coordinate-independent properties of ρ_{Ω} .

coordinate-independent properties of ρ_{Ω} . For every *r* we denote by $\Omega_{n,X}^r W$ the submodule of the module $\Omega_n^r W$, consisting of π^r -horizontal forms. Elements of the set $\Omega_{n,X}^r W$ are called *Lagrangians* (of order *r*) for the fibred manifold *Y*.

Let $\rho \in \Omega_n^r W$. There exists a unique Lagrangian $\lambda_{\rho} \in \Omega_{n,X}^{r+1} W$ such that

(2)
$$J^{r+1}\gamma * \lambda_{\rho} = J^{r}\gamma * \rho$$

for all sections γ of Y. The *n*-form λ_{ρ} can alternatively be defined by the first canonical decomposition to the form ρ (Section 2.1)

(3)
$$(\pi^{r+1,r})^* \rho = h\rho + p_1\rho + p_2\rho + \dots + p_n\rho$$

as the *horizontal component* of ρ ,

(4)
$$\lambda_{\rho} = h\rho$$
.

Property (2) says that the variational functional ho_{Ω} can also be expressed as

(5)
$$\rho_{\Omega}(\gamma) = \int_{\Omega} J^{r+1} \gamma * \lambda_{\rho}.$$

The $\pi^{r+1,r}$ -horizontal *n*-form λ_{ρ} is called the *Lagrangian*, *associated with* the *n*-form ρ .

We give the chart expressions of ρ and $h\rho$ in a fibred chart (V,ψ) , $\psi = (x^i, y^{\sigma})$, on Y (or, more exactly, in the associated charts on J^rY and $J^{r+1}Y$). Recall that in multi-index notation the contact basis of 1-forms on V^r (and analogously on V^{r+1}) is defined to be the basis $(dx^i, \omega_J^{\sigma}, dy_I^{\sigma})$, where the multi-indices satisfy $0 \le |J| \le r-1$, |I| = r, and

(6)
$$\omega_J^{\sigma} = dy_J^{\sigma} - y_{Jj}^{\sigma} dx^j.$$

We also associate with the given chart the *n*-form (considered on $U = \pi(V) \subset X$, and also on V^r)

(7)
$$\omega_0 = dx^1 \wedge dx^2 \wedge \ldots \wedge dx^n,$$

sometimes called the *local volume form*, associated with (V, ψ) .

According to the second canonical decomposition theorem (2.3, Theorem 13), ρ has an expression

(8)
$$\rho = \sum_{0 \le |J| \le r-1} \omega_J^{\sigma} \wedge \Phi_J^J + \sum_{|J|=r-1} d\omega_J^{\sigma} \wedge \Psi_\sigma^J + \rho_0,$$

where

$$(9) \qquad \rho_{0} = A_{i_{1}i_{2}...i_{n}} dx^{i_{1}} \wedge dx^{i_{2}} \wedge ... \wedge dx^{i_{n}} \\ + A_{\sigma_{1}}^{J_{1}}{}_{i_{2}i_{3}...i_{n}} dy^{\sigma_{1}}_{J_{1}} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}} \\ + A_{\sigma_{1}}^{J_{1}}{}_{J_{2}}{}_{i_{3}i_{4}...i_{n}} dy^{\sigma_{1}}_{J_{1}} \wedge dy^{\sigma_{2}}_{J_{2}} \wedge dx^{i_{3}} \wedge dx^{i_{4}} \wedge ... \wedge dx^{i_{n}} \\ + ... \\ + A_{\sigma_{1}}^{J_{1}}{}_{J_{2}}{}_{...i_{n-1}}{}_{i_{n}} dy^{\sigma_{1}}_{J_{1}} \wedge dy^{\sigma_{2}}_{J_{2}} \wedge ... \wedge dy^{\sigma_{n-1}}_{J_{n-1}} \wedge dx^{i_{n}} \\ + A_{\sigma_{1}}^{J_{1}}{}_{J_{2}}{}_{...i_{n}}{}_{\sigma_{n}} dy^{\sigma_{1}}_{J_{1}} \wedge dy^{\sigma_{2}}_{J_{2}} \wedge ... \wedge dy^{\sigma_{n}}_{J_{n-1}},$$

and the coefficients $A_{\sigma_1 \sigma_2}^{J_1 J_2} \dots J_s^{J_s}$ are traceless. Then $h\rho = h\rho_0$ because h

is an exterior algebra homomorphism, annihilating the contact forms ω_J^{σ} and $d\omega_I^{\sigma}$. Thus,

(10)
$$\lambda_{\rho} = (A_{i_{1}i_{2}...i_{n}} + A_{\sigma_{1}\ i_{2}i_{3}...i_{n}}^{J_{1}}y_{J_{1}i_{1}}^{\sigma_{1}} + A_{\sigma_{1}\ \sigma_{2}\ i_{3}i_{4}...i_{n}}^{J_{1}\ J_{2}}y_{J_{1}i_{1}}^{\sigma_{2}}y_{J_{2}i_{2}}^{\sigma_{2}} + \dots + A_{\sigma_{1}\ \sigma_{2}}^{J_{1}\ J_{2}}\dots_{\sigma_{n-1}\ i_{n}}^{J_{n-1}}y_{J_{1}i_{1}}^{\sigma_{2}}y_{J_{2}i_{2}}^{\sigma_{n-1}} + A_{\sigma_{1}\ \sigma_{2}}^{J_{1}\ J_{2}}\dots_{\sigma_{n}\ \sigma_{n}}^{J_{n}\ J_{n}}y_{J_{1}i_{1}}^{\sigma_{1}}y_{J_{2}j_{2}}^{\sigma_{2}}\dots y_{J_{n-1}i_{n-1}}^{\sigma_{n-1}\ J_{n-1}\ J_{$$

Using the local volume form (7) we also write

(11)
$$\lambda_{\rho} = \mathcal{L}\omega_0,$$

where

(12)
$$\mathscr{L} = \varepsilon^{i_1 i_2 \dots i_n} (A_{i_1 i_2 \dots i_n} + A_{\sigma_1 \ i_2 i_3 \dots i_n}^{J_1} y_{J_1 i_1}^{\sigma_1} + A_{\sigma_1 \ \sigma_2 \ i_3 i_4 \dots i_n}^{J_1 \ J_2} y_{J_1 i_1}^{\sigma_1} y_{J_2 i_2}^{\sigma_2} + \dots + A_{\sigma_1 \ \sigma_2}^{J_1 \ J_2} \dots y_{\sigma_{n-1} \ i_n}^{J_{n-1}} y_{J_1 i_1}^{\sigma_1} y_{J_2 i_2}^{\sigma_2} \dots y_{J_{n-1} i_{n-1}}^{\sigma_{n-1}} + A_{\sigma_1 \ \sigma_2}^{J_1 \ J_2} \dots y_{J_n i_n}^{\sigma_n} y_{J_1 i_1}^{\sigma_1} y_{J_2 j_2}^{\sigma_2} \dots y_{J_n i_n}^{\sigma_n}).$$

 \mathscr{L} is a function on V^{r+1} called the *Lagrange function*, associated with ρ (or with the Lagrangian λ_{ρ}).

Remark 1 Sometimes the integration domain Ω in the variational functional ρ_{Ω} is not fixed, but is arbitrary. Then formula (1) defines a *family* of variational functionals labelled by Ω .

Remark 2 Orientability of the base X of the fibred manifold Y is not an essential assumption; replacing differential forms by *twisted base differential forms*, one can also develop the variational theory for *non-orientable* bases X (Krupka [10]). Variational functionals, defined on fibred manifolds over non-orientable bases, appear in the general relativity theory and field theory.

Remark 3 (The structure of Lagrange functions) Formulas (11) and (12) describe *general structure* of the Lagrangians, associated with the class of variational functionals (1). The Lagrange functions \mathcal{L} that appear in chart descriptions of the Lagrangians are multi-linear, symmetric functions of the variables y_I^{σ} , where |I| = r+1.

Remark 4 (Lagrangians) The subset $\Omega_{n,x}^r W$ of forms, defining variational functionals (1), contains π^r -horizontal forms $\rho = A_{i_i i_2...i_n} dx^{i_1} \wedge dx^{i_2} \wedge ... \wedge dx^{i_n}$ (Lagrangians of order r). Then the associated Lagrangians λ_ρ coincide with ρ . Since $dx^{i_1} \wedge dx^{i_2} \wedge ... \wedge dx^{i_n} = \varepsilon^{i_i i_2...i_n} \omega_0$, each Lagrangian can also be written in the form $\rho = \mathcal{L}\omega_0$. Concrete variational functionals are usually defined in this way.

The following lemma describes all *n*-forms $\rho \in \Omega_n^r W$, whose associated Lagrangians belong to the same module $\Omega_n^r W$, that is, are of order *r*.

Lemma 1 For a form $\rho \in \Omega_n^r W$ the following two conditions are equivalent:

- (1) The Lagrangian λ_{ρ} is defined on $J^{r}W$.
- (2) In any fibred chart (V, ψ) , $\psi = (x^i, y^{\sigma})$, ρ has an expression

(13)
$$\rho = \mathscr{L}\omega_0 + \sum_{0 \le |J| \le r-1} \omega_J^{\sigma} \wedge \Phi_{\sigma}^J + \sum_{|J|=r-1} d\omega_J^{\sigma} \wedge \Psi_{\sigma}^J$$

for some function \mathcal{L} and some forms Φ_{σ}^{J} and Ψ_{σ}^{J} .

Proof This follows from (4) and (12).

3.2 Variational derivatives Let U be an open subset of X, let $\gamma: U \to Y$ be a section. Let Ξ be a π -projectable vector field on an open set $W \subset Y$ such that $\gamma(U) \subset W$. If α_t is the local 1-parameter group of Ξ , and $\alpha_{(0)t}$ its π -projection, then

(1)
$$\gamma_t = \alpha_t \gamma \alpha_{(0)t}^{-1}$$

is a 1-parameter family of *sections* of *Y*, depending smoothly on the parameter *t*: Indeed, since $\pi \alpha_t = \alpha_{(0)t} \pi$, we have

(2)
$$\pi \gamma_t(x) = \pi \alpha_t \gamma \alpha_{(0)t}^{-1}(x) = \alpha_{(0)t} \pi \gamma \alpha_{(0)t}^{-1}(x) = \alpha_{(0)t} \alpha_{(0)t}^{-1}(x) = x$$

on the domain of γ_t . The family γ_t is called the *variation*, or *deformation*, of the section γ , *induced* by the vector field Ξ .

Recall that a vector field along γ is a mapping $\Xi: U \to TY$ such that $\Xi(x) \in T_{\gamma(x)}Y$ for every point $x \in U$. Given Ξ , formula

$$(3) \qquad \xi = T\pi \cdot \Xi$$

then defines a vector field ξ on U, called the π -projection of Ξ .

The following theorem says that every vector field along a section γ can be extended to a π -projectable vector field, defined on an open set. Moreover, the *r*-jet prolongation of the extended field, considered along $J^r \gamma$, is independent of the prolongation.

Theorem 1 Let γ be a section of Y defined on an open set $U \subset X$, let Ξ a vector field along γ .

