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4  The inverse problem 

 4.1 Formal divergence equations  In this section we study the 
formal differential equations, closely related to the Euler-Lagrange equations 
of the calculus of variations on the jet prolongations of fibred manifolds. 
Essential parts of the proofs of our assertions are based on the trace decom-
position theory, explained in Section 2.1.  
 Let  U !R

n  be an open set, let  W !R
m  be an open ball with centre at 

the origin, and denote V =U !W . We consider V as a fibred manifold over 
U with the first Cartesian projection ! :V "U . As before, we denote by V r  
the r-jet prolongation of V. V r  is explicitly expressed as  

(1)  
 
V r =U !W ! L(Rn ,Rm )! Lsym

2 (Rn ,Rm )!…! Lsym
r (Rn ,Rm ),  

where Lsym
k (Rn ,Rm )  is the vector space of k-linear, symmetric mappings 

from Rn  to Rm . The Cartesian coordinates on V, and the associated jet co-
ordinates on V r , are denoted by xi , y! , and 

 
xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… jr

! , respec-
tively.  
 Let s !1  and let f :V s ! R  be a differentiable function. Our aim in 
this section is to find integrability conditions and solutions g = gi  of the 
formal divergence equation  

(2)  dig
i = f ,  

whose components gi  are differentiable real functions on the set V s . Since 
the formal divergence dig

i  is defined by  

(3)  
 
dig

i = !g
i

!xi
+ !g

i

!y!
yi
! + !g

i

!yj1
! yj1i

! + !gi

!yj1 j2
! yj1 j2i

! +…+ !gi

!yj1 j2… js
! yj1 j2… jsi

! ,  

equation (2) is a first order partial differential equation. From this expression 
we immediately see that every solution g = gi , defined on V s , satisfies  

(4)  
 

!gi

!yj1 j2… js
! + !g j1

!yij2 j3… js
! + !g j2

!yj1ij3 j4… js
! +…+ !g js

!yj1 j2… js"1i
! = 0.  

 By a solution of order r of the formal divergence equation (2) we mean 
any system of functions g = gi , defined on the set V r  for some r, satisfying 
condition (2). Clearly, a solution of order r is also a solution of order r +1 . 
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Since in this case  

(5)  
 
dig

i = !g
i

!xi
+ !g

i

!y!
yi
! + !g

i

!yj1
! yj1i

! + !gi

!yj1 j2
! yj1 j2i

! +…+ !gi

!yj1 j2… jr
! yj1 j2… jri

! ,  

we shall have several identities of the form (4).  

 Lemma 1  Let f :V s ! R  be a differentiable function. Then if the for-
mal divergence equation (2) has a solution, defined on the set V r , where 
r ! s , it also has a solution defined on V s . The solution g = gi , defined on 
V s  satisfies condition (4) and is polynomial in the variables 

 
yj1 j2… js
! .  

 Proof  1. First we show that if a system of functions g = gi  satisfies the 
condition 

(6)  
 

!gi

!yj1 j2… jr
! + !g j1

!yij2 j3… jr
! + !g j2

!yj1ij2 j3… jr
! +…+ !g jr

!yj1 j2… jr"1i
! = 0,  

then each component g = gi  is a polynomial of degree ! n "1  in the varia-
bles 

 
yj1 j2… jr
! . To this purpose it will be convenient to work with multi-indices 

of the form  J = ( j1 j2… jr ) ; we want to prove that  

(7)  
 

!n gi

!yJ1
!1 !yJ2

! 2…!yJn
! n

= 0.  

 It is sufficient to show that all Young diagrams, defining the Young de-
composition of the left-hand side of (7), vanish. Since this expression is al-
ready symmetric in the indices entering J1 , J2 , and Jn , only the diagrams, 
which contain any of the blocks J1 , J2 , and Jn  in a row can define a non-
trivial Young projector. A typical diagram is  

(8)  

 

J1 J2 … Jk2 … Jk1
Jk1+1 Jk1+2 … Jk1+k2
Jk1+k2+1 Jk1+k2+2 …

…

 

(diagram with different position of indices in each row define analogous 
Young projectors). But the diagrams for the decomposition of (8) should 
also include the index i. If i stands in a row containing at least one of the 
blocks J1 , J2 ,  … , Jn , we get necessarily the zero Young projector, by (6). 
Thus, nonzero projectors can possibly arise only from the diagrams, in 
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which the index i is placed on the bottom:  

(9)  

 

J1 J2 … Jk2 … Jk1
Jk1+1 Jk1+2 … Jk1+k2
Jk1+k2+1 Jk1+k2+2 …

…
i

 

However, we can use the skew-symmetry of the Young projector in the col-
umns and interchange the indices in the first and last rows in the first col-
umn. We get the zero projector whenever k1 ! 2 . Thus, we conclude that a 
non-trivial projector could only arise from the diagram  

(10)  

 

J1
J2
…
Jn
i

 

with i in the first column. But this diagram defines the zero projector, be-
cause it contains n +1  rows. This concludes the proof of identity (7). 
  2.  Consider the formal divergence equation (2) with the right-hand side 

 
f = f (xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… js

! ) , and its solution g = gi  of order r ! s +1 . 
Thus, we have  

(11)  
 

!gi

!xi
+ !g

i

!y!
yi
! + !g

i

!yj1
! yj1i

! + !gi

!yj1 j2
! yj1 j2i

! +…+ !gi

!yj1 j2… jr
! yj1 j2… jri

! = f ,  

and condition (6) is satisfied. Then by the first part of this proof,  

(12)   g
i = g0

i + g1
i + g2

i +…+ gn!1
i ,  

where gp
i  is a homogeneous polynomial of degree p in the variables 

 
yj1 j2… jr
! . 

Substituting from (12) into (11) we get, because f does not depend on 

 
yj1 j2… jr
! ,  

(13)  
 

!g0
i

!xi
+ !g0

i

!y!
yi
! + !g0

i

!yj1
! yj1i

! + !g0
i

!yj1 j2
! yj1 j2i

! +…+ !g0
i

!yj1 j2… jr"1
! yj1 j2… jr"1i

! = f .  
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 Repeating this procedure, we get some functions h = hi , defined on V s , 
satisfying  

(14)  
 

!hi

!xi
+ !h

i

!y!
yi
! + !h

i

!yj1
! yj1i

! + !hi

!yj1 j2
! yj1 j2i

! +…+ !hi

!yj1 j2… js
! yj1 j2… jsi

! = 0,  

as required.  

 Denote  

(15)  

  

! 0 = dx
1!dx2 !…!dxn ,

! i = i! /!xi! 0 =
1

(n"1)!
# ij2 j3… jn

dx j2 !dx j3 !…!dx jn .
 

Consider a ! s - horizontal (n !1) -form !  on V s , expressed with respect to 
the bases ! i  and   dx

j2 !dx j3 !…!dx jn  as  

(16)  
  
! = gi" i =

1
(n#1)!

hj2 j3… jn
dx j2 !dx j3 !…!dx jn .  

Note that from expressions (15), the components of the form !  satisfy the 
transformation formulas  

(17)  
 
hj2 j3… jn

= ! ij2 j3… jn
gi , gk = 1

(n"1)!
! kj2 j3… jnhj2 j3… jn

.  

We want to find the transformation equations for the components gi  and 

 
hj1 j2… jn!1

. Denote by Alt  and Sym  the alternation and symmetrization in the 
corresponding indices.  

 Lemma 2  The functions gi  and 
 
hj1 j2… jn!1

 satisfy  

(18)  

 

1
r+1

! il2l3…ln

!gi

!yk1k2…ks
" + !gk1

!yik2k3…ks
" + !gk2

!yk1ik3k4…ks
" +…+ !gks

!yk1k2…ks#1i
"

$
%&

'
()

=
!hl2l3…ln

!yk1k2…ks
" # r(n#1)

r+1
!hil3l4…ln

!yik2k3…ks
" * l2

k1 Sym(k1k2…ks ) Alt(l2l3…ln )
 

and are polynomial in the variables 
 
yk1k2…ks
! .  

 Proof  1. We have from (17)  
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(19)  
 

!gi

!yk1k2…ks
! = 1

(n"1)!
# ij2 j3… jn

!hj2 j3… jn

!yk1k2…ks
! ,  

hence  

(20)  

 

1
s+1

! il2l3…ln

!gi

!yk1k2…ks
" + !gk1

!yik2k3…ks
" + !gk2

!yk1ik3k4…ks
" +…+ !gks

!yk1k2…ks#1i
"

$
%&

'
()

= 1
s+1

1
(n#1)!

! il2l3…ln
! ij2 j3… jn

!hj2 j3… jn

!yk1k2…ks
"

+ 1
s+1

1
(n#1)!

! il2l3…ln
! k1 j2 j3… jn

!hj2 j3… jn

!yik2k3…ks
"

+ 1
s+1

1
(n#1)!

