Appendix

Analysis on Euclidean spaces and smooth
manifolds

In this appendix we summarize for the reference essential notions and
theorems of differentiation and integration theory on Euclidean spaces as
needed in this book. Main coordinate formulas of the calculus of vector
fields and differential forms on smooth manifolds are also given. We have
included elementary concepts from multi-linear algebra, and the trace de-
composition theory over a real vector space.

1 Jets of mappings of Euclidean spaces

Let L(R",R™) be the vector space of linear mappings of R" into R",
L'(R",R™) the vector space of k-linear mappings of the Cartesian product
R"xR"x...xR" (k factors) into R", and let L{, (R".R") be the vector
space of k-linear symmetric mappings from of R" XR" x...xR" (k factors)
into R”.Let U CR" and V CR"™ be open sets, and denote
€)) JJUV)=UxVXLR"R")xL _(R"R")x..xL (R"R™).

sym sym
J"(U,V) is an open set in the Euclidean vector space

() R"xR"x L(R" . R™)x L}

om (ROR™)X XL (R, R™).
Using the canonical bases of the vector spaces R" and R™, this vector space
can be identified with the Euclidean vector space R" of dimension

(3) N:n+m(1+n+(”§l)+(”§2)+...+(”+,’_1)).

The set J'(U,V) can be identified with collections of real numbers
P=(x" Y,y sy i) 1S4 jyseen), S, 10 <m, such that the
systems y;jz_,,jk are symmetric in the subscripts. We call P an r-jet; the point
xeU, x=x"is called the source of P and the point yeV, y=y’, is
called the target of P. .

We set for every point P J (U,V), P=(x",y° ,yz,y;jz ,...,y;jz'”jr) ,

@ x' =x'(P), y*=y°(P), Vo =5, (P), 1Sk<r.
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Then, by abuse of language, x', y°, and y?, ., denote both the compo-
nents of P and also real-valued functions on J;(U ,V) . Restricting ourselves
to independent functions, we get a global chart, the canonical chart
XYY Y5 i) s i Sy S...<,, defining the canonical smooth
manifold structure on J'(U,V); elements of this chart are the canonical co-
ordinates on J (U,V). The set J (U,V), endowed with its canonical
smooth manifold structure, is called the manifold of r-jets (with source in U
and target in V).

We sometimes express without notice an element P € J"(U,V) as a col-
lfzctiop of.real numbers P = (x"y7,97 .5, »->¥5 .. ;) » subject to the condi-
tion jy<j,<...<j,.

We show that the r-jets can be viewed as classes of mappings, transfer-
ring the source of an r-jet to its target. Given an r-jet P=J"(U,V),
P=(x"y",¥7.¥7, ».¥7, ), one can always find a mapping f= f, de-
fined on a neighbourhood of the source x €U, such that f(x)=y, whose
derivatives satisfy

D, f*(x'(P)=y;(P), D,D,f°(x'(P)=y] (P),

) oy o
... DD, ...D, f°(x'(P)=y?, . (P).

Indeed, one can choose for the components of f the polynomials

o, - 1 o, . 1 - . . . P
f (t/) — y + ijl (t./l _ x./] )+ Ey_/ljz (t./l _ x./] )(t./z _ x./-
(0) ' '

+...+ ;yjjz__,jr " =x")(? =x")- (" = x").

Any mapping f, satisfying conditions (5), is called a representative of the r-
jet P. Using representatives, we usually denote P=Jf .

2 Summation conventions

This section contains some remarks to the summation conventions used
in this book. We distinguish essentially three different cases:

(a) Summations through pairs of indices, one in contravariant and one
in covariant position (the Einstein summation convention). In this case the
summation symbol is not explicitly designated.

(b) Summations through more indices or multi-indices. In this case we
usually omit the summation symbols for summations, which are evident.

(c) Summations of expressions through variables, labelled with non-
decreasing sequences of integers. In this Appendix we discuss the corre-
sponding conventions in more detail.

Let k be a positive integer, let L'R" be the vector space of collections
of real numbers u =u, where 1<i,i,,...,i, <n, and J‘R" the vector

iy iy
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space of collections of real numbers v=v,, g ,where 1<j <i,<...<i, <n.
We introduce two mappings 1:J*R" — I'R" and x : [‘R" — J*R" as fol-
lows. Choose a vector vE J'R", v=v, ,,where 1<i <i,<...<i, <n,
and set for any sequence of the indices j,Jj,,...,j, , not necessarily a non-
decreasing one,
(1) lejz---jk = er(l)jrm-»»jr(k) ’

where T is any permutation of the set {1,2,...,k} , such that the subscripts
satisfy j. ) < Jj. o) <...< Ji i - Then set

2 W=y -

The vector 1(v) is symmetric in all subscripts, and is called the canonical
extension of v to L'R" ; the mapping 1 is the canonical extension (by sym-
metry). If u€ L'R", u=u,, , > set

10

3) K(u)=v,

— u. . .
Jidaee-Jk k! Jvaydvzy---Jviy?
\4

whenever j, < j, <...<j,; K is called the symmetrization. For any function
f:J'R" > R, the function fok :L'R" — R is called the canonical exten-
sion of f. When no misunderstanding may possibly arise we write just f in-
stead of f ok . Clearly definitions (2) and (3) imply

@ 1<oz=idjkR

Note that in the finite-dimensional Euclidean vector space R", the
points of R" are canonically identified with the canonical coordinates of
these point. In what follows we shall consider the symbols u;; , and v, .
both as the points of R" as well as the canonical coordinates on the vector
spaces L'R" and J'R", respectively.

