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4 The inverse problem

4.1 Formal divergence equations In this section we study the
formal differential equations, closely related to the Euler-Lagrange equations
of the calculus of variations on the jet prolongations of fibred manifolds.
Essential parts of the proofs of our assertions are based on the trace decom-
position theory, explained in Section 2.1.

Let U CR" be an open set, let W C R" be an open ball with centre at
the origin, and denote V =U XW . We consider V as a fibred manifold over
U with the first Cartesian projection 7 :V — U . As before, we denote by V"
the r-jet prolongation of V. V" is explicitly expressed as
(1) V' =UXxW xLR",R")x Liym R"R")x...x L (R",R"),
where Lﬁym (R",R™) is the vector space of k-linear, symmetric mappings
from R" to R™. The Cartesian coordinates on V, and the associated jet co-
ordinates on V", are denoted by x',y° , and x’l,y",yz,yij2 ,...,yzjz"‘j’ , respec-
tively.

Let s=1 and let f:V'— R be a differentiable function. Our aim in
this section is to find integrability conditions and solutions g=g' of the
formal divergence equation

(2) dg' =f,

whose components g’ are differentiable real functions on the set V°. Since
the formal divergence d,g' is defined by
. dag'  og' og' ag' ag'
3 dg' =—"-+ 7+ 7+ 7 et o
( ) [g ax, aya yt ayo- y_/ll ayjo]-h y./l./Z’ a o yjl_/zm_/sl

i Yiigereds

equation (2) is a first order partial differential equation. From this expression
we immediately see that every solution g=g', defined on V"’ satisfies

9 i 9 Ji 9 )2 9 Js
4) Gg + Gg + Gg +...++:0.
Yivedi Wi i Yoo

By a solution of order r of the formal divergence equation (2) we mean
any system of functions g=g', defined on the set V' for some r, satisfying
condition (2). Clearly, a solution of order r is also a solution of order r+1.
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Since in this case

;_0g  dg . 98 5 g g
(5) dg' = P "+é) o i +a sVt oo Vi Tt T Vi i
X Vi i iz

we shall have several identities of the form (4).

Lemma 1 Let f:V' — R be a differentiable function. Then if the for-
mal divergence equation (2) has a solution, defined on the set V', where
r2s, it also has a solution defined on V° . The solution g=g', defined on
V* satisfies condition (4) and is polynomial in the variables yZ e

Proof 1. First we show that if a system of functions g=g' satisfies the
condition

Jo' Joh Jo’ Jo’r
(0) £ . % L, 9% L . +-%8 o,

o o o o
Yidin Wiins Wiiioeo, Yiineesirai

then each component g=g' is a polynomial of degree <n—1 in the varia-
bles yZ i, - To this purpose it will be convenient to work with multi-indices
of the form J =(j,j,...j,); we want to prove that

) % =

dy;' dy;?...0y;"
It is sufficient to show that all Young diagrams, defining the Young de-
composition of the left-hand side of (7), vanish. Since this expression is al-
ready symmetric in the indices entering J,, J,, and J, , only the diagrams,
which contain any of the blocks J,, J,,and J, in a row can define a non-
trivial Young projector. A typical diagram is

Lo n e uy e

(8) K+l k+2 - ky+ky

ky+ky+1 Jk1+k2+2

(diagram with different position of indices in each row define analogous
Young projectors). But the diagrams for the decomposition of (8) should
also include the index i. If i stands in a row containing at least one of the
blocks J,, J,, ..., J,, we get necessarily the zero Young projector, by (6).
Thus, nonzero projectors can possibly arise only from the diagrams, in
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which the index i is placed on the bottom:

Jk1+1 Jk1+2 v Jk,+k2

©)

key+hy+1 Jk1+k2+2

i

However, we can use the skew-symmetry of the Young projector in the col-
umns and interchange the indices in the first and last rows in the first col-
umn. We get the zero projector whenever k, =22 . Thus, we conclude that a
non-trivial projector could only arise from the diagram

(10)

with 7 in the first column. But this diagram defines the zero projector, be-
cause it contains n+1 rows. This concludes the proof of identity (7).

2. Consider the formal divergence equation (2) with the right-hand side
f:f(xi,ya,yz,yzjz,...,yzjzmj&), and its solution g=g' of order r>s+1.
Thus, we have

i

dg dg . g . ag . ag .
1D iﬁia ; +ia T é; Vi Teent og Vi = >
dx' dy ay;, Y, Yo,

and condition (6) is satisfied. Then by the first part of this proof,
(12)  g'=g+g+&+. .48

where g; is a homogeneous polynomial of degree p in the variables yZ o
Substituting from (12) into (11) we get, because f does not depend on
Yivsewidy ?

g 98 o 98 g, g,
13 —20 4 8040 00 g0y 700 WOy 400 O = f
( ) ax’ (:)ya yl ay;rl yjll y]l./zl o y./l./szr—l’ f

o
ayj1jz yj]jZ'“jr—l
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Repeating this procedure, we get some functions h=h', defined on V°,
satisfying

oh' on' , on . oh oh'
(14) Tt Nt e Yt e Vi et Y5, = 0
0x ay ayjl ayjljz ) ayjljzu.jj .

as required.

Denote

o, =dx' Ndx* A...Ndx",

15) , 1

— Ja Js Jn
;=i .0, jAx? Ndx™ NN dx"

=—£.. .
(Il—l)! YaJ3---Jn

Consider a 7°- horizontal (n—1)-form 7 on V*, expressed with respect to
the bases @, and dx”> Adx” A...\dx" as

iy = 1 B2 A g n
(16) n=gow,= (n_])!hjzjsmj”dx Adx N N dx.
Note that from expressions (15), the components of the form 7 satisfy the
transformation formulas

_ i k _ kjaj3e--Jn
aAD - by, =8 8 RTINS
We want to find the transformation equations for the components g’ and
iiri, - Denote by Alt and Sym the alternation and symmetrization in the
corresponding indices.

Lemma 2 The functions g' and h;, ;. satisfy
1 ag' agh 9g" agh
_] 81’1213...1,, og o‘g + o‘g to.t o‘g
r+ ayk]kzu.kl\ ayikzkykj ayklik3k4.AAk: ayklkzmkl\.,]i

(18)

oh 1y ok
= ety 10D Tt s Symkik, k) Al )

- o
ayklkz,“ks r+l ayikzky“kl\.

and are polynomial in the variables y,‘flkz'”kj .
Proof 1. We have from (17)
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(19) 6g' _ 1 ij2j3e-Jy ahj2j3~-»jn
a)’Zkr.k& (n=1)! ay:lkz---k,‘
hence
1 dg’ dg" dg" og"
ﬁg”’ﬂ*w’n(a st Fotog
Vi k, Yikyks.. k, Yk, .k, Yy ki
11 oty Mg,
=l (n=1)! €y, €T 8673
: Vigky.. k,
L; kyjajze--Jn ahjzjsmjn
ilyly.. 1,
s+ (=11 Vit
L;g Kajnjse i ah./z./gm./’n
1 Sl d, P
20) s+l (n=1)! 5 ayklik3k4...k,,
R A Kyjojs--in ah./z./3-~~./n
s+1 (}’l—l)' ilyls.. 1, aygkz_”kb‘_]i

_s+1ayzk%_k ﬁ(n—l)gi

L7l (o}

Yikyhs... k,

_1\ i I, Yl o
s+l (n=1)! Vi k,

! o . oh. . .
L kS SRk Al )

! o . Oh, . .
b M skghgi g Tk AWGLL LY,
stl(n=1)! " = ! yl(:kz.uk,i !