(a) There exists a π -projectable vector field Ξ , defined on a neighbourhood of the set $\gamma(U)$, such that for each $x \in U$

(4)
$$\tilde{\Xi}(\gamma(x)) = \Xi(x).$$

(b) Any two π -projectable vector fields Ξ_1 , Ξ_2 , defined on a neighbourhood of $\gamma(U)$, such that $\Xi_1(\gamma(x)) = \Xi_2(\gamma(x)) = \Xi(x)$ for all $x \in U$, satisfy

(5)
$$J^{r}\Xi_{1}(J^{r}_{x}\gamma) = J^{r}\Xi_{2}(J^{r}_{x}\gamma).$$

Proof (a) Choose a point $x_0 \in U$ and a fibred chart (V_0, ψ_0) , $\psi_0 = (x_0^i, y_0^{\sigma})$, at the point $\gamma(x_0) \in Y$ such that $\gamma(\pi(V_0)) \subset V_0$. In this chart

(6)
$$\xi(\gamma(x)) = \xi^{i}(x) \left(\frac{\partial}{\partial x^{i}}\right)_{\gamma(x)} + \Xi^{\sigma}(x) \left(\frac{\partial}{\partial y^{\sigma}}\right)_{\gamma(x)}.$$

We set for any $y \in V_0$, $\tilde{\xi}^i(y) = \xi^i(\pi(y))$, $\tilde{\Xi}^{\sigma}(y) = \Xi^{\sigma}(\pi(y))$, and define a vector field $\tilde{\Xi}$ on V_0 by

(7)
$$\tilde{\Xi} = \tilde{\xi}^i \frac{\partial}{\partial x^i} + \tilde{\Xi}^\sigma \frac{\partial}{\partial y^\sigma}.$$

The vector field $\tilde{\Xi}$ satisfies $\tilde{\Xi}(\gamma(x)) = \Xi(\gamma(x))$ on $\pi(V_0)$.

Applying this construction to any point of the domain of definition U of Ξ we may suppose that we have families of fibred charts (V_i, ψ_i) , $\psi_i = (x_i^i, y_i^{\sigma})$, and vector fields $\tilde{\Xi}_i$, where *t* runs through an index set *I*, such that $\gamma(\pi(V_k)) \subset V_i$ for every $t \in I$, $\tilde{\Xi}_i$ is defined on V_i , and $\tilde{\Xi}_i(\gamma(x))) = \Xi(\gamma(x))$) for all $\pi(V_i)$.

Let $(\chi_i)_{i \in I}$ be a partition of unity, subordinate to the covering $(V_i)_{i \in I}$ of the set $\gamma(U) \subset Y$. Setting

(8)
$$\tilde{\Xi} = \sum_{\iota \in I} \chi_{\iota} \tilde{\Xi}_{\iota},$$

we get a vector field defined on the open set $V = \bigcup V_i$. For any point $x \in U$ the point $\gamma(x)$ belongs to some of the sets V_i , thus, $\gamma(U) \subset V$. The value of $\tilde{\Xi}$ at $\gamma(x)$ is

(9)
$$\tilde{\Xi}(\gamma(x)) = \sum_{i \in I} \chi_i(\gamma(x))\tilde{\Xi}_i(\gamma(x)) = \left(\sum_{i \in I} \chi_i(\gamma(x))\right)\Xi(\gamma(x))$$
$$= \Xi(\gamma(x))$$

as required.

(b) This assertion follows from the formula for the *r*-jet prolongation of

a π -projectable vector field (1.7, Lemma 12).

A π -projectable vector field $\tilde{\Xi}$, satisfying condition (a) of Theorem 1, is called a π -projectable extension of Ξ . Using (b) and any projectable extension $\tilde{\Xi}$, we may define, for the given section γ ,

(10)
$$J^{r}\Xi(J_{x}^{r}\gamma) = J^{r}\Xi(J_{x}^{r}\gamma).$$

Then $J^r \Xi$ is a vector field along the *r*-jet prolongation $J^r \gamma$ of γ ; we call this vector field the *r*-jet prolongation of the vector field (along γ) Ξ .

Variations of sections induce the corresponding changes (variations) of the values of variational functionals. Let $\rho \in \Omega_n^r W$ be a form, $\Omega \subset \pi(W)$ a piece of X. Choose a section $\gamma \in \Gamma_{\Omega,W}(\pi)$ and a π -projectable vector field Ξ on W, and consider the variation of γ , induced by Ξ (formula (1)). Since the domain of γ_t contains Ω for all sufficiently small t, the value of the variational functional $\Gamma_{\Omega,W}(\pi) \ni \gamma \to \rho_{\Omega}(\gamma) \in \mathbf{R}$ at γ_t is defined, and we get a real-valued function, defined on a neighbourhood $(-\varepsilon,\varepsilon)$ of the point $0 \in \mathbf{R}$,

(11)
$$(-\varepsilon,\varepsilon) \ni t \to \rho_{\alpha_{(0)t}(\Omega)}(\alpha_t \gamma \alpha_{(0)t}^{-1}) = \int_{\alpha_{(0)t}(\Omega)} J^r(\alpha_t \gamma \alpha_{(0)t}^{-1}) * \rho \in \mathbf{R}.$$

It is easily seen that this function is differentiable. Since

(12)
$$J^{r}(\alpha_{t}\gamma\alpha_{(0)t}^{-1}))*\rho = (\alpha_{(0)t}^{-1})*(J^{r}\gamma)*(J^{r}\alpha_{t})*\rho,$$

where $J'\alpha_i$ is the local 1-paremeter group of the *r*-jet prolongation $J'\Xi$ of the vector field Ξ , we have, using properties of the pull-back operation and the theorem on transformation of the integration domain,

(13)
$$\int_{\alpha_{(0)t}(\Omega)} (J^r(\alpha_t \gamma \alpha_{(0)t}^{-1})) * \rho = \int_{\Omega} J^r \gamma * (J^r \alpha_t) * \rho$$

Thus, since Ω is compact, differentiability of (11) follows from the theorem on differentiation of an integral, depending upon a parameter.

Differentiating (11) at t = 0 one obtains, using (13) and the definition of the Lie derivative,

(14)
$$\left(\frac{d}{dt}\rho_{\Omega}(\alpha_{t}\gamma\alpha_{(0)t}^{-1})\right)_{0} = \int_{\Omega} J^{t}\gamma * \partial_{J^{t}\Xi}\rho.$$

Note that this expression can be written, in the notation introduced by formula (1), as

(15)
$$(\partial_{J'\Xi}\rho)_{\Omega}(\gamma) = \int_{\Omega} J'\gamma * \partial_{J'\Xi}\rho.$$

The number (15) is called the *variation* of the integral variational functional ρ_{Ω} at the point γ , induced by the vector field Ξ .

This formula shows that the function $\Gamma_{\Omega,W}(\pi) \ni \gamma \to (\partial_{J'\Xi} \lambda)_{\Omega}(\gamma) \in \mathbf{R}$ is the variational functional (over Ω), defined by the form $\partial_{J'\Xi} \rho$. We call this functional the *variational derivative*, or the *first variation* of the variational functional ρ_{Ω} by the vector field Ξ .

Formula (15) admits a direct generalization. If Z is another π -projectable vector field on W, then the *second variational derivative*, or the *second variation*, of the variational function ρ_{Ω} by the vector fields Ξ and Z, is the mapping $\Gamma_{\Omega,W}(\pi) \ni \gamma \rightarrow (\partial_{J'Z} \partial_{J'\Xi} \rho)_{\Omega}(\gamma) \in \mathbf{R}$, defined by the formula

(16)
$$(\partial_{J'Z}\partial_{J'\Xi}\rho)_{\Omega}(\gamma) = \int_{\Omega} J'\gamma * \partial_{J'Z}\partial_{J'\Xi}\rho.$$

It is now obvious how *higher-order variational derivatives* are defined: one should simply apply the Lie derivative (with respect to different vector fields) several times.

A section $\gamma \in \Gamma_{\Omega,W}(\pi)$ is called a *stable point* of the variational functional λ_{Ω} with respect to its variation Ξ , if

(17)
$$(\partial_{J'\Xi}\rho)_{\Omega}(\gamma) = 0.$$

In practice, one usually requires that a section be a stable point with respect to a *family* of its variations, defined by the problem considered.

Formula (15) can also be expressed in terms of the Lagrangian $\lambda_{\rho} = h\rho$. Since for any π -projectable vector field Ξ the Lie derivatives commute with the horizontalisation,

(18)
$$h\partial_{J'\Xi}\rho = \partial_{J'\Xi}h\rho,$$

(Section 1.7, Lemma 13), the first variation of the integral variational functional ρ_{Ω} at a point γ , induced by the vector field Ξ , can be written as

(19)
$$(\partial_{J^{r_{\Xi}}}\rho)_{\Omega}(\gamma) = \int_{\Omega} J^{r+1}\gamma * \partial_{J^{r+1}\Xi}\lambda_{\rho}.$$

3.3 Lepage forms We introduce in this subsection a class of *n*-forms ρ on J'Y by imposing certain conditions on the exterior derivative $d\rho$. In

Section 3.1 we considered integral variational functionals, defined by these forms. Deforming sections of Y by projectable vector fields Ξ , we came to the Lie derivative $\partial_{\gamma\Xi}\rho$ under the integral sign, related with the induced deformations of the variational functionals. By the well-known (Cartan's) formula, $\partial_{\gamma\Xi}\rho$ can be expressed as

(1)
$$\partial_{j'\Xi} \rho = i_{j'\Xi} d\rho + di_{j'\Xi} \rho.$$

we shall study the forms ρ for which, roughly speaking, the Cartan's formula defines the first variation formula known from the classical calculus of variations.

First we summarize some useful notation related with a chart (U,φ) , $\varphi = (x^i)$, on an *n*-dimensional manifold *X*, and with a fibred chart (V,ψ) , $\psi = (x^i, y^{\sigma})$, on *Y*. We introduce with the help of the Levi-Civita symbol a new basis of forms on *X*, setting

(2)
$$\omega_{k_1k_2...k_p} = \frac{1}{p!(n-p)!} \varepsilon_{k_1k_2...k_p i_{p+1}i_{p+2}...i_n} dx^{i_{p+1}} \wedge dx^{i_{p+2}} \wedge \ldots \wedge dx^{i_n},$$

The inverse transformation formulas are

(3)
$$\varepsilon^{k_1k_2\ldots k_pl_{p+1}l_{p+2}\ldots l_n}\omega_{k_1k_2\ldots k_p} = dx^{l_{p+1}} \wedge dx^{l_{p+2}} \wedge \ldots \wedge dx^{l_n}.$$

One can easily check that the forms $\omega_i = i_{\partial/\partial x^i} \omega_0$, introduced earlier, agree with the definition (2). Also note that

(4)

$$\omega_{jk} = \iota_{\partial/\partial x^{j}} \iota_{\partial/\partial x^{k}} \omega_{0}$$

$$= (-1)^{j+k} dx^{1} \wedge dx^{2} \wedge \ldots \wedge dx^{j-1} \wedge dx^{j+1}$$

$$\wedge \ldots \wedge dx^{k-1} \wedge dx^{k+1} \wedge \ldots \wedge dx^{n}$$

whenever j < k. Then it is immediate that

(5)
$$dx^{l} \wedge \boldsymbol{\omega}_{jk} = \boldsymbol{\delta}_{j}^{l} \boldsymbol{\omega}_{k} - \boldsymbol{\delta}_{k}^{l} \boldsymbol{\omega}_{j},$$

We prove three lemmas characterizing the structure of *n*-forms on the *r*-jet prolongation J'Y, which are needed in computations.