Denote

.. . N,!N,...N !
(5) N(]l]z---Jk)=%,

where N, is the number of occurrences of the index [=1,2,...,n in the k-
tuple (j,,Jj,,.--.Jj,)- The following lemma states two formulas how to ex-
press a linear form, whose variables are indexed with non-decreasing se-

quences; these formulas are based on simple algebraic relations.
Let

©  @= Y ATy

§<ip <. <iy,

be a linear form on J*R".
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Lemma 1 A linear form ® (6) on J*R" can be expressed as

(7) b= lejz-»»jkv

ibaeedi?
where
1 j 1 Tjiy...d
(8) BJ]Jz-»»Jk — 12l
NGija---Ji)
. Jia---Ji :
Proof Supposing that B and v, . are symmetric, we have
iJ2---Jk — 27 Je (ke (2)+Jx (k)
B Vj1]2---jk 2 k! B vjx(l)jxr(2)"'jx(k)
Jusdawesi K07
9) = Y LNIN, LN, By
k' 1- 2---- n- ]IJZJ/\
W< Sj
_ ] : JidaeeJk
= Z N(i,...i,))B Vi
IS<hS S

If this expression equals @ we get (8).

Lemma 1 can be applied to linear forms df , where f:JR" —R is a
function. df is defined by

d
10)  dfv)E= Y (av,f ):

i\<iy<.. <y

where
- _ d
(ay  E= ) —

=
Lly.. .0,
172 k
i<, iy aviliz..jk

is a tangent vector. But the chain rule yields 7,f-=2=T, (feox)oT1-E, so
we have the following assertion.

Lemma 2 The linear form df (10) can be expressed as

(12) df(v)-E= (W] ST
1(v)

Ji2--dk
Proof Using formula (4) we get from (10)

a(foxoz)) _

iyiy .. dy

(13)  df(v)-E= ), (

i << <iy iyl 0y
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a( OK) a(uhlz -Jk ) =
Ji 1(v) v

UESSESIRS /NP J]/Z---jk iy
> I(f oK) 3 9y, °0 | o
9 iy
Jroda e Jdaedk Jy(v) 1SS Sy iyiy. ..y v
But writing
- = d
=
(14) Ti1-2 S R
JiJa-e-dk

we see that 71 extends the components =
symmetry,

_ oy o0
(15) :j|jz~~~./1< = Z [ — ] :i1i2~~~ik'

i\<ip<.. <iy iy iy

i, <i, <...<i_ by the index

iy

Thus, using the symmetric components (15), one can also express the exteri-
or derivative df (13) asin (12).

Corollary 1 Let f:JR" = R be a function, vE J'R" a point, and let
E=E,, ,,where 1<) <j,<...<j, <n, be the components of a tangent
vector of J'R" at the point v. Then the derivatives of the functions f and

fox satisfy

af | = I(fex)| =
16 =.. . = =
( ) ) 2 ) (av o \)v N2 Jk ( au ) \]l(v) hip. . g

VIRV Jidae -k iyl g

Proof (16) follows from (10) and (12).

Corollary 2 (a) Partial derivatives of the functions f and fok satisfy
the condition
of

mﬂ(my..fk)aiw,

u.. . L .
NJ2---Jk JaJa2y+Jack)

A7)

where A is any permutation of the index set {1,2,...,k}, such that
Jay S Jaay S-S Joy » and

(1s) of _ 1 A(f oK)
N(i,...i,) ou

iy iy Iz (e 2) e (k)

for any permutation T .
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.(b). For any permutation 1 .l ) ,....l,, of the indices 1,l,,....[,, the
derivatives of the function fok satisfy

Afor) _ oK)

Lenleyle iy aulllz...lk

(19)

Proof (a) From the chain rule we have for any (j,,j,,....J,)

m_ af o a(viliz...ikoK)
20 < = > (au K’] - :

Tyl 0

Jijreedy S S. Sig Jia---Jk

But from equation (3), there is exactly one non-zero term on the right-hand
side, namely the term in which (ii,...0,)=(j;1Ja2)-+-Jaq))» such that
Jawy S Jaay S--- < Jay for some permutation A . Then

(21) a(f ° K) — af oK - a(VjMSjA(Z)"'jl(k) ° K) B
ujljszk Vj).(])jk(Z)"'j/l(k) ujljzmjk
where by (3)

1
. . . o = — . . .
(22) v]/l(])]/uzr-»]uk) K k! zu]m)hm--»]r(k) :

T

Differentiating (18) we get

a(v.//l(l)-jl(z)"‘jl(k) OK) _ i aujf(l)jr(Z)“‘jf(k)
o k! o
(23) au]l]z~~/k T au]lhm]k
_N,IN,L..N,!
k! ’

Substituting from (23) back to (21) we have

m:N(jljz,,,jk)Lng

Jiaee-Jk JayJay-dak)

(24)
Conversely, given a k-tuple of indices (i,i,,...,i;) such that
1<i, <i, £...<i, <n,we get from (24) and (4)

af 1 A(f oK)
v, . N(i,...i,) du

(25)

iy iy Iz (e 2) e (k)

for any permutation 7 . Formulas (24) and (25) prove Corollary 2.
(b) Formula (19) follows from (17).
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Remark Formula (16) can also be used, with obvious simplification, in
the form

(26) y g -9 g
ou =ik u iydy. 0
WSS Sk Jidaee-Jk i iy

3 The rank theorem

In the following two basic theorems of analysis of real-valued functions
on finite-dimensional Euclidean spaces we denote by x' and y° the canoni-
cal coordinates on the Euclidean spaces R" and R™, respectively.