To compute the alternations Alt(il,/;...[,), we first alternate in ([,/;...

and then in (il,/;...[). We get

k S S Jn ah.fz.fs---j,, .
548767 .50 — AltGLL,...1,)

oh ! o Coh
1oy, n I nl Sh§irS 5/# Alt(iL ;...

155

L)

ln)

ok k,
@1 _ 1 S5k ahlzzyuln _ gk ahil3l4u.ln _§h ahlzi14l5.,.1n I ¢ ahlzl}“l,,,,i
_niao' lzaa I3 o lnaG
Yikyks.. k, Yikyhs. .k, Yikyks.. k, Yikyhs. .k,

o I3 o Iy o I, o
ayk,kzk}“kx ayz‘kzk}“ks a)’ikzk3..4k3 Vikyks.. &,

n

and similarly for the other terms. Altogether

_ 1[ a]71213..41,, _Sh ahil314...1,, _ Sk ahl2il4154..l,, gk ah1213..41,,_1i

J
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' k k k
1 ag' N ag" N g™ ag"
ilyls.. 1, o o o e o
s+l ayk,kz.,,kj a)’ik2k3..4kl; a)’k,ik3k4.4.ks ayk,kz.“kx,,i
1 ahlzl}“ln + ahlzly“l,, & ah11314“1n _gh ahlzilﬂs.“l”
- o o 1, o I3 o
s+l ayklkzmk\ ayk,kzk}../;‘ ayikzky..kA Yikyhy. .k,
_ K ah1213.“ln,,i ahlzl3“.l,, sk ahil3l4mln _§h ah12i14l5..41n
1, o o I o I3 o
ayikzk}..kx ayklk2k3.,,ks Vikyhe... ke, Yikyhs... k,
sk ahlzly..l,,,]i + ahzzzy..l,, ok, ahi13l4.,,ln ok ahlzil415...ln
1, o o I o I3 o
ayikzky“kx a)’k,kzkykj Yiiks.. k, Vikiks.. &,
_ sk ahlzly..l,,_li - ahlzly.l,,
e T
ayik,er..‘k“ ayklkzk;..,kb\.
Sk, ahi1314“.1,1 sk ah1251415...1” gk ahlzl}..ln,li
b c I3 o L, c
Yikyks.. k, ik ayikzk}..kﬂkl ayikzkgu.kﬂkl
oh 1 oh. oh, . oh .
_ M, K M, & M. .0, ko Oy i
| (L0 e e Y
Vioky.. k, Yikyks.. k, Yikoks.. &, Yikyks.. k,
oh. oh, . oh ,
&, Mg, & i, & Oty 0, i
+6, A0 L+ 6,
,
Vikks.. &, Yikiks.. &, Vikes.. &,
oh. oh, . A
k Iy d k Lilyls...] k. Ils..d,
Fo O T O T O
2 3 n
Yikyks.. k, ik, Yikyks.. ko ik Yikyks.. k, ik,
_ ahlzz}‘.z,,
- o
ayklkzmks
_n-1 1 Sk ahil3l4...l,, +Sh ahlzil4[5...l,, 4.+ Sk ahIZIS,..l,,,li
stln—1| & g2 5 9y0 O gy
Yikks. .k, Vikks. .k, Yikks. .k,
oh. oh, . oh .
&, Mg, & M. & O, i
+0, ) L+ 6,
ayik,ky..kj ayiklk}..kx ayik,k}..kx
oh. oh, . .
k L. d, k Lilyls.. k Iy, dy
FoH O T O T O
ayikzk}“ks,,k, ’ ayikzk}“k:,lkl ayikzk}“ks,,k,

and, with the help of alternations and symmetrizations,
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1, dg' _9gh 9gh . dgh
iyl 1, -
s+l a)’/:kzmh ayiizky.k‘ ayzz'@kz,...k,‘ akazmkA_li

_ ahlzzyuln _n=lgy ahi13z4..41" _n=l gy ahil3l4“.l

n

- o [ c I c
ayklkz,..ks s+l ayik2k3...k: s+l ayiklkB...k:

. o
23) o e Dl A, )
s+l ayikzkzmkx,lkl

_ ah1213...l,l s(n—1) ¢y, ahi13[4,‘.[” n—1 ¢y, ahil3l4...l,,
- o - I, - I, o
ayklkz.uk\ s+1 s+l ayik,k}.,k»‘.

o
Yikks.. k,

n—1 Oy,
—— 8 =2 Al 1) Sym(kk,...k,).
s+loe ayik2k34..k3_,kl
2. Polynomiality of g' has been verified in the proof of Lemma 1, and
polynomiality of A, , follows from transformation formulas (17).

We say that a 7°-horizontal form 77, defined on V’, has a 7**"'-
projectable extension, if there exists a form g on V'™ such that n=hpu .
Our objective now will be to find conditions for 1 ensuring that 1 does
exist. Let 1 be expressed in two bases of (n—1) -forms by (16),

(24) n=gia)i=ﬁhjjjdxj2/\dxj3/\.../\dxj".

Theorem 1 The following two conditions are equivalent:
(@ n hasa r**" -projectable extension.
(b) The components g' satisfy

k,

0 0 0 dgh
2SI N SR S
dy ks k, ayikzky‘.k\ ayk,ikgk‘,...k,‘ ayk,kz...ks_li

i ki k

(25) =0.

(c) The components h;,; .,  satisfy

In-1

oh _1) 0h,
gzgmln _r(n-1) (;lglhln 8h=0 Sym(kk,...k) Alt(l...L).
ayklkz ks r+l ayikzks...kx ’

(26)

Proof 1.To show that (a) implies (b), suppose that we have an (n—1) -
form u ,defined on V*™', such that 1= hu . Then hdn=d,g' - ®,, which is a
form on V**' . But (") *du=d(z**")* 1 thus hdu+ pdu=dhu+ pu) ,
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which implies that hdn=hdhu=hdu , so hdn is ©**"'* -projectable (with
projection hdu ). But

hdn=d.g" o,
@7) g 98" . 98 . 98 g
=l 37T 3.0 o Vi T o Vi Tt e Y |@oo
dx'  dy 9y;, 95, e
so ™" -projectability implies (25).