Lemma 2 Let ρ be an n-form. Suppose that ρ has in a fibred chart (V,ψ) , $\psi = (x^i, y^{\sigma})$, an expression

(6)
$$\rho = \rho_0 + \tilde{\rho} + d\eta$$

with the following properties:

(a) ρ_0 is generated by the contact forms ω_J^{σ} , $0 \le |J| \le r-1$, that is,

(7)
$$\rho_0 = \sum_{0 \le |J| \le r-1} \omega_J^{\sigma} \wedge \Phi_{\sigma}^J,$$

where

(8)
$$\Phi_{\sigma}^{J} = \Phi_{\sigma(1)}^{J} + \Phi_{\sigma(2)}^{J} + \tilde{\Phi}_{\sigma}^{J},$$

the forms $\Phi_{\sigma(1)}^{J}$ are generated by the contact forms ω_{J}^{σ} , $0 \leq |J| \leq r-1$, $\Phi_{\sigma(2)}^{J}$ are generated by $d\omega_{I}^{\sigma}$ with |I| = r-1, and

$$\begin{split} \tilde{\Phi}_{\sigma}^{J} &= \tilde{\Phi}_{\sigma \ i_{1}i_{2}...i_{n-1}}^{J} dx^{i_{1}} \wedge dx^{i_{2}} \wedge ... \wedge dx^{i_{n-1}} \\ &+ \tilde{\Phi}_{\sigma \ \sigma_{1} \ i_{2}i_{3}...i_{n-1}}^{J} dy^{\sigma_{1}}_{I_{1}} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n-1}} \\ &+ \tilde{\Phi}_{\sigma \ \sigma_{1} \ \sigma_{2} \ i_{3}i_{4}...i_{n-1}}^{J} dy^{\sigma_{1}}_{I_{1}} \wedge dy^{\sigma_{2}}_{I_{2}} \wedge dx^{i_{3}} \wedge dx^{i_{4}} \wedge ... \wedge dx^{i_{n-1}} \\ &+ ... + \tilde{\Phi}_{\sigma \ \sigma_{1} \ \sigma_{2}}^{J} ... I_{n-2}^{I_{n-2}} dy^{\sigma_{1}}_{I_{1}} \wedge dy^{\sigma_{2}}_{I_{2}} \wedge ... \wedge dy^{\sigma_{n-2}}_{I_{n-2}} \wedge dx^{i_{n-1}} \\ &+ \tilde{\Phi}_{\sigma \ \sigma_{1} \ \sigma_{2}}^{J} ... I_{n-1}^{I_{n-1}} dy^{\sigma_{1}}_{I_{1}} \wedge dy^{\sigma_{2}}_{I_{2}} \wedge ... \wedge dy^{\sigma_{n-1}}_{I_{n-1}}, \end{split}$$

where $|I_1|, |I_2|, \dots, |I_{n-1}| = r$ and all the coefficients $\tilde{\Phi}^{J \ I_1}_{\sigma \ \sigma_1 \ \sigma_2} \stackrel{I_2}{\underset{i_{j_1} \dots i_{n-1}}{}}, \dots, \tilde{\Phi}^{J \ I_1 \ I_2}_{\sigma \ \sigma_1 \ \sigma_2} \stackrel{I_{n-2}}{\underset{i_{j_1} \dots i_{n-2}}{}}$ are traceless. (b) η is a contact form such that

(10)
$$\eta = \sum_{|I|=r-1} \omega_I^{\sigma} \wedge \Psi_{\sigma}^I,$$

where the forms Ψ_{σ}^{I} do not contain any exterior factor ω_{J}^{σ} with $0 \le |J| \le r-1$.

(c) $\tilde{\rho}$ has an expression

$$\tilde{\rho} = A_{i_{1}i_{2}...i_{n}} dx^{i_{1}} \wedge dx^{i_{2}} \wedge ... \wedge dx^{i_{n}} + A_{\sigma_{1}}^{I_{1}} {}_{i_{2}i_{3}...i_{n}} dy_{I_{1}}^{\sigma_{1}} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}} + A_{\sigma_{1}}^{I_{1}} {}_{\sigma_{2}}^{I_{2}} {}_{i_{3}i_{4}..i_{n}} dy_{I_{1}}^{\sigma_{1}} \wedge dy_{I_{2}}^{\sigma_{2}} \wedge dx^{i_{3}} \wedge dx^{i_{4}} \wedge ... \wedge dx^{i_{n}} + ... + A_{\sigma_{1}}^{I_{1}} {}_{\sigma_{2}}^{I_{2}} ... {}_{\sigma_{n-1}i_{n}}^{I_{n-1}} dy_{I_{1}}^{\sigma_{1}} \wedge dy_{I_{2}}^{\sigma_{2}} \wedge ... \wedge dy_{I_{n-1}}^{\sigma_{n-1}} \wedge dx^{i_{n}} + A_{\sigma_{1}}^{I_{1}} {}_{\sigma_{2}}^{I_{2}} ... {}_{\sigma_{n}}^{I_{n}} dy_{I_{1}}^{\sigma_{1}} \wedge dy_{I_{2}}^{\sigma_{2}} \wedge ... \wedge dy_{I_{n}}^{\sigma_{n}},$$

where $|I_1|, |I_2|, \dots, |I_n| = r$ and all the coefficients $A_{\sigma_1 i_2 i_3 \dots i_n}^{I_1}, A_{\sigma_1 \sigma_2 i_3 i_4 \dots i_n}^{I_1 I_2}, \dots, A_{\sigma_n \sigma_1 \sigma_2 \dots \sigma_{n-1} i_n}^{I_n I_2}$ are traceless.

Proof Using the second canonical decomposition (2.5, Theorem 4), we can write ρ as

(12)
$$\rho = \rho_{(1)} + \rho_{(2)} + \tilde{\rho},$$

where $\rho_{(1)}$ includes all ω_J^{σ} -generated terms, where $0 \le |J| \le r-1$, $\rho_{(2)}$ includes all $d\omega_I^{\sigma}$ -generated terms with |J| = r-1, with traceless coefficients (and does not contain any exterior factor ω_J^{σ}), and $\tilde{\rho}$ is expressed by (11). Then

(13)

$$\rho_{(2)} = \sum_{|I|=r-1} d\omega_I^{\sigma} \wedge \Psi_{\sigma}^{I}$$

$$= d \left(\sum_{|I|=r-1} \omega_I^{\sigma} \wedge \Psi_{\sigma}^{I} \right) - \sum_{|I|=r-1} \omega_I^{\sigma} \wedge d\Psi_{\sigma}^{I},$$

so we get

(14)

$$\rho = \rho_{(1)} - \sum_{|l|=r-1} \omega_l^{\sigma} \wedge d\Psi_{\sigma}^{l} + d\left(\sum_{|l|=r-1} \omega_l^{\sigma} \wedge \Psi_{\sigma}^{l}\right) + \tilde{\rho}$$

$$= \rho_0 + d\left(\sum_{|l|=r-1} \omega_l^{\sigma} \wedge \Psi_{\sigma}^{l}\right) + \tilde{\rho}.$$

Our next aim will be to find the chart expression for the horizontal and 1-contact components of the *n*-form

(15)
$$\tau = \rho_0 + \tilde{\rho}$$

from Lemma 2.

Lemma 3 Suppose that τ has an expression (6). (a) The horizontal component $h\tau$ is given by

(16)
$$h\tau = (A_{i_{1}i_{2}...i_{n}} + A_{\sigma_{1}}^{I_{1}} {}_{i_{2}i_{3}..i_{n}} y_{I_{1}i_{1}}^{\sigma_{1}} + A_{\sigma_{1}}^{I_{1}} {}_{\sigma_{2}} {}_{i_{3}i_{4}...i_{n}} y_{I_{1}i_{1}}^{\sigma_{2}} y_{I_{2}i_{2}}^{\sigma_{2}} + \dots + A_{\sigma_{1}}^{I_{1}} {}_{\sigma_{2}}^{I_{2}} \dots {}_{\sigma_{n-1}i_{n}}^{I_{n-1}} y_{I_{1}i_{1}}^{\sigma_{1}} y_{I_{2}i_{2}}^{\sigma_{2}} \dots y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + A_{\sigma_{1}}^{I_{1}} {}_{\sigma_{2}}^{I_{2}} \dots {}_{\sigma_{n}}^{I_{n}} y_{I_{1}i_{1}}^{\sigma_{1}} y_{I_{2}i_{2}}^{\sigma_{2}} \dots y_{I_{n}i_{n}}^{\sigma_{n}}) dx^{i_{1}} \wedge dx^{i_{2}} \wedge \dots \wedge dx^{i_{n}}$$

(b) The 1-contact component $p_1\tau$ is given by

$$(17) \qquad p_{1}\tau = \sum_{0 \le |J| \le r-1} (\tilde{\Phi}_{\sigma \ i_{2}i_{3}...i_{n}}^{J} + \tilde{\Phi}_{\sigma \ \sigma_{2} \ i_{3}i_{4}...i_{n}}^{J} y_{I_{2}i_{2}}^{\sigma_{2}} + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3} \ i_{4}i_{5}...i_{n}}^{J} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} + ... + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3} \ ...i_{n}}^{J} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3} \ ...i_{n}}^{J} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n}i_{n}}^{\sigma_{n}}) \omega_{J}^{\sigma} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}} + \sum_{|J|=r} (A_{\sigma \ i_{2}i_{3}...i_{n}}^{J} + 2A_{\sigma_{1} \ \sigma_{2} \ ...i_{n}}^{J} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n}i_{n}}^{\sigma_{n}}) \omega_{J}^{\sigma} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}} + ... + (n-1)A_{\sigma \ \sigma_{2}}^{J} ... I_{n-1}^{I} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + nA_{\sigma \ \sigma_{2}}^{J} ... I_{n}^{I} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n}i_{n}}^{\sigma_{n}}) \omega_{I}^{\sigma} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}}.$$

Proof (a) Clearly, $h\tau = h\tilde{\rho}$ and (16) follows. (b) The form $p_1\tau$ is given by

(18) $p_1 \tau = \sum_{0 \le |J| \le r-1} \omega_J^{\sigma} \wedge h \Phi_{\sigma}^J + p_1 \tilde{\rho}.$

Then

$$(19) \qquad h\tilde{\Phi}_{\sigma}^{J} = (\tilde{\Phi}_{\sigma \ i_{l}i_{2}...i_{n-1}}^{J} + \tilde{\Phi}_{\sigma \ \sigma_{1} \ i_{2}i_{3}...i_{n-1}}^{J} y_{I_{1}i_{1}}^{\sigma_{1}} + \tilde{\Phi}_{\sigma \ \sigma_{1} \ \sigma_{2} \ i_{3}i_{4}...i_{n-1}}^{J} y_{I_{1}i_{1}}^{\sigma_{1}} y_{I_{2}i_{2}}^{\sigma_{2}} \\ + ... + \tilde{\Phi}_{\sigma \ \sigma_{1} \ \sigma_{2}}^{J} ... I_{n-2} \ ... Y_{I_{l}i_{1}}^{\sigma_{1}} y_{I_{2}i_{2}}^{\sigma_{2}} ... y_{I_{n-2}i_{n-2}}^{\sigma_{n-2}} \\ + \tilde{\Phi}_{\sigma \ \sigma_{1} \ \sigma_{2}}^{J} ... I_{n-1} \ y_{I_{1}i_{1}}^{\sigma_{1}} y_{I_{2}i_{2}}^{\sigma_{2}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}}) dx^{i_{1}} \wedge dx^{i_{2}} \wedge ... \wedge dx^{i_{n-1}} \\ = (\tilde{\Phi}_{\sigma \ \sigma_{1} \ \sigma_{2} \ \sigma_{3}}^{J} ... I_{n-1} \ y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}}) dx^{i_{1}} \wedge dx^{i_{2}} \wedge ... \wedge dx^{i_{n-1}} \\ + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3}}^{J} ... I_{n} \ y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} \\ + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3}}^{J} ... I_{n} \ y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n}}) dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}} ,$$

and

$$(20) \qquad p_{1}\tilde{\rho} = (A_{\sigma_{1}\ i_{2}i_{3}...i_{n}}^{I_{1}} + 2A_{\sigma_{1}\ \sigma_{2}\ i_{3}i_{4}...i_{n}}^{I_{1}\ I_{2}} y_{I_{3}i_{3}}^{\sigma_{2}} + 3A_{\sigma_{1}\ \sigma_{2}\ \sigma_{3}\ i_{4}i_{5}...i_{n}}^{I_{1}\ I_{2}\ Y_{I_{3}i_{3}}} + ... + (n-1)A_{\sigma_{1}\ \sigma_{2}}^{I_{1}\ I_{2}} ...I_{\sigma_{n-1}\ i_{n}}^{I_{n}} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + nA_{\sigma_{1}\ \sigma_{2}}^{I_{1}\ I_{2}\ I_{3}}^{I_{n}\ Y_{2}i_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n}i_{n}}^{\sigma_{n}}) \omega_{I_{1}}^{\sigma_{1}} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}} = \sum_{|I|=r} (A_{\sigma}^{I}\ i_{2}i_{3}...i_{n} + 2A_{\sigma}^{I}\ I_{2}\ i_{3}i_{4}...i_{n}} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + ... + (n-1)A_{\sigma}^{I}\ I_{2}\ ...I_{n-1}\ i_{n}y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + nA_{\sigma}^{I}\ I_{2}\ ...I_{n}\ y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} ... y_{I_{n}i_{n}}^{\sigma_{n}}) \omega_{I}^{\sigma} \wedge dx^{i_{2}} \wedge dx^{i_{3}} \wedge ... \wedge dx^{i_{n}} .$$

(17) now follows from (19) and (20).