! il2l3…ln
! k2 j2 j3… jn

!hj2 j3… jn

!yk1ik3k4…ks
"

+…+ 1
s+1

1
(n#1)!

! il2l3…ln
! ks j2 j3… jn

!hj2 j3… jn

!yk1k2…ks#1i
"

= 1
s+1

!hl2l3…ln

!yk1k2…ks
" + 1

s+1
n!

(n#1)!
* i
k1* l2

j2* l3
j3…* ln

jn
!hj2 j3… jn

!yik2k3…ks
" Alt(il2l3…ln )

+ 1
s+1

n!
(n#1)!

* i
k2* l2

j2* l3
j3…* ln

jn
!hj2 j3… jn

!yk1ik3k4…ks
" Alt(il2l3…ln )

+…+ 1
s+1

n!
(n#1)!

* i
ks* l2

j2* l3
j3…* ln

jn
!hj2 j3… jn

!yk1k2…ks#1i
" Alt(il2l3…ln ).

 

To compute the alternations  Alt(il2l3…ln ) , we first alternate in  (l2l3…ln )  
and then in  (il2l3…ln ) . We get  

(21)  

 

! i
k1! l2

j2! l3
j3…! ln

jn
!hj2 j3… jn

!yik2k3…ks
" Alt(il2l3…ln )

= 1
n

! i
k1
!hl2l3…ln

!yik2k3…ks
" #! l2

k1
!hil3l4…ln

!yik2k3…ks
" #! l3

k1
!hl2il4l5…ln

!yik2k3…ks
" #…#! ln

k1
!hl2l3…ln#1i

!yik2k3…ks
"

$
%&

'
()

= 1
n

!hl2l3…ln

!yk1k2k3…ks
" #! l2

k1
!hil3l4…ln

!yik2k3…ks
" #! l3

k1
!hl2il4l5…ln

!yik2k3…ks
" #…#! ln

k1
!hl2l3…ln#1i

!yik2k3…ks
"

$
%&

'
()
.

 

and similarly for the other terms. Altogether  
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(22)  

 

1
s+1

! il2l3…ln

!gi

!yk1k2…ks
" + !gk1

!yik2k3…ks
" + !gk2

!yk1ik3k4…ks
" +…+ !gks

!yk1k2…ks#1i
"

$
%&

'
()

= 1
s+1

!hl2l3…ln

!yk1k2…ks
"

$
%&

+
!hl2l3…ln

!yk1k2k3…ks
" #* l2

k1
!hil3l4…ln

!yik2k3…ks
" #* l3

k1
!hl2il4l5…ln

!yik2k3…ks
"

#…#* ln
k1
!hl2l3…ln#1i

!yik2k3…ks
" +

!hl2l3…ln

!yk1k2k3…ks
" #* l2

k1
!hil3l4…ln

!yik2k3…ks
" #* l3

k1
!hl2il4l5…ln

!yik2k3…ks
"

#…#* ln
k1
!hl2l3…ln#1i

!yik2k3…ks
" +

!hl2l3…ln

!yk1k2k3…ks
" #* l2

k2
!hil3l4…ln

!yik1k3…ks
" #* l3

k2
!hl2il4l5…ln

!yik1k3…ks
"

#…#* ln
k2
!hl2l3…ln#1i

!yik1k3…ks
" +…+

!hl2l3…ln

!yk1k2k3…ks
"

#* l2
ks
!hil3l4…ln

!yik2k3…ks#1k1
" #* l3

ks
!hl2il4l5…ln

!yik2k3…ks#1k1
" #…#* ln

ks
!hl2l3…ln#1i

!yik2k3…ks#1k1
"

'
()

=
!hl2l3…ln

!yk1k2…ks
" # 1

s+1
* l2
k1
!hil3l4…ln

!yik2k3…ks
" +* l3

k1
!hl2il4l5…ln

!yik2k3…ks
" +…+* ln

k1
!hl2l3…ln#1i

!yik2k3…ks
"

$
%&

+* l2
k2
!hil3l4…ln

!yik1k3…ks
" +* l3

k2
!hl2il4l5…ln

!yik1k3…ks
" +…+* ln

k2
!hl2l3…ln#1i

!yik1k3…ks
"

+…+* l2
ks
!hil3l4…ln

!yik2k3…ks#1k1
" +* l3

ks
!hl2il4l5…ln

!yik2k3…ks#1k1
" +…+* ln

ks
!hl2l3…ln#1i

!yik2k3…ks#1k1
"

'
()

=
!hl2l3…ln

!yk1k2…ks
"

# n#1
s+1

1
n#1

* l2
k1
!hil3l4…ln

!yik2k3…ks
" +* l3

k1
!hl2il4l5…ln

!yik2k3…ks
" +…+* ln

k1
!hl2l3…ln#1i

!yik2k3…ks
"

$
%&

+* l2
k2
!hil3l4…ln

!yik1k3…ks
" +* l3

k2
!hl2il4l5…ln

!yik1k3…ks
" +…+* ln

k2
!hl2l3…ln#1i

!yik1k3…ks
"

+…+* l2
ks
!hil3l4…ln

!yik2k3…ks#1k1
" +* l3

ks
!hl2il4l5…ln

!yik2k3…ks#1k1
" +…+* ln

ks
!hl2l3…ln#1i

!yik2k3…ks#1k1
"

'
()

 

and, with the help of alternations and symmetrizations,  



The inverse problem of the calculus of variations   
 

157 

(23)  

 

1
s+1

! il2l3…ln

!gi

!yk1k2…ks
" + !gk1

!yik2k3…ks
" + !gk2

!yk1ik3k4…ks
" +…+ !gks

!yk1k2…ks#1i
"

$
%&

'
()

=
!hl2l3…ln

!yk1k2…ks
" # n#1

s+1
* l2
k1
!hil3l4…ln

!yik2k3…ks
" # n#1

s+1
* l2
k2
!hil3l4…ln

!yik1k3…ks
"

#…# n#1
s+1

* l2
ks
!hil3l4…ln

!yik2k3…ks#1k1
" Alt(l2l3…ln )

=
!hl2l3…ln

!yk1k2…ks
" # s(n#1)

s+1
* l2
k1
!hil3l4…ln

!yik2k3…ks
" # n#1

s+1
* l2
k2
!hil3l4…ln

!yik1k3…ks
"

#…# n#1
s+1

* l2
ks
!hil3l4…ln

!yik2k3…ks#1k1
" Alt(l2l3…ln ) Sym(k1k2…ks ).

 

 2.  Polynomiality of gi  has been verified in the proof of Lemma 1, and 
polynomiality of 

 
hj1 j2… jn!1

 follows from transformation formulas (17).  

 We say that a ! s -horizontal form ! , defined on V s , has a ! s,s"1 -
projectable extension, if there exists a form µ  on V s!1  such that ! = hµ . 
Our objective now will be to find conditions for !  ensuring that µ  does 
exist. Let !  be expressed in two bases of (n !1) -forms by (16),  

(24)  
  
! = gi" i =

1
(n#1)!

hj2 j3… jn
dx j2 !dx j3 !…!dx jn .  

 Theorem 1  The following two conditions are equivalent: 
 (a) !  has a ! s,s"1 -projectable extension.  
 (b) The components gi  satisfy  

(25)  
 

!gi

!yk1k2…ks
! + !gk1

!yik2k3…ks
! + !gk2

!yk1ik3k4…ks
! +…+ !gks

!yk1k2…ks"1i
! = 0.  

 (c) The components 
 
hi1i2…in!1

 satisfy  

(26)  
 

!hl2l3…ln

!yk1k2…ks
! " r(n"1)

r+1
!hil3l4…ln

!yik2k3…ks
! # l2

k1 = 0 Sym(k1k2…ks ) Alt(l2l3…ln ).  

 Proof  1. To show that (a) implies (b), suppose that we have an (n !1) -
form µ , defined on V s!1 , such that ! = hµ . Then hd! = dig

i "# 0 , which is a 
form on V s+1 . But (! s,s"1)*dµ = d(! s,s"1)*µ  thus hdµ + pdµ = d(hµ + pµ) , 
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which implies that hd! = hdhµ = hdµ , so hd!  is ! s+1,s -projectable (with 
projection hdµ ). But 

(27)  

 

hd! = dig
i "# 0

= !gi

!xi
+ !g

i

!y$
yi
$ + !g

i

!yj1
$ yj1i

$ + !gi

!yj1 j2
$ yj1 j2i

$ +…+ !gi

!yj1 j2… js
$ yj1 j2… jsi

$%
&'

(
)*
# 0 ,

 

so ! s+1,s -projectability implies (25).  
 2.  (c) follows from (b) by Lemma 2.  
 3.  Now we prove that (c) implies (a). Write !  as in (24),  

(28)  
  
! = 1

(n"1)!
hj2 j3… jn

dx j2 !dx j3 !…!dx jn .  