2. (c) follows from (b) by Lemma 2.
3. Now we prove that (¢) implies (a). Write 17 as in (24),

L b deh AdxP AL Ny
(n_l)! J2J3++Jn

(28) n=

By Lemma 2, the functions %, , are polynomial in the variables yj,
where J is a multi-index of length s—1. Thus,

— Jiky o) Jiky Ik, o1 92
hi,iz..,i,,_l = Biliz..j,l_, + Bc, tirin ik T Bc, Gy gy Ik Y Tk,
Jiky Jaky o Jyoks %1 1,92 On-2
(29) tot B"l 0y 0, i|i2-~~in—1y11k1y/2k2 o 'yfn—zku—z

Jiky Joky  Juakn Juikn O 1,02 Oy2 O p-i
B e i Yk Yy Y0 kY

The coefficients in this expression are supposed to be symmetric in the mul-
ti-indices °, /. By hypothesis the polynomials (29) satisfy condition (13)

ahizig...i“ _ r(n—1) ahli3i4.,.iﬂ
(30) dyp ¥l 9yg
Sym(Jk) Alt(i,i,...i,),

5. =0

which reduces to some conditions for the coefficients. To find these condi-
tions, we compute

ahiliz-uilm — BJk

Tk Joky o,
3y° o iiyeip, T 2B; Gy gy Ioky
Jk
_ Jk Joky Tk 02 4,03 On-2
(3 1) Fot (l’l 2)B°' Gy "0, iliz---in—lyjzkzylska o 'an—zku—z
_ Jk Joky  Jpakn o Ttk 0y ,03 Op2 [
+(=D)By g e i Yk Yk Y0 e Y e

and
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oh

iy . 7l AS )
9v° =B ligis..ip, T 2B} Gy ligigedy Y Doky
y./l
_ T Dky T ks o, 5
(32) oot (l’l 2)B°' oy 'Ur:x—z ' lizi3---in—1ylzk2 ylzks o 'an”—zku—z

+ (n _ I)Bﬂ Jzkz Jpokna Jpikyy

0 0y ""°0,, O,y

from which we have, changing index notation,

ahlhlz) g, 5k Jl B 5 +ZBJI Jok, . _5k o,

9 c lisiy. . 0, o 0, liziy...0, hyj,k7
Vi
_ JUJoky Ty ok, k. 0, n-2
(33) +...+(n—-2)B; Gy Oy, li3i44..i,,5zzyjzkzyj3k3 yJ,, ko
a ]zkz ks Ty k. o, Grs 2 Oms
+(n—-DB; ; c" S el iy, 5,2 Yok, ¥ K Vo koY

Sym(Jk) Alt(zzz3 ).

Thus, comparing the coefficients in (33) and (31), condition (30) yields

Jk _ s (n-1) 5 k
O hipdiy gy 0 I

B 12k _ s(n=1) .y Joky k
O Oy iy s+1 o 0, liyiy.d, i

(34) |

Bk Tk Sk ks _ s(n=1) .y Joky Jiks T, ok k
o 0, O3 "0, Tyl 0,y s+1 o 0, O3 "0, ligis..dy_ 70

Bk Sk Jsks ik _s(n=1) ,p Joky Jsky ik k
o 0, 03 """0,, iyl s+1 o o, 03 ""'0,, ligis...d,y

Sym(Jk) AltGi,...i, ).

On the other hand, any (n—1) -form ¢ on V' can be expressed as

(35) U=l +o0" N®, +do" NY,,

where
u() = Ailizu_i 7ldxil A\ d.xi2 AN dxinfl
Al dy] Ndx® Ndx® AL A dx™
(36) 30

+ AN dy Ndy7> Adx® Ndx" A...A\dx"

O} Oy b3izedyy

o A2 dy) AdyTE AL Ay

3 n-2 n-1
ligige iy Yoy Ysky === V0 ok YTk

159
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and the coefficients are traceless (2.5, Theorem 11). Then hu = h, because
h is an exterior algebra homomorphism, annihilating the contact forms @",

and

Ji Ji Jp
h’u (A + Ao'l il Iy‘,]l] + AG] Oy i3lgendy lyjl’lyjzlz

iiy.. 0,

Jidy o T - 5 J Jn-
(37) +.. +Aci Gyt yJ]llyJZLZ' -yJ,,,zziH +Aci oy o yJ,z,yJ,J, Y

T, gy

dx" Ndx® A Ndx

)

-t

Now comparing the coefficients in (37) and (29) we see that the equa-
tion hu=mn for 7' -projectable extensions of the form 71 is equivalent
with the system

by idy iy

B(Qk] T Aéll i2i3...i,,_l5i1:1 Sym(J\k,) Alt(i,...i, ),
Bcillk] (])‘22](2 i,izmin,lz Aé: Zfzz i3ig..d, ,6?5’(2 Sym(‘llkl) Sym(JZkZ)

AltGid,...i ),

(38) Jiky Ik J, ok S J k Sk k,
Bt i e E AL R 086l
Sym(J,k,) Sym(J,k,) ...Sym(J, ,k, ,) AltG;i,...i_,),
B e e A G 5 B8
Sym(jik,) Sym(j,k,) ... Sym(j,,k,,)
Sym(j,_k, ) AltGi,...i,_,)
for unknown functions A i A;i b i ;1 ;22 TR A;i ;22(1;22 P

and A2 S e
O, O ‘0,2 Opy °
We éan now solve this system with the help of the trace decomposition
theory, namely with the trace decomposition formula of the symmetric-
alternating tensors (2.1, Theorem 2). Consider each of equations (38) sepa-

rately. The second equation is

(39 B, . =Ar. ., 6 Sym(Jk) Al(i,...i,_).
Denoting B = B;‘lk‘ i and A= A; bin i, ]511‘ , this equation can also be writ-

tenas B=¢qA where A= is defined by

A izi3.4.in_,

40) A’ =st=D 3

O iyize.dyy s+1 O Diy..dy*
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But B satisfies the first condition (34), which can also be written as
B=qtrB. Consequently, the trace decomposition formula yields
A=trqA+qtrA=tr B because A is traceless; thus, we get a solution

s(n—l)A _ S(n_l)tI'B

41 =
S A s+1 s+1

Next equation (38) is

Btk o AN 6"‘5"’ Sym(J,k,) Sym(J,k,)

(42) Oy Oy jiy..dyy O Oy B3ig..dyy 4

AltGid, .0, ).