Theorem 1 (The Rank theorem) Let W be an open set in R", and let
f:W —>R" be a C"mapping. Let g <min(m,n) be a positive integer. The
following conditions are equivalent:

(1) The mapping f has constant rank rank Df (x)=¢q on W.

(2) For every point x, €W there exist a neighbourhood U of x, in W,
an open rectangle P CR" with centre 0, a C' diffeomorphism ¢ :U — P
such that @(x,)=0, a neighbourhood V of f(x,) such that f(U)CV, an
open rectangle Q CR™ with centre 0, and a C" diffeomorphism vy :V — Q
such that y(f(x,))=0, and on P,

g+1 q+2

(D) l//f(p_l(xl,xz,...,x",x X =(x"x%,...,x,0,0,...,0).

Formula (1) can be expressed in terms of equations of the mapping
v fo~', which are of the form

o

o x°, 1<0<g,
(2) y of:

0, g+1<o<m.

In particular, if g=n<m, then yfp™' is the restriction of the canonical
injection (x',x*,...,x")—= (x',x*,...,x",0,0,...,0) of Euclidean spaces; if
g=n=m, yfe ' is the restriction of the identity mapping of R"; if the
dimensions n and m satisfy n>m , then y f@~' is the restriction of the Car-
tesian projection (x',x*,...,.x",x"",x" ... x") = (x',x*,....x") of Euclide-
an spaces.

The following is an immediate consequence of Theorem 1.

Theorem 2 (The Inverse function theorem) Ler W CR" be an open
set, and let f:W — R" be a C" mapping. Suppose that detDf(x,)#0 at a
point x, €W . Then there exists a neighbourhood U of x, in W and a neigh-
bourhood V of f(x,) in R" such that f(U)=V and the restriction
fly:U—>V isa C'diffeomorphism.
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4 Local flows of vector fields

In this book, the symbol T f denotes the tangent mapping of a mapping
f at a point x. Sometimes we also use another notation, which may simplify
calculations and resulting formulas. If #— {(¢) is a curve in a manifold,
then its tangent vector at a point #, is denoted by either of the symbols

dg
(1) Ttog.l’ (E)to.

The tangent vector field is denoted by

_df
@  TEi=—z

Note, however, that sometimes the symbol d{/dt may cause notational
problems when using the chain rule.

The following is a well-known result of the theory of integral curves of
vector fields on smooth manifolds.

Theorem (The local flow theorem) Let r >1 and let & be a C" vector
field on a smooth manifold X.

(a) For every point x, € X there exists an open interval J containing
the point 0 €R, a neighbourhood V of x,, and a unique C" mapping
o :J XV — X such that for every point x €V , a(0,x)=x and the mapping
Jot—a (t)=a(t,x)€ X satisfies

G) T, =&(ax (1))

(b) There exist a subinterval K of J with centre 0 and a neighbourhood
W of x, in V such that

€)) o(s+t,x)=o(s,o(t,x)), o(—t,o(t,x))=x

for all points (s,;t)€K and xeW . For every tc K, the mapping
Wox— a(t,x)€X isa C"diffeomorphism.

Condition (3) means that r — « (¢) is an integral curve of the vector
field &, and the mapping (¢,x) — o (1) =a(t,x) is a local flow of & at the
point x,; we also say that & is a local flow of & on the set V. Equation (3)
can also be written as

d
% = E(a, (1),

) e




Appendix 287

5 Calculus on manifolds

In this Appendix we give a list of basic rules and coordinate formulas of
the calculus of differential forms and vector fields on smooth manifolds.
We use the following notation:

Tf tangent mapping of a differentiable mapping f

f*n pull-back of a differential form 71 by f

[£.C] Lie bracket of vector fields £ and §

d exterior derivative of a differential form

.1 contraction of a differential form 717 by a vector field &
| Lie derivative of a differential form 1 by a vector field &

Qi

Theorem 1 (The pull-back of a differential form) Ler X, Y and Z be
smooth manifolds.

(a) For any differentiable mapping f:X —Y , any p-form n and any
q-form p onY

() fEMAP)=FENAL*p.

(b) Letf:X—>Y and g:Y — Z be differentiable mappings. Then for
any p-form | onZ

2) fre*u=(gof)*u.
Theorem 2 (Exterior derivative) Ler X and Y be smooth manifolds.
(a) For any p-form n and q-form p on X
3) dmAp)=dnhp+(=D'nAdp.
(b) For every p-form n on X
) d(dn)=0.
(c) For any differentiable mapping f:X —Y and any p-form 1 onY
) df*n=f*dn.

Theorem 3 (Contraction of forms by a vector field) Let X and Y be
smooth manifolds.

