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3  Variational structures on fibred manifolds 

 3.1 Variational structures  By a variational structure we mean in 
this work a pair (Y ,!) , where Y is a fibred manifold over an n-dimensional 
manifold X with projection !  and !  is an n-form on the r-jet prolongation 
J rY .  
 Suppose that we have a variational structure (Y ,!) . Let  W !Y  be an 
open set, and let  !!" (W )  be a compact, n-dimensional submanifold of X 
with boundary (a piece of X). Denote by !",W (# )  the set of smooth sections 
of !  over ! , such that  ! (")!W . Then for any section  ! !"#,W ($ )  of Y, 
the pull-back J r! *"  is an n-form on a neighbourhood of ! . Integrating 
J r! *"  on ! , we get a real function  !",W (# )!$ % &"($ )"R , defined by  

(1)  !"(# ) = J r# *!
"
$ .  

!"  is called the variational functional, associated with (Y ,!)  (over ! ).  
 The objective of the variational analysis on fibred manifolds is to study 
the behaviour of variational functionals !"  on the set of sections !"(# ) , or 
on subsets of this set, defined by some additional conditions (constraints). In 
general, the set !"(# )  has no natural algebraic and topological structure; 
this fact prevents, in particular, to immediately apply to !"  the methods of 
the differentiation theory in topological vector spaces. Instead, the 
variational method is used, which consists of the study of the behaviour of 
each section  ! !"#($ )  on its 1-parameter deformations (variations) within 
!"(# ) , and of the corresponding induced deformations (variations) of the 
value !"(# )  of !" . The variational geometry studies geometric, 
coordinate-independent properties of !" .  
 For every r we denote by !n,X

r W  the submodule of the module !n
rW , 

consisting of ! r -horizontal forms. Elements of the set !n,X
r W  are called 

Lagrangians (of order r) for the fibred manifold Y.  
 Let  ! !"n

rW . There exists a unique Lagrangian  !" !#n,X
r+1W  such that  

(2)  J r+1! *"# = J
r! *#  

for all sections !  of Y. The n-form !"  can alternatively be defined by the 
first canonical decomposition to the form !  (Section 2.1)  

(3)   (!
r+1,r )*" = h" + p1" + p2" +…+ pn"  
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as the horizontal component of ! ,  

(4)  !" = h".  

Property (2) says that the variational functional !"  can also be expressed as  

(5)  !"(# ) = J r+1# *$!
"
% .  

The ! r+1,r -horizontal n-form !"  is called the Lagrangian, associated with 
the n-form ! .  
 We give the chart expressions of !  and h!  in a fibred chart (V ,! ) , 
! = (xi , y" ) , on Y (or, more exactly, in the associated charts on J rY  and 
J r+1Y ). Recall that in multi-index notation the contact basis of 1-forms on 
V r  (and analogously on V r+1 ) is defined to be the basis (dxi ,! J

" ,dyI
" ) , 

where the multi-indices satisfy 0 ! | J | ! r "1 , | I | = r , and  

(6)  ! J
" = dyJ

" # yJj
"dx j .  

We also associate with the given chart the n-form (considered on 
 U = ! (V )! X , and also on V r )  

(7)    ! 0 = dx
1!dx2 !…!dxn ,  

sometimes called the local volume form, associated with (V ,! ) .  
 According to the second canonical decomposition theorem (2.3, 
Theorem 13), !  has an expression  

(8)  
 
! = " J

# !$#
J

0%|J |%r&1
' + d" J

# !(#
J

|J |=r&1
' + !0 ,  

where  

(9)  

  

!0 = Ai1i2…in
dxi1 !dxi2 !…!dxin

+ A"1
J1

i2i3…in
dyJ1

"1 !dxi2 !dxi3 !…!dxin

+ A"1
J1

" 2
J2

i3i4…in
dyJ1

"1 !dyJ2
" 2 !dxi3 !dxi4 !…!dxin

+…

+ A"1
J1

" 2
J2…" n#1

Jn#1
in
dyJ1

"1 !dyJ2
" 2 !…!dyJn#1

" n#1 !dxin

+ A"1
J1

" 2
J2…" n

Jn dyJ1
"1 !dyJ2

" 2 !…!dyJn
" n ,

 

and the coefficients 
 
A!1
J1

! 2
J2…! s

Js
is+1is+2…in

 are traceless. Then h! = h!0  because h 
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is an exterior algebra homomorphism, annihilating the contact forms ! J
"  

and d! J
" . Thus,  

(10)  

  

!" = (Ai1i2…in
+ A#1

J1
i2i3…in

yJ1i1
#1 + A#1

J1
# 2
J2

i3i4…in
yJ1i1
#1 yJ2i2

# 2

+…+ A#1
J1

# 2
J2…# n$1

Jn$1
in
yJ1i1
#1 yJ2i2

# 2 …yJn$1in$1
# n$1 + A#1

J1
# 2
J2…# n

Jn
# n

Jn yJ1i1
#1 yJ2 j2

# 2 …yJnin
# n )

%dxi1 !dxi2 !…!dxin .

 

Using the local volume form (7) we also write  

(11)  
 
!" = �# 0 ,  

where  

(12)  
  

� = ! i1i2…in (Ai1i2…in
+ A"1

J1
i2i3…in

yJ1i1
"1 + A"1

J1
" 2
J2

i3i4…in
yJ1i1
"1 yJ2i2

" 2

+…+ A"1
J1

" 2
J2…" n#1

Jn#1
in
yJ1i1
"1 yJ2i2

" 2 …yJn#1in#1
" n#1 + A"1

J1
" 2
J2…" n

Jn yJ1i1
"1 yJ2 j2

" 2 …yJnin
" n ).

 

 �  is a function on V r+1  called the Lagrange function, associated with !  (or 
with the Lagrangian !" ).  

 Remark 1  Sometimes the integration domain !  in the variational 
functional !"  is not fixed, but is arbitrary. Then formula (1) defines a family 
of variational functionals labelled by ! .  

 Remark 2  Orientability of the base X of the fibred manifold Y is not an 
essential assumption; replacing differential forms by twisted base differential 
forms, one can also develop the variational theory for non-orientable bases X 
(Krupka [10]). Variational functionals, defined on fibred manifolds over 
non-orientable bases, appear in the general relativity theory and field theory.  

 Remark 3 (The structure of Lagrange functions)  Formulas (11) and 
(12) describe general structure of the Lagrangians, associated with the class 
of variational functionals (1). The Lagrange functions  �  that appear in chart 
descriptions of the Lagrangians are multi-linear, symmetric functions of the 
variables yI

! , where | I | = r +1 .  

 Remark 4 (Lagrangians)  The subset !n,X
r W  of forms, defining 

variational functionals (1), contains ! r -horizontal forms 

  
! = Ai1i2…in

dxi1 !dxi2 !…!dxin  (Lagrangians of order r). Then the associated 
Lagrangians !"  coincide with ! . Since   dx

i1 !dxi2 !…!dxin = ! i1i2…in" 0 , 
each Lagrangian can also be written in the form  ! = �" 0 . Concrete 
variational functionals are usually defined in this way.  
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 The following lemma describes all n-forms  ! !"n
rW , whose associated 

Lagrangians belong to the same module !n
rW , that is, are of order r.  

 Lemma 1  For a form  ! !"n
rW  the following two conditions are 

equivalent:  
 (1) The Lagrangian !"  is defined on J rW .  
 (2) In any fibred chart (V ,! ) , ! = (xi , y" ) , !  has an expression  

(13)  
  
! = �" 0 + " J

# !$#
J

0%|J |%r&1
' + d" J

# !(#
J

|J |=r&1
'  

for some function  �  and some forms !"
J  and !"

J .  
 Proof  This follows from (4) and (12).  
 