This equation can be understood as a condition for the trace decomposition
of the tensor B=B/* % ‘which according to (34) satisfies

O Oy gy

Tk Joks s(n—=1) ;51 sk, K
(43) T ] B3 11'21'3..,1‘,,,,51‘[ Sym(J k)

AltGid,.. 0, ).

Analogously
Tiky ok s(n=1) .k s sk s k
(44) BO'| O,y iy, 1_ s+1 Bol 0y ligize. iy = i) ym(‘lz 2)

AltGid,...0,,).

These conditions mean that B is a Kronecker tensor whose summands con-
tain exactly one factor of the form O, where a runs through Jk, and i
through the set {i.i,,....i, ,}, and exactly one factor &7, where [3 runs
through J,k, and i through {i}»iy,.. .1, } ; thus, B must be a linear combina-
tions of the terms of the form 6"6,” , 5"6"2 5"'6’2 6/'8/> . From the com-
plete trace decomposition theorem it now follows that the coefflclents at the-
se Kronecker tensors can be chosen traceless. This shows, however, that
equation (42) has a solution A;i ;22 i

To complete the construction of the 7**'-projectable extension u of
the form 77, we proceed in the same way.

Now we can study integrability of the formal divergence equations. It is
obvious that the formal divergence equation need not have a solution; for
instance this is always the case when the right-hand side function fin (3) is
not polynomial in the variables y .. - We introduce the concepts, related to
f, which are respon51ble for the solvablhty

We assign to any function f:V*— R the Lagrangian A,= fw, and
the Euler-Lagrange form E,=E_ (f )0’ AN®,, where the components
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E_(f) are the Euler-Lagrange expressions associated with f,

(45) EG(f)=§f6 +2(—1)kdpldp2...dpk837f
y k=1 PiPa-- Pk

Lemma 3 For any function f:V'— R, there exists an n-form O,
defined on V™', such that (a) ho, = A, , and (b) the form pdO, is @° -
generated.

Proof We take for ©, the the principal Lepage equivalent

s s—k—1 a o
(46) ®f = fwo + 2( Z (_l)ldﬂldﬁz o 'dl’z 9v° f Jw./l./2~~~.jk A ;.

k=0\_ =0 JiJa---JkP1P2---PIE

Now we can study solutions of the formal divergence equation (2).

Theorem 2 Let f:V' — R be a function. The following two conditions
are equivalent: ‘

(a) The formal divergence equation d,g' = f has a solution defined on
the set V' .

(b) The function f satisfies

@n  E,(f)=0.

Proof 1. Suppose that the formal divergence equation (2) has a solution
g=g',defined on V°.Differentiating d.g', we get the formulas

E)d i i
8 _g dg
dy dy

(48)

o °

and forevery k=1,2,...,s ,

dd. g' dg'
Glg =di O'g
iy iy Yiiy..i,
(49) . , , ,
l agll N ag12 agl3 aglk
k ayZi},.ik ay:,-}mik ay;mmik ayZi}“ik,] -

Using these formulas, we can compute the Euler-Lagrange expressions
E_(f)=E_(dg") in several steps. First, we have
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E,(d¢g")

(50) :dhLag'_Gdig vd, 28 L (Ciyd,..d 258 ]

o iy o

ayo- ayi] ayiliz ijly..

9g" adg . odg' | adg
=dd, -2+ 258 _ g D8 L w(-1yd d, ..d —5 |
1 ayil ayi,iz 3 a 314 s ay

lll iy iiy.. Qg

Second, using symmetrisation,

a i 9 i 9 iy pa ip
E,(dg")=d,d, g(,+di S S
(‘) ayi,i2 2 ayiz ayil
R e L a&&J

a o

1117 ijiyiy iiy.. Qg

=dl.]di2di3[ag J0dE L c1ydd, .d, 28 ]

Continuing this process we obtain after s—1 steps

i

(52)  E,(dgh=(-1ydd, ...d, d.d ag

[t Mg

iy

But since fis defined on V*, the solution g necessarily satisfies

a i a i a i3 a Il
(53) 8 8 %8 4 42 -0
(:)yizrg...fHl ayi1i3i4...im ‘E)yizi,z;‘is...iHl dy iy dy_yiviy

proving that E_(d,g')=0 .

2. Suppose that E (f)=0.We want to show that there exist functions
g :V*—= R such that f dg'. Let I be the fibred homotopy operator for
differential forms on V> ass001ated with the projection 7 :V — U (Section
2.6, Theorem 12). We have

(54) ©,=1d0,+dlO,+0,=IpdO, +Ip,dO, +dlO,+ 06,

where O, is an n-form, projectable on U. In this formula, p,d®,=0 by
hypothesis, and we have @ =d®, . Moreover hO®, =hd(1O, +19) fo,.
Defining functions g’ on V** by the condition
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(55)  h(I0,+V)=g'o,

we see we have constructed a solution of the formal divergence equation.
Explicitly, hd(I1©,+19,)=hdh(I0®,+9,)=d,g" -®,= fo,. Then, however,
g' is defined on V'’ (Lemma 1).

Condition E_(f)=0 (47) is called the integrability condition for the
formal divergence equation (2).

A remarkable property of the solutions of the formal divergence equa-
tion is obtained when we combine Theorem 2 and Theorem 1; we see the
solutions can be described as certain differential forms.

Theorem 3 Let f:V' — R be a function, let g' be a system of func-
tions, defined on V', and let = g'®,;. Then the following conditions are
equivalent: .

(a) The system g' is a solution of the formal divergence equation

(56) dg' =f.
(b) There exists a projectable extension U of the form 1 such that

(57) hdu= fo,.

Proof 1.If the functions g' solve the formal divergence equation
d.g' = f ,then (3) is satisfied and 7 has a projectable extension y by Theo-
rem 1. Then n=hu, hence (7*")*hdu=hdhp=hdn=dg" o,=fo,,
proving (56). .

2. If gow,=hu and hdu= fw,,then hdu=hdhyu=dg -, .

Remark 1 Theorem 3 says that equation (57) for an unknown (n—1) -
form p has a solution if and only if the formal divergence equation with
right-hand side f has a solution.

4.2 Trivial Lagrangians Consider the Euler-Lagrange mapping, in-
troduced in Section 3.5, (16), Q W34 —EQA)=E,cQ,, ,W . The do-
main and the range of this mapping have the structure of Abelian groups
(and real vector spaces), and the Euler-Lagrange mapping is a homomor-
phism of these Abelian groups. We say that a Lagrangian A € Q) \W is var-
iationally trivial, or null, if its Euler-Lagrange form vanishes, E, =0 . In
this section we describe all variationally trivial Lagrangians, or, which is the
same, the kernel of the Euler-Lagrange mapping A — E(A) . To this purpose
we use the formal divergence equations (Section 4.1), where the Euler-
Lagrange expressions appear independently in the corresponding integrabil-
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ity conditions; the following result is merely a restatement of the theorems of
Section 4.1.