We find the chart expression for the pull-back $(\pi^{r+1,r})^* \rho$. By Lemma 2

(21)
$$(\pi^{r+1,r})^* \rho = h\tilde{\rho} + p_1(\rho_0 + \tilde{\rho}) + d\eta + \mu,$$

where $h\tilde{\rho} = h\tau$ and $p_1\rho_0 + p_1\tilde{\rho}$ are given by Lemma 3. We define f_0 and $f_{\sigma}^{J_i}$ by the formulas

(22)
$$h\tilde{\rho} = f_0\omega_0, \quad p_1(\rho_0 + \tilde{\rho}) = \sum_{0 \le |J| \le r} f_\sigma^{J^i} \omega_J^\sigma \wedge \omega_i.$$

Explicitly,

(23)
$$f_{0} = \varepsilon^{i_{1}i_{2}..i_{n}} (A_{i_{l}i_{2}..i_{n}} + A_{\sigma_{1}}^{I_{1}}{}_{i_{2}i_{3}..i_{n}}y_{I_{1}i_{1}}^{\sigma_{1}} + A_{\sigma_{1}}^{I_{1}}{}_{\sigma_{2}}{}_{i_{3}i_{4}..i_{n}}y_{I_{1}i_{1}}^{\sigma_{1}}y_{I_{2}i_{2}}^{\sigma_{2}} + ... + A_{\sigma_{1}}^{I_{1}}{}_{\sigma_{2}}^{I_{2}}...{}_{\sigma_{n-1}}^{I_{n-1}}{}_{i_{n}}y_{I_{1}i_{1}}^{\sigma_{1}}y_{I_{2}i_{2}}^{\sigma_{2}}...y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + A_{\sigma_{1}}^{I_{1}}{}_{\sigma_{2}}^{I_{2}}...{}_{\sigma_{n}}^{I_{n}}y_{I_{1}i_{1}}y_{I_{2}i_{2}}^{\sigma_{2}}...y_{I_{n}i_{n}}^{\sigma_{n}}),$$

and, since $\varepsilon^{ii_2i_3...i_n}\omega_i = dx^{i_2} \wedge dx^{i_3} \wedge ... \wedge dx^{i_n}$,

(24)
$$f_{\sigma}^{J i} = \varepsilon^{ii_{2}i_{3}...i_{n}} (\tilde{\Phi}_{\sigma \ j_{2}i_{3}...i_{n}}^{J} + \tilde{\Phi}_{\sigma \ \sigma_{2} \ i_{3}i_{4}...i_{n}}^{J \ l_{2}} y_{l_{2}i_{2}}^{\sigma_{2}} + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3} \ i_{4}i_{5}...i_{n}}^{J \ l_{2}} y_{l_{2}i_{2}}^{\sigma_{3}} y_{l_{3}i_{3}}^{\sigma_{2}} \\ + ... + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3} \ \sigma_{3} \ ... \ \sigma_{n-1} \ i_{n}}^{J \ l_{2}} y_{l_{3}i_{3}}^{\sigma_{3}} ... y_{l_{n-1}i_{n-1}}^{\sigma_{n-1}} + \tilde{\Phi}_{\sigma \ \sigma_{2} \ \sigma_{3} \ \sigma_{3} \ ... \ \sigma_{n}}^{J \ l_{2}} y_{l_{2}i_{3}}^{\sigma_{3}} ... y_{l_{n}i_{n}}^{\sigma_{n}}),$$

and

$$(25) \qquad f_{\sigma}^{I \ i} = \varepsilon^{ii_{2}i_{3}...i_{n}} (A_{\sigma \ i_{2}i_{3}...i_{n}}^{I} + 2A_{\sigma \ \sigma_{2} \ i_{3}i_{4}...i_{n}}^{I \ I_{2} \ I_{3}} y_{I_{2}i_{2}}^{\sigma_{2}} + 3A_{\sigma \ \sigma_{2} \ \sigma_{3} \ i_{4}i_{5}...i_{n}}^{I \ I_{2} \ I_{3}} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} + ... + (n-1)A_{\sigma \ \sigma_{2}}^{I \ I_{2} \ ...i_{n}} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} \dots y_{I_{n-1}i_{n-1}}^{\sigma_{n-1}} + nA_{\sigma \ \sigma_{2}}^{I \ I_{2} \ ...i_{n}} y_{I_{2}i_{2}}^{\sigma_{2}} y_{I_{3}i_{3}}^{\sigma_{3}} \dots y_{I_{n}i_{n}}^{\sigma_{n}}),$$

where $0 \leq |J| \leq r-1$ and |I| = r.

Lemma 4 For $k \ge 1$ the forms $\omega_{j_1,j_2...,j_k}^{\sigma} \land \omega_i$ can be decomposed as

The forms $\omega_{l_l l_2...l_k}^{\sigma} \wedge \omega_i - \omega_{l_l l_2...l_{p-1} l_{p+1}...l_{k-1} l_k}^{\sigma} \wedge \omega_{l_p}$ are closed and can be expressed

as

(27)
$$\omega_{l_{l}l_{2}\ldots l_{k}}^{\sigma} \wedge \omega_{i} - \omega_{l_{l}l_{2}\ldots l_{p-1}ll_{p+1}\ldots l_{k-1}l_{k}}^{\sigma} \wedge \omega_{l_{p}} = d(\omega_{l_{l}l_{2}\ldots l_{p-1}l_{p+1}\ldots l_{k-1}l_{k}}^{\sigma} \wedge \omega_{il_{p}}).$$

Proof Indeed, from (5)

$$d\omega_{l_{l}l_{2}\dots l_{p-l}l_{p+1}\dots l_{k-l}l_{k}}^{\sigma} \wedge \omega_{l_{p}i} = -\omega_{l_{l}l_{2}\dots l_{p-l}l_{p+1}\dots l_{k-l}l_{k}j}^{\sigma} \wedge dx^{j} \wedge \omega_{l_{p}i}$$

$$= -\omega_{l_{l}l_{2}\dots l_{p-l}l_{p+1}\dots l_{k-l}l_{k}j}^{\sigma} \wedge dx^{j} \wedge \omega_{l_{p}i} = \omega_{l_{l}l_{2}\dots l_{p-l}l_{p+1}\dots l_{k-l}l_{k}j}^{\sigma} \wedge (\delta_{i}^{j}\omega_{l_{p}} - \delta_{l_{p}}^{j}\omega_{i})$$

$$= -\omega_{l_{l}l_{2}\dots l_{p-l}l_{p+1}\dots l_{k-l}l_{k}l_{p}}^{\sigma} \wedge \omega_{i} + \omega_{l_{l}l_{2}\dots l_{p-l}l_{p+1}\dots l_{k-l}l_{k}i}^{\sigma} \wedge \omega_{l_{p}}.$$

Theorem 2 For every fibred chart (V, ψ) , $\psi = (x^i, y^{\sigma})$, the pull-back $(\pi^{r+1,r})^* \rho$ has an expression

(29)
$$(\pi^{r+1,r})^* \rho = f_0 \omega_0 + \sum_{0 \le |J| \le r} P_\sigma^{J^i} \omega_J^\sigma \wedge \omega_i + d\eta + \mu,$$

where the components $P_{\sigma}^{J^{i}}$ are symmetric in the superscripts, η is a contact form, and μ is a contact form whose order of contactness is ≥ 2 . The functions $P_{\sigma}^{I^{i}}$ such that |I| = r satisfy

(30)
$$P_{\sigma}^{I \ i} = \frac{\partial f_0}{\partial y_{li}^{\sigma}}.$$

Proof We use (21) and (22) and apply Lemma 4 to the forms $f_{\sigma}^{J i} \omega_{J}^{\sigma} \wedge \omega_{i}$. Write with explicit index notation $f_{\sigma}^{J i} = P_{\sigma}^{j_{1}j_{2}...j_{k} i}$. We have the decomposition

(31)
$$f_{\sigma}^{j_{1}j_{2}...j_{k}\ i} = P_{\sigma}^{j_{1}j_{2}...j_{k}\ i} + Q_{\sigma}^{j_{1}j_{2}...j_{k}\ i},$$

where $P_{\sigma}^{j_1j_2...j_k i} = f_{\sigma}^{j_1j_2...j_k i} \operatorname{Sym}(j_1j_2...j_k i)$ is the symmetric component and $Q_{\sigma}^{j_1j_2...j_k i}$ is the complementary one. We have, for each k, $1 \le k \le r$,

(32)
$$f_{\sigma}^{j_{1}j_{2}...j_{k} i} \omega_{j_{1}j_{2}...j_{k}}^{\sigma} \wedge \omega_{i}$$
$$= P_{\sigma}^{j_{1}j_{2}...j_{k} i} \omega_{j_{1}j_{2}...j_{k}}^{\sigma} \wedge \omega_{i} - \frac{1}{k+1} Q_{\sigma}^{j_{1}j_{2}...j_{k} i} d(\omega_{j_{2}j_{3}...j_{k}}^{\sigma} \wedge \omega_{j_{i}i})$$
$$+ \omega_{j_{1}j_{3}j_{4}...j_{k}}^{\sigma} \wedge \omega_{j_{2}i} + ... + \omega_{j_{1}j_{2}...j_{k-1}}^{\sigma} \wedge \omega_{j_{k}i})$$

$$= P_{\sigma}^{j_{1}j_{2}...j_{k}} i \omega_{j_{1}j_{2}...j_{k}}^{\sigma} \wedge \omega_{i} - \frac{1}{k+1} d(Q_{\sigma}^{j_{1}j_{2}...j_{k}} i (\omega_{j_{2}j_{3}...j_{k}}^{\sigma} \wedge \omega_{j_{1}i}) + \omega_{j_{1}j_{3}j_{4}...j_{k}}^{\sigma} \wedge \omega_{j_{2}i} + ... + \omega_{j_{1}j_{2}...j_{k-1}}^{\sigma} \wedge \omega_{j_{k}i})) + \frac{1}{k+1} dQ_{\sigma}^{j_{1}j_{2}...j_{k}} \wedge (\omega_{j_{2}j_{3}...j_{k}}^{\sigma} \wedge \omega_{j_{1}i} + \omega_{j_{1}j_{3}j_{4}...j_{k}}^{\sigma} \wedge \omega_{j_{2}i}) + ... + \omega_{j_{1}j_{2}...j_{k-1}}^{\sigma} \wedge \omega_{j_{k}i}).$$

The exterior derivative $dQ_{\sigma}^{j_1j_2\ldots j_k i}$, when lifted to V^{r+2} , can be decomposed as

(33)
$$(\pi^{r+2,r+1})^* dQ_{\sigma}^{j_1j_2...j_k i} = hdQ_{\sigma}^{j_1j_2...j_k i} + pdQ_{\sigma}^{j_1j_2...j_k i} = d_p Q_{\sigma}^{j_1j_2...j_k i} dx^p + pdQ_{\sigma}^{j_1j_2...j_k i}.$$