(a) Let  be a p-formon X, and let & and { be two vector fields on X.
Then

(6) i,i1 = —i:i,1.
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(b) Let n be a p-form, p a q-form, and let { be a vector field on X.
Then

D i MAP)=inAp+EI N ALp.
(c) Let f:X—>Y be a differentiable mapping, M a p-form on Y, and

let & be a vector field on X, § a vector field on Y. Suppose that & and §
are f-related. Then

@) frign=i.f*n.
Theorem 4 (Lie derivative) (a) Let X be a smooth manifold, N a p-
form, p a q-form, and let & and { be vector fields on X. Then
9) d:1 =i.dn+di.n,
(10) d:dn=da.n,
an  d.mAp)=9nAp+nAid;p,
(12) gy = 0iM =iy 01,
(13) 0N =0:9,1=09;M.

(b) Let f:X —>Y be a differentiable mapping of smooth manifolds, let
& be a vector field on X, and § be a vector field on Y. Suppose that & and
{ are f-compatible. Then for any p-form n on Y

(14) f*on=09.f*n.

Theorem S Let X and Y be smooth manifolds, f.:X—Y a C " map-
ping. Let (U,p), ¢=(x"), be a chart on X, and (V,y), w=(°), a chart
onY, such that f(U)CV .

(a) For any point x €U and any tangent vector & €T X at the point x,
expressed as

(15) 5:§k(7)x’

the image Tf -€ is

. M) (-2
(16) ng_( ax' wo«)é (ayg)fm'

(b) The pull-back f*n of a differential p-form 1 on Y, expressed as
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1
(17) n=-—m, ldx”/\dx”/\ Adx”,
pt iz,

is given by
Frpo L 00 @) IO fP) 00 f)
(18) p axll axlz axlli
(Moo, ., © ) dx" Ndx*® A Adx”.

Theorem 6 Let (U,p), ¢ =(x'), be a chart on X.
(a) For any two vector fields & and § on X, expressed by

0 ;0
ax'’ ¢=¢ ax'

(19  &=¢&

>

the Lie bracket [£,{] is expressed by

20 [§4]= (gé’ 35, )

(b) The exterior derivative df of a function f:X — R is expressed by

(21) df = %dxk.

The exterior derivative dn of a p-form n (17) has the chart expression

22) dn=$dn | A A AL A

iy

where the exterior derivative dn,, ; is of is determined by formula (21).
(¢) The contraction i.n of the form n (17) by a vector field & (19)
has the chart expression

(23) i;n= Edx Ndx™ A.. . Ndx™.

1
(k 1)! 51112 Ay

(d) The Lie derivative aén of the form n (17) by a vector field & (19)
has the chart expression

l agY aéY aéY
aén:,( M ™ o My, ¥ 2 Wi

pl\iox" roogx® T gx® sl
o&’* ani,im..i
éji Nyiyoi, T e
dxr ox

(24)

— (=D 5")51)& Adx® A...Ndx".
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6 Fibred homotopy operators

In this section we study differential forms, defined on open star-shaped
sets U in an Euclidean space R" and on trivial fibred manifolds U XV,
where V is an open star-shaped set in R™. Our aim will be to investigate
properties of the exterior derivative operator d on U and on U XV .

First we consider a differential k-form p, where k=1, defined on an
open star-shaped set U CR" with centre at the origin 0 € R". We shall
study the equation

(1)  dn=p

for an unknown (k—1)-form 77 on V. Denote by x' the canonical coordi-
nates on U. Define a mapping y :[0,1]XV — V as the restriction of the im-
age of the mapping (s,x',x’,...,x")=(sx',sx°,...,sx") from RxR" to R"
to the open set V; thus in short

(2) 2(s,x") = (sx').
Then
3) x* dx' = x'ds + sdx'.

Consider the pull-back y* p which is a k-form on a neighbourhood of the
set [0,1]x V . Obviously, there exists a unique decomposition

) x¥p=dsnp®(s)+p(s),

such that the k-forms p®(s) and p’(s) do not contain ds. Note that by
formula (3), p’(s) arises from p by replacing each factor dx' with sdx',
and by replacing each coefficient f with fo y . Thus, p’(s) obeys

&) p’M=p, p(0)=0.

We set

©  Ip=[p"0),

where the expression on the right-hand side means integration of the coeffi-
cients in the form p(o)(s) over s from O to 1.

Lemma 1 Let U be an open ball in R" with centre 0.
(a) For every differentiable function f:U - R,

) J=1df + £(0).
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(b) Suppose that k 21. Then for any differential k-form p on U,
®) p=Ildp+dlp.

Proof 1.If fis a function, then df =(df/dx")dx', and we have by (3)
x*df =((0f/9x")o x)-(x'ds + sdx") . Consequently,

1 0
9) Idfzx’jo(aj; o)()ds.

Now (7) follows from the identity
F=fO)=(fo)| ~(fo)|m0=

I

-Odes'

J Ao 4
(10) ds

2. Let k=1. Then p has an expression p=Bdx', and the pull-back
x*p isgivenby y*p=x'(B;ox)ds+ (B, y)sdx' . Differentiating we get

l*dp:d%*pzds/\(—d(xi(Biox).FWdy’)
N

(B, o
+
dx’

(11)
9BioX) i p g

hence

(12)  Ip=x'[ Boy-ds.