By Lemma 2, the functions 
 
hj2 j3… jn

 are polynomial in the variables yJj
! , 

where J is a multi-index of length s !1 . Thus,  

(29)  

 

hi1i2…in!1
= Bi1i2…in!1

+ B"1
J1k1

i1i2…in!1
yJ1k1
"1 + B"1

J1k1
" 2
J2k2

i1i2…in!1
yJ1k1
"1 yJ2k2

" 2

+…+ B"1
J1k1

" 2
J2k2…" n!2

Jn!2kn!2
i1i2…in!1

yJ1k1
"1 yJ2k2

" 2 …yJn!2kn!2
" n!2

+ B"1
J1k1

" 2
J2k2…" n!2

Jn!2kn!2
" n!1

Jn!1kn!1
i1i2…in!1

yJ1k1
"1 yJ2k2

" 2 …yJn!2kn!2
" n!2 yJn!1kn!1

" n!1 .

 

The coefficients in this expression are supposed to be symmetric in the mul-
ti-indices !

Jk , !
Lj . By hypothesis the polynomials (29) satisfy condition (13) 

(30)  

 

!hi2i3…in

!yJk
! " r(n"1)

r+1
!hli3i4…in

!yJl
! # i2

k = 0

Sym(Jk) Alt(i2i3…in ),
  

which reduces to some conditions for the coefficients. To find these condi-
tions, we compute   

(31)  

 

!hi1i2…in!1

!yJk
" = B"

Jk
i1i2…in!1

+ 2B"
Jk

" 2
J2k2

i1i2…in!1
yJ2k2
" 2

+…+ (n ! 2)B"
Jk

" 2
J2k2…" n!2

Jn!2kn!2
i1i2…in!1

yJ2k2
" 2 yJ3k3

" 3 …yJn!2kn!2
" n!2

+ (n !1)B"
Jk

" 2
J2k2…" n!2

Jn!2kn!2
" n!1

Jn!1kn!1
i1i2…in!1

yJ2k2
" 2 yJ3k3

" 3 …yJn!2kn!2
" n!2 yJn!1kn!1

" n!1 ,

 

and  
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(32)  

 

!hli2i3…in!1

!yJl
" = B"

Jl
li2i3…in!1

+ 2B"
Jl

" 2
J2k2

li2i3…in!1
yJ2k2
" 2

+…+ (n ! 2)B"
Jl

" 2
J2k2…" n!2

Jn!2kn!2
li2i3…in!1

yJ2k2
" 2 yJ3k3

" 3 …yJn!2kn!2
" n!2

+ (n !1)B"
Jl

" 2
J2k2…" n!2

Jn!2kn!2
" n!1

Jn!1kn!1
li2i3…in!1

yJ2k2
" 2 yJ3k3

" 3 …yJn!2kn!2
" n!2 yJn!1kn!1

" n!1 ,

 

from which we have, changing index notation,   

(33)  

 

!hli3i4…in

!yJl
! " i2

k = B!
Jl
li3i4…in

" i2
k + 2B!

Jl
! 2
J2k2

li3i4…in
" i2
k yJ2k2

! 2

+…+ (n # 2)B!
Jl

! 2
J2k2…! n#2

Jn#2kn#2
li3i4…in

" i2
k yJ2k2

! 2 yJ3k3
! 3 …yJn#2kn#2

! n#2

+ (n #1)B!
Jl

! 2
J2k2…! n#2

Jn#2kn#2
! n#1

Jn#1kn#1
li3i4…in

" i2
k yJ2k2

! 2 yJ3k3
! 3 …yJn#2kn#2

! n#2 yJn#1kn#1
! n#1

Sym(Jk) Alt(i2i3…in ).

 

Thus, comparing the coefficients in (33) and (31), condition (30) yields   

(34)  

 

B!
Jk

i1i2…in"1
= s(n"1)

s+1
B!
Jl
li2i3…in"1

# i1
k

B!
Jk

! 2
J2k2

i1i2…in"1
= s(n"1)

s+1
B!
Jl

! 2
J2k2

li2i3…in"1
# i1
k

…

B!
Jk

! 2
J2k2

! 3
J3k3…! n"2

Jn"2kn"2
i1i2…in"1

= s(n"1)
s+1

B!
Jl

! 2
J2k2

! 3
J3k3…! n"2

Jn"2kn"2
li2i3…in"1

# i1
k ,

B!
Jk

! 2
J2k2

! 3
J3k3…! n"1

Jn"1kn"1
i1i2…in"1

= s(n"1)
s+1

B!
Jl

! 2
J2k2

! 3
J3k3…! n"1

Jn"1kn"1
li2i3…in"1

# i1
k

Sym(Jk) Alt(i1i2…in"1).

  

 On the other hand, any (n !1) -form µ  on V s!1  can be expressed as  

(35)   µ = µ0 +!
" !#" + d!

" !$" ,  

where 

(36)  

  

µ0 = Ai1i2…in!1
dxi1 !dxi2 !…!dxin!1

+ A"1
J1

i2i3…in!1
dyJ1

"1 !dxi2 !dxi3 !…!dxin!1

+ A"1
J1

" 2
J2

i3i3…in!1
dyJ1

"1 !dyJ2
" 2 !dxi3 !dxi4 !…!dxin!1

+…+ A"1
J1

" 2
J2…" n!1

Jn!1 dyJ1
"1 !dyJ2

" 2 !…!dyJn!1
" n!1 ,
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and the coefficients are traceless (2.5, Theorem 11). Then hµ = hµ0  because 
h is an exterior algebra homomorphism, annihilating the contact forms !" , 
and   

(37)  

  

hµ = (Ai1i2…in!1
+ A"1

J1
i2i3…in!1

yJ1i1
"1 + A"1

J1
" 2
J2

i3i4…in!1
yJ1i1
"1 yJ2i2

" 2

+…+ A"1
J1

" 2
J2…" n!2

Jn!2
in!1
yJ1i1
"1 yJ2i2

" 2 …yJn!2in!2
" n!2 + A"1

J1
" 2
J2…" n!1

jn!1 yJ1i1
"1 yJ2 j2

" 2 …yJn!1in!1
" n!1 )

#dxi1 !dxi2 !…!dxin!1 .

 

 Now comparing the coefficients in (37) and (29) we see that the equa-
tion hµ =!  for ! s,s"1 -projectable extensions of the form !  is equivalent 
with the system  

(38)  

 

Bi1i2…in!1
= Ai1i2…in!1

,

B"1
J1k1

i1i2…in!1
= A"1

J1
i2i3…in!1

# i1
k1 Sym(J1k1) Alt(i1i2…in!1),

B"1
J1k1

" 2
j2k2

i1i2…in!1
= A"1

J1
" 2
j2

i3i4…in!1
# i1
k1# i2

k2 Sym(J1k1) Sym(J2k2 )
Alt(i1i2…in!1),

…

B"1
J1k1

" 2
J2k2…" n!2

Jn!2kn!2
i1i2…in!1

= A"1
J1

" 2
J2…" n!2

Jn!2
in!1
# i1
k1# i2

k2…# in!2
kn!2

Sym(J1k1) Sym(J2k2 ) …Sym(Jn!2kn!2 ) Alt(i1i2…in!1),
B"1
J1k1

" 2
J2k2…" n!2

Jn!2kn!2
" n!1

Jn!1kn!1
i1i2…in!1

= A"1
J1

" 2
J2…" n!2

Jn!2
" n!1

jn!1# i1
k1# i2

k2…# in!2
kn!2# in!1

kn!1

Sym( j1k1) Sym( j2k2 ) … Sym( jn!2kn!2 )
Sym( jn!1kn!1) Alt(i1i2…in!1)

 

for unknown functions 
 
Ai1i2…in!1

, 
 
A!1
J1

i2i3…in"1
, 

 
A!1
J1

! 2
J2

i3i4…in"1
,  … , 

 
A!1
J1

! 2
J2…! n"2

Jn"2
in"1

, 
and 

 
A!1
J1

! 2
J2…! n"2

Jn"2
! n"1

Jn"1 .  
 We can now solve this system with the help of the trace decomposition 
theory, namely with the trace decomposition formula of the symmetric-
alternating tensors (2.1, Theorem 2). Consider each of equations (38) sepa-
rately. The second equation is  

(39)  
 
B!
Jk

i1i2…in"1
= A!

J
i2i3…in"1

# i1
k Sym(Jk) Alt(i1i2…in"1).  

Denoting 
 
B = B!1

J1k1
i1i2…in"1

 and 
 
A = A!

J
i2i3…in"1

# i1
k , this equation can also be writ-

ten as  B = q !A  where 
 
!A = !A!