 3.2 Variational derivatives  Let U be an open subset of X, let 
! :U"Y  be a section. Let !  be a ! -projectable vector field on an open 
set  W !Y  such that  ! (U )!W . If ! t  is the local 1-parameter group of ! , 
and ! (0)t  its ! -projection, then  

(1)  ! t =" t!" (0)t
#1  

is a 1-parameter family of sections of Y, depending smoothly on the 
parameter t: Indeed, since !" t =" (0)t! , we have 

(2)  !" t (x) = !# t"# (0)t
$1 (x) =# (0)t!"# (0)t

$1 (x) =# (0)t# (0)t
$1 (x) = x  

on the domain of ! t . The family ! t  is called the variation, or deformation, 
of the section ! , induced by the vector field ! .  
 Recall that a vector field along !  is a mapping ! :U" TY  such that 

 !(x)!T" (x )Y  for every point  x!U . Given ! , formula  

(3)  ! = T" #$  

then defines a vector field !  on U, called the ! -projection of ! .  
 The following theorem says that every vector field along a section !  
can be extended to a ! -projectable vector field, defined on an open set. 
Moreover, the r-jet prolongation of the extended field, considered along 
J r! , is independent of the prolongation.  

 Theorem 1  Let !  be a section of Y defined on an open set  U ! X , let 
!  a vector field along ! . 
 (a) There exists a ! -projectable vector field  !! , defined on a 
neighbourhood of the set ! (U ) , such that for each  x!U  
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(4)   
!!(" (x)) = !(x).  

 (b) Any two ! -projectable vector fields !1 , !2 , defined on a 
neighbourhood of ! (U ) , such that !1(" (x)) = !2 (" (x)) = !(x)  for all 
 x!U , satisfy 

(5)  J r!1(Jx
r" ) = J r!2 (Jx

r" ).  

 Proof  (a) Choose a point  x0 !U  and a fibred chart (V0 ,! 0 ) , 
! 0 = (x0

i , y0
" ) , at the point  ! (x0 )!Y  such that  ! (" (V0 ))!V0 .  In this chart  

(6)  !(" (x)) = ! i (x) !
!xi

#
$

%
& " (x )

+'( (x) !
!y(

#
$)

%
&* " (x )

.  

We set for any  y!V0 ,  
!! i (y) = ! i (" (y)) ,  

!!" (y) = !" (# (y)) , and define a 
vector field  !!  on V0  by  

(7)  
 
!! = !" i !

!xi
+ !!# !

!y#
.    

The vector field  !!  satisfies  
!!(" (x)) = !(" (x))  on ! (V0 ) .  

 Applying this construction to any point of the domain of definition U of 
!  we may suppose that we have families of fibred charts (V! ,"! ) , 
!" = (x"

i , y"
# ) , and vector fields  

!!" , where !  runs through an index set I, such 
that  ! (" (V# ))!V#  for every  !! I ,  

!!"  is defined on V! , and 
 
!!" (# (x))) = !!(# (x)))  for all ! (V" ) .  

 Let  (!" )"!I  be a partition of unity, subordinate to the covering  (V! )!!I  of 
the set  ! (U )!Y . Setting  

(8)  
  
!! = "#

!!#
#!I
$ ,  

we get a vector field defined on the open set  V = !V! . For any point  x!U  
the point ! (x)  belongs to some of the sets V! , thus,  ! (U )!V . The value of 
 !!  at ! (x)  is  

(9)  

  

!!(" (x)) = #$ (" (x)) !!$ (" (x))
$!I
% = #$ (" (x))

$!I
%&'(

)
*+
!(" (x))

= !(" (x))
 

as required.  
 (b) This assertion follows from the formula for the r-jet prolongation of 



   D. Krupka 
 
128 

a ! -projectable vector field (1.7, Lemma 12).  

 A ! -projectable vector field  !! , satisfying condition (a) of Theorem 1, 
is called a ! –projectable extension of ! . Using (b) and any projectable 
extension  !! , we may define, for the given section ! ,  

(10)   J
r!(Jx

r" ) = J r !!(Jx
r" ).  

Then J r!  is a vector field along the r-jet prolongation J r!  of ! ; we call 
this vector field the r-jet prolongation of the vector field (along ! ) ! .  
 Variations of sections induce the corresponding changes (variations) of 
the values of variational functionals. Let  ! !"n

rW  be a form,  !!" (W )  a 
piece of X. Choose a section  ! !"#,W ($ )  and a ! -projectable vector field 
!  on W, and consider the variation of ! , induced by !  (formula (1)). Since 
the domain of ! t  contains !  for all sufficiently small t, the value of the 
variational functional  !",W (# )!$ % &"($ )"R  at ! t  is defined, and we get 
a real-valued function, defined on a neighbourhood (!" ," )  of the point 
 0!R ,  

(11)  
 
(!" ," )! t# $% (0 )t (&)

(% t'% (0)t
!1 ) = J r

% (0 )t (&)
( (% t'% (0)t

!1 )*$ "R.  

It is easily seen that this function is differentiable. Since 

(12)  J r (! t"! (0)t
#1 ))*$ = (! (0)t

#1 )*(J r" )*(J r! t )*$,  

where J r! t  is the local 1-paremeter group of the r-jet prolongation J r!  of 
the vector field ! , we have, using properties of the pull-back operation and 
the theorem on transformation of the integration domain, 

(13)  (J r
! (0 )t (")
# (! t$! (0)t

%1 ))*& = J r$ *(J r! t )*
"
# &.  

Thus, since !  is compact, differentiability of (11) follows from the theorem 
on differentiation of an integral, depending upon a parameter.  
 Differentiating (11) at t = 0  one obtains, using (13) and the definition of 
the Lie derivative, 

(14)  d
dt

!"(# t$# (0)t
%1 )( )

0
= J r$ *&J r' !

"
( .  

Note that this expression can be written, in the notation introduced by 
formula (1), as 
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(15)  (!J r" #)$(% ) = J r% *!J r" #
$
& .  

The number (15) is called the variation of the integral variational functional 
!"  at the point ! , induced by the vector field ! .  
 This formula shows that the function  !",W (# )!$ % (&J r'()"($ )"R  is 
the variational functional (over ! ), defined by the form !J r" # . We call this 
functional the variational derivative, or the first variation of the variational 
functional !"  by the vector field ! .  
 Formula (15) admits a direct generalization. If !  is another ! -
projectable vector field on W, then the second variational derivative, or the 
second variation, of the variational function !"  by the vector fields !  and 
! , is the mapping  !",W (# )!$ % (&J r' &J r( ))"($ )"R , defined by the 
formula 

(16)  (!J r" !J r# $)%(& ) = J r& *!J r" !J r# $
%
' .  

It is now obvious how higher-order variational derivatives are defined: one 
should simply apply the Lie derivative (with respect to different vector 
fields) several times.  
 A section  ! !"#,W ($ )  is called a stable point of the variational 
functional !"  with respect to its variation ! , if  

(17)  (!J r" #)$(% ) = 0.  

In practice, one usually requires that a section be a stable point with respect 
to a family of its variations, defined by the problem considered.  
 Formula (15) can also be expressed in terms of the Lagrangian 
!" = h" . Since for any ! -projectable vector field !  the Lie derivatives 
commute with the horizontalisation,  

(18)  h!J r" # = !J r"h#,  

(Section 1.7, Lemma 13), the first variation of the integral variational 
functional !"  at a point ! , induced by the vector field ! , can be written as   

(19)  (!J r" #)$(% ) = J r+1% *!J r+1"&#
$
' .  