Thus,

(13)  Idp= JOI (a((Bg;x ) _ ;’ ol)]ds -dx',
and

(14) dlpzf(des‘dxi.

Consequently,

s) Idp+dlp= _[ (M)d&czxi

_((B o% S)|S'1 B O% S)‘v O)dx -
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3.Let k=2 .Write p in the form

(16) p=dx'\¥,,

and define differential forms ¥{”(s) and W/(s) by

(17) x*Y, =ds NPV (s)+ Wi(s).

Then
(18) X% p=(sdx' +x'ds) A (ds N\ (s)+Wi(s))

=ds N(—sdx' NP (s)+y P (5)) + sdy NP(s).
Thus,

19)  Ip= j; (—sdx' AP (s)+ X! (s)).

To determine Idp , we compute y *dp . Property y *dp=dy*p of
the pull-back yields

x*dp=—dsA(sdx' Ad¥P”(s)+dx' ANWI(s)
+x'd¥(s))—dx' Nd(sW(s)))

(20) =ds /\(—sdxi NP (s)—dx" NW(s)
—xX'd¥(s)+dx' A w) —dx' Ndx! A\ M ,
as ax’

where d1(s)/ds denotes the form, arising from 7(s) by differentiation with
respect to s, followed by multiplication by ds . Now by (20) and (6),

ldp=—dx' A | AW (5)—dx' A JI‘PT(S)
2h a(s\P ()

—x j d¥/(s)+dx' Aj

It is important to notice that the exterior derivatives d¥\"(s), and d¥’,(s)
have the meaning of the derivatives with respect to x' (the terms containing
ds are cancelled; see the definition of 1 (4), (6)).

Now we easily get

(22)  Idp+dip=dx A f a(S‘P ()

Remembering that the integral symbol denotes integration of coefficients in
the corresponding forms with respect to the parameter s from O to 1, and us-
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ing (5), one obtains

ldp+dlp=dx' A(1-¥/(1)-0-¥/(0))

(23) . A
=d' A\W/()=dx' AW, = p,

as desired.

As an immediate consequence, we get the following statement.

Lemma 2 (The Volterra-Poincare lemma) Ler U be an open ball in
R" with centre 0, p a differential k-form on U, where k 21 . The following
two conditions are equivalent:

(a) There exists a form N on U such that

24) an=p.
(b) p satisfies
(25) dp=0.

Proof If dn=p for some 1, we have dp=ddn=0. Conversely, if
dp=0,wetake n=1p in Lemma 1.

Condition (25) is sometimes called integrability condition for the differ-
ential equation (24).

Now we consider a different kind of differential equations, reducing to
(1) for differential forms of sufficiently high degree. Let U be an open set U
in R", and V an open ball Vin R™ with centre at the origin. Denote by 7
the first Cartesian projection of U XV onto U. Suppose we are given p on
UxV , where p is a positive integer. Our objective will be to study the
equation

(26) an+r*n,=p

for the unknowns a (k—1) -form 17 on U XV ,and a k-form 1, on U.

Let (x',y%), where 1<i<n, 1<0 <m, be the canonical coordinates
on UxV ,and {:U—>UXV be the zero section of U XV . Consider the
mapping  (s,(x",x,...,x" " Y Ly ) = (L X sy sy Lsy")  of
RxR"”"xR" with values in R™ XR™ . Restricting the range of this mapping
to U XV , we define a mapping y :[0,1]XU XV = U XV by

Q7 2y =(xsy7).
Then
(28) x*¥dx' =dx', x*dy’ =y°ds+sdy’.

Consider the pull-back y * p, which is a k-form on a neighbourhood of the
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set [0,1]xU xV . There exists a unique decomposition
29)  xFp=dsnp()+p(s)

such that the k-forms p”(s) and p’(s) do not contain ds. Note that by
(28), p’(s) arises from p by replacing each factor dy’ with sdy’ , and by
replacing each coefficient f with fo y; the factors dx' remain unchanged.
Thus, p’(s) obeys

(30) pP’M=p, p'O)=rn*{*p.
Let £k >1. We define

Gh  Ip=] p”s).

where the expression on the right-hand side means integration of the coeffi-
cients in the form p(o)(s) over s from O to 1.

Theorem 1 Let U CR" be an open set, and let V CR"™ be an open
ball with centre 0.
(a) For every differentiable function f:UXV —R,

(32) f=ldf+n*{*f.

(b) Let k=1. Then for every differential k-form p on the Cartesian
product UXV |

(33) p=Ildp+dlp+m*{*p.
Proof 1. We have

(34) df = a—fdx" + a—J:dy“,
ax' dy
and by (28)

(35) x*f:(ﬂox)dx%[a—’;
dy

- o;()(y“ds+sdy").
Jdx

Now the identity
f=m*l*f=Ffoxla—foxl

(36) _pdifex) s 9f _
L {3 2o

which follows from (31), gives the result.
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2. Let k=1.Then p has an expression p=Adx'+ B dy’ , thus

X% p=(A 0 x)dx + (B, o x)(sdy’ +y’ds)

(37) .