Substituting from (33) back to (32) we get 1-contact and a 2-contact summands. The 1-contact summands are equal to

$$hdQ_{\sigma}^{j_{1}j_{2}...j_{k}\ i} \wedge (\omega_{j_{2}j_{3}...j_{k}}^{\sigma} \wedge \omega_{j_{1}i} + \omega_{j_{1}j_{3}j_{4}...j_{k}}^{\sigma} \wedge \omega_{j_{2}i} + ... + \omega_{j_{1}j_{2}...j_{k-1}}^{\sigma} \wedge \omega_{j_{k}i})$$

$$= -(d_{p}Q_{\sigma}^{pj_{2}j_{3}...j_{k}\ i} \omega_{j_{2}j_{3}...j_{k}}^{\sigma} + d_{p}Q_{\sigma}^{j_{1}pj_{3}j_{4}...j_{k}\ i} \omega_{j_{1}j_{3}j_{4}...j_{k}}^{\sigma})$$

$$(34) \qquad + ... + d_{p}Q_{\sigma}^{j_{1}j_{2}...j_{k-1}p\ i} \omega_{j_{1}j_{2}...j_{k-1}}^{\sigma})\omega_{i}$$

$$+ d_{p}Q_{\sigma}^{j_{1}j_{2}...j_{k}\ p} (\omega_{j_{2}j_{3}...j_{k}}^{\sigma} \wedge \omega_{j_{1}} + \omega_{j_{1}j_{3}j_{4}...j_{k}}^{\sigma} \wedge \omega_{j_{2}} + ... + \omega_{j_{1}j_{2}...j_{k-1}}^{\sigma} \wedge \omega_{j_{k}})$$

$$= -kd_{p}(Q_{\sigma}^{pj_{2}j_{3}...j_{k}} - Q_{\sigma}^{j_{1}j_{2}...j_{k}\ p})\omega_{j_{2}j_{3}...j_{k}}^{\sigma} \wedge \omega_{i}.$$

Note that from the definition of the functions $Q_{\sigma}^{pj_2j_3...j_k i}$ and from formula (24) we easily see that this form is $\pi^{r+2,r+1}$ -projectable. Thus, returning to (32), we have on V^{r+1}

$$(35) \qquad f_{\sigma}^{j_{1}j_{2}\dots j_{k}\ i} \omega_{j_{1}j_{2}\dots j_{k}}^{\sigma} \wedge \omega_{i} = P_{\sigma}^{j_{1}j_{2}\dots j_{k}\ i} \omega_{j_{1}j_{2}\dots j_{k}}^{\sigma} \wedge \omega_{i}$$

$$-\frac{k}{k+1} d_{p} (Q_{\sigma}^{pj_{2}j_{3}\dots j_{k}\ i} - Q_{\sigma}^{ij_{2}j_{3}\dots j_{k}\ p}) \omega_{j_{2}j_{3}\dots j_{k}}^{\sigma} \wedge \omega_{i}$$

$$-\frac{1}{k+1} d(Q_{\sigma}^{j_{1}j_{2}\dots j_{k}\ i} (\omega_{j_{2}j_{3}\dots j_{k}}^{\sigma} \wedge \omega_{j_{i}i} + \omega_{j_{1}j_{3}j_{4}\dots j_{k}}^{\sigma} \wedge \omega_{j_{2}i})$$

$$+\dots + \omega_{j_{1}j_{2}\dots j_{k-1}}^{\sigma} \wedge \omega_{j_{k}i}))$$

$$+\frac{1}{k+1} p dQ_{\sigma}^{j_{1}j_{2}\dots j_{k}\ i} \wedge (\omega_{j_{2}j_{3}\dots j_{k}}^{\sigma} \wedge \omega_{j_{i}i} + \omega_{j_{1}j_{3}j_{4}\dots j_{k}}^{\sigma} \wedge \omega_{j_{2}i})$$

$$+\dots + \omega_{j_{1}j_{2}\dots j_{k-1}}^{\sigma} \wedge \omega_{j_{k}i}).$$

This sum replaces $f_{\sigma}^{J \ i} \omega_{J}^{\sigma} \wedge \omega_{i}$, where |J| = k, with the symmetrized term $P_{\sigma}^{J \ i} \omega_{J}^{\sigma} \wedge \omega_{i}$, a term $d_{p} (Q_{\sigma}^{p_{2}j_{3}...j_{k}\ i} - Q_{\sigma}^{i_{2}j_{3}...j_{k}\ p}) \omega_{j_{2}j_{3}...j_{k}}^{\sigma} \wedge \omega_{i}$ containing $\omega_{J}^{\sigma} \wedge \omega_{i}$ with |J| = k - 1, a closed form, and a 2-contact term.

Using these expressions in (21), written as

(36)
$$(\pi^{r+1,r})*\rho = f_0\omega_0 + \sum_{0 \le |J| \le r} f_\sigma^{J}\omega_J^\sigma \wedge \omega_i + d\eta + \mu_1$$

we can redefine the coefficients and get

(37)
$$(\pi^{r+1,r})^* \rho = f_0 \omega_0 + \sum_{0 \le |J| \le r-1} f_\sigma^{J^i} \omega_J^\sigma \wedge \omega_i + \sum_{|J| \le r} P_\sigma^{J^i} \omega_J^\sigma \wedge \omega_i + d\eta + \mu.$$

After r steps we get (29).

To prove (31), we differentiate (23) and compare the result with (25).

The following lemma concerns vector fields on any fibred manifold Y with base X and projection π .

Lemma 5 Let ξ be a vector field on X. There exists a π -projectable vector field ξ on Y whose π -projection is ξ .

Proof We can construct $\tilde{\xi}$ by means of an atlas on *Y*, consisting of fibred charts, and a subordinate partition of unity; we proceed as in the proof of Theorem 1, Section 3.2.

Now we study properties of differential *n*-forms ρ , defined on $W' \subset J'Y$, which play a key role in global variational geometry. To this purpose we write the decomposition formula (29) as

(38)
$$(\pi^{r+1,r})^* \rho = f_0 \omega_0 + P_\sigma^{\ i} \omega^\sigma \wedge \omega_i + \sum_{k=1}^r P_\sigma^{j_1 j_2 \dots j_k \ i} \omega_{j_1 j_2 \dots j_k}^\sigma \wedge \omega_i + d\eta + \mu,$$

where

(39)
$$P_{\sigma}^{j_{1}j_{2}\ldots j_{r}i} = \frac{\partial f_{0}}{\partial y_{j_{1}j_{2}\ldots j_{r}i}^{\sigma}}.$$

Lemma 6 Let $\rho \in \Omega_n^r W$. The following three conditions are equivalent:

- (a) $p_1 d\rho$ is a $\pi^{r+1,0}$ -horizontal (n+1) -form. (b) For each $\pi^{r,0}$ -vertical vector field ξ on W^r ,

$$(40) \qquad hi_{\xi}d\rho = 0.$$

(c) The pull-back $(\pi^{r+1,r})^* \rho$ has the chart expression (38), such that the coefficients satisfy

(41)
$$\frac{\partial f_0}{\partial y^{\sigma}_{j_1 j_2 \dots j_k}} - d_i P^{j_1 j_2 \dots j_k i}_{\sigma} - P^{j_1 j_2 \dots j_{k-1} j_k}_{\sigma} = 0, \quad k = 1, 2, \dots, r.$$

Proof 1. Let Ξ be a vector field on W^r , let $\tilde{\Xi}$ be a vector field on W^{r+1} , covering Ξ that is, such that $T\pi^{r+1,r} \cdot \tilde{\Xi} = \Xi \circ \pi^{r+1,r}$ (Lemma 5). Then $i_{\hat{z}}(\pi^{s+1,s})^* d\rho = (\pi^{s+1,s})^* i_{\hat{z}} d\rho$, and the forms on both sides can be canonically decomposed into their contact components. We have

(42)
$$i_{\underline{\tilde{z}}}p_{1}d\rho + i_{\underline{\tilde{z}}}p_{2}d\rho + \dots + i_{\underline{\tilde{z}}}p_{n+1}d\rho = hi_{\underline{z}}d\rho + p_{1}i_{\underline{z}}d\rho + \dots + p_{n}i_{\underline{z}}d\rho.$$

Comparing the horizontal components on both sides we get

(43)
$$hi_{\Xi}p_1d\rho = (\pi^{r+2,r+1})*hi_{\Xi}d\rho.$$

Let $p_1 d\rho$ be $\pi^{r+1,0}$ -horizontal. Then if Ξ is $\pi^{r,0}$ -vertical, $\tilde{\Xi}$ is $\pi^{r+1,0}$ -vertical, and we get $hi_{\tilde{\Xi}} p_1 d\rho = (\pi^{r+2,r+1}) * hi_{\Xi} d\rho = 0$, which implies, by injectivity of the mapping $(\pi^{r+2,r+1})^*$, that $hi_{\Xi} d\rho = 0$. Conversely, let $hi_{\Xi} d\rho = 0$ for each $\pi^{r,0}$ -vertical vector field ξ . Then by (43), $hi_{\tilde{\Xi}} p_1 d\rho = i_{\tilde{\Xi}} p_1 d\rho = 0$ for all $\pi^{r+1,r}$ -projectable, $\pi^{r+1,0}$ -vertical vector

fields $\tilde{\Xi}$. If in a fibred chart,

(44)
$$\tilde{\Xi} = \sum_{1 \le k \le r} \Xi^{\sigma}_{j_1 j_2 \cdots j_k} \frac{\partial}{\partial y^{\sigma}_{j_1 j_2 \cdots j_k}}$$

and

(45)
$$p_{1}d\rho = \sum_{1 \leq k \leq r} A_{\sigma}^{j_{1}j_{2}\ldots j_{k}} \omega_{j_{1}j_{2}\ldots j_{k}}^{\sigma} \wedge \omega_{0},$$

then we get

(46)
$$A_{\sigma}^{j_1 j_2 \dots j_k} = 0, \quad 1 \le k \le r,$$

proving $\pi^{r+1,0}$ -horizontality of $p_1 d\rho$. This proves that conditions (a) and (b) are equivalent.

2. Express $(\pi^{r+1,r})^* \rho$ in a fibred chart by (38). Then

$$(47) \qquad p_{1}d\rho = \left(\frac{\partial f_{0}}{\partial y^{\sigma}} - d_{i}P_{\sigma}^{i}\right)\omega^{\sigma} \wedge \omega_{0} + \\ + \sum_{k=1}^{r} \left(\frac{\partial f_{0}}{\partial y^{\sigma}_{j_{1}j_{2}...j_{k}}} - d_{i}P_{\sigma}^{j_{1}j_{2}...j_{k}} - P_{\sigma}^{j_{1}j_{2}...j_{k-1}} \right)\omega_{j_{1}j_{2}...j_{k}} \wedge \omega_{0} \\ + \left(\frac{\partial f_{0}}{\partial y^{\sigma}_{j_{1}j_{2}...j_{r+1}}} - P_{\sigma}^{j_{1}j_{2}...j_{r}} \right)\omega_{j_{1}j_{2}...j_{r+1}} \wedge \omega_{0}$$

Formula (47) proves equivalence of conditions (a) and (c).

Any form $\rho \in \Omega_n^r W$ satisfying equivalent conditions of Lemma 6 is called a *Lepage form*.