J
i2i3…in"1

 is defined by  

(40)  
 
A!
J
i2i3…in"1

= s(n"1)
s+1

!A!
J
i2i3…in"1

.  
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But B satisfies the first condition (34), which can also be written as 
B = q trB . Consequently, the trace decomposition formula yields 
 
!A = trq !A + q tr !A = trB  because  !A  is traceless; thus, we get a solution  

(41)  
 
A = s(n!1)

s+1
!A = s(n!1)

s+1
trB.  

 Next equation (38) is  

(42)  
 

B!1
J1k1

! 2
J2k2

i1i2…in"1
= A!1

J1
! 2
J2

i3i4…in"1
# i1
k1# i2

k2 Sym(J1k1) Sym(J2k2 )
Alt(i1i2…in"1).

 

This equation can be understood as a condition for the trace decomposition 
of the tensor 

 
B = B!1

J1k1
! 2
J2k2

i1i2…in"1
, which according to (34) satisfies  

(43)  
 

B!1
J1k1

! 2
J2k2

i1i2…in"1
= s(n"1)

s+1
B!1
J1l

! 2
J2k2

li2i3…in"1
# i1
k1 Sym(J1k1)

Alt(i1i2…in"1).
 

Analogously  

(44)  
 

B!1
J1k1

! 2
J2k2

i1i2…in"1
= s(n"1)

s+1
B!1
J1k1

! 2
J2l

li2i3…in"1
# i1
k2 Sym(J2k2 )

Alt(i1i2…in"1).
 

These conditions mean that B is a Kronecker tensor whose summands con-
tain exactly one factor of the form ! i

" , where !  runs through J1k1  and i 
through the set   {i1,i2 ,…,in!1} , and exactly one factor ! i

" , where !  runs 
through J2k2  and i through   {i1,i2 ,…,in!1} ; thus, B must be a linear combina-
tions of the terms of the form ! i

j1! l
j2 , ! i

j1! l
k2 , ! i

k1! l
j2 , ! i

k1! l
k2 . From the com-

plete trace decomposition theorem it now follows that the coefficients at the-
se Kronecker tensors can be chosen traceless. This shows, however, that 
equation (42) has a solution 

 
A!1
J1

! 2
J2

i3i4…in"1
.  

 To complete the construction of the ! s,s"1 -projectable extension µ  of 
the form ! , we proceed in the same way.  

 Now we can study integrability of the formal divergence equations. It is 
obvious that the formal divergence equation need not have a solution; for 
instance this is always the case when the right-hand side function f in (3) is 
not polynomial in the variables 

 
yj1 j2… js
! . We introduce the concepts, related to 

f, which are responsible for the solvability.  
 We assign to any function f :V s ! R  the Lagrangian ! f = f" 0  and 
the Euler-Lagrange form 

 
Ef = E! ( f )"

! !" 0 , where the components 
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E! ( f )  are the Euler-Lagrange expressions associated with f,  

(45)  
 
E! ( f ) =

! f
!y!

+ ("1)k
k=1

s

# dp1dp2…dpk
! f

!yp1p2…pk
! .  

 Lemma 3  For any function f :V s ! R , there exists an n-form ! f , 
defined on V 2s!1 , such that (a) h! f = " f , and (b) the form p1d! f  is !" -
generated.  
 Proof  We take for ! f  the the principal Lepage equivalent 

(46)  
  
! f = f" 0 + (#1)l

l=0

s#k#1

$ dp1dp2…dpl
! f

!yj1 j2… jk p1p2…pli
%

&
'(

)
*+
" j1 j2… jk

% !" i
k=0

s

$ .  

 Now we can study solutions of the formal divergence equation (2).  

 Theorem 2  Let f :V s ! R  be a function. The following two conditions 
are equivalent:  
 (a) The formal divergence equation dig

i = f  has a solution defined on 
the set V s .  
 (b) The function f satisfies  

(47)  E! ( f ) = 0.  

 Proof  1. Suppose that the formal divergence equation (2) has a solution 
g = gi , defined on V s . Differentiating dig

i , we get the formulas  

(48)  !dig
i

!y!
= di

!gi

!y!
,  

and for every k = 1,2,…,s , 

(49)  

 

!dig
i

!yi1i2…ik
! = di

!gi

!yi1i2…ik
!

+ 1
k

!gi1

!yi2i3…ik
! + !gi2

!yi1i3…ik
! + !gi3

!yi2i1i4…ik
! +…+ !gik

!yi2i3…ik"1
!

#
$%

&
'(
.
 

Using these formulas, we can compute the Euler-Lagrange expressions 
E! ( f ) = E! (dig

i )  in several steps. First, we have  
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(50)  

 

E! (dig
i )

= di1
!gi1

!y!
" !dig

i

!yi1
! + di2

!dig
i

!yi1i2
! "…+ ("1)s di2di3…dis

!dig
i

!yi1i2…is
!

#
$%

&
'(

= di1di2 " !g
i2

!yi1
! + !dig

i

!yi1i2
! " di3

!dig
i

!yi1i2i3
!

#
$%

+…+("1)s di3di4 …dis
!dig

i

!yi1i2…is
!

&
'(
.

 

Second, using symmetrisation,  

(51)  

 

E! (dig
i ) = di1di2 " !g

i2

!yi1
! + di

!gi

!yi1i2
! + 1

2
!gi1

!yi2
! + !g

i2

!yi1
!

#
$%

&
'(

#
$%

" di3
!dsg

s

!yi1i2i3
! +…+("1)r di3di4 …dir

!dsg
s

!yi1i2…ir
!

&
'(

= di1di2di3
!gi3

!yi1i2
! " !dsg

s

!yi1i2i3
! +…

#
$%

+("1)r di4di5…dir
!dsg

s

!yi1i2…is
!

&
'(
.

 

Continuing this process we obtain after s !1  steps  

(52)  
 
E! (dig

i ) = ("1)s di1di2…dis"1disdi
!gi

!yi1i2…is
! .  

But since f is defined on V s , the solution g necessarily satisfies   

(53)  
 

!gi1

!yi2i3…is+1
! + !gi2

!yi1i3i4…is+1
! + !gi3

!yi2i1i4i5…is+1
! +…+ !gis+1

!yi2i3…is"1iri1
! = 0.  

proving that E! (dig
i ) = 0 .  

 2.  Suppose that E! ( f ) = 0 . We want to show that there exist functions 
gi :V s ! R  such that f = dig

i . Let I be the fibred homotopy operator for 
differential forms on V 2s , associated with the projection ! :V "U  (Section 
2.6, Theorem 12). We have  

(54)  ! f = Id! f + dI! f +!0 = Ip1d! f + Ip2d! f + dI! f +!0 ,  

where !0  is an n-form, projectable on U. In this formula, p1d! f = 0  by 
hypothesis, and we have !0 = d"0 . Moreover h! f = hd(I! f +"0 ) = f# 0 . 
Defining functions gi  on V 2s  by the condition  
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(55)  h(I! f +"0 ) = g
i# i ,  

we see we have constructed a solution of the formal divergence equation. 
Explicitly, hd(I! f +"0 ) = hdh(I! f +"0 ) = dig

i #$ 0 = f$ 0 . Then, however, 
gi  is defined on V s  (Lemma 1).  

 Condition E! ( f ) = 0  (47) is called the integrability condition for the 
formal divergence equation (2).  
 A remarkable property of the solutions of the formal divergence equa-
tion is obtained when we combine Theorem 2 and Theorem 1; we see the 
solutions can be described as certain differential forms.  

 Theorem 3  Let f :V s ! R  be a function, let gi  be a system of func-
tions, defined on V s , and let ! = gi" i . Then the following conditions are 
equivalent:  
 (a) The system gi  is a solution of the formal divergence equation  

(56)  dig
i = f .  

 (b) There exists a projectable extension µ  of the form !  such that  

(57)  hdµ = f! 0 .  

 Proof  1. If the functions gi  solve the formal divergence equation 
dig

i = f , then (3) is satisfied and !  has a projectable extension µ  by Theo-
rem 1. Then ! = hµ , hence (! s+1,s )*hdµ = hdhµ = hd" = dig

i #$ 0 = f$ 0 , 
proving (56).  
 2.  If gi! i = hµ  and hdµ = f! 0 , then hdµ = hdhµ = d1g

i !" 0 .  

 Remark 1  Theorem 3 says that equation (57) for an unknown (n !1) -
form µ  has a solution if and only if the formal divergence equation with 
right-hand side f has a solution.  
 
 4.2 Trivial Lagrangians  Consider the Euler-Lagrange mapping, in-
troduced in Section 3.5, (16),   !n,X

r W ! " # E(") = E" "!n+1,Y
r W . The do-

main and the range of this mapping have the structure of Abelian groups 
(and real vector spaces), and the Euler-Lagrange mapping is a homomor-
phism of these Abelian groups. We say that a Lagrangian  ! !"n,X

r W  is var-
iationally trivial, or null, if its Euler-Lagrange form vanishes, E! = 0 . In 
this section we describe all variationally trivial Lagrangians, or, which is the 
same, the kernel of the Euler-Lagrange mapping ! " E(!) . To this purpose 
we use the formal divergence equations (Section 4.1), where the Euler-
Lagrange expressions appear independently in the corresponding integrabil-
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ity conditions; the following result is merely a restatement of the theorems of 
Section 4.1.  