Theorem 4 Let A€ QW be a Lagrangian. The following conditions
are equivalent:
(a) A is variationally trivial. ‘
- (b) For any fibred chart (V,y), v =(x',y7), there exist functions
g 'V >R, suchthaton V', A=%Lw,, where

(1) $=dg'.

(c) For every fibred chart (V,y), W = (x',y°), there exists an (n—1) -

Sform peQ \V suchthaton V'
) A=hdy.

Proof 1. We show that (a) is equivalent with (b). Suppose that we have
a variationally trivial form A€ QW . Write for any fibred chart (V,y),
v=(",y"), A=Z%w,. Since by hypothesis the Euler-Lagrange expressions
E_(¥) vanish, consequently, by Theorem 2, ¥ =d,g' for some functions
g' on V?. The converse also follows from Theorem 2.

2. Equivalence of (a) and (c) follows from Theorem 3.

In general, Theorem 4 does not ensure global existence of the form u
or its exterior derivative du . However, for first order Lagrangians we have
a stronger result.

Corollary 1 A first order Lagrange form A€Q.W is variationally
trivial if and only if there exists an n-form 1€ Q. W such that

3) A=hn
and
4) dn=0.

Proof By Theorem 4, for any two points y,,y, €Y there exist two
(n—1) -forms u,,u, €Y, defined on a neighbourhood of y, and y,, such
that hdy,=A and hdu,=A, respectively. Then hdu, =hdu,, hence
hd(u, — u1,)=0 on the intersection of the neighbourhoods. But the horizon-
talization h, considered on forms on J’Y =Y, is injective. Consequently,
d(u,—,)=0, and there exists an n-form 1n€Q'W whose restrictions
agree with du, and dy, . Clearly, dn=0.
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4.3 Source forms and the Vainberg-Tonti Lagrangians For any
positive integer s, a l-contact form £€Q, W is called a source form
(Takens [21]). From this definition it follows that in a fibred chart (V,y),
Y= (x', y°), € has an expression

(1) E=€,0° N@,,

where the components & depend on the jet coordinates

o
x5, Y5, . - Clearly, every Euler-Lagrange form E, is a source
form, thus, the set of source forms contains the Euler-Lagrange forms as a
subset.

We can assign to any source form a Lagrangian as follows. Let € be a
source form, defined on W*, and let (V,y), v = (xi,y") , be a fibred chart
on Y, such that V. C W, and the set y (V) is star-shaped. Denote by / the
fibred homotopy operator on V’. Then I€ is a ' -horizontal form, that is, a

Lagrangian for Y, defined on V*. We denote
2) A.=1¢g

and call A, the Vainberg-Tonti Lagrangian, associated with the source form
€ (and the fibred chart (V,y); cf. Tonti [22]).
Recall that /e is defined by the fibred homotopy y, :[0,1]xV* =V’

Where Zs(t’(-xi ’yo- 7}7; 9}75:1-2 90 7};71-]'2'“%_)) = (-xi J)’G aty;- J)’zjz 90 ’ly;‘)]-jzmj1 ) . Since
X, satisfies y*e =(g, oy, )(tw” +y dr) AN@, , we have, integrating the coef-
ficient in this expression at df ,

3) r.=2,0,,

where
o 1
@) P, =3[ &, 0n,-dt,
or, which is the same,
LYYV oY)
(5) o 1 i o o o (o
=Y .[0 & (.X Ly ’tyfl ’ty./l./z o "tyjl.iz~~~./s )dt

We can find the chart expression for the Euler-Lagrange form E; of
the Vainberg-Tonti Lagrangian A, ; recall that

(6) E =E(£)0° Na,,
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where
(7) E(L)=Y/(-Vd,d, ..d, afgf
=0 ayl’lpz- P

We need two formulas for the formal derivative operator d, , stated in
the following lemma. Note that in these formulas a specific summation con-
vention is applied.

Lemma 4 (a) For every function fon V?
(8) di(foxp)zdifoxp+l'

(b) For every function fon V° and a collection of functions g™’ " on
V*, symmetric in all superscripts,

dd, ..d, (f g"")

9
( ) = Z(f)dpl dpz o 'dP,f ) dpi+ldpi+2 o 'dpkgplpz”‘pfp"“p[*?“'pk :

k
i=0

Proof (a) Formula (8) is an easy consequence of definitions.
(b) The proof is standard. We have

d,(f-g")=d,f-g"+f-d,zg"

o :(é)dp.f'gpl +(%)f.dmgpl’
and

d,d, (f-8"")
oy ST )

=d,d, f-¢"+d, fd,¢"" +d, f-d g" +fdd g"

P
=(3)d,d, -8 +(2)d, 1-d, 8" +(3) f-d, d, 8.
Then, supposing that

dpldpz .. .dpk—l (f . g[’lpz.”pk?l )

(1 1) - k—1 P1P2---PiPis1Pis2---Pk-1
= ( i )dpl sz o 'dp,f ’ dpm dPi+z o 'de-lg

i=0
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1D

we have

(12)

and

(13)

thus,

= (kal f . dplsz .. 'dpk,lgp]pzmpk_]

+ (kl_l dp1f . dpzdp3 .. .d gP1P2-4.pk_l

Pr-1

dpd “dmflgp‘pz'”pk"

Py Pyt

k—1
KNad ..d, fd, g

Pi-2 Pr-1

+
—_
~
01
—_—
Q —
>
QL
N
~

k-l D2 -Pr_i
+(k 1 d dz-..dpkil-gpp Pk ,

dd,..d, d (f-gh""")
=f-d,d,..d, d, g """
{55+ (7)) - o 7
* (( kl_l ) + (kgl))dpldl’zf ' dpsdm o 'dpk gPM'z--»PA-mA
tot (( I]:—_21 ) + (ii%))dm dpz e .dpk—l ' dpk gp]pzmpk_]pk

b \P2--Di1Pik
+(k—1)dpkdpldpz"'dpk,l . gPP PP

k=1\, (k=1)_ (k=D (k-1)!
(5 )+(P+1) Plk=1=p)! " (pHDICk—1=p-1)!
__(phk=D! | (k=pl)(k=D)!
(p+D!k=p-D! " (p+Dl(k—p-1)!

—#_( k )
_(p+1)!(k—p—])!_ p+l)

D. Krupka
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d d pkl Pk(f gPIPz P IPA)
( )f d d d gpll’szA-lPk

16 PA 1 Pk
({C)dplf d,,z st dpkg”"’z‘“f’k—l!’k
(l2€) d fd d ...dpkgplpl“-Pk—lpk

- ( ) P pk_] : dpk g1’1P2"'1’A—1Pk

P1P2---Pi-1Pk
( )dl’k PPt I’H 8 :

(14)

+

The Vainberg-Tonti Lagrangian allows us to assign to any source form,
not only to an Euler-Lagrange form, a variational functional and the corre-
sponding Euler-Lagrange equations for its extremals. Our aim now will be to
find, with the help of Lemma 4, the corresponding Euler-Lagrange form of
the Vainberg-Tonti lagrangian and compare it with the inicial source form.
The following theorem describes the relationship of these two forms.