Remark 5 (Existence of Lepage forms) Consider conditions (41). It is easily seen that this system has always a solution, and the solution is unique. Indeed, we have

$$P_{\sigma}^{j_{1}j_{2}...j_{k-1}\ j_{k}} = \frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}}^{\sigma}} - d_{i_{1}}P_{\sigma}^{j_{1}j_{2}...j_{k}\ i_{1}}$$

$$= \frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}}^{\sigma}} - d_{i_{1}}\left(\frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}i_{1}}^{\sigma}} - d_{i_{2}}P_{\sigma}^{j_{1}j_{2}...j_{k}i_{1}\ i_{2}}\right)$$

$$(48) \qquad = \frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}}^{\sigma}} - d_{i_{1}}\frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}i_{1}}^{\sigma}} + d_{i_{1}}d_{i_{2}}P_{\sigma}^{j_{1}j_{2}...j_{k-1}i_{1}\ i_{2}}$$

$$= \frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}}^{\sigma}} - d_{i_{1}}\frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}i_{1}}^{\sigma}} + d_{i_{1}}d_{i_{2}}\left(\frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k-1}i_{1}i_{2}}^{\sigma}} - d_{i_{3}}P_{\sigma}^{j_{1}j_{2}...j_{k-1}i_{1}i_{2}\ i_{3}}\right)$$

$$= \dots = \sum_{l=0}^{r+1-k} (-1)^{l}d_{i_{1}}d_{i_{2}}\dots d_{i_{l}}\frac{\partial f_{0}}{\partial y_{j_{1}j_{2}...j_{k}i_{1}}^{\sigma}}.$$

so the coefficients $P_{\sigma}^{j_1}$, $P_{\sigma}^{j_1j_2...j_{k-1}}$ are completely determined by f_0 . In particular, Lepage forms always exist over fibred coordinate neighbourhoods. More precisely, one can also interpret this result in such a way that to any given form $\rho \in \Omega_n^r W$ and any fibred chart (V, ψ) , $\psi = (x^i, y^{\sigma})$, such that $V \subset W$, one can assign by the described construction a Lepage form, belonging to the module $\Omega_n^{r+1} V$.

Theorem 3 A form $\rho \in \Omega_n^r W$ is a Lepage form if and only if for any fibred chart (V, ψ) , $\psi = (x^i, y^\sigma)$, on Y such that $V \subset W$, $(\pi^{r+1,r})^* \rho$ has an expression

(49)
$$(\pi^{r+1,r})*\rho = \Theta + d\eta + \mu,$$

where

(50)
$$\Theta = f_0 \omega_0 + \sum_{k=0}^r \left(\sum_{l=0}^{r-k} (-1)^l d_{p_1} d_{p_2} \dots d_{p_l} \frac{\partial f_0}{\partial y_{j_1 j_2 \dots j_k p_1 p_2 \dots p_l}^{\sigma}} \right) \omega_{j_1 j_2 \dots j_k}^{\sigma} \wedge \omega_i,$$

 f_0 is a function, defined by the chart expression $h\rho = f_0\omega_0$, and the order of contactness of η is ≥ 2 .

Proof Suppose we have a Lepage form ρ expressed by (38) where conditions (41) are satisfied, and consider conditions (20). Then repeating (48) we get formula (50). The converse follows from (47) and (38).

The *n*-form Θ defined by (50), is sometimes called the *principal* component of the Lepage form ρ with respect to the fibred chart (V,ψ) . Note that Θ depends only on the Lagrangian $h\rho = \lambda_{\rho}$ associated with ρ ; the forms Θ constructed this way are defined only locally, but their horizontal components define a global form.

3.4 Euler-Lagrange forms We defined in Section 3.3 a Lepage form $\rho \in \Omega'_n W$ by a condition on the exterior derivative $d\rho$; namely, we required that the 1-contact component $p_1 d\rho$ should belong to the ideal of forms, defined on W^{r+1} , generated in any fibred chart (V, ψ) , $\psi = (x^i, y^{\sigma})$, by the contact 1-forms ω^{σ} . Now we study the consequences of this definition for the exterior derivative $d\rho$. We express ρ as in formula (48), Section 3.3.

Theorem 4 If $\rho \in \Omega_n^r W$ is a Lepage form, then the form $(\pi^{r+1,r})^* d\rho$ has an expression

(1)
$$(\pi^{r+1,r})^* d\rho = E + F,$$

where E is a 1-contact, $(\pi^{r+1,0})$ -horizontal (n+1)-form, and F is a form whose order of contactness is ≥ 2 . E is unique and has the chart expression

(2)
$$E = \left(\frac{\partial f_0}{\partial y^{\sigma}} - \sum_{l=1}^{r+1} (-1)^{l-1} d_{p_1} d_{p_2} \dots d_{p_l} \frac{\partial f_0}{\partial y^{\sigma}_{p_1 p_2 \dots p_l}}\right) \omega^{\sigma} \wedge \omega_0.$$

Proof For any ρ , $E = p_1 d\rho$, and $F = p_2 d\rho + p_3 d\rho + ... + p_{n+1} d\rho$. But for a Lepage form ρ , from 3.3, (48),

(3)
$$E = p_1 d\rho = p_1 d\Theta = \left(\frac{\partial f_0}{\partial y^{\sigma}} - d_i P_{\sigma}^{\ i}\right) \omega^{\sigma} \wedge \omega_0$$

where by 3.3, (47),

(4)
$$P_{\sigma}^{i} = \sum_{l=0}^{s} (-1)^{l} d_{p_{1}} d_{p_{2}} \dots d_{p_{l}} \frac{\partial f_{0}}{\partial y_{p_{1}p_{2}\dots p_{l}}^{\sigma}}.$$

The (n+1)-form *E* is called the *Euler-Lagrange form*, associated with the Lepage form ρ . Note that similarly as the form Θ , *E* depends only on the Lagrangian $\lambda_{\rho} = f_0 \omega_0$. The components of *E*

(5)
$$E_{\sigma}(f_0) = \frac{\partial f_0}{\partial y^{\sigma}} - \sum_{l=1}^{r+1} (-1)^{l-1} d_{p_1} d_{p_2} \dots d_{p_l} \frac{\partial f_0}{\partial y^{\sigma}_{p_1 p_2 \dots p_l}}$$

are called the *Euler-Lagrange expressions*, associated with f_0 .

Sometimes we consider differential forms, defined on different order jet prolongations J^rY and J^sY of the fibred manifold Y, arising, however, by the pull-back by the corresponding canonical jet projection $\pi^{r,s}$. Then to avoid long notations, we usually omit the corresponding canonical pull-back mappings between two forms, defined on J^rY and J^sY . Our aim will be to study Lepage forms with fixed (given) horizontal components.

As before, denote by $\Omega_{n,X}^r W$ the submodule of the module $\Omega_n^r W$, formed by π^r -horizontal n-forms (Lagrangians of order r for Y). Clearly, the set $\Omega_{n,X}^r W$ contains the Lagrangians λ_η , associated with n-forms $\eta \in \Omega_n^{r-1} W$.

The following is an existence theorem of Lepage forms whose horizontal component is a given Lagrangian.

Theorem 5 To any Lagrangian $\lambda \in \Omega_{n,X}^r W$ there exists an integer s and a Lepage form $\rho \in \Omega_n^s W$ such that

(51)
$$h\rho = \lambda$$
.

Proof We show that the theorem is true for s = 2r - 1. Choose an atlas $\{(V_i, \psi_i)\}$ on *Y*, consisted of fibred charts (V_i, ψ_i) , $\psi_i = (x_i^i, y_i^{\sigma})$, and a partition of unity $\{\chi_i\}$, subordinate to the covering $\{V_i\}$ of *Y*. The functions χ_i define the (global) Lagrangians $\chi_i \lambda \in \Omega_n^r W$. We have, in the chart (V_i, ψ_i) , with obvious notation,

(52)
$$\lambda = \mathcal{L}_{\iota} \omega_{(\iota)0}.$$

Then we set for each ι

60

(53)

$$\Theta_{i} = \chi_{i} \mathscr{L}_{i} \omega_{(i)0}$$

$$+ \sum_{k=0}^{r-1} \left(\sum_{l=0}^{r-1-k} (-1)^{l} d_{p_{1}} d_{p_{2}} \dots d_{p_{l}} \frac{\partial(\chi_{i} \mathscr{L}_{i})}{\partial y_{(i) \ j_{1} j_{2} \dots j_{k} p_{l} p_{2} \dots p_{l} i}} \right) \omega_{(i) \ j_{1} j_{2} \dots j_{k}} \wedge \omega_{(i)i}.$$

Thus, Θ_i is the principal Lepage equivalent of the Lagrangian $\lambda = \mathcal{L}_i \omega_{(i)0}$. Since the family $\{\chi_i\}$ is locally finite, the family $\{\Theta_i\}$ is also locally finite, thus the sum $\rho = \Sigma \Theta_i$ is defined. Then we have $p_i d\rho = \Sigma p_i d\Theta_i$, thus, ρ is a Lepage form, because each of the forms Θ_i is Lepage. It remains to show that $h\rho = \lambda$. We have $h\rho = \Sigma h\Theta_i = \Sigma \chi_i \mathscr{L}_i \omega_{(i)0}$. To compute this expression choose a fibred chart (V, ψ) , $\psi = (x^i, y^{\sigma})$, such that the intersection $V \cap V_i$ is non-void for only finitely many indices *i*. Using this chart, we have $\lambda = \mathcal{L}_i \omega_{(i)0} = \mathcal{L}_i \omega_0$ on $V \cap (\bigcup V_i)$ and, since

(54)
$$\omega_{(i)0} = \det\left(\frac{\partial x_{(i)}^i}{\partial x^j}\right)\omega_0,$$

then

(55)
$$\mathscr{L}_{i} \det\left(\frac{\partial x_{(i)}^{i}}{\partial x^{j}}\right) = \mathscr{L}.$$

Consequently,

(56)
$$h\rho = \sum \chi_{i} \mathscr{L}_{i} \omega_{(i)0} = \sum \chi_{i} \mathscr{L}_{i} \det\left(\frac{\partial x_{(i)}^{i}}{\partial x^{j}}\right) \omega_{0} = (\sum \chi_{i}) \mathscr{L} \omega_{0} = \mathscr{L} \omega_{0}$$

because $\sum \chi_i = 1$.

Let $\lambda \in \Omega_{n,X}^r W$ be a Lagrangian. A Lepage form $\rho \in \Omega_n^s W$ such that $h\rho = \lambda$ (possibly up to a canonical jet projection) is called a *Lepage equivalent* of λ .

If in a fibred chart (V, ψ) , $\psi = (x^i, y^{\sigma})$, λ is expressed as

(57)
$$\lambda = \mathcal{L}\omega_0$$
,

then the form

(58)
$$\Theta_{\mathscr{L}} = \mathscr{L}_{i}\omega_{0} + \sum_{k=0}^{r-1} \left(\sum_{l=0}^{r-1-k} (-1)^{l} d_{p_{1}} d_{p_{2}} \dots d_{p_{l}} \frac{\partial \mathscr{L}}{\partial y_{(1)}} \right) \omega_{j_{1}j_{2}\dots j_{k}}^{\sigma} \wedge \omega_{i}$$

is called the *principal Lepage equivalent* of λ for the fibred chart (V, ψ) .

Remark 6 The Lepage equivalent constructed in the proof of Theorem 5 is $\pi^{2r-1,r-1}$ -horizontal, and its order of contactness is ≤ 1 .

Remark 7 Theorem 5 says that the class of variational functionals, associated with the variational structures (π, ρ) , introduced in Section 3.1, remains the same when we restrict ourselves to *Lepage forms* ρ . Thus, from now on, we may suppose without loss of generality that the variational functionals

(59)
$$\Gamma_{\Omega,W}(\pi) \ni \gamma \to \rho_{\Omega}(\gamma) = \int_{\Omega} J^r \gamma * \rho \in \mathbf{R},$$

are defined by Lepage forms.

Example 1 (Lepage forms of order 1) For Lagrangians $\lambda = \mathcal{L}\omega_0$ of order 1 we get the principal Lepage equivalent

(60)
$$\Theta = \mathscr{L}\omega_0 + \frac{\partial \mathscr{L}}{\partial y_i^{\sigma}}\omega^{\sigma} \wedge \omega_i.$$

One can easily verify by a direct calculation that the form Θ is defined by (60) *globally*; it is called, due to P.L. Garcia [4], the *Poincare-Cartan form*.