=y (B, o x)ds+ (A, o )dx' + (B, o y)sdy’ ,
and

x*dp=dy*p
:dS/\(—d(yo-(Bo_O%))+a(14aiox)dxi+a((Bo-o%)s)dyo')
S
(38) +(6(A[. °2) i MACD) ]/\d ,
ox’ ay
H(MW B, o), )Ady’
Ix’ ay

hence

1
(39) Ip:yGJOBG oy -ds,

and
Id :fl IAcox) 90" Boy) ), i

p 0 ds ox'

@0 1 (B a(y"-B
0 as dy

We also get
@) dip=)° joa(lz 9B °2) sy +J.Wd dy°,
consequently,
(42) Idp+d1p :Ai OZ |x:1 _Ai ol ’s:() +(B0' OZ'S)LZI _(BO' OX'S)L:O

=p-m*T*p.
Let k>2. Write p in the form p=dx' A®,+dy° AP, , and define
differential forms @”(s), @/(s), ¥ (s) by
xFD, =ds ND(s)+ DI(s),

(43)
x*Y, =ds NP (s)+T (s).
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Then

4 x*p=dsN\(=dx' N®(s)—sdy" P (s)+y W, (s))
+dx' AD(s)+ sdy® +sy" W7 (s)).

Thus,

45)  Ip=—dx' A jol OO (5)—dy® A jol (s (5)+ Y W (5))ds.

To determine Idp , we compute y *dp . We get

x*dp=dy*p
=—ds \(dx' AdD”(s5))+ sdy’ NdPY (s)+dy® AW’ (s)
+y°d¥Y’ (s))—dx' NdD(s)— dy" Nd(sY, ()

(46) =ds /\( dx' A D (s5))+dx’ NI P Dis) _ sdy® N APV (s)

(S‘P;(S)))

—dy’ N (s)—y7d¥YL(s)+dy’ N 5
s

)y

—dx' /\(dxj A M)

ay”
a(s'V, (S)) WA a(S\P;(S)))

—dy’ A| dx' A >
dx’ dy

where dn(s)/ds denotes the form, arising by differentiation of 7(s) with
respect to s, followed by multiplication by ds . Now by (45) and (30),

Idp=—dx' A jldd)§°>(s)—dy“ A jlsd‘{'g”(s)—dy“ A j'\}" (s)
47)
—y Jd\P’ (s)+dx’ Aj 0] (s) rdy° Aj L\P ()

Note that the expressions d®\”(s), d‘{’f)(s) ,and d¥/ (s) have the mean-
ing of the exterior derivatives with respect to x', y° (the terms containing
ds are cancelled; see the definition of 7 (30), (31)).

Now

(48) Idp+d]p:dxi/\J‘(;%+dyo/\ﬂW’

and using formula (30),

(49)  Idp+dip=dx' A(@(1)—D/(0)+dy’ A(1-¥,(1)—0-¥,(0))



Appendix 297

= dx' A®)(1)+dy” AW, (1)—dx’ AD/(0)
= dx' N, +dy° AW, —dx' ATHLFD,
=p-m*LFp.

As a consequence, we have the following statement.

Theorem 2 (The fibred Volterra-Poincare lemma) Let U CR" be an
open set, V CR"™ an open ball with centre 0. Let k=1 and let p be a dif-
ferential k-form on U XV . The following two conditions are equivalent:

(a) There exist a (k—1)-form 1 on UXV and a k-form 1, on U such
that

(50) dn+r*n,=p.
(b) The form dp is w -projectable and its 7 -projection is dn, .

Proof Suppose we have some forms 717 and 1), satisfying condition (a).
Then dp =dn*n,=r*dn, proving (b).

Conversely, if dp is = -projectable, then by the definition of I,
Idp=0, and then by Theorem 1, p=Idp+dip+n*{*p=dn+m*n,
proving (a).

We also get two assertions on projectability of forms, and non-
uniqueness of solutions of equation (26).

Corollary 1 Let U CR" be an open set, VCR"™ an open ball with
centre the origin 0, p a differential form on U XV . The following two con-
ditions are equivalent:

(1) There exists a form 1 on U such that p=7m"n .
(2) ldp+dip=0.

Proof This follows from Theorem 1.

Corollary 2 Suppose that the form dp is w-projectable. Let (1,1,)
and (,1,) be two solutions of equation (26). Then there exist a (p—1) -
form T on UXV anda (p—1)-form ) on U such that

(51) n=n+rn*y+dr, n,=n,-dy.
Proof By hypothesis,
(52) dn+r*n,=p, di+m*n,=p.

These equations imply dn+m*n,=dn+mn*1, hence m*dn,=mn*dn,.
But for any section & of the projection 7,

(53)  S*m*dn, =dn, =8*n*dij, = dij,.
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Thus, by the Volterra-Poincaré lemma, 7j,—1n,=dy for some y . Then,
however, dn+n*n,=dnf+nx*(M,+dy),and

G4 dm-n-m*x)=0.
Applying the Volterra-Poincaré lemma again we get (51).

Remark 1 (The Volterra-Poincare lemma on manifolds) Let X be an
n-dimensional manifold. Every point x € X has a neighbourhood U such
that the decomposition of forms, given in Theorem 1, is defined on U. In-
deed, if (U,p) is a chart at x such that @(U) is an open ball with centre
0€R”", then formulas p=¢@*u and (¢~')* p=u establish a bijective cor-
respondence between forms on U and ¢@(U), commuting with the exterior
derivative d. In general, this correspondence does not provide a construction
of solutions of differential equations (1) and (26), defined globally on X.