 Theorem 4  Let  ! !"n
rW  be a Lagrangian. The following conditions 

are equivalent:  
 (a) !  is variationally trivial.  
 (b) For any fibred chart (V ,! ) , ! = (xi , y" ) , there exist functions 
gi :V r ! R , such that on V r ,  ! = �" 0 , where 

(1)   � = dig
i .  

 (c) For every fibred chart (V ,! ) , ! = (xi , y" ) , there exists an (n !1) -
form  µ!!n"1

r V  such that on V r  

(2)  ! = hdµ.  

 Proof  1.  We show that (a) is equivalent with (b). Suppose that we have 
a variationally trivial form  ! !"n

rW . Write for any fibred chart (V ,! ) , 
! = (xi , y" ) ,  ! = �" 0 . Since by hypothesis the Euler-Lagrange expressions 
 E! (�)  vanish, consequently, by Theorem 2,  � = dig

i  for some functions 
gi  on V 2 .  The converse also follows from Theorem 2.  
 2.  Equivalence of (a) and (c) follows from Theorem 3.  

 In general, Theorem 4 does not ensure global existence of the form µ  
or its exterior derivative dµ .  However, for first order Lagrangians we have 
a stronger result.  

 Corollary 1  A first order Lagrange form  ! !"n
1W  is variationally 

trivial if and only if there exists an n-form  !!"n#1
0 W  such that  

(3)  ! = h"  

and  

(4)  d! = 0.  

 Proof  By Theorem 4, for any two points  y1, y2 !Y  there exist two 
(n !1) -forms  µ1,µ2 !Y ,  defined on a neighbourhood of y1  and y2 , such 
that hdµ1 = !  and hdµ2 = ! , respectively. Then hdµ1 = hdµ2 , hence 
hd(µ1 ! µ2 ) = 0  on the intersection of the neighbourhoods. But the horizon-
talization h, considered on forms on J 0Y = Y , is injective. Consequently, 
d(µ1 ! µ2 ) = 0 , and there exists an n-form  !!"n

0W  whose restrictions 
agree with dµ1  and dµ2 . Clearly, d! = 0 .  
 



   D. Krupka 
 
166 

 4.3 Source forms and the Vainberg-Tonti Lagrangians  For any 
positive integer s, a 1-contact form  ! !"n+1,Y

s W  is called a source form 
(Takens [21]). From this definition it follows that in a fibred chart (V ,! ) , 
! = (xi , y" ) , !  has an expression  

(1)   ! = !"#
" !# 0 ,  

where the components !"  depend on the jet coordinates 

 
xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… js

! . Clearly, every Euler-Lagrange form E!  is a source 
form, thus, the set of source forms contains the Euler-Lagrange forms as a 
subset.  
 We can assign to any source form a Lagrangian as follows. Let !  be a 
source form, defined on W s , and let (V ,! ) , ! = (xi , y" ) , be a fibred chart 
on Y, such that  V !W , and the set ! (V )  is star-shaped.  Denote by I the 
fibred homotopy operator on V s . Then I!  is a ! s -horizontal form, that is, a 
Lagrangian for Y, defined on V s . We denote  

(2)  !" = I"  

and call !"  the Vainberg-Tonti Lagrangian, associated with the source form 
!  (and the fibred chart (V ,! ) ; cf. Tonti [22]). 
 Recall that I!  is defined by the fibred homotopy ! s :[0,1]"V

s #V s , 
where 

 
! s (t,(x

i , y" , yj1
" , yj1 j2

" ,…, yj1 j2… js
" )) = (xi ,ty" ,tyj1

" ,tyj1 j2
" ,…,tyj1 j2… js

" ) . Since 
! s  satisfies 

  
!*

s
" = ("# ! ! s )(t$

# + y#dt)!$ 0 , we have, integrating the coef-
ficient in this expression at dt ,  

(3)   !" = � "# 0 ,  

where  

(4)  
  
� ! = y

" !" ! # s $dt0

1

% ,  

or, which is the same,  

(5)  

  

� ! (x
i , y" , yj1

" , yj1 j2
" ,…, yj1 j2… js

" )

= y" !" (x
i ,ty" ,tyj1

" ,tyj1 j2
" ,…,tyj1 j2… js

" )dt
0

1

# .
 

 We can find the chart expression for the Euler-Lagrange form E!"
 of 

the Vainberg-Tonti Lagrangian !" ; recall that   

(6)  
  
E

!"
= E# (� " )$

# !$ 0 ,  
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where 

(7)  
  
E! (� " ) = (#1)l

l=0

s

$ dp1dp2…dpl
!� "

!yp1p2…pl
! .  

 We need two formulas for the formal derivative operator di , stated in 
the following lemma. Note that in these formulas a specific summation con-
vention is applied.  

 Lemma 4  (a)  For every function f on V p   

(8)  
 
di ( f ! ! p ) = di f ! ! p+1.  

 (b) For every function f on V s  and a collection of functions  g
p1p2…pk  on 

V s , symmetric in all superscripts,  

(9)  

 

dp1dp2…dpk ( f !g
p1p2…pk )

= i
k( )dp1dp2…dpi f !dpi+1dpi+2…dpk g

p1p2…pi pi+1pi+2…pk

i=0

k

" .
 

 Proof  (a) Formula (8) is an easy consequence of definitions.  
 (b) The proof is standard. We have  

(10)  
dp1 ( f !g

p1 ) = dp1 f !g
p1 + f !dp1g

p1

= 0
1( )dp1 f !gp1 + 1

1( ) f !dp1gp1 ,
 

and  

(10)  

dp1dp2 ( f !g
p1p2 )

= dp2 (dp1 f !g
p1p2 + f !dp1g

p1p2 )

= dp2dp1 f !g
p1p2 + dp1 f !dp2g

p1p2 + dp2 f !dp1g
p1p2 + f !dp1dp1g

p1p2

= 0
2( )dp2dp1 f !gp1p2 + 1

2( )dp1 f !dp2gp1p2 + 2
2( ) f !dp1dp1gp1p2 .

 

Then, supposing that  

(11)  

 

dp1dp2…dpk!1 ( f "g
p1p2…pk!1 )

= i
k!1( )dp1dp2…dpi f "dpi+1dpi+2…dpk!1g

p1p2…pi pi+1pi+2…pk!1

i=0

k!1

#
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(11)  

 

= 0
k!1( ) f "dp1dp2…dpk!1g

p1p2…pk!1

+ 1
k!1( )dp1 f "dp2dp3…dpk!1g

p1p2…pk!1

+ 2
k!1( )dp1dp2 f "dp3dp4 …dpk!1g

p1p2…pk!1

+…+ k!2
k!1( )dp1dp2…dpk!2 f "dpk!1g

p1p2…pk!1

+ k!1
k!1( )dp1dp2…dpk!1 "g

p1p2…pk!1 ,

 

we have  

(12)  

 

dp1dp2…dpk!1dpk ( f "g
p1p2…pk!1pk )

= f "dp1dp2…dpk!1dpk g
p1p2…pk!1pk

+ 0
k!1( ) + 1

k!1( )( )dp1 f "dp2dp3…dpk g
p1p2…pk!1pk

+ 1
k!1( ) + 2

k!1( )( )dp1dp2 f "dp3dp4 …dpk g
p1p2…pk!1pk

+…+ k!2
k!1( ) + k!1

k!1( )( )dp1dp2…dpk!1 "dpk g
p1p2…pk!1pk

+ k!1
k!1( )dpkdp1dp2…dpk!1 "g

p1p2…pk!1pk

 

and  

(13)  

p
k!1( ) + p+1

k!1( ) = (k!1)!
p!(k!1! p)!

+ (k!1)!
(p+1)!(k!1! p!1)!

=
(p+1)(k!1)!

(p+1)!(k! p!1)!
+ (k! p!1)(k!1)!
(p+1)!(k! p!1)!

=
k!

(p+1)!(k! p!1)!
= p+1

k( ),
 

thus,  



The inverse problem of the calculus of variations   
 

169 

(14)  

 

dp1dp2…dpk!1dpk ( f "g
p1p2…pk!1pk )

= 0
k( ) f "dp1dp2…dpk!1dpk g

p1p2…pk!1pk

+ 1
k( )dp1 f "dp2dp3…dpk g

p1p2…pk!1pk

+ 2
k( )dp1dp2 f "dp3dp4 …dpk g

p1p2…pk!1pk

+…+ k!1
k( )dp1dp2…dpk!1 "dpk g

p1p2…pk!1pk

+ k
k( )dpkdp1dp2…dpk!1 "g

p1p2…pk!1pk .