 3.3 Lepage forms  We introduce in this subsection a class of n-forms 
!  on J rY  by imposing certain conditions on the exterior derivative d! . In 



   D. Krupka 
 
130 

Section 3.1 we considered integral variational functionals, defined by these 
forms. Deforming sections of Y by projectable vector fields ! , we came to 
the Lie derivative !J r" #  under the integral sign, related with the induced 
deformations of the variational functionals. By the well-known (Cartan’s) 
formula, !J r" #  can be expressed as  

(1)  !J r" # = iJ r"d# + diJr"#.  

we shall study the forms !  for which, roughly speaking, the Cartan’s 
formula defines the first variation formula known from the classical calculus 
of variations.   
 First we summarize some useful notation related with a chart (U,! ) , 
! = (xi ) , on an n-dimensional manifold X, and with a fibred chart (V ,! ) , 
! = (xi , y" ) , on Y. We introduce with the help of the Levi-Civita symbol a 
new basis of forms on X, setting  

(2)  
  
! k1k2…kp

= 1
p!(n" p)!

# k1k2…kpip+1ip+2…in
dxip+1 !dxip+2 !…!dxin ,  

The inverse transformation formulas are   

(3)  
  
! k1k2…kplp+1lp+2…ln" k1k2…kp

= dxlp+1 !dxlp+2 !…!dxln .  

 One can easily check that the forms ! i = i! /!xi! 0 , introduced earlier, 
agree with the definition (2). Also note that  

(4)  

  

! jk = i! /!x j i! /!xk! 0

= ("1) j+k dx1!dx2 !…!dx j"1!dx j+1

!…!dxk"1!dxk+1!…!dxn
 

whenever j < k . Then it is immediate that  

(5)  
 
dxl !! jk = " j

l! k #" k
l! j ,  

 We prove three lemmas characterizing the structure of n-forms on the r-
jet prolongation J rY , which are needed in computations.  

 Lemma 2  Let !  be an n-form. Suppose that !  has in a fibred chart  
(V ,! ) , ! = (xi , y" ) , an expression   

(6)   ! = !0 + !! + d"  
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with the following properties:  
 (a) !0  is generated by the contact forms ! J

" , 0 ! | J | ! r "1 , that is,  

(7)  
 
!0 = " J

# !$#
J

0%|J |%r&1
' ,  

where 

(8)   !"
J = !"

J
(1)+!"

J
(2)+ !!"

J ,  

the forms !"
J
(1)  are generated by the contact forms ! J

" , 0 ! | J | ! r "1 , 
!"

J
(2)  are generated by d! I

"  with | I | = r !1 , and  

(9)  

  

!!"
J = !!"

J
i1i2…in#1

dxi1 !dxi2 !…!dxin#1

+ !!"
J

"1
I1

i2i3…in#1
dyI1

"1 !dxi2 !dxi3 !…!dxin#1

+ !!"
J

"1
I1

" 2
I2

i3i4…in#1
dyI1

"1 !dyI2
" 2 !dxi3 !dxi4 !…!dxin#1

+…+ !!"
J

"1
I1

" 2
I2…" n#2

In#2
in#1
dyI1

"1 !dyI2
" 2 !…!dyIn#2

" n#2 !dxin#1

+ !!"
J

"1
I1

" 2
I2…" n#1

In#1 dyI1
"1 !dyI2

" 2 !…!dyIn#1
" n#1 ,

 

where  | I1 |,| I2 |,…,| In!1 | = r  and all the coefficients 
 
!!"
J

"1
I1

i2i3…in#1
, 

 
!!"
J

"1
I1

" 2
I2

i3i4…in#1
,  … , 

 
!!"
J

"1
I1

" 2
I2…" n#2

In#2
in#1

 are traceless.  
 (b) !  is a contact form such that  

(10)  
 
! = " I

# !$#
I

|I |=r%1
& ,  

where the forms !"
I  do not contain any exterior factor ! J

"  with 
0 ! | J | ! r "1 .  
 (c)  !!  has an expression  

(11)  

  

!! = Ai1i2…in
dxi1 !dxi2 !…!dxin

+ A"1
I1

i2i3…in
dyI1

"1 !dxi2 !dxi3 !…!dxin

+ A"1
I1

" 2
I2

i3i4…in
dyI1

"1 !dyI2
" 2 !dxi3 !dxi4 !…!dxin

+…+ A"1
I1

" 2
I2…" n#1

In#1
in
dyI1

"1 !dyI2
" 2 !…!dyIn#1

" n#1 !dxin

+ A"1
I1

" 2
I2…" n

In dyI1
"1 !dyI2

" 2 !…!dyIn
" n ,

 

where  | I1 |,| I2 |,…,| In | = r  and all the coefficients 
 
A!1
I1

i2i3…in
, 
 
A!1
I1

! 2
I2

i3i4…in
,  … , 

 
A!1
I1

! 2
I2…! n"1

In"1
in

 are traceless. 
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 Proof  Using the second canonical decomposition (2.5, Theorem 4), we 
can write !  as 

(12)   ! = !(1) + !(2) + !!,  

where !(1)  includes all ! J
" -generated terms, where 0 ! | J | ! r "1 , !(2)  

includes all d! I
" -generated terms with | J | = r !1 , with traceless 

coefficients (and does not contain any exterior factor ! J
" ), and  !!  is 

expressed by (11). Then  

(13)  

 

!(2) = d" I
# !$#

I

|I |=r%1
&

= d " I
# !$#

I

|I |=r%1
&'()

*
+,
% " I

# !d$#
I

|I |=r%1
& ,

 

so we get  

(14)  

  

! = !(1) " # I
$ !d%$

I

|I |=r"1
& + d # I

$ !%$
I

|I |=r"1
&'()

*
+,
+ !!

= !0 + d # I
$ !%$

I

|I |=r"1
&'()

*
+,
+ !!.

 

 Our next aim will be to find the chart expression for the horizontal and 
1-contact components of the n-form  

(15)   ! = "0 + !"  

from Lemma 2.  

 Lemma 3  Suppose that !  has an expression (6).  
 (a) The horizontal component h!  is given by  

(16)  

  

h! = (Ai1i2…in
+ A"1

I1
i2i3…in

yI1i1
"1 + A"1

I1
" 2
I2

i3i4…in
yI1i1
"1 yI2i2

" 2

+…+ A"1
I1

" 2
I2…" n#1

In#1
in
yI1i1
"1 yI2i2

" 2 …yIn#1in#1
" n#1

+ A"1
I1

" 2
I2…" n

In yI1i1
"1 yI2i2

" 2 …yInin
" n )dxi1 !dxi2 !…!dxin .

 

 (b) The 1-contact component p1!  is given by  
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(17)  

  

p1! = ( !"#
J
i2i3…in

+ !"#
J

# 2
I2

i3i4…in
yI2i2
# 2 + !"#

J
# 2
I2

# 3
I3

i4i5…in
yI2i2
# 2 yI3i3

# 3

0$|J |$r%1
&

+…+ !"#
J

# 2
I2

# 3
I3…# n%1

In%1
in
yI2i2
# 2 yI3i3

# 3 …yIn%1in%1
# n%1

+ !"#
J

# 2
I2

# 3
I3…# n

In yI2i2
# 2 yI3i3

# 3 …yInin
# n )' J

# !dxi2 !dxi3 !…!dxin

+ (A#
I
i2i3…in

+ 2A#1
I

# 2
I2

i3i4…in
yI2i2
# 2 + 3A#

I
# 2
I2

# 3
I3

i4i5…in
yI2i2
# 2 yI3i3

# 3

|I |=r
&

+…+ (n %1)A#
I
# 2
I2…# n%1

In%1
in
yI2i2
# 2 yI3i3

# 3 …yIn%1in%1
# n%1

+ nA#
I
# 2
I2…# n

In yI2i2
# 2 yI3i3

# 3 …yInin
# n )' I

# !dxi2 !dxi3 !…!dxin .

 

 Proof  (a) Clearly,  h! = h !"  and (16) follows.  
 (b) The form p1!  is given by  

(18)  
  
p1! = " J

# !h$#
J

0%|J |%r&1
' + p1 !(.  