Example 2 (Lepage forms of order 2) A Lagrangians $\lambda = \mathcal{L}\omega_0$ of order 2 has the principal Lepage equivalent

(61)
$$\Theta = \mathscr{L}\omega_0 + \left(\frac{\partial \mathscr{L}}{\partial y_i^{\sigma}} - d_j \frac{\partial \mathscr{L}}{\partial y_{ij}^{\sigma}}\right) \omega^{\sigma} \wedge \omega_i + \frac{\partial \mathscr{L}}{\partial y_{ij}^{\sigma}} \omega_j^{\sigma} \wedge \omega_i.$$

The form (61) are *global*, although in general for higher order Lagrangians a similar assertion is not true. The Lepage form (61) was introduced by Krupka in [7]. The proof of invariance of Θ is routine. We shall verify the transformation properties of the forms $\omega_j^{\sigma} \wedge \omega_i + \omega_i^{\sigma} \wedge \omega_j$ with the help of explicit coordinate transformation (cf. 1.4, Example 5). We have

(62)
$$\overline{\omega}_{i} = i_{\partial/\partial \overline{x}^{i}} \overline{\omega}_{0} = \frac{\partial x^{k}}{\partial \overline{x}^{i}} \det \frac{\partial \overline{x}}{\partial x} i_{\partial/\partial x^{k}} \omega_{0} = \frac{\partial x^{k}}{\partial \overline{x}^{i}} \det \frac{\partial \overline{x}}{\partial x} \omega_{k}.$$

and

$$\begin{split} \overline{\omega}_{j}^{\sigma} &= d\overline{y}_{j}^{\sigma} - \overline{y}_{jl}^{\sigma} d\overline{x}^{l} = \frac{\partial \overline{y}_{j}^{\sigma}}{\partial x^{p}} dx^{p} + \frac{\partial \overline{y}_{j}^{\sigma}}{\partial y^{v}} dy^{v} + \frac{\partial \overline{y}_{j}^{\sigma}}{\partial y^{v}} dy^{v}_{p} \\ &- \left(\frac{\partial^{2} \overline{y}^{\sigma}}{\partial x^{s} \partial x^{m}} + \frac{\partial^{2} \overline{y}^{\sigma}}{\partial x^{s} \partial y^{\mu}} y_{m}^{\mu} + \frac{\partial^{2} \overline{y}^{\sigma}}{\partial x^{m} \partial y^{v}} y_{s}^{v} + \frac{\partial^{2} \overline{y}^{\sigma}}{\partial y^{\mu} \partial y^{v}} y_{s}^{v} y_{m}^{\mu} \\ &+ \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} y_{sm}^{v}\right) \frac{\partial x^{m}}{\partial \overline{x}^{l}} \frac{\partial x^{s}}{\partial \overline{x}^{j}} \frac{\partial \overline{x}^{l}}{\partial x^{p}} dx^{p} + \left(\frac{\partial \overline{y}^{\sigma}}{\partial x^{s}} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} y_{s}^{v}\right) \frac{\partial^{2} x^{s}}{\partial \overline{x}^{l} \partial \overline{x}^{p}} dx^{p} \\ &= \left(\frac{\partial}{\partial x^{p}} \left(\frac{\partial \overline{y}^{\sigma}}{\partial x^{l}} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} y_{l}^{v}\right) \frac{\partial x^{l}}{\partial \overline{x}^{j}} + \left(\frac{\partial \overline{y}^{\sigma}}{\partial x^{l}} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} y_{s}^{v}\right) \frac{\partial^{2} x^{l}}{\partial \overline{x}^{j} \partial \overline{x}^{s}} \frac{\partial \overline{x}^{s}}{\partial x^{p}} + \right. \\ &+ \left(\frac{\partial \overline{y}^{\sigma}}{\partial x^{l}} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} y_{l}^{v}\right) \frac{\partial x^{l}}{\partial \overline{x}^{j}} y_{p}^{v} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} \frac{\partial x^{q}}{\partial \overline{x}^{j}} y_{pq}^{v} \\ &- \left(\frac{\partial^{2} \overline{y}^{\sigma}}{\partial x^{s} \partial x^{m}} + \frac{\partial^{2} \overline{y}^{\sigma}}{\partial x^{s} \partial y^{\mu}} y_{m}^{\mu} + \frac{\partial^{2} \overline{y}^{\sigma}}{\partial x^{m} \partial y^{v}} y_{s}^{v} + \frac{\partial^{2} \overline{y}^{\sigma}}{\partial y^{\mu} \partial y^{v}} y_{s}^{v} y_{m}^{\mu} \\ &+ \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} y_{sm}^{v}\right) \frac{\partial x^{m}}{\partial \overline{x}^{l}} \frac{\partial x^{s}}{\partial \overline{x}^{j}} \frac{\partial \overline{x}^{l}}{\partial x^{p}} + \left(\frac{\partial \overline{y}^{\sigma}}{\partial x^{m} \partial y^{v}} y_{s}^{v}\right) \frac{\partial^{2} x^{s}}{\partial \overline{x}^{j}} \frac{\partial \overline{x}^{l}}{\partial x^{p}} dx^{p} \\ &+ \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} y_{sm}^{v}\right) \frac{\partial x^{m}}{\partial \overline{x}^{l}} \frac{\partial \overline{x}^{s}}{\partial \overline{x}^{j}} \frac{\partial \overline{x}^{l}}{\partial x^{p}} + \left(\frac{\partial \overline{y}^{\sigma}}{\partial \overline{x}^{m}} y_{y}^{v}} y_{s}^{v}\right) \frac{\partial^{2} x^{s}}{\partial \overline{x}^{j}} \frac{\partial \overline{x}^{l}}{\partial \overline{x}^{l}} \frac{\partial \overline{x}^{l}}{\partial \overline{x}^{p}} dx^{p} \\ &+ \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} (dy^{v} - y_{q}^{v} dx^{q}) + \frac{\partial \overline{y}^{\sigma}}{\partial \overline{y}^{v}} (dy^{v}_{p} - y_{pq}^{v} dx^{q}), \end{aligned}$$

which result into the formula

(64)
$$\overline{\omega}_{j}^{\sigma} = \frac{\partial \overline{y}_{j}^{\sigma}}{\partial y^{\nu}} \omega^{\nu} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{\nu}} \frac{\partial x^{l}}{\partial \overline{x}^{j}} \omega_{p}^{\nu}.$$

Then, however,

(65)
$$\overline{\omega}_{j}^{\sigma} \wedge \overline{\omega}_{i} = \frac{\partial x^{k}}{\partial \overline{x}^{i}} \det \frac{\partial \overline{x}}{\partial x} \left(\frac{\partial \overline{y}_{j}^{\sigma}}{\partial y^{v}} \omega^{v} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} \frac{\partial x^{p}}{\partial \overline{x}^{j}} \omega_{p}^{v} \right) \wedge \omega_{k}$$
$$= \det \frac{\partial \overline{x}}{\partial x} \left(\frac{\partial \overline{y}_{j}^{\sigma}}{\partial y^{v}} \frac{\partial x^{k}}{\partial \overline{x}^{i}} \omega^{v} + \frac{\partial \overline{y}^{\sigma}}{\partial y^{v}} \frac{\partial x^{p}}{\partial \overline{x}^{j}} \frac{\partial x^{k}}{\partial \overline{x}^{i}} \omega_{p}^{v} \right) \wedge \omega_{k},$$

which shows that the symmetrized expression $\overline{\omega}_{j}^{\sigma} \wedge \overline{\omega}_{i} + \overline{\omega}_{i}^{\sigma} \wedge \overline{\omega}_{j}$ transforms to the symmetrized expression $\omega_{p}^{v} \wedge \omega_{k} + \omega_{k}^{v} \wedge \omega_{p}$.

3.5 The Euler-Lagrange mapping Choosing for any Lagrangian $\lambda \in \Omega_{n,X}^r W$ a Lepage equivalent ρ of λ , we can construct the Euler-Lagrange form *E* associated to ρ (3.4, (3)); this (n+1)-form, depends on

 λ only. We denote this form by E_{λ} and call it the *Euler-Lagrange form*, associated with λ . Denoting by $\Omega_{n+1,y}^{r}W$ the module of $\pi^{2r-1,0}$ -horizontal (n+1)-forms on W^{2r-1} , we get the mapping

(16)
$$\Omega_{n,X}^r W \ni \lambda \to E_\lambda \in \Omega_{n+1,Y}^r W$$

called the Euler-Lagrange mapping.

We can summarize basic properties of Lepage forms, namely their relations to the Euler-Lagrange forms, as follows. Denote by $\text{Lep}_n^r W$ the real vector subspace of the vector space $\Omega_n^r W$, whose elements are Lepage forms. Taking into account properties of the exterior derivative of a Lepage form we see that the Euler-Lagrange mapping *E* makes the following diagram commutative:

(17)
$$\begin{array}{ccc} \operatorname{Lep}_{n}^{r}W & \xrightarrow{h} & \Omega_{n,X}^{r+1}W \\ & \downarrow d & \downarrow E \\ & \Omega_{n+1}^{r+1}W & \xrightarrow{p_{1}} & \Omega_{n,Y}^{2(r+1)}W \end{array}$$

The diagram demonstrates the relationship of the Euler-Lagrange mapping and the exterior derivative of differential forms in the spirit of the work or Th. Lepage.

The following theorem describes the behaviour of the Euler-Lagrange mapping under automorphisms of the underlying fibred manifold.

Theorem 6 For each Lagrangian λ and each automorphism α of Y

(18)
$$J^{2r}\alpha * E_{\lambda} = E_{I^{2r}\alpha * \lambda}.$$

Proof We apply Theorem 4 of Section 3.4 to Lepage equivalents. Let $\rho_{\lambda} \in \Omega_n^s W$ be any Lepage equivalent of λ . Then

(19)
$$(\pi^{s+1,s})^* d\rho = E_{\lambda} + F_{\lambda}.$$

It is easily seen that the pull-back $J^s \alpha * \rho$ is a Lepage form whose Lagrangian is $hJ^s \alpha * \rho = J^{s+1} \alpha * h\rho = J^{s+1} \alpha * \lambda$. Then from commutativity of the pull-back and the exterior derivative we have

(20)
$$(\pi^{s+1,s})^* dJ^s \alpha * \rho = (\pi^{s+1,s})^* J^s \alpha * d\rho = J^{s+1} \alpha * (\pi^{s+1,s})^* d\rho,$$

from which we conclude that $J^{s+1}\alpha * E_{\lambda} + J^{s+1}\alpha * F_{\lambda} = E_{J^s\alpha^*\lambda} + F_{J^s\alpha^*\lambda}$. Theorem 6 now follows from the uniqueness of the 1-contact components. **3.6 The first variation formula** Suppose we have a variational structure (Y,ρ) , where Y is a fibred manifold with *n*-dimensional base X, and ρ is an *n*-form on the *r*-jet prolongation J^rY . Recall that for any piece Ω of X, and any open set $W \subset Y$, (Y,ρ) defines the variational functional $\Gamma_{\Omega,W}(\pi) \ni \gamma \to \rho_{\Omega,W}(\gamma) \in \mathbf{R}$ by

(1)
$$\rho_{\Omega}(\gamma) = \int_{\Omega} J^{r} \gamma * \rho$$

(Section 3.1). The *first variation* of this variational functional by a π -projectable vector field Ξ is the variational functional $\Gamma_{\Omega,W}(\pi) \ni \gamma \rightarrow (\partial_{J'\Xi} \rho)_{\Omega}(\gamma) \in \mathbf{R}$, where

(2)
$$(\partial_{J'\Xi}\rho)_{\Omega}(\gamma) = \int_{\Omega} J^{r}\gamma * \partial_{J'\Xi}\rho$$

(Section 3.2, (15)).

In this section we study a variational structure (Y,ρ) such that ρ is a *Lepage form*. Our main result of Section 3.5 (Theorem 5, Remark 7) shows that this assumption does not restrict the class of variational functionals. As before, denote by λ_{ρ} the *horizontal component* of an *n*-form ρ , that is, the *Lagrangian*, associated with ρ . For Lepage forms, the following theorem on the structure of the integrand in the first variation (2) is just a restatement of definitions.