Theorem 5 The Euler-Lagrange expressions of the Vainberg-Tonti La-
grangian A, of a source form € =¢€,0° N, are

(15)  E(£,)=¢ —Zym W JHo )0 2, 1,

where
d €
HO- 3]q2..4qk(8) — vgo- _ (_l)k - v
(16) D492---9k G929k
0€
_2( 1)( ) (= k+”'d1 o g
I=k+1 " g g ay‘hlh---%l’kﬂl’mz--»l’l

Proof We find a formula for the difference €, —E_(Z,). Consider the
Euler-Lagrange form E, (6) of the Vainberg-Tonti Lagrangian. Computing
the derivatives we have

A7)

—Je oy, -dt+y" j L -tdt,

and, by Lemma 4, (8) and (9), forevery [, 1</ <s,
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0L, v O€,
d,..d,d, —=—=d,..d,d, (y Ia 0 o}(s'tdtJ

(18) 1 yl’ll’z P ag!’ll’zml’l
2( )ypmz .[ pﬂdp,q “‘dp, ao—voxﬁl—i ‘tdt
i=0 y!’]l’z---1’[1’[+1P1+2---l’1
Then by (17) and (18),
E(£,)= Je oy, -di+y" 'f tdt+2( 1)2( )ym
(19) 9e
ld d ..d —— o - tdt
J. fe e " ay;lpz--»l’il’lﬂl’uz-»l’l %Hl_l
On the other hand,
_rd _rd(Egox,)
£, = _[E(eg oy, t)dt= jT-th J.e(, oy, -dt
(20) > o€,
:ZJG AV tdt+J£ oy, -drt,
i=0 P1D2---Di
hence
e,—E (£,)= 2-[6 ooy, Y, ctdt— tdt
17|P2 -Pi
] agv
S S iy o et
yP|Pz-~P1P,+|Pi+2»~P1
Jde e
=_[ e o;cs-yv-tdt—yvj Loy, tdt
d 0
@1 y y

S [y g
=1

P1p2---Py

d v
+Zjayvg °Xs .yl’ll’z»»»p; ‘tdt
Je

- Z(_I)ZZ(E)yZII’zmpt J‘dpiﬂdeQ o 'dl’l ao'—v ° Z.Hl—i tdt.
=1 i=1

yplPZ"'pipwlpr'“pl

We replace the summation through the pairs (/,i) in the double sum with the
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summation through (i,/), expressed by the scheme

(1,0
(2,1),(2,2)
(22)  (3.1,(3,2),(3.3)

(s,1),(5,2),(s,3),...,(s—=1,5),(s,s)

Then it is easily seen that the same summation, but represented by the pairs
(i,l),1is expressed by the scheme

(1,1),(1,2),1,3)....,d,s = 1),(,s)

(2,2),(2,3),...,2,s—-1),(2,5)
(23)

(s—1,5—-1),(s—1,s)

(s,5)

Then the double sum in (21) becomes

s , 1 l , aev
2(_1) Z(i)yplpz~~~Pz ,[dpi+1dﬁi+2 o 'dl’l 60'— © Xssi-i” rdt
=1 i=1 yP1I’2--»I';P:+1P,+2-~I’1
24 =
. 2( ) Y Iayplpz P

+2( ) 2( )yplpz J. pﬂdp”z"'dp,aca#oxm—i'tdt

[=i+l Y oipeepipipia-pi

oy, -tdt

Returning to (21) we get

& —E(ZL,)
d€,
=y oy, -tdt
y ( pl p2 ,aypll’z P/] %23
(25) v > o€,
+ yPlemPiz J.a _( 1)
i=l PiP2---P; PiP2---P;

- Z( ) ( ) Pist /’+2'“d!7/ GJLJOZZS—:' 1dt.

I=i+1 yP1Pz--»P;P1+1P,+2-»-I’1
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This formula proves Theorem 5.

We call the functions (16) the Helmholtz expressions, associated with

the source form &€ .
The following illustrative example describes the structure of the Helm-

holtz expressions for source forms of order 2r .

Remark 2 If s=2r, we get

o Jde Jde
Ho’ 31‘12 qr(s): . (o} _ = \4 ,
949292, y‘lﬂz-uqzr
. Jde Jde o de
H,Jtr(e) = T — _(Zr—l) Py .o * ’
9492---92r-1 y‘h‘izm‘hr—l y‘i]‘lzn-‘hr—ll’zr
s d€ €
Ho’ 31‘12 2 - (8)=a - [e} _a - \4
yﬂh@zm‘hr—z y‘h‘lz-uﬂhr—z
2r—1 € 2r €
N P R PR
2r=2)%pya 5.0 2r=2)%pya"p2y o0 >
yQ1qZ~~~‘I2r—:I’2r—1 ay%ﬂl:~~‘/2r—2l”2r—1l’2r
€ de 2 Jde
260)  H,ie) = t+r—(3)d,
MOy Tayy Gy
3 de 2r-1 de
(), d, =+ (*7)d,d, d, |
1/%p:%ps .0 1 P P21 94,0
yq|ﬂ21’3 ayqlpzp.?“'erfl
2r de
_( 1 )dpzdps"'dpz, o * ’
yq|P2P3~~P2r
Jde, dE 1 0€ 2 e
H E)= o _—V+ d v _ \4
UV( ) ov” ayc (0) P ay; (0) nop ay;pz
-1 Jde
+...+(s )d d ..d ——v
0 P P2 P2r1 ay;pzmpZH
Je

_ (2}’)d d d v
0 R I o
e " ayplpzmpz,.

Remark 3 Theorem 5 describes the difference between the given
source form € and the Euler-Lagrange form of the Vainberg-Tonti Lagran-
gian; it states, in particular, that responsibility for the difference lies on the
properties of the the Helmholtz expressions.
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Now we specify this difference for variational source forms.

Lemma 5 Let A=%wm, be a Lagrangian, and let ©, be its principal
Lepage equivalent. Then the Vainberg-Tonti Lagrangian of the Euler-
Lagrange form E, =E_(£)0° \No,,

27) A =hldO,,
satisfies

(28)  A'=A-hd(I®, +pu,),

where U, is an (n—1)-formon U.

Proof Using the fibred homotopy operator, we can decompose the
principal Lepage equivalent ©, as 0O, =1d0O, +dIO, +0,, with ©, de-
fined on X. Then the horizontal component is

(29) h®, =hldO, + hdl®, + hO, = hldO, + hd(10, + L),
where the Vainberg-Tonti Lagrangian is hldO, .