Then   

(19)  

  

h !!"
J = ( !!"

J
i1i2…in#1

+ !!"
J

"1
I1

i2i3…in#1
yI1i1
"1 + !!"

J
"1
I1

" 2
I2

i3i4…in#1
yI1i1
"1 yI2i2

" 2

+…+ !!"
J

"1
I1

" 2
I2…" n#2

In#2
in#1
yI1i1
"1 yI2i2

" 2 …yIn#2in#2
" n#2

+ !!"
J

"1
I1

" 2
I2…" n#1

In#1 yI1i1
"1 yI2i2

" 2 …yIn#1in#1
" n#1 )dxi1 !dxi2 !…!dxin#1

= ( !!"
J
i2i3…in

+ !!"
J

" 2
I2

i3i4…in
yI2i2
" 2 + !!"

J
" 2
I2

" 3
I3

i4i5…in
yI2i2
" 2 yI3i3

" 3

+…+ !!"
J

" 2
I2

" 3
I3…" n#1

In#1
in
yI2i2
" 2 yI3i3

" 3 …yIn#1in#1
" n#1

+ !!"
J

" 2
I2

" 3
I3…" n

In yI2i2
" 2 yI3i3

" 3 …yInin
" n )dxi2 !dxi3 !…!dxin ,

 

and  

(20)  

  

p1 !! = (A"1
I1

i2i3…in
+ 2A"1

I1
" 2
I2

i3i4…in
yI2i2
" 2 + 3A"1

I1
" 2
I2

" 3
I3

i4i5…in
yI2i2
" 2 yI3i3

" 3

+…+ (n #1)A"1
I1

" 2
I2…" n#1

In#1
in
yI2i2
" 2 yI3i3

" 3 …yIn#1in#1
" n#1

+ nA"1
I1

" 2
I2…" n

In yI2i2
" 2 yI3i3

" 3 …yInin
" n )$ I1

"1 !dxi2 !dxi3 !…!dxin

= (A"
I
i2i3…in

+ 2A"1
I

" 2
I2

i3i4…in
yI2i2
" 2 + 3A"

I
" 2
I2

" 3
I3

i4i5…in
yI2i2
" 2 yI3i3

" 3

|I |=r
%

+…+ (n #1)A"
I
" 2
I2…" n#1

In#1
in
yI2i2
" 2 yI3i3

" 3 …yIn#1in#1
" n#1

+ nA"
I
" 2
I2…" n

In yI2i2
" 2 yI3i3

" 3 …yInin
" n )$ I

" !dxi2 !dxi3 !…!dxin .
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(17) now follows from (19) and (20).  

 We find the chart expression for the pull-back (! r+1,r )*" . By Lemma 2  

(21)   (!
r+1,r )*" = h !" + p1("0 + !")+ d# + µ,  

where  h !! = h"  and  p1!0 + p1 !!  are given by Lemma 3. We define f0  and 
f!
J i  by the formulas  

(22)  
  
h !! = f0" 0 , p1(!0 + !!) = f#

J i" J
# !" i

0$|J |$r
% .  

Explicitly,  

(23)  
 

f0 = ! i1i2…in (Ai1i2…in
+ A"1

I1
i2i3…in

yI1i1
"1 + A"1

I1
" 2
I2

i3i4…in
yI1i1
"1 yI2i2

" 2

+…+ A"1
I1

" 2
I2…" n#1

In#1
in
yI1i1
"1 yI2i2

" 2 …yIn#1in#1
" n#1 + A"1

I1
" 2
I2…" n

In yI1i1
"1 yI2i2

" 2 …yInin
" n ),

 

and, since   !
ii2i3…in" i = dx

i2 !dxi3 !…!dxin ,  

(24)  
 

f!
J i= " ii2i3…in ( !#!

J
i2i3…in

+ !#!
J

! 2
I2

i3i4…in
yI2i2
! 2 + !#!

J
! 2
I2

! 3
I3

i4i5…in
yI2i2
! 2 yI3i3

! 3

+…+ !#!
J

! 2
I2

! 3
I3…! n$1

In$1
in
yI2i2
! 2 yI3i3

! 3 …yIn$1in$1
! n$1 + !#!

J
! 2
I2

! 3
I3…! n

In yI2i2
! 2 yI3i3

! 3 …yInin
! n ),

 

and  

(25)  

 

f!
I i= " ii2i3…in (A!

I
i2i3…in

+ 2A!
I
! 2
I2

i3i4…in
yI2i2
! 2 + 3A!

I
! 2
I2

! 3
I3

i4i5…in
yI2i2
! 2 yI3i3

! 3

+…+ (n #1)A!
I
! 2
I2…! n#1

In#1
in
yI2i2
! 2 yI3i3

! 3 …yIn#1in#1
! n#1

+ nA!
I
! 2
I2…! n

In yI2i2
! 2 yI3i3

! 3 …yInin
! n ),

 

where 0 ! | J | ! r "1  and | I | = r .  

 Lemma 4  For k !1  the forms 
  
! j1 j2… jk

" !! i  can be decomposed as  

(26)  

  

! l1l2…lk
" !! i =

1
k+1

(! l1l2…lk
" !!

+! il2l3…lk
" !! l1

+! l1il3l4…lk
" !! l2

+…+! l1l2…lk#1i
" !! lk

)

+ 1
k+1

((! l1l2…lk
" !! i #! il2l3…lk

" !! l1
)+ (! l1l2…lk

" !! i #! l1il3l4…lk
" !! l2

)

+…+ (! l1l2…lk
" !! i #! l1l2…lk#1i

" !! lk
)).

 

The forms 
  
! l1l2…lk

" !! i #! l1l2…lp#1ilp+1…lk#1lk
" !! lp

 are closed and can be expressed 
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as  

(27)  
  
! l1l2…lk

" !! i #! l1l2…lp#1ilp+1…lk#1lk
" !! lp

= d(! l1l2…lp#1lp+1…lk#1lk
" !! ilp

).  

 Proof  Indeed,  from (5)  

(28)  

  

d! l1l2…lp"1lp+1…lk"1lk
# !! lpi

= "! l1l2…lp"1lp+1…lk"1lk j
# !dx j !! lpi

= "! l1l2…lp"1lp+1…lk"1lk j
# !dx j !! lpi

=! l1l2…lp"1lp+1…lk"1lk j
# ! ($ i

j! lp
"$ lp

j! i )

= "! l1l2…lp"1lp+1…lk"1lklp
# !! i +! l1l2…lp"1lp+1…lk"1lki

# !! lp
.

 

 Theorem 2  For every fibred chart (V ,! ) , ! = (xi , y" ) , the pull-back  
(! r+1,r )*"  has an expression  

(29)  
 
(! r+1,r )*" = f0# 0 + P$

J i# J
$ !# i

0%|J |%r
& + d' + µ,  

where the components P!
J i  are symmetric in the superscripts, !  is a contact 

form, and µ  is a contact form whose order of contactness is ! 2 . The 
functions P!

I i  such that | I | = r  satisfy  

(30)  P!
I i= ! f0

!yIi
! .  

 Proof  We use (21) and (22) and apply Lemma 4 to the forms 
 f!

J i" J
! !" i . Write with explicit index notation  f!

J i= P!
j1 j2… jk i . We have the 

decomposition  

(31)   f!
j1 j2… jk i= P!

j1 j2… jk i+Q!
j1 j2… jk i,  

where  P!
j1 j2… jk i= f!

j1 j2… jk i Sym( j1 j2… jki)  is the symmetric component and 
 Q!

j1 j2… jk i  is the complementary one. We have, for each k, 1! k ! r , 

(32)  

  

f!
j1 j2… jk i" j1 j2… jk

! !" i

= P!
j1 j2… jk i" j1 j2… jk

! !" i #
1
k+1

Q!
j1 j2… jk id(" j2 j3… jk

! !" j1i

+" j1 j3 j4… jk
! !" j2i

+…+" j1 j2… jk#1
! !" jki

)
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= P!
j1 j2… jk i" j1 j2… jk

! !" i #
1
k+1

d(Q!
j1 j2… jk i(" j2 j3… jk

! !" j1i

+" j1 j3 j4… jk
! !" j2i

+…+" j1 j2… jk#1
! !" jki

))

+ 1
k+1

dQ!
j1 j2… jk i! (" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i

+…+" j1 j2… jk#1
! !" jki

).