 

 The Vainberg-Tonti Lagrangian allows us to assign to any source form, 
not only to an Euler-Lagrange form, a variational functional and the corre-
sponding Euler-Lagrange equations for its extremals. Our aim now will be to 
find, with the help of Lemma 4, the corresponding Euler-Lagrange form of 
the Vainberg-Tonti lagrangian and compare it with the inicial source form. 
The following theorem describes the relationship of these two forms.  

 Theorem 5  The Euler-Lagrange expressions of the Vainberg-Tonti La-
grangian !"  of a source form  ! = !"#

" !# 0  are  

(15)  
  
E! (� " ) = "! # yq1q2…qk

$ H! $
q1q2…qk(" )! %2s & t dt'

k=0

s

( ,  

where  

(16)  

 

H! "
q1q2…qk(# ) = !#!

!yq1q2…qk
" $ ($1)k !#"

!yq1q2…qk
!

$ ($1)l k
l( )dpk+1dpk+2…dpl

!#"
!yq1q2…qk pk+1pk+2…pl

!
l=k+1

s

% .
 

 Proof  We find a formula for the difference  !" # E" (� ! ) . Consider the 
Euler-Lagrange form E!"

 (6) of the Vainberg-Tonti Lagrangian. Computing 
the derivatives we have  

(17)  
  

!� !

!y"
= !" ! # s $dt% + y& !!&

!y"
! # s $ t dt% ,  

and, by Lemma 4,  (8) and (9), for every l, 1! l ! s ,  
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(18)  

  

dpl …dp2dp1
!� !

!yp1p2…pl
" = dpl …dp2dp1 y# !!#

!yp1p2…pl
" ! $ s % t dt&'

()
*
+,

= i
l( )yp1p2…pi

# % dpi+1dpi+2…dpl
!!#

!yp1p2…pi pi+1pi+2…pl
" ! $ s+l-i % t dt&

i=0

l

. .
 

Then by (17) and (18),  

(19)  

  

E! (� " ) = "! ! # s $dt% + y& !"&
!y!
! # s $ t dt% + ('1)l

l=1

s

( i
l( )yp1p2…pi

&

i=0

l

(

$ dpi+1dpi+2…dpl
!"&

!yp1p2…pi pi+1pi+2…pl
! ! # s+l'i $ t dt% .

 

On the other hand,  

(20)  

 

!" = d
dt
(!" ! # s $ t)dt% = d(!" ! # s )

dt
$ t dt% + !" ! # s $dt%

= !!"
!yp1p2…pi

& ! # s $ yp1p2…pi
& $ t dt%

i=0

s

' + !" ! # s $dt% ,
 

hence  

(21)  

  

!" # E" (� ! ) =
!!"

!yp1p2…pi
$ ! % s & yp1p2…pi

$ & t dt'
i=0

s

( # y$ !!$
!y"
! % s & t dt'

# (#1)l
l=1

s

( i
l( )yp1p2…pi

$

i=0

l

( dpi+1dpi+2…dpl
!!$

!yp1p2…pi pi+1pi+2…pl
" ! % s+l#i & t dt'

= !!"
!y$
! % s & y

$ & t dt' # y$ !!$
!y"
! % s & t dt'

# (#1)l
l=1

s

( 0
l( )y$ & dp1dp2…dpl

!!$
!yp1p2…pl

" ! % s+l & t dt'

+ !!"
!yp1p2…pi

$ ! % s & yp1p2…pi
$ & t dt'

i=1

s

(

# (#1)l
l=1

s

( i
l( )yp1p2…pi

$

i=1

l

( dpi+1dpi+2…dpl
!!$

!yp1p2…pi pi+1pi+2…pl
" ! % s+l#i & t dt' .

 

We replace the summation through the pairs (l,i)  in the double sum with the 
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summation through (i,l) , expressed by the scheme  

(22)  

 

(1,1)
(2,1),(2,2)
(3,1),(3,2),(3,3)
…
(s,1),(s,2),(s, 3),…,(s !1,s),(s,s)

 

Then it is easily seen that the same summation, but represented by the pairs 
(i,l) , is expressed by the scheme  

(23)  

 

(1,1),(1,2),(1,3),…,(1,s !1),(1,s)
(2,2),(2,3),…,(2,s !1),(2,s)
…
(s !1,s !1),(s !1,s)
(s,s)

 

Then the double sum in (21) becomes  

(24)  

 

(!1)l
l=1

s

" i
l( )yp1p2…pi

#

i=1

l

" dpi+1dpi+2…dpl
!$#

!yp1p2…pi pi+1pi+2…pl
% ! & s+l!i ' t dt(

= (!1)i
i=1

s

" yp1p2…pi
# !$#

!yp1p2…pl
% ! & s ' t dt(

+ (!1)l
i=1

s

" i
l( )yp1p2…pi

#

l=i+1

s

" dpi+1dpi+2…dpl
!$#

!yp1p2…pi pi+1pi+2…pl
% ! & s+l!i ' t dt( .

 

Returning to (21) we get  

(25)  

  

!" # E" (� ! )

= y$ !!"
!y$

# !!$
!y"

# (#1)l dp1dp2…dpl
!!$

!yp1p2…pl
"

l=1

s

%&'()
*
+,
! -2s . tdt

+ yp1p2…pi
$ !!"

!yp1p2…pi
$ # (#1)i !!$

!yp1p2…pl
"&'()i=1

s

%

# (#1)l i
l( ) .dpi+1dpi+2…dpl

!!$
!yp1p2…pi pi+1pi+2…pl

"
l=i+1

s

% *
+,
! -2s#i . tdt.
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This formula proves Theorem 5.  

 We call the functions (16) the Helmholtz expressions, associated with 
the source form ! .  
 The following illustrative example describes the structure of the Helm-
holtz expressions for source forms of order 2r .  

 Remark 2  If s = 2r , we get  

(26)  

 

H! "
q1q2…q2 r(# ) = !#!

!yq1q2…q2 r
" $ !#"

!yq1q2…q2 r
! ,

H! "
q1q2…q2 r$1(# ) = !#!

!yq1q2…q2 r$1
" + !#"

!yq1q2…q2 r$1
! $ 2r$1

2r( )dp2 r !#"
!yq1q2…q2 r$1p2 r

! ,

H! "
q1q2…q2 r$2(# ) = !#!

!yq1q2…q2 r$2
" $ !#"

!yq1q2…q2 r$2
!

+ 2r$2
2r$1( )dp2 r$1 !#"

!yq1q2…q2 r$2p2 r$1
! $ 2r$2

2r( )dp2 r$1dp2 r !#"
!yq1q2…q2 r$2p2 r$1p2 r

! ,

…

H! "
q1(# ) = !#!

!yq1
" + !#"

!yq1
! $ 1

2( )dp2 !#"!yq1p2
!

+ 1
3( )dp2dp3 !#"

!yq1p2p3
! $…+ 1

2r$1( )dp2dp3…dp2 r$1
!#"

!yq1p2p3…p2 r$1
!

$ 1
2r( )dp2dp3…dp2 r

!#"
!yq1p2p3…p2 r

! ,

H! "(# ) =
!#!
!y"

$ !#"
!y!

+ 0
1( )dp1 !#"!yp1

! $ 0
2( )dp1dp2 !#"!yp1p2

!

+…+ 0
s$1( )dp1dp2…dp2 r$1

!#"
!yp1p2…p2 r$1

!

$ 0
2r( )dp1dp2…dp2 r

!#"
!yp1p2…p2 r

! .

 

 Remark 3  Theorem 5 describes the difference between the given 
source form !  and the Euler-Lagrange form of the Vainberg-Tonti Lagran-
gian; it states, in particular, that responsibility for the difference lies on the 
properties of the the Helmholtz expressions.  
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 Now we specify this difference for variational source forms.  

 Lemma 5  Let  ! = �" 0  be a Lagrangian, and let !"  be its principal 
Lepage equivalent. Then the Vainberg-Tonti Lagrangian of the Euler-
Lagrange form   E! = E" (�)#

" !# 0 ,  

(27)  !" = hId#" ,  

satisfies   

(28)  !" = " # hd(I$" + µ0 ),  

where µ0  is an (n !1) -form on U.  
 Proof  Using the fibred homotopy operator, we can decompose the 
principal Lepage equivalent !"  as  !" = Id!" + dI!" +!0 , with !0  de-
fined on X. Then the horizontal component is  

(29)  h!" = hId!" + hdI!" + h!0 = hId!" + hd(I!" + µ0 ),  

where the Vainberg-Tonti Lagrangian is hId!" .  