Note that, in particular, formula (28) shows that the Vainberg-Tonti La-
grangian differs from the initial one by the term hd(I0O, + 1,) that belongs
to the kernel of the Euler-Lagrange mapping. This fact demonstrates that the
Euler-Lagrange forms of these two Lagrangians coincide.

4.4 The inverse problem Our objective in this section is to study the
image of the Euler-Lagrange mapping Q' ,W 231 — EQ)=E, €Q2 W
(Section 3.5), considered as a subset of the set of source forms (Section 4.3).
We are interested in basic properties of this set, in particular, in a criterion
when a source form belongs to the subset of the Euler-Lagrange forms.

The following theorem, completing Theorem 6, Section 3.5, shows that
the image of the Euler-Lagrange mapping is closed under the Lie derivative
with respect to projectable vector fields.

Theorem 6 For any Lagrangian A€, W and any m -projectable
vector field = on W the Lie derivative d,_A belongs to the module €, ,\W
and
() 9,.E=E, ,.

Proof Since A€Q W, then 9, 1€Q W . If p, is a Lepage
equivalent of A ,and p, , isa Lepage equivalent of d,_A, then, with the
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notation of 3.3, Theorem 3, p, =0, +dn+u , and
(2) Py =0, s+dn+i, 9,.p;=9,.0,+dd, N+9,_u.

.
The horizontal component is hE)J,_p,1 E)J,H_hp,1 = aj,ﬂ_), and o =Py s a
Lepage form, because p,dd,_p, =pdd,_0,=p,d,.dO, and the Lie de-
rivative 9 = preserves contact forms (2 4 Theorem 10, (4)) Thus, the forms
p, , and d =P, are both Lepage forms, and have the same Lagrangians.

Consequently, ‘their Euler-Lagrange forms agree, 81,_E =E, ;.

Consider a source form € € Q, , W . We say that € is variational, if
3) e=FE,

for some r and some Lagrangian A € Q’ W . € is said to be locally varia-
tional, if there exists an atlas on Y, cons1st1ng of fibred charts, such that for
each chart (V,y), v = (x',y°), belonging to this atlas, the restriction of &
to V' is variational.

The inverse problem of the calculus of variations for source forms is the
problem to find conditions ensuring the existence a Lagrangian A , satisfy-
ing equation (3); then if these conditions are satisfied, to find all Lagrangian
for £ . The local inverse problem, or local variationality problem, for a
source form & consists in finding existence (integrability) conditions and
solutions & of the system of partial differential equations

. 0
@ & ay Z( Vd,d, ..d, ———

P]Pv P
. . . _ i 0 .0 O o
with given functions &, =€, (x",y",y},y; ""’yfljz---jt) .

Remark 4 (Variationality of partial differential equations) The con-
cept of local variationality can be applied to systems of partial differential
equations. Having fixed the functions &, , we sometimes say, without aspira-
tion to rigour, that the system of partial differential equations

(5) Sg(xi,yf’)’; ’y;‘ljzv'-’y;ljz...jj)zo

is variational, it it coincides with the system of Euler-Lagrange equations of
some Lagrangian. It is clear, however, that this concept of is not well de-
fined; indeed, setting &, =®. e, with any functions @ such that
det®d; #0, we get two equivalent systems €, =0 and &, =0, but it may
happen that one of them is variational and the other is not. If (5) is not varia-
tional and there exists @ such that the equivalent system
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(6) dle, =0
is variational, @ are said to be the variational integrating factors for (5).

Let r be a fixed positive integer. In the following theorem we describe
the subspace of the vector space of source forms, which is in general larger
than the image of the Euler-Lagrange mapping, namely, the subspace of lo-
cally variational forms.

Theorem 7 A source form € €Q,, W is locally variational if and on-
ly if there exists an integer q and a form F € Q! W of order of contactness
=2 such that d(e+F)=0.

Proof 1. Suppose that & is locally variational, and choose a fibred
chart V), v = (xi,y"), such that & is variational on V; then €=FE, for
some lagrangian A€ Q) ,V .Let ©, denote the principal Lepage equivalent
of A,andset F=p,dO,.Then d(e+F)=ddO, =0.

2. Conversely, if for some fibred chart (V,w), v = (xi,y"), condition
d(e+F)=0 holds on V', then e+ F=dp for some p. p is obviously a
Lepage form, thus, &€= p,dp ,so € is alocally variational form whose La-
grangian is hp .

The following lemma is needed in the proof of the theorem on the local
inverse variational problem.

Lemma 6 Let U be an open set in R" such that for each point
Xy = (X),X0 5., X)) the segment {(tx},tx; ,....tx0) |t €[0,1]} belongs to U. Let
f:U— R be a function such that
! 1 2 n
7 [ Fex o ... x)de =0
for all points (xy,x;,...,x;) €U . Then F=0.
Proof If (7) is true, then for any s €[0,1], (sx(l),sxg,...,sxg) €U , thus,

1
(8) JO F(tsx) tsxg ,...,tsx; )dt =0.

Differentiating with respectto s at s =1

1 oF
(10) J‘O(axkj xgtdtz().
1o

On the other hand,
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(11) %(rF(tx(') JXG oo 1X])) = F(1x),1%7 . ..,txg)+[§;j xpt.

%,

Integrating we have

1 IFN
(12) F(x;,xg,...,xg)zjOF(zxg,zxg,...,zxg)dHjol(axk) xitdt =0.

Xy

Now we can study the local inverse problem of the calculus of varia-
tions. We wish to find integrability conditions for the system (4) and de-
scribe all solutions & of the system of partial differential equations (4) in an
explicit form. To characterize locally variational forms, we need the Helm-
holtz expressions H "% %(g) (Section 4.3, (16)), where k=0,1,2,...,s , and
s s the order or € .

Theorem 8 Let V be an open star-shaped set in R™, and let
g, :V' >R be differentiable functions. The following two conditions are
equivalent:

(a) Equation

0L & 0%
= +2(—1)ldpldp2...dp/ P
I=1

Pipa---Pr

(15) £

has a solution £:V°' - R.
(b) Forall k=0,1,2,...,s, the function €, satisfy,

(16) Ho’ 31‘12»-<‘1A(£):O
Proof 1. Suppose that the system (15) has a solution & . Then € is the
Euler-Lagrange form of the Lagrangian A= %w,, and e=E_(£)0° \Nw, .