 

The exterior derivative  dQ!
j1 j2… jk i , when lifted to V r+2 , can be decomposed 

as  

(33)  
 

(! r+2,r+1)*dQ"
j1 j2… jk i= hdQ"

j1 j2… jk i+ pdQ"
j1 j2… jk i

= dpQ"
j1 j2… jk idx p + pdQ"

j1 j2… jk i.
 

Substituting from (33) back to (32) we get 1-contact and a 2-contact 
summands. The 1-contact summands are equal to  

(34)  

  

hdQ!
j1 j2… jk i! (" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i
+…+" j1 j2… jk#1

! !" jki
)

= #(dpQ!
pj2 j3… jk i" j2 j3… jk

! + dpQ!
j1pj3 j4… jk i" j1 j3 j4… jk

!

+…+ dpQ!
j1 j2… jk#1p i" j1 j2… jk#1

! )" i

+ dpQ!
j1 j2… jk p(" j2 j3… jk

! !" j1
+" j1 j3 j4… jk

! !" j2
+…+" j1 j2… jk#1

! !" jk
)

= #kdp (Q!
pj2 j3… jk i#Q!

ij2 j3… jk p)" j2 j3… jk
! !" i .

 

Note that from the definition of the functions  Q!
pj2 j3… jk i  and from formula 

(24) we easily see that this form is ! r+2,r+1 -projectable. Thus, returning to 
(32), we have on V r+1  

(35)  

  

f!
j1 j2… jk i" j1 j2… jk

! !" i = P!
j1 j2… jk i" j1 j2… jk

! !" i

# k
k+1

dp (Q!
pj2 j3… jk i#Q!

ij2 j3… jk p)" j2 j3… jk
! !" i

# 1
k+1

d(Q!
j1 j2… jk i(" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i

+…+" j1 j2… jk#1
! !" jki

))

+ 1
k+1

pdQ!
j1 j2… jk i! (" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i

+…+" j1 j2… jk#1
! !" jki

).
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This sum replaces  f!

J i" J
! !" i , where | J | = k , with the symmetrized term 

 P!
J i" J

! !" i , a term 
  
dp (Q!

pj2 j3… jk i"Q!
ij2 j3… jk p)# j2 j3… jk

! !# i  containing  ! J
" !! i  

with | J | = k !1 , a closed form, and a 2-contact term.  
 Using these expressions in (21), written as  

(36)  
 
(! r+1,r )*" = f0# 0 + f$

J i# J
$ !# i

0%|J |%r
& + d' + µ,  

we can redefine the coefficients and get  

(37)  
 
(! r+1,r )*" = f0# 0 + f$

J i# J
$ !# i

0%|J |%r&1
' + P$

J i# J
$ !# i

|J |%r
' + d( + µ.  

After r steps we get (29).  
 To prove (31), we differentiate (23) and compare the result with (25).  

 The following lemma concerns vector fields on any fibred manifold Y 
with base X and projection ! .  

 Lemma 5  Let !  be a vector field on X. There exists a ! -projectable 
vector field  

!!  on Y whose ! -projection is ! . 
 Proof  We can construct  

!!  by means of an atlas on Y, consisting of 
fibred charts, and a subordinate partition of unity; we proceed as in the proof 
of Theorem 1, Section 3.2.  

 Now we study properties of differential n-forms ! , defined on 
 W

r ! J rY , which play a key role in global variational geometry. To this 
purpose we write the decomposition formula (29) as   

(38)  
  
(! r+1,r )*" = f0# 0 + P$

i#$ !# i + P$
j1 j2… jk i# j1 j2… jk

$ !# i
k=1

r

% + d& + µ,  

where  

(39)  
 
P!

j1 j2… jr i= ! f0
!yj1 j2… jri

! .  

 Lemma 6  Let  ! !"n
rW . The following three conditions are 

equivalent: 
 (a) p1d!  is a ! r+1,0 -horizontal (n +1) -form. 
 (b) For each ! r ,0 -vertical vector field !  on W r ,  
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(40)  hi!d" = 0.  

 (c) The pull-back (! r+1,r )*"  has the chart expression (38),such that 
the coefficients satisfy   

(41)  
 

! f0
!yj1 j2… jk

! " diP!
j1 j2… jk i" P!

j1 j2… jk"1 jk= 0, k = 1,2,…,r.  

 Proof  1. Let !  be a vector field on W r , let  !!  be a vector field on 
W r+1 , covering !  that is, such that  T!

r+1,r " !# = #"! r+1,r  (Lemma 5). Then  
 i !!("

s+1,s )*d# = (" s+1,s )* i!d# , and the forms on both sides can be 
canonically decomposed into their contact components. We have  

(42)   i !!p1d" + i !!p2d" +…+ i !!pn+1d" = hi!d" + p1i!d" +…+ pni!d".  

Comparing the horizontal components on both sides we get 

(43)   hi !!p1d" = (# r+2,r+1)*hi!d".  

 Let p1d!  be ! r+1,0 -horizontal. Then if !  is ! r ,0 -vertical,  !!  is ! r+1,0 -
vertical, and we get  hi !!p1d" = (# r+2,r+1)*hi!d" = 0 , which implies, by 
injectivity of the mapping (! r+2,r+1)* , that hi!d" = 0 .  
 Conversely, let hi!d" = 0  for each ! r ,0 -vertical vector field ! . Then by 
(43),  hi !!p1d" = i !!p1d" = 0  for all ! r+1,r -projectable, ! r+1,0 -vertical vector 
fields  !! . If in a fibred chart, 

(44)  
 

!! = ! j1 j2… jk
"

1#k#r
$ !

!yj1 j2… jk
"  

and  

(45)  
  
p1d! = A"

j1 j2… jk# j1 j2… jk
" !# 0

1$k$r
% ,  

then we get  

(46)   A!
j1 j2… jk = 0, 1" k " r,  

proving ! r+1,0 -horizontality of p1d! . This proves that conditions (a) and (b) 
are equivalent. 
 2.  Express (! r+1,r )*"  in a fibred chart by (38). Then  
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(47)  

  

p1d! = ! f0
!y"

# diP"
i$

%&
'
()
*" !* 0 +

+ ! f0
!yj1 j2… jk

" # diP"
j1 j2… jk i# P"

j1 j2… jk#1 jk
$
%&

'
()
* j1 j2… jk

"

k=1

r

+ !* 0

+ ! f0
!yj1 j2… jr+1

" # P"
j1 j2… jr jr+1

$
%&

'
()
* j1 j2… jr jr+1

" !* 0

 

Formula (47) proves equivalence of conditions (a) and (c).  

 Any form  ! !"n
rW  satisfying equivalent conditions of Lemma 6 is 

called a Lepage form.  

 Remark 5 (Existence of Lepage forms)  Consider conditions (41). It is 
easily seen that this system has always a solution, and the solution is unique. 
Indeed, we have  

(48)  

 

P!
j1 j2… jk"1 jk= ! f0

!yj1 j2… jk
! " di1P!

j1 j2… jk i1

= ! f0
!yj1 j2… jk

! " di1
! f0

!yj1 j2… jki1
! " di2P!

j1 j2… jki1 i2
#
$%

&
'(

= ! f0
!yj1 j2… jk

! " di1
! f0

!yj1 j2… jki1
! + di1di2P!

j1 j2… jk"1i1 i2

= ! f0
!yj1 j2… jk

! " di1
! f0

!yj1 j2… jki1
! + di1di2

! f0
!yj1 j2… jk"1i1i2

! " di3P!
j1 j2… jk"1i1i2 i3

#
$%

&
'(

=…= ("1)l di1di2…dil
! f0

!yj1 j2… jki1i2…il
!

l=0

r+1"k

) .