Remark 2 For k-forms p such that k=n, always dn,=0 hence
N, =d7 and equation dn+x*n,=p (26) reduces to dn=p (1). The same
is true for k >n because in this case 17, =0 .

Turning back to the definition of the fibred homotopy operator 7 (31) we
have the following explicit assertion.

Lemma 3 Let p be a differential k-form on the product of open sets
U XV, considered as a fibered manifold over U, expressed in the canonical
coordinates (x',y°) on UXV as

(55) p:iA LAY Ny AL AdYT Ndxt Adx® AN X"

! 010,..0, ljly...
where k= p+q . Then the fibred homotopy operator I is given by

1 .
I =y’ (AGO'G 0, i i(-xj,s V)SpildS'd 6]/\d gg/\.../\d rt
(56) p=Yy J.O 0y y y y Y
Adx" Ndx® N...Ndx" .
1 satisfies

(57) I’p=0.
Proof The homotopy (x',y°)— x(s,(x',y?))=(x',sy°) yields

° x)s" ' ds Ndy® Ndy®: A...Ndy

Oy dige g

|
X *p = ;(py (AO'O'IO'ZH
(58) + (A, o x)sPdy” Ndy® N...N\dY")

0105..0, ijiy...i,

Adx" Adx™ A...N\dx"”
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which implies that
Ip=(Asg, o i 20X * (@Y7 NdY™ A AdY™)
(59) =37 [ Ay o s 008" ds-dy™ Ny A Ny
Adx" Adx® ... Ndx"

Identity (57) is now an immediate consequence of formula (56).

7 Differential ideals

For basic concepts of the theory of differential ideals and related topics
we refer to Bryant, Chern, Gardner, Goldschmidt and Griffiths [Br].

Let X be an n-dimensional smooth manifold. We denote by A’TX the
bundle of alternating p-forms over X; in this notation, A'TX =T *X is the
cotangent bundle of X. Sections of the bundle A’TX , differential p-forms on
X, form a module over the ring of functions, denoted by Q X . The direct
sum

(1) X =QXSQXBQXD...00Q X

together with the exterior multiplication of forms is the exterior algebra of
X. We usually consider elements of € X as elements of QX . The multipli-
cation A in QX is associative and distributive, but not commutative; instead
we have for any n € QPX and p€e QqX ,

@  nAp=(=D"pAn.

A subset © C QX is called an ideal, if the following two conditions are
satisfied:

(a) O is asubgroup of the additive group of QX .

(b) f n€® and pcQX then nApeB.

An ideal ® C QX is called a differential ideal, if for any 1€ © also
dn € ©; thus, a differential ideal is an ideal closed under exterior derivative
operation.

Any non-empty set 0 C QX generates a subgroup ©, of the additive
group of QX , formed by (finite) sums

3) L= 1M APy

where 1, €6 and p, € QX . O, is an ideal, which is a subset of any ideal
containing 6 ; it is said to be generated by the set 6 (or by the generators
ne0).If the set O is finite, we say that ©, is finitely generated.

Let VX denote the module of vector fields on X. We denote
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4) A©)={E € VX|i;nCO,n€B}.

This set, the Cauchy characteristic space of © , has the structure of a sub-
group of the additive group of VX . The annihilator

5)  €O)={uecQX|iu=0¢eAO©)}

is the retracting subspace of © .

8 The Levi-Civita symbol

We introduce in this appendix a real-valued function, defined on the
symmetric group 7 €S, , the Levi-Civita symbol, playing an essential role in
algebraic computations with skew-symmetric expressions. We also derive
basic computation formulas for the Levi-Civita symbol, needed in this book.

Any permutation T €S, can be written as the composition of transposi-
tions 7,, ie., T=7T, T, °...0T,oT,. This decomposition of 7 is not
unique, but the number sgnt = (—1)" , the sign of the permutation 7 , is in-
dependent of the choice of the decomposition. If sgnt=1 (resp.
sgnT =—1), the permutation 7 is called even (resp. odd). The function
S, 27— sgn7 € {1,-1} is sometimes called the sign function. As an imme-
diate consequence of the definition, we have

) sgn(v-T)=sgnv-sgnt

for all permutations V,T€ S .

The sign function T — sgnT can be considered as a function on the set
of distinct n-tuples (i,,i,,...,i,) of integers, such that 1<i ,i,,....i <n.We
define the Levi-Civita, or permutation symbol €, , setting €, , =1 if the
n-tuple (i,i,,...,i,) is an even permutation of (L.2,....n), g, , =-1 if
(i)5iy5..-,1,) is an odd permutation of (1,2,...,n),and ¢, , =0 whenever at
least two of the indices coincide. Clearly,

) €., =2,5gnT-8, 8 .5

ey by " ey
T€S,

Sometimes it is convenient to express this formula in a different form, with-
out explicit mentioning the permutations 7 . To this purpose we introduce
the alternation operation in the indices (i,i,,...,i,), denoted Alt(ii,...i ),
by the formula

3) %zsgm.a.' 82 .8 =8182...8] Alt(ii,...i,).

vy iz TN iy
‘1es,

It is understood in this formula that the operator Alt(ii,...i,) is applied to



Appendix 301

the right-hand side expression, and replaces explicit expression on the left-
hand side. From (3) we get, in particular,

(4) &, =n'd &8 .0  Alt(ii,...i,).

iyl Ay )y k)" ir(n)

Formula (4) indicates that the Levi-Civita symbols &, , and £"™"
can be expressed by means of determinants. We have

1 2 n . . .
5 57 .0 51 & .. 6

1 52 n Y ;

5) c = 5"2 5!‘2 552 ghizin — o) 07 ... 07
iy d, , .