Theorem 7 Let $\rho \in \Omega_n^r W$ be a Lepage form, and let Ξ be a π -projectable vector field on W.

(a) The Lie derivative $\partial_{r=} \rho$ can be expressed as

- (3) $\partial_{J'\Xi} \rho = i_{J'\Xi} d\rho + di_{J'\Xi} \rho.$
 - (b) If Ξ is π -vertical, then

(4)
$$\partial_{J^{r+1}\Xi} \lambda_{\rho} = i_{J^{r+1}\Xi} E_{\lambda_{\rho}} + h di_{J^{r}\Xi} \rho.$$

(c) For any section γ of Y with values in W,

(5)
$$J^{r}\gamma *\partial_{J^{r}\Xi}\rho = J^{r+1}\gamma *i_{J^{r+1}\Xi}E_{\lambda_{\rho}} + dJ^{r+1}\gamma *i_{J^{r+1}\Xi}\rho.$$

(d) For every piece Ω of X and every section γ of Y defined on Ω ,

(6)
$$\int_{\Omega} J^{r} \gamma * \partial_{J^{r}\Xi} \rho = \int_{\Omega} J^{r+1} \gamma * i_{J^{r+1}\Xi} E_{\lambda} + \int_{\partial \Omega} J^{r+1} \gamma * i_{J^{r+1}\Xi} \rho.$$

Proof (a) This is a standard Cartan's Lie derivative formula.

(b) If $\Xi \pi$ -vertical, then from (3), $h\partial_{j'\Xi}\rho = \partial_{j'\Xi}h\rho = i_{j'\Xi}p_1d\rho + hdi_{j'\Xi}\rho$, but $p_1d\rho = E_{\lambda_{\rho}}$ because ρ is a Lepage form.

(c) Formula (4) can be proved by a straightforward calculation. We have

(7)

$$J^{r}\gamma * \partial_{J'\Xi}\rho = J^{r+1}\gamma * h\partial_{J'\Xi}\rho = J^{r+1}\gamma * h\partial_{J'\Xi}\rho$$

$$= J^{r+1}\gamma * hi_{J'\Xi}d\rho + J^{r+1}\gamma * hdi_{J'\Xi}\rho$$

$$= J^{r+2}\gamma * hi_{J'\Xi}p_{1}d\rho + J^{r+2}\gamma * hi_{J'\Xi}p_{2}d\rho + J^{r}\gamma * di_{J'\Xi}\rho$$

$$= J^{r+2}\gamma * hi_{J'\Xi}E_{\lambda_{\rho}} + J^{r}\gamma * di_{J'\Xi}\rho.$$

(d) Integrating (5) and using the Stokes' theorem on integration of closed (n-1)-forms on pieces of *n*-dimensional manifolds we get (6).

Each of the formulas (3), (4) and (5) is called, in the context of the variational theory on fibred manifolds, the *infinitesimal first variation formula*; (6) is called the *integral first variation formula*.

Remark 8 Note that the infinitesimal first variation formula has no analogue in the *classical formulation* of the calculus of variations. The present formulation is based on the concepts of a Lepage form as well as of geometric concepts as the Lie derivative, exterior derivative and contraction of a form by a vector field.

Remark 9 Theorem 7 can be used to obtain the corresponding formulas for higher variational derivatives (cf. 3.2).

3.7 Extremals Let $U \subset X$ be an open set, $\gamma: U \to Y$ a section, and $\Xi: U \to TY$ a vector field along γ . The *support* of Ξ is the set $\text{supp}\Xi = \text{cl}\{x \in U \mid \Xi(x) \neq 0\}$ (here cl means *closure*). We know that each smooth vector field Ξ along γ can be smoothly prolonged to a π -projectable vector field $\tilde{\Xi}$ defined on a neighbourhood V of the set $\gamma(U) \subset Y$ (3.1, Theorem 1). $\tilde{\Xi}$ satisfies

(1)
$$\Xi \circ \gamma = \Xi$$

Let $\Omega \subset X$ be a piece of $X, W \subset Y$ an open set, and let $\Gamma_{\Omega,W}(\pi)$ denote the set of sections $\gamma: U \to Y$ such that $\Omega \subset U$ and $\gamma(\Omega) \subset W$. Let $\rho \in \Omega_n^r W$ be a Lepage form. We say that a section $\gamma \in \Gamma_{\Omega,W}(\pi)$ is an *extremal* of the variational functional $\Gamma_{\Omega,W}(\pi) \ni \gamma \to \rho_{\Omega}(\gamma) \in \mathbf{R}$ on Ω , if for all π -projectable vector fields Ξ , such that supp $(\Xi \circ \gamma) \subset \Omega$,

(2)
$$\int_{\Omega} J^r \gamma * \partial_{J^r \Xi} \rho = 0.$$

 γ is called *extremal* of the variational functional $\Gamma_{\Omega,W}(\pi) \ni \gamma \to \rho_{\Omega}(\gamma) \in \mathbf{R}$, if it is an extremal on Ω for every Ω .

Thus, roughly speaking, the extremals are those sections γ for which the values $\rho_{\Omega}(\gamma)$ are not sensitive to small compact deformations of γ .

In the following necessary and sufficient conditions for a section to be an extremal, we use the *Euler-Lagrange form* $E_{h\rho}$, associated with the Lagrangian $\lambda_{\rho} = h\rho$, written in a fibred chart as

(3)
$$E_{h\rho} = E_{\sigma}(\mathcal{L})\omega^{\sigma} \wedge \omega_0,$$

where the components $E_{\sigma}(\mathcal{L})$ are the *Euler-Lagrange expressions* (see 3.4, (5). Explicitly, if $h\rho = \mathcal{L}\omega_0$, then

(4)
$$E_{\sigma}(\mathcal{L}) = \frac{\partial \mathcal{L}}{\partial y^{\sigma}} - \sum_{l=1}^{r+1} (-1)^{l-1} d_{p_1} d_{p_2} \dots d_{p_l} \frac{\partial \mathcal{L}}{\partial y^{\sigma}_{p_1 p_2 \dots p_l}}$$

Theorem 8 Let $\rho \in \Omega_n^r W$ be a Lepage form. Let $\gamma : U \to Y$ be a section, and $\Omega \subset U$ a piece of X. The following conditions are equivalent:

(a) γ is an extremal on Ω . (b) For every π -vertical vector field Ξ defined o

(b) For every π -vertical vector field Ξ defined on a neighbourhood of $\gamma(U)$, such that supp $(\Xi \circ \gamma) \subset \Omega$,

(5)
$$J^r \gamma * i_{J^r \Xi} d\rho = 0.$$

(c) The Euler-Lagrange form associated with the Lagrangian $h\rho$ vanishes along $J^{r+1}\gamma$, i.e.,

(6)
$$E_{h\rho} \circ J^{r+1} \gamma = 0.$$

(d) For every fibred chart (V, ψ) , $\psi = (x^i, y^{\sigma})$, such that $\pi(V) \subset U$ and $\gamma(\pi(V)) \subset V$, γ satisfies the system of partial differential equations

(7)
$$E_{\sigma}(\mathcal{L}) \circ J^{r+1} \gamma = 0, \quad 1 \le \sigma \le m.$$

Proof 1. We show that (a) implies (b). By Theorem 7, (d), for any piece Ω of X and any π -vertical vector field Ξ such that supp $(\Xi \circ \gamma) \subset \Omega$,

(8)
$$\int_{\Omega} J^r \gamma * \partial_{J^{1}\Xi} \rho = \int_{\Omega} J^r \gamma * i_{J^{3}\Xi} d\rho,$$

because the vector field $J^r \Xi$ vanishes along the boundary $\partial \Omega$. Then

(9)
$$\int_{\Omega} J^{r} \gamma * i_{j^{r}\Xi} d\rho = \int_{\Omega} J^{r+1} \gamma * (\pi^{r+1,r}) * i_{j^{r}\Xi} d\rho = \int_{\Omega} J^{r+1} \gamma * i_{j^{r+1}\Xi} p_{1} d\rho,$$

where $p_1 d\rho = E_{h\rho}$ is the Euler-Lagrange form. If Ω is contained in a coordinate neighbourhood, the support $\operatorname{supp}(\Xi \circ \gamma) \subset \Omega$ lies in the same coordinate neighbourhood. Writing $\Xi = \Xi^{\sigma} \cdot \partial / \partial y^{\sigma} \text{ and } p_{1} d\rho = E_{\sigma}(\mathcal{L}) \omega^{\sigma} \wedge \omega_{0}, \text{ we get } i_{\mu^{+1} =} p_{1} d\rho = E_{\sigma}(\mathcal{L}) \Xi^{\sigma} \omega_{0}$ and

(10)
$$J^{r}\gamma * i_{J'\Xi}d\rho = (E_{\sigma}(\mathcal{L}) \circ J^{r+1}\gamma) \cdot (\Xi^{\sigma} \circ \gamma) \cdot \omega_{0}.$$

Now supposing that $J^r \gamma * i_{r=d} \rho \neq 0$ for some π -vertical vector field Ξ , the first variation formula

(11)
$$\int_{\Omega} J^{r} \gamma * i_{j'\Xi} d\rho = \int_{\Omega} (E_{\sigma}(\mathcal{L}) \circ J^{r+1} \gamma) \cdot (\Xi^{\sigma} \circ \gamma) \cdot \omega_{0}$$

would give us a contradiction

(12)
$$\int_{\Omega} J^{3} \gamma * \partial_{J'\Xi} \rho \neq 0.$$

Thus, (a) implies (b).

2. (c) is an immediate consequence of (b). Indeed, we can write with Ξ π -vertical

(13)
$$J^{r}\gamma * i_{j'\Xi}d\rho = (\pi^{r+1,r} \circ J^{r+1}\gamma) * i_{j'\Xi}d\rho = J^{r+1}\gamma * (\pi^{r+1,r}) * i_{j'\Xi}d\rho$$
$$= J^{r+1}\gamma * i_{j^{r+1}\Xi}(\pi^{r+1,r}) * d\rho = J^{r+1}\gamma * i_{j^{r+1}\Xi}p_{1}d\rho = J^{r+1}\gamma * i_{j^{r+1}\Xi}E_{h\rho}.$$

3. (d) is just a restatement of (b) for the components of the form $E_{h\rho}$.

4. We apply Theorem 7, (d).

Equations (7) are called the Euler-Lagrange equations; these equations are indeed related to the chosen fibred chart (V, ψ) , $\psi = (x^i, y^\sigma)$.

Remark 10 For a fixed fibred chart (V,ψ) , $\psi = (x^i, y^{\sigma})$, the Euler-Lagrange equations represent a system of partial differential equations of order r+1 for unknown functions $(x^i) \rightarrow \gamma^{\sigma}(x^i)$, where $1 \le i \le n$ and $1 \le \sigma \le m$. This fact is due to the origin of the Lagrange function \mathcal{L} that comes from a Lepage form, which is of order *r*. If we start with a given Lagrangian of order *r*, then the Euler-Lagrange equations are of order 2r. To get an extremal γ on a piece $\Omega \subset X$ we have to solve this system for every fibred chart (V_i, ψ_i) , $\psi = (x_i^i, y_i^\sigma)$, from a collection of fibred charts, such that the sets $\pi(V_i)$ cover Ω ; then the solutions $(x_i^i) \to \gamma_i^\sigma(x_i^i)$ should be used to find a section γ such that $\gamma_i^\sigma = y_i^\sigma \gamma \varphi_i^{-1}$ for all indices ι .

Remark 11 Properties of nonlinear equations (7) depend on the form ρ ; their *global* structure is defined by condition (5). This condition says that a section γ is an extremal if and only if its *r*-jet prolongation is an *integral mapping* of an ideal of forms generated by the family of *n*-forms $i_{j_3 \equiv} d\rho$. Using 3.3, Theorem 4, one can find explicit expressions for local generators of the ideal.