 

so the coefficients P!
j1 ,  P!

j1 j2… jk"1 jk  are completely determined by f0 . In 
particular, Lepage forms always exist over fibred coordinate 
neighbourhoods. More precisely, one can also interpret this result in such a 
way that to any given form  ! !"n

rW  and any fibred chart (V ,! ) , 
! = (xi , y" ) , such that  V !W , one can assign by the described construction 
a Lepage form, belonging to the module !n

r+1V .  

 Theorem 3  A form  ! !"n
rW  is a Lepage form if and only if for any 

fibred chart (V ,! ) , ! = (xi , y" ) , on Y such that  V !W , (! r+1,r )*"  has an 
expression 
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(49)  (! r+1,r )*" =# + d$ + µ,  

where 

(50)  
  
! = f0" 0 + (#1)l

l=0

r#k

$ dp1dp2…dpl
! f0

!yj1 j2… jk p1p2…pli
%

&
'(

)
*+k=0

r

$ " j1 j2… jk
% !" i ,  

f0  is a function, defined by the chart expression h! = f0" 0 , and the order of 
contactness of !  is ! 2 .  

 Proof  Suppose we have a Lepage form !  expressed by (38) where 
conditions (41) are satisfied, and consider conditions (20). Then repeating 
(48) we get formula (50). The converse follows from (47) and (38).  

 The n-form !  defined by (50), is sometimes called the principal 
component of the Lepage form !  with respect to the fibred chart (V ,! ) . 
Note that !  depends only on the Lagrangian h! = "!  associated with ! ; 
the forms !  constructed this way are defined only locally, but their 
horizontal components define a global form.  

 3.4 Euler-Lagrange forms  We defined in Section 3.3 a Lepage 
form  ! !"n

rW  by a condition on the exterior derivative d! ; namely, we 
required that the 1-contact component p1d!  should belong to the ideal of 
forms, defined on W r+1 , generated in any fibred chart (V ,! ) , ! = (xi , y" ) , 
by the contact 1-forms !" . Now we study the consequences of this 
definition for the exterior derivative d! . We express !  as in formula (48), 
Section 3.3.  

 Theorem 4  If  ! !"n
rW  is a Lepage form, then the form (! r+1,r )"d#  

has an expression  

(1)  (! r+1,r )*d" = E + F,  

where E is a 1-contact, (! r+1,0 ) -horizontal (n +1) -form, and F is a form 
whose order of contactness is ! 2 . E is unique and has the chart expression 

(2)  
  
E = ! f0

!y!
" ("1)l"1

l=1

r+1

# dp1dp2…dpl
! f0

!yp1p2…pl
!

$
%&

'
()
*! !* 0 .  

 Proof  For any ! , E = p1d! , and  F = p2d! + p3d! +…+ pn+1d! . But 
for a Lepage form ! , from 3.3, (48),  
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(3)  
 
E = p1d! = p1d" = ! f0

!y#
$ diP#

i%
&'

(
)*
+# !+ 0 ,  

where by 3.3, (47), 

(4)  
 
P!

i= ("1)l
l=0

s

# dp1dp2…dpl
! f0

!yp1p2…pli
! .  

 The (n +1) -form E is called the Euler-Lagrange form, associated with 
the Lepage form ! . Note that similarly as the form ! , E depends only on 
the Lagrangian !" = f0# 0 . The components of E  

(5)  
 
E! ( f0 ) =

! f0
!y!

" ("1)l"1
l=1

r+1

# dp1dp2…dpl
! f0

!yp1p2…pl
!  

are called the Euler-Lagrange expressions, associated with f0 .  
 Sometimes we consider differential forms, defined on different order jet 
prolongations J rY  and J sY  of the fibred manifold Y, arising, however, by 
the pull-back by the corresponding canonical jet projection ! r ,s . Then to 
avoid long notations, we usually omit the corresponding canonical pull-back 
mappings between two forms, defined on J rY  and J sY . Our aim will be to 
study Lepage forms with fixed (given) horizontal components.  
 As before, denote by !n,X

r W  the submodule of the module !n
rW , 

formed by ! r -horizontal n-forms (Lagrangians of order r for Y). Clearly, 
the set !n,X

r W  contains the Lagrangians !" , associated with n-forms 
 !!"n

r#1W .  
 The following is an existence theorem of Lepage forms whose 
horizontal component is a given Lagrangian.  

 Theorem 5  To any Lagrangian  ! !"n,X
r W  there exists an integer s 

and a Lepage form  ! !"n
sW  such that  

(51)  h! = ".  

 Proof  We show that the theorem is true for s = 2r !1 . Choose an atlas 
 {(V! ,"! )}  on Y, consisted of fibred charts (V! ,"! ) , !" = (x"

i , y"
# ) , and a 

partition of unity  {!"} , subordinate to the covering  {V!}  of Y. The functions 
!"  define the (global) Lagrangians  !"# !$n

rW . We have, in the chart 
(V! ,"! ) , with obvious notation,   

(52)   ! = � "# (")0 .  
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Then we set for each !   

(53)  

   

!" = #"� "$ (")0

+ (%1)l
l=0

r%1%k

& dp1dp2…dpl
!(#"� " )

!y(") j1 j2… jk p1p2…pli
'

(
)*

+
,-k=0

r%1

& $ (") j1 j2… jk
' !$ (")i .

 

Thus, !"  is the principal Lepage equivalent of the Lagrangian  ! = � "# (")0 . 
Since the family  {!"}  is locally finite, the family  {!"}  is also locally finite, 
thus the sum ! = "#$  is defined. Then we have p1d! = " p1d#$ , thus, !  is 
a Lepage form, because each of the forms !"  is Lepage. It remains to show 
that h! = " .  We have  h! = "h#$ = "%$� $& ($)0 . To compute this 
expression choose a fibred chart (V ,! ) , ! = (xi , y" ) , such that the 
intersection  V !V!  is non-void for only finitely many indices ! . Using this 
chart, we have  ! = � "# (")0 = � "# 0  on   V ! (!V! )  and, since  

(54)  ! (")0 = det
!x(")

i

!x j
#
$%

&
'(
! 0 ,  

then  

(55)  
 
� ! det

!x(!)
i

!x j
"
#$

%
&'
= �.  

Consequently,  

(56)  
 
h! = "#$� $% ($)0 = "#$� $ det

!x($)
i

!x j
&
'(

)
*+
% 0 = ("#$ )�% 0 = �% 0  

because !"# = 1 .  

 Let  ! !"n,X
r W  be a Lagrangian. A Lepage form  ! !"n

sW  such that 
h! = "  (possibly up to a canonical jet projection) is called a Lepage 
equivalent of ! .  
 If in a fibred chart (V ,! ) , ! = (xi , y" ) , !  is expressed as  

(57)   ! = �" 0 ,  

then the form  

(58)  
   
!� = � "# 0 + ($1)l

l=0

r$1$k

% dp1dp2…dpl
!�

!y(") j1 j2… jk p1p2…pli
&

'
()

*
+,k=0

r$1

% # j1 j2… jk
& !# i  
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is called the principal Lepage equivalent of !  for the fibred chart (V ,! ) .  

 Remark 6  The Lepage equivalent constructed in the proof of 
Theorem 5 is ! 2r"1,r"1 -horizontal, and its order of contactness is !1 .  