 Note that, in particular, formula (28) shows that the Vainberg-Tonti La-
grangian differs from the initial one by the term hd(I!" + µ0 )  that belongs 
to the kernel of the Euler-Lagrange mapping. This fact demonstrates that the 
Euler-Lagrange forms of these two Lagrangians coincide.  
 
 4.4 The inverse problem  Our objective in this section is to study the 
image of the Euler-Lagrange mapping  !n,X

r W ! " # E(") = E" "!n+1,Y
2r W  

(Section 3.5), considered as a subset of the set of source forms (Section 4.3). 
We are interested in basic properties of this set, in particular, in a criterion 
when a source form belongs to the subset of the Euler-Lagrange forms.  
 The following theorem, completing Theorem 6, Section 3.5, shows that 
the image of the Euler-Lagrange mapping is closed under the Lie derivative 
with respect to projectable vector fields.  

 Theorem 6  For any Lagrangian  ! !"n,X
r W  and any ! -projectable 

vector field !  on W  the Lie derivative !J r"#  belongs to the module !n,X
r W  

and  

(1)  !J r"E# = E!
Jr"

# .  

 Proof  Since  ! !"n,X
r W , then  !J r"# !$n,X

r W . If !"  is a Lepage 
equivalent of ! , and !"

Jr#
$  is a Lepage equivalent of !J r"# , then, with the 
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notation of 3.3, Theorem 3, !" =#" + d$ + µ , and  

(2)  !"
Jr#

$ =%"
Jr#

$ + d &' + &µ , "J r# !$ = "J r#%$ + d "J r#' + "J r#µ.  

The horizontal component is h!J r" #$ = !J r+1"h#$ = !J r+1"$ , and !J r" #$  is a 
Lepage form, because p1d !J r" #$ = p1d !J r"%$ = p1 !J r"d%$  and the Lie de-
rivative !J r"  preserves contact forms (2.4, Theorem 10, (4)). Thus, the forms 
!"

Jr#
$  and !J r" #$  are both Lepage forms, and have the same Lagrangians. 

Consequently, their Euler-Lagrange forms agree, !J r"E# = E!
Jr"

# .  

 Consider a source form  ! !"n+1,Y
s W . We say that !  is variational, if  

(3)  ! = E"  

for some r and some Lagrangian  ! !"n,X
r W . !  is said to be locally varia-

tional, if there exists an atlas on Y, consisting of fibred charts, such that for 
each chart (V ,! ) , ! = (xi , y" ) ,  belonging to this atlas, the restriction of !  
to V s  is variational.  
 The inverse problem of the calculus of variations for source forms is the 
problem to find conditions ensuring the existence a Lagrangian ! , satisfy-
ing equation (3); then if these conditions are satisfied, to find all Lagrangian 
for ! . The local inverse problem, or local variationality problem, for a 
source form !  consists in finding existence (integrability) conditions and 
solutions  �  of the system of partial differential equations  

(4)  
  
!" = !�

!y"
+ (#1)l

l=1

r

$ dp1dp2…dpl
!�

!yp1p2…pl
"  

with given functions 
 
!" = !" (x

i , y" , yj1
" , yj1 j2

" ,…, yj1 j2… js
" ) .  

 Remark 4 (Variationality of partial differential equations)  The con-
cept of local variationality can be applied to systems of partial differential 
equations. Having fixed the functions !" , we sometimes say, without aspira-
tion to rigour, that the system of partial differential equations  

(5)  
 
!" (x

i , y# , yj1
# , yj1 j2

# ,…, yj1 j2… js
# ) = 0  

is variational, it it coincides with the system of Euler-Lagrange equations of 
some Lagrangian. It is clear, however, that this concept of is not well de-
fined; indeed, setting !"# = $%

# "#  with any functions !"
#  such that 

det!"
# $ 0 , we get two equivalent systems !" = 0  and !"# = 0 , but it may 

happen that one of them is variational and the other is not. If (5) is not varia-
tional and there exists !"

#  such that the equivalent system  
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(6)  !"
# $# = 0  

is variational, !"
#  are said to be the variational integrating factors for (5).  

 Let r be a fixed positive integer. In the following theorem we describe 
the subspace of the vector space of source forms, which is in general larger 
than the image of the Euler-Lagrange mapping, namely, the subspace of lo-
cally variational forms.  

 Theorem 7  A source form  ! !"n+1,Y
s W  is locally variational if and on-

ly if there exists an integer q and a form  F !!n+1
q W  of order of contactness 

! 2  such that d(! + F) = 0 .  
 Proof  1. Suppose that !  is locally variational, and choose a fibred 
chart (V ,! ) , ! = (xi , y" ) , such that !  is variational on V; then ! = E"  for 
some lagrangian  ! !"n,X

r V . Let !"  denote the principal Lepage equivalent 
of ! , and set F = p2d!" . Then d(! + F) = dd"# = 0 .   
 2.  Conversely, if for some fibred chart (V ,! ) , ! = (xi , y" ) , condition 
d(! + F) = 0  holds on V s , then ! + F = d"  for some ! . !  is obviously a 
Lepage form, thus,  ! = p1d" , so !  is a locally variational form whose La-
grangian is h! .  

 The following lemma is needed in the proof of the theorem on the local 
inverse variational problem.  

 Lemma 6  Let U be an open set in Rn  such that for each point 
 x0 = (x0

1 , x0
2 ,…, x0

n )  the segment    {(tx0
1 ,tx0

2 ,…,tx0
n )| t ! [0,1]}  belongs to U. Let 

f :U! R  be a function such that  

(7)  
 
F(tx0

1 ,tx0
2 ,…,tx0

n )dt
0

1

! = 0  

for all points   (x0
1 , x0

2 ,…, x0
n )!U . Then F = 0 .  

 
 Proof  If  (7) is true, then for any  s! [0,1] ,   (sx0

1 ,sx0
2 ,…,sx0

n )!U , thus,  

(8)  
 
F(tsx0

1 ,tsx0
2 ,…,tsx0

n )dt
0

1

! = 0.  

Differentiating with respect to s at s = 1  

(10)  !F
!xk

!
"

#
$ tx0

x0
kt dt

0

1

% = 0.  

On the other hand,  
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(11)  
 

d
dt
(tF(tx0

1 ,tx0
2 ,…,tx0

n )) = F(tx0
1 ,tx0

2 ,…,tx0
n )+ !F

!xk
!
"

#
$ tx0

x0
kt.  

Integrating we have  

(12)  
 
F(x0

1 , x0
2 ,…, x0

n ) = F(tx0
1 ,tx0

2 ,…,tx0
n )dt

0

1

! + !F
!xk

"
#

$
% tx0

x0
kt dt

0

1

! = 0.  

 Now we can study the local inverse problem of the calculus of varia-
tions. We wish to find integrability conditions for the system (4) and de-
scribe all solutions  �  of the system of partial differential equations (4) in an 
explicit form. To characterize locally variational forms, we need the Helm-
holtz expressions 

 
H! "

q1q2…qk(# )  (Section 4.3, (16)), where  k = 0,1,2,…,s , and 
s is the order or ! .  

 Theorem 8  Let V be an open star-shaped set in Rm , and let 
!" :V

s # R  be differentiable functions. The following two conditions are 
equivalent:  
 (a) Equation  

(15)  
  
!" = !�

!y"
+ (#1)l

l=1

s

$ dp1dp2…dpl
!�

!yp1p2…pl
"  

has a solution  � :V
s ! R .  

 (b) For all  k = 0,1,2,…,s , the function !"  satisfy,  

(16)  
 
H! "

q1q2…qk(# ) = 0  

 Proof  1. Suppose that the system (15) has a solution  � . Then !  is the 
Euler-Lagrange form of the Lagrangian  ! = �" 0 , and   ! = E" (�)#

" !# 0 . 
Since the Lagrangian !  and the Vainberg-Tonti Lagrangian have the same 
Euler-Lagrange form, the Helmholtz expressions satisfy  

(17)  

 

yq1q2…qk
! H" !

q1q2…qk(# )! $4 r % t dt&
k=0

s

'

= (yq1q2…qk
! H" !

q1q2…qk(# ))! $4 r %dt
k=0

s

'0
1

& = 0
 

(4.3, Theorem 5, (15)). Applying Lemma 6, we get  
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(18)  
 

yq1q2…qk
! H" !

q1q2…qk(# )
k=0

s

$ = 0.  