Since the Lagrangian A and the Vainberg-Tonti Lagrangian have the same
Euler-Lagrange form, the Helmholtz expressions satisfy

;y;’]qzmqk J.Hc 3[‘]2-..‘#(8)0%‘” tdt
(17) )

1 s
= [ X0 Ho 2 () 1, - dr =0
k=0

(4.3, Theorem 5, (15)). Applying Lemma 6, we get
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(18) Yy H, % (e)=0.
k=0

Now suppose that the functions €, do not satisfy conditions (16). Then
there exists a point in V' and some indices / and x,A,p,,p,,...,p, such that
H_5""(g)#0 at this point, and by continuity, H_7""(€)#0 on a
neighbourhood of this point. In particular, H,_ """ (€)#0 on the intersec-
tion of this open set with the set defined by equations y; 0. =0, Whenever
the multi-index | differs from ’11 ., - Then, however, the sum (18) is
equal to y;pz'”le' . f” »P(¢) and is different from 0. This contradiction
proves conditions (16).

2. Suppose that the system of functions &, satisfies conditions (16) and
denote by £€=¢,0° Aw, the corresponding source form. Then the Euler-
Lagrange expressions of the Vainberg-Tonti Lagrangian A, =% .o, ,

(19) EO' (if) = 80' _Zyl\;l‘h..»lﬂ« J.HO' 31‘12»»1“(8)0%% tdt’
k=0

reduce to E (£ ,)=¢, .In particular, € has a Lagrangian of order s.

Remark 5 Integrability conditions (16) ensure existence of a Lagrangi-
an of order s for a source form of order s. Existence of Lagrangians of order
r <s require additional properties of the source forms.

Remark 6 Condition (16) for k=0 can also be easily proved by means
of Theorem 6. If & is a variational form, then for every 7 -vertical vector
field =

(20) a‘]z' E = aJZ'E El = Ea./rsl )

therefore, the Lie derivative d prs€ is a variational form. Thus, d ,,_€ must

satisfy condition (18), now written as

J¥E

(21) zy:l/ﬂhu-quU ‘(flqzmqk(aJ‘ES) = O’
k=0

therefore,

(22)  H, %% _g)=0.

J°E
The functions €,(Z) in this formula are determined by the Lie derivative
0 .._€ . Since

J¥E
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d,..£=€,(E)0° N,

=i, de+di, e=1,_(de, N\@° Nw,)+d(€,E° -@,)

(22) =i,._de, -0° Ao, -E°de, N0, +d(,E°) N,
:V
= (ljz,.gdsa +e, 37 )w" N@y,
we have
=V
(23) e, (B)= ijz,Ede(y +e,— .

2. Fix an index 7 and consider the vector field Z=49/dy" and its r-jet
prolongation

d

24 J'E=
(24) 3y

For this vector field expressions (23) reduce to

— _ 0€&,
(25) E,(B)=—2,
dy

Condition (20) implies

3y ( 0,3 _ . 96,6)

N4>+ Gk v o
k=0 Q49 -- -4 D92 -9k
2r ™
11 de, (5)
_[; (_1) (k)dpmdpnz o 'dl’/ (:)yO' ]
=k+1 -Gk Pk+1Prs2- D1
(26) 2+ 62 91929 Pa;’ P
r € £
= Zy(‘i/ﬂhm‘u (a T a Vo- _(_l)k a T a O'V
k=0 y yqlqzmq,\, D492k
S d 0€
X ()5, d,, e, —j =0
[=k+1 ay ay’h‘h---le’k+1l’k+z---l’1

because the partial derivative 4/dy" commutes with the formal derivative
d, . Then
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o€,
zyq.qz =gyt (a)’qlqz @ I f'l))’:,f,qz..qA
o€,
2r
(27) = ai, (Zy;qz...qk (8 (jz " Vo
_1%( (), d,..-d, aym o D
Sty BV 0

But the first sum vanishes by (18), and the second sum gives

o€ de
28) ——<2+ G+Z( Vdd,..d, ———=-H, (e)=0,
dy- dy 1=1 e d PiP2-Pr

which is the first one of equations (16).

Remark 7 One can also prove equation H (¢)=0 by applying the
integrability criterion for formal divergence equations. Consider the inverse
problem equation

_0& . 9f N <
o ayo‘ 4 ay; PP ay;'pz
(29) |
_t < <
-..+t-0)"d,d,..d ———+C-)d,d, . .d ———
a P1P2---Pra a P]PH-P
and suppose it has a solution & . Denoting
D = 8% +d, aiB - ..+(—1)’_1dpzdp3...dp_]i
(30) aypl ) ayp]p2 " yp]szpr—l
+(-1)'d,d, ...d, (}CB ,
aylﬁpz-np

we get the formal divergence equation
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Gl e - oF =—d, ®.

o acr_

Since by hypothesis there exists a solution, the integrability condition for
this equation is satisfied, that is, by Section 4.1, Theorem 2,

(32) ET(EG - 6% j =0
dy

Explicitly, since the formal derivative d, and the partial derivative 9/9dy"
commute,

E‘r (8‘7 - a% ) - Ef(eo)_ aET(c;Eg)
dy dy

9 9 9
=% _q %ot a, "o
ay Py aym P P2 ayplpz

—. A ()"d,d, ..d, _ 98

r—1 T
PiP2---Pra

+(-1yd d ..d ——e  _Fr_,

PP

(33)

.....

Comparing this formula with (14) we see we get H_ (£)=0.

Remark 8 (2nd order Helmholtz expressions) The Helmholtz condi-
tions for a 2nd order source form £ =€_w° A @, can also be written as

o Jde, deg,

T ay, v,
G4y H,1=9% +a—8;—dp(agf + 08 J+d,,HU ",
ay, 9y, Yy Vg

1 1
H, =98 08 1,108 o0&\ 1,
! ay; ay? ) 27

)4

We can obtain these formulas by direct substitutions into

de, 0g, Je,
= g + o - dp c
dy, 9y, 0¥y

(35) H_ !

oV
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and
Ho‘\cfzag(\i ai;_ dp agc‘; ?
36) 9y, 9y, Yy
o, 0€, 0€,
(e v: v _—0' o _d d o °
ay’ ay®  Tayy " tayn,
We have
d d d d d
Li=Ste Ez—dp( Sy J—d,,( -
37 dy, 9y, 0Ypg 9y 0Ypq
_ aez as; 3 ,,( agcZ 4 883 ]4‘de0 n,
0y, 9y, 0Ypy 9y
and
b, =06 08 1 P(ag;_ae J+ldp[ag
dy” dy° 2 dy, dy, 2 ay,
1 0 i) 1 d d
__dpdq( gc‘r/ _Lf]__dpdq 8; 8\?
2 aypq aypq 2 aypq ayl’q
0 1
(38) _ 83 3 ae; Ly astvr 3 ae(v,
ay" ay” 2 "l ay; ady,
+ldp[ae‘vf + ag; —dq[agf +— J+qu pa
2 "9y, 9y, 0Ypy 0y
_90g, de, 1 [0g, _0dg, +ld o
ay’ a9y’ 27 o 6y; 2F

dy,
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