 Remark 7  Theorem 5 says that the class of variational functionals, 
associated with the variational structures (! ,") , introduced in Section 3.1, 
remains the same when we restrict ourselves to Lepage forms ! . Thus, from 
now on, we may suppose without loss of generality that the variational 
functionals  

(59)  
 
!",W (# )!$ % &"($ ) = J r$ *&

"
' "R,  

are defined by Lepage forms.  

 Example 1 (Lepage forms of order 1)  For Lagrangians  ! = �" 0  of 
order 1 we get the principal Lepage equivalent  

(60)  
  
! = �" 0 +

!�
!yi

# "
# !" i .  

One can easily verify by a direct calculation that the form !  is defined by 
(60) globally; it is called, due to P.L. Garcia [4], the Poincare-Cartan form. 
 
 Example 2 (Lepage forms of order 2)  A Lagrangians  ! = �" 0  of 
order 2 has the principal Lepage equivalent  

(61)  
  
! = �" 0 +

!�
!yi

# $ dj
!�
!yij

#

%
&'

(
)*
"# !" i +

!�
!yij

# " j
# !" i .  

The form (61) are global, although in general for higher order Lagrangians a 
similar assertion is not true. The Lepage form (61) was introduced by 
Krupka in [7]. The proof of invariance of !  is routine. We shall verify the 
transformation properties of the forms 

 
! j

" !! i +! i
" !! j  with the help of 

explicit coordinate transformation (cf. 1.4, Example 5). We have  

(62)  ! i = i! /!x i! 0 =
!xk

!x i
det !x
!x

i! /!xk! 0 =
!xk

!x i
det !x
!x

! k .  

and  
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(63)  

! j
" = dyj

" # yjl
"dx l =

!yj
"

!x p
dx p +

!yj
"

!y$
dy$ +

!yj
"

!yp
$ dyp

$

# !2 y"

!xs !xm
+ !2 y"

!xs !yµ
ym
µ + !2 y"

!xm !y$
ys
$ + !2 y"

!yµ !y$
ys
$ ym

µ%
&'

+ !y
"

!y$
ysm
$ (
)*
!xm

!x l
!xs

!x j
!x l

!x p
dx p + !y"

!xs
+ !y

"

!y$
ys
$%

&'
(
)*
!2 xs

!x j !x l
!x l

!x p
dx p

= !
!x p

!y"

!xl
+ !y

"

!y$
yl
$%

&'
(
)*
!xl

!x j +
!y"

!xl
+ !y

"

!y$
yl
$%

&'
(
)*
!2 xl

!x j !x s
!x s

!x p
+%

&'

+ !y"

!xl !y$
+ !y"

!y$ !y+
yl
+%

&'
(
)*
!xl

!x j yp
$ + !y

"

!y$
!xq

!x j ypq
$

# !2 y"

!xs !xm
+ !2 y"

!xs !yµ
ym
µ + !2 y"

!xm !y$
ys
$ + !2 y"

!yµ !y$
ys
$ ym

µ%
&'

+ !y
"

!y$
ysm
$ (
)*
!xm

!x l
!xs

!x j
!x l

!x p
+ !y"

!xs
+ !y

"

!y$
ys
$%

&'
(
)*
!2 xs

!x j !x l
!x l

!x p
(
)*
dx p

+
!yj

"

!y$
(dy$ # yq

$dxq )+
!yj

"

!yp
$ (dyp

$ # ypq
$ dxq ),

 

which result into the formula  

(64)  ! j
" =

!yj
"

!y#
!# + !y

"

!y#
!xl

!x j ! p
# .  

Then, however,  

(65)  

 

! j
" !! i =

!xk

!x i
det !x
!x

!yj
"

!y#
!# + !y

"

!y#
!x p

!x j ! p
#$

%&
'
()
!! k

= det !x
!x

!yj
"

!y#
!xk

!x i
!# + !y

"

!y#
!x p

!x j
!xk

!x i
! p

#$
%&

'
()
!! k ,

 

which shows that the symmetrized expression 
 
! j

" !! i +! i
" !! j  transforms 

to the symmetrized expression 
 
! p

" !! k +! k
" !! p .  

 3.5 The Euler-Lagrange mapping  Choosing for any Lagrangian 
 ! !"n,X

r W  a Lepage equivalent !  of ! , we can construct the Euler-
Lagrange form E associated to !  (3.4, (3)); this (n +1) -form, depends on 
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!  only. We denote this form by E!  and call it the Euler-Lagrange form, 
associated with ! . Denoting by !n+1,Y

r W  the module of ! 2r"1,0 -horizontal 
(n +1) -forms on W 2r!1 , we get the mapping  

(16)   !n,X
r W ! " # E" "!n+1,Y

r W  

called the Euler-Lagrange mapping. 
  We can summarize basic properties of Lepage forms, namely their 
relations to the Euler-Lagrange forms, as follows. Denote by Lepn

r W  the 
real vector subspace of the vector space !n

rW , whose elements are Lepage 
forms. Taking into account properties of the exterior derivative of a Lepage 
form we see that the Euler-Lagrange mapping E makes the following 
diagram commutative:  

(17)  
Lepn

r W h! "! #n,X
r+1W

$ d $ E

#n+1
r+1W p1! "! #n,Y

2(r+1)W

 

The diagram demonstrates the relationship of the Euler-Lagrange mapping 
and the exterior derivative of differential forms in the spirit of the work or 
Th. Lepage.  
 The following theorem describes the behaviour of the Euler-Lagrange 
mapping under automorphisms of the underlying fibred manifold. 

 Theorem 6  For each Lagrangian !  and each automorphism !  of Y  

(18)  J 2r! *E" = EJ 2 r!*" .  

 Proof  We apply Theorem 4 of Section 3.4 to Lepage equivalents. Let 
 !" !#n

sW  be any Lepage equivalent of ! . Then  

(19)  (! s+1,s )*d" = E# + F# .  

It is easily seen that the pull-back J s! *"  is a Lepage form whose 
Lagrangian is hJ s! *" = J s+1! *h" = J s+1! *# . Then from commutativity 
of the pull-back and the exterior derivative we have  

(20)  (! s+1,s )*dJ s" *# = (! s+1,s )* J s" *d# = J s+1" *(! s+1,s )*d#,  

from which we conclude that J s+1! *E" + J
s+1! *F" = EJs!*" + FJs!*" . 

Theorem 6 now follows from the uniqueness of the 1-contact components.   
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 3.6 The first variation formula  Suppose we have a variational 
structure (Y ,!) , where Y is a fibred manifold with n-dimensional base X, 
and !  is an n-form on the r-jet prolongation J rY . Recall that for any piece 
!  of X, and any open set  W !Y , (Y ,!)  defines the variational functional 
 !",W (# )!$ % &",W ($ )"R  by  

(1)  !"(# ) = J r# *!
"
$  

(Section 3.1). The first variation of this variational functional by a ! -
projectable vector field !  is the variational functional 

 !",W (# )!$ % (&J r' ()"($ )"R , where  

(2)  (!J r" #)$(% ) = J r% *!J r" #
$
&  

(Section 3.2, (15)).  
 In this section we study a variational structure (Y ,!)  such that !  is a 
Lepage form. Our main result of Section 3.5 (Theorem 5, Remark 7) shows 
that this assumption does not restrict the class of variational functionals. As 
before, denote by !"  the horizontal component of an n-form ! , that is, the 
Lagrangian, associated with ! . For Lepage forms, the following theorem 
on the structure of the integrand in the first variation (2) is just a restatement 
of definitions.  

 Theorem 7  Let  ! !"n
rW  be a Lepage form, and let !  be a ! -

projectable vector field on W.  
 (a) The Lie derivative !J r" #  can be expressed as  

(3)  !J r" # = iJ r"d# + diJr"#.  

 (b) If !  is ! -vertical, then  

(4)  !J r+1"#$ = iJ r+1"E#$
+ hdiJr"$.  