  Now suppose that the functions !"  do not satisfy conditions (16). Then 
there exists a point in V s  and some indices l and  ! ,", p1, p2 ,…, pl  such that 
 H! "

p1p2…pl(# ) $ 0  at this point, and by continuity,  H! "
p1p2…pl(# ) $ 0  on a 

neighbourhood of this point. In particular,  H! "
p1p2…pl(# ) $ 0  on the intersec-

tion of this open set with the set defined by equations 
 
yq1q2…qk
! = 0 , whenever 

the multi-index 
 q1q2…qk
!  differs from 

 p1p2…pl
! . Then, however, the sum (18) is 

equal to 
 
yp1p2…pl
! H" !

p1p2…pl(# )  and is different from 0. This contradiction 
proves conditions (16).  
 2.  Suppose that the system of functions !"  satisfies conditions (16) and 
denote by  ! = !"#

" !# 0  the corresponding source form. Then the Euler-
Lagrange expressions of the Vainberg-Tonti Lagrangian  !" = � "# 0 ,  

(19)  
  
E! (� " ) = "! # yq1q2…qk

$ H! $
q1q2…qk(" )! %2s & t dt'

k=0

s

( ,  

reduce to  E! (� " ) = "! . In particular, !  has a Lagrangian of order s.  

 Remark 5  Integrability conditions (16) ensure existence of a Lagrangi-
an of order s for a source form of order s. Existence of Lagrangians of order 
r < s  require additional properties of the source forms.  
 
 Remark 6  Condition (16) for k = 0  can also be easily proved by means 
of Theorem 6. If  !  is a variational form, then for every ! -vertical vector 
field !  

(20)  !J 2 r"# = !J 2 r"E$ = E!
Jr"

$ ,  

therefore, the Lie derivative !J 2 r"#  is a variational form. Thus, !J 2 r"#  must 
satisfy condition (18), now written as  

(21)  
 

yq1q2…qk
! H" !

q1q2…qk(#
J s$
% )

k=0

s

& = 0,  

therefore,  

(22)  
 
H! "

q1q2…qk(#
J s$
% ) = 0.  

The functions !" (#)  in this formula are determined by the Lie derivative 
!J 2 r"# . Since  
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(22)  

 

!J 2 r"# = #$ (")%
$ !% 0

= iJ 2 r"d# + diJ 2 r"# = iJ 2 r"(d#$ !%
$ !% 0 )+ d(#$"

$ &% 0 )

= iJ 2 r"d#$ &%
$ !% 0 '"

$d#$ !% 0 + d(#$"
$ )!% 0

= iJ 2 r"d#$ + #(
!"(

!y$
)
*+

,
-.
%$ !% 0 ,

 

we have  

(23)  !" (#) = iJ 2 r#d!" + !$
!#$

!y"
.  

 2.  Fix an index !  and consider the vector field ! = !/ !y"  and its r-jet 
prolongation  

(24)  J 2r! = !
!y"

.  

For this vector field expressions (23) reduce to  

(25)  !" (#) =
!!"
!y$

,  

Condition (20) implies  

(26)  

 

yq1q2…qk
! !"# ($)

!yq1q2…qk
! % (%1)k !"! ($)

!yq1q2…qk
#

&
'(k=0

2r

)

% (%1)l k
l( )dpk+1dpk+2…dpl

!"! ($)
!yq1q2…qk pk+1pk+2…pl

#
l=k+1

2r

) *
+,

= yq1q2…qk
! !2"#

!y- !yq1q2…qk
! % (%1)k !2"!

!y- !yq1q2…qk
#

&
'(k=0

2r

)

% (%1)l k
l( ) !
!y-

dpk+1dpk+2…dpl
!"!

!yq1q2…qk pk+1pk+2…pl
#

l=k+1

s

) *
+,
= 0

 

because the partial derivative !/ !y!  commutes with the formal derivative 
dp . Then  
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(27)  

 

yq1q2…qk
! !

!y"
!#$

!yq1q2…qk
! % (%1)k !#!

!yq1q2…qk
$

&
'(k=0

2r

)

% (%1)l k
l( )dpk+1dpk+2…dpl

!#!
!yq1q2…qk pk+1pk+2…pl

$
l=k+1

2r

) *
+,

= !
!y"

yq1q2…qk
! !#$

!yq1q2…qk
! % (%1)k !#!

!yq1q2…qk
$

&
'(k=0

2r

)&
'(

% (%1)l k
l( )dpk+1dpk+2…dpl

!#!
!yq1q2…qk pk+1pk+2…pl

$
l=k+1

2r

) *
+,
*
+,

% !#$
!y"

+ !#"
!y$

+ (%1)l dp1dp2…dpl
!#"

!yp1p2…pl
$

l=1

2r

) = 0.

 

But the first sum vanishes by (18), and the second sum gives  

(28)  
 
! !"#
!y$

+ !"$
!y#

+ (!1)l dp1dp2…dpl
!"$

!yp1p2…pl
#

l=1

2r

% = !H# &(" ) = 0,  

which is the first one of equations (16).  
 
 Remark 7  One can also prove equation H! "(# ) = 0  by applying the 
integrability criterion for formal divergence equations. Consider the inverse 
problem equation  

(29)  

  

!" = !�
!y"

# dp1
!�
!yp1

" + dp1dp2
!�
!yp1p2

"

#…+ (#1)r#1dp1dp2…dpr#1
!�

!yp1p2…pr#1
" + (#1)r dp1dp2…dpr

!�
!yp1p2…pr

"

 

and suppose it has a solution  � . Denoting   

(30)  

  

!"
p1 = !�

!yp1
" + dp2

!�
!yp1p2

" #…+ (#1)r#1dp2dp3…dpr#1
!�

!yp1p2…pr#1
"

+ (#1)r dp2dp3…dpr
!�

!yp1p2…pr
" ,

 

we get the formal divergence equation  
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(31)  
 
!" # !�

!y"
= #dp1$"

p1 .  

Since by hypothesis there exists a solution, the integrability condition for 
this equation is satisfied, that is, by Section 4.1, Theorem 2, 

(32)  
 
E! "# $ !�

!y#
%
&'

(
)*
= 0.  

Explicitly, since the formal derivative di  and the partial derivative !/ !y!  
commute,  

(33)  

  

E! "# $ !�
!y#

%
&'

(
)*
= E! ("# )$

!E! (�)
!y#

= !"#
!y!

$ dp1
!"#
!yp1

! + dp1dp2
!"#
!yp1p2

!

$…+ ($1)r$1dp1dp2…dpr$1
!"#

!yp1p2…pr$1
!

+ ($1)r dp1dp2…dpr
!"#

!yp1p2…pr
! $ !"!

!y#
= 0.

 

Comparing this formula with (14) we see we get H! "(# ) = 0 .  

 Remark 8 (2nd order Helmholtz expressions)  The Helmholtz condi-
tions  for a 2nd order source form  ! = !"#

" !# 0  can also be written as   

(34)  

H! "
pq = !#!

!ypq
" $ !#"

!ypq
! ,

H! "
q = !#!
!yq

" + !#"
!yq

! $ dp
!#!
!ypq

" + !#"
!ypq

!

%
&'

(
)*
+ dpH! "

pq,

H! " =
!#!
!y"

$ !#"
!y!

$ 1
2
dp

!#!
!yp

" $ !#"
!yp

!

%
&'

(
)*
+ 1
2
dpH! "

p.

 

We can obtain these formulas by direct substitutions into  

(35)  H! "
q = !#!
!yq

" + !#"
!yq

! $ 2dp
!#"
!yqp

! ,  
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and  

(36)  
H! "

q = !#!
!yq

" + !#"
!yq

! $ 2dp
!#"
!yqp

! ,

H! " =
!#!
!y"

$ !#"
!y!

+ dp
!#"
!yp

! $ dpdq
!#"
!ypq

! .
 

 
We have  

(37)  
H! "

q = !#!
!yq

" + !#"
!yq

! $ dp
!#"
!ypq

! + !#!
!ypq

"

%
&'

(
)*
$ dp

!#"
!ypq

! $ !#!
!ypq

"

%
&'

(
)*

= !#!
!yq

" + !#"
!yq

! $ dp
!#"
!ypq

! + !#!
!ypq

"

%
&'

(
)*
+ dpH! "

pq,
 

and  

(38)  

H! " =
!#!
!y"

$ !#"
!y!

+ 1
2
dp

!#"
!yp

! $ !#!
!yp

"

%
&'

(
)*
+ 1
2
dp

!#"
!yp

! + !#!
!yp

"

%
&'

(
)*

$ 1
2
dpdq

!#"
!ypq

! $ !#!
!ypq

"

%
&'

(
)*
$ 1
2
dpdq

!#"
!ypq

! + !#!
!ypq

"

%
&'

(
)*

= !#!
!y"

$ !#"
!y!

+ 1
2
dp

!#"
!yp

! $ !#!
!yp

"

%
&'

(
)*

+ 1
2
dp

!#!
!yp

" + !#"
!yp

! $ dq
!#!
!ypq

" + !#"
!ypq

!

%
&'

(
)*
+ dqH! "

pq%
&'

(
)*

= !#!
!y"

$ !#"
!y!

+ 1
2
dp

!#"
!yp

! $ !#!
!yp

"

%
&'

(
)*
+ 1
2
dpH! "

p.

 

 
 