 (c) For any section !  of Y with values in W, 

(5)  J r! *"J r# $ = J r+1! * iJ r+1#E%$
+ dJ r+1! * iJ r+1#$.  

 (d) For every piece !  of X and every section !  of Y defined on ! , 

(6)  J r! *"J r# $
%
& = J r+1! * iJ r+1#E'

%
& + J r+1! * iJ r+1#$

"%
& .  
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 Proof  (a) This is a standard Cartan’s Lie derivative formula.  
 (b) If !  ! -vertical, then from (3), 
h!J r" # = !J r"h# = iJ r"p1d# + hdiJr"# , but p1d! = E"!

 because !  is a 
Lepage form.  
 (c) Formula (4) can be proved by a straightforward calculation. We 
have 

(7)   

J r! *"J r# $ = J r+1! *h"J r# $ = J r+1! *h"J r# $

= J r+1! *hiJr#d$ + J r+1! *hdiJr#$

= J r+2! *hiJr#p1d$ + J r+2! *hiJr#p2d$ + J r! *diJr#$

= J r+2! *hiJr#E%$
+ J r! *diJr#$.

 

 (d) Integrating (5) and using the Stokes’ theorem on integration of 
closed (n !1) -forms on pieces of n-dimensional manifolds we get (6).  

 Each of the formulas (3), (4) and (5) is called, in the context of the 
variational theory on fibred manifolds, the infinitesimal first variation 
formula; (6) is called the integral first variation formula.  

 Remark 8  Note that the infinitesimal first variation formula has no 
analogue in the classical formulation of the calculus of variations. The 
present formulation is based on the concepts of a Lepage form as well as of 
geometric concepts as the Lie derivative, exterior derivative and contraction 
of a form by a vector field.  

 Remark 9  Theorem 7 can be used to obtain the corresponding formulas 
for higher variational derivatives (cf. 3.2). 
 
 3.7 Extremals  Let  U ! X  be an open set, ! :U"Y  a section, and 
! :U" TY  a vector field along ! . The support of !  is the set 
  supp! = cl{x!U |!(x) " 0}  (here cl  means closure). We know that each 
smooth vector field !  along !  can be smoothly prolonged to a ! -
projectable vector field  !!  defined on a neighbourhood V of the set 
 ! (U )!Y  (3.1, Theorem 1).  !!  satisfies 

(1)   
!!"" = !.  

 Let  !! X  be a piece of X,  W !Y  an open set, and let !",W (# )  denote 
the set of sections ! :U"Y  such that  !!U  and  ! (")!W . Let 
 ! !"n

rW  be a Lepage form. We say that a section  ! !"#,W ($ )  is an 
extremal of the variational functional  !",W (# )!$ % &"($ )"R  on ! , if for 
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all ! -projectable vector fields ! , such that   supp(!!" )!# ,  

(2)  J r
!
" # *$J r% & = 0.  

!  is called extremal of the variational functional  !",W (# )!$ % &"($ )"R , 
if it is an extremal on !  for every ! .  
 Thus, roughly speaking, the extremals are those sections !  for which 
the values !"(# )  are not sensitive to small compact deformations of ! .  
 In the following necessary and sufficient conditions for a section to be 
an extremal, we use the Euler-Lagrange form Eh! , associated with the 
Lagrangian !" = h" , written in a fibred chart as  

(3)  
  
Eh! = E" (�)#

" !# 0 ,  

where the components  E! (�)  are the Euler-Lagrange expressions (see 3.4, 
(5). Explicitly, if  h! = �" 0 , then  

(4)  
  
E! (�) =

!�
!y!

" ("1)l"1
l=1

r+1

# dp1dp2…dpl
!�

!yp1p2…pl
! .  

 Theorem 8  Let  ! !"n
rW  be a Lepage form. Let ! :U"Y  be a 

section, and  !!U  a piece of X. The following conditions are equivalent: 
 (a) !  is an extremal on ! . 
 (b) For every ! -vertical vector field !  defined on a neighbourhood of 
! (U ) , such that   supp(!!" )!# , 

(5)  J r! * iJ r"d# = 0.  

 (c) The Euler-Lagrange form associated with the Lagrangian h!  
vanishes along J r+1! , i.e., 

(6)  
 
Eh! ! J

r+1" = 0.  

 (d) For every fibred chart (V ,! ) , ! = (xi , y" ) , such that  ! (V )!U  
and  ! (" (V ))!V , !  satisfies the system of partial differential equations 

(7)    E! (�)! J
r+1" = 0, 1#! # m.  

 Proof  1. We show that (a) implies (b). By Theorem 7, (d), for any piece 
!  of X and any ! -vertical vector field !  such that   supp(!!" )!# , 
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(8)  J r! *"J1# $
%
& = J r! * iJ 3# d$

%
& ,  

because the vector field J r!  vanishes along the boundary !" . Then 

(9)  J r! * iJ r" d#
$
% = J r+1! *(& r+1,r )* iJ r"d

$
% # = J r+1! * iJ r+1"p1 d#

$
% ,  

where p1d! = Eh!  is the Euler-Lagrange form.  
 If !  is contained in a coordinate neighbourhood, the support 
  supp(!!" )!#  lies in the same coordinate neighbourhood. Writing 
! = !" #!/ !y"  and   p1d! = E" (�)#

" !# 0 , we get 
 
iJ r+1!p1d" = E# (�)!

#$ 0  
and  

(10)  
  
J r! * iJ r"d# = (E$ (�)! J

r+1! ) %("$ !! ) %& 0 .  

 Now supposing that J r! * iJ r"d# $ 0  for some ! -vertical vector field 
! , the first variation formula 

(11)  
  
J r! * iJ r" d#

$
% = (E& (�)! J

r+1! ) '("& !! ) '( 0
$
%  

would give us a contradiction 

(12)  J 3! *"J r# $
%
& ' 0.  

Thus, (a) implies (b).  
 2.  (c) is an immediate consequence of (b). Indeed, we can write with !  
! -vertical  

(13)  
 

J r! * iJ r"d# = ($ r+1,r ! J r+1! )* iJ r"d# = J r+1! *($ r+1,r )* iJ r"d#

= J r+1! * iJ r+1"($
r+1,r )*d# = J r+1! * iJ r+1"p1d# = J r+1! * iJ r+1"Eh# .

 

 3.  (d) is just a restatement of (b) for the components of the form Eh! .  
 4.  We apply Theorem 7, (d).  

 Equations (7) are called the Euler-Lagrange equations; these equations 
are indeed related to the chosen fibred chart (V ,! ) , ! = (xi , y" ) .  

 Remark 10  For a fixed fibred chart (V ,! ) , ! = (xi , y" ) , the Euler-
Lagrange equations represent a system of partial differential equations of 
order r +1  for unknown functions (xi )!" # (xi ) , where 1! i ! n  and 
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1!" ! m . This fact is due to the origin of the Lagrange function  �  that 
comes from a Lepage form, which is of order r. If we start with a given 
Lagrangian of order r, then the Euler-Lagrange equations are of order 2r . 
To get an extremal !  on a piece  !! X  we have to solve this system for 
every fibred chart (V! ,"! ) , ! = (x"

i , y"
# ) , from a collection of fibred charts, 

such that the sets ! (V" )  cover ! ; then the solutions (x!
i )"# !

$ (x!
i )  should 

be used to find a section !  such that ! "
# = y"

#!$"
%1  for all indices ! .  

 Remark 11  Properties of nonlinear equations (7) depend on the form 
! ; their global structure is defined by condition (5). This condition says that 
a section !  is an extremal if and only if its r-jet prolongation is an integral 
mapping of an ideal of forms generated by the family of n-forms iJ 3!d" . 
Using 3.3, Theorem 4, one can find explicit expressions for local generators 
of the ideal.  
 
 
 