1 2 n iy i i

5 62 .. 5 51 St L. &

Clearly, multiplying these determinants, we get

8, 0y ... 0|8} 5k ... 8

I Ul ]
1 2 n j A J,
e . JiJo-+-Jn — 5i2 6!'2 s 6[2 621 627 oo 62’
iiy.. 0,

st 82 .. 5|60 8k ... 5

l" l” I!l
(6) o .
J J; Jn
5ill 51.]2 5,.|
61 862 ... &) Ca ; L.
=| " " b |=nl6)6) .6 AltG,...i,).
i oS Jn
5,.nl 5,."2 6in
Lemma 1 (a) For every k such that 1<k<n,
(7) ili;..iksk,,]sk,,@..S,,SJ]JZMMSMSMM‘Sn =k '(l’l _ k)‘élfléliz . 'Siik Alt(iliz . lk)
(b) Forevery k suchthat 0<k<s<n,
1 n—k st Shes 1l . ce .
Q(n—s )gj.jz‘..jkjmfm'Nj\i,\.ﬂi,\.umi,, 010y 0 Altliy iy - i lss -1,
(8) 1 st § k2 l_se

- kl(s_k)y Jet dke2 T s e dkdistiig 2 dsigrigen - dy

Al Jideadisa -+ J,)-

Proof 1. Setting
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) AR =806 8 Alt(id,...0)),

ijiy.. i
we have

Al = §h8E . SI8I Alt(iy..i,)  AltG,...0)

hip.- US|

_ Ah/z Ji- 16/’ Alt(i]i2 .. 'il)

(10) 1 dj
7(A/1/v 1115/1 A//z Ji-1 5/; Aflfz Ji- 6!/

iy i3y iy iijiyigediy

S — J112 Ji 5]1 A/ljz /) 6//)

’1’2 R iilye - d3i ol iy

Note that contracting this expression we obtain

(1 1) Al,lz dp_ys — n_l+l iy 0y

iy S l Ly dypy *

Now formula (6) can be written in the form

(12) E. 8]1]2 Jn — n‘AJlfz -Jn .

iiy.. ., iiy.. 0,
Contracting (12) in one pair of indices, we get

(13) e . 8/1]2 Jne1S — n!A]llz 1S — (n l)yl'Alllz <Jn- 1’

Liy...l, 1S Ii.. l” 15 Iiy.. l” 1
proving (7) for k=1. After n—k contractions we obtain

(14) AJI./Z JiSke1Ske2e Sy — 1 Aj1j2~-fk _ iAjljZ”'jk

By i Spy 1 Sp2e--Sy (l’l—l’l+k)' iyiy...0 k! Q.. 0y ?

which leads to (7).
2. To prove formula (8), consider the tensors

i\ 1
(15) (n=s) 1 o vz i S8y ...0;
N [CCART AP B Y AU
and
1

- e Shsa Iy
(16) k‘(S k)'gflfz B JU/SEUSOTIN N RN Jk+16]A+z' '6f

Al fy oo JiJiaiJisn -+ Js)-

Suppose that the component (15) is different from 0. Then
(a) theset {i,, i1y, zx,zm,zﬁz, .,i,} consists of distinct elements,

(b) the set {J,, /s« osJisTistsdiznse--s ]S} consists of distinct elements,
(c) theset {l,,.l,,,..,L, } satisfies
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L/ FUUSNTOU JOY IR USRI 55 SR /T YSTINY /N AR ARy )

= {lk+1 ’lk+2 LA ’ls}-

Take j, ., =1, jiy =Ly --.» J, =1 . Then (15) reduces to

A7)

n_k)l et § k2 2
(18) (n_s s! gjljZ"'jklk+lll<+Z"',s fgpilsen- -y 5il<+l 5ik+2 o '61}
PN LT 7T ¥ 2001 SV A B
There exist exactly one (s—lk);tuple [in the Set I, .00 s eslysliyyolopnsrensly s
SaY iyl 00, SUch that §,2...6; =1.Then
(19) b = Jinn =lhars b = Ja =lhaas s =J =1,

and (19) gives the expression

(20) (n—s)! (n—k) 1 e _ 1

(n—k)! n=s ; S didenlin-slspiigre iy S!(S_k)!gj]jZ'"jklk+llk+2“‘\'ix+1ix+2'“in'

Compute now (16) for the same indices, satisfying conditions (20). We get

1 k!

2§l She S
k'(S—k)‘S' /SRy YU Pl WSO /Y SRT AU SRR N FNT NS

1
=—€&E. . L Lii ;.
s '(S—k)' DJ2e s Tbkstbis e slsrilgn- Iy

2D

This shows that if the component (15) is different from 0, then also the com-
ponent (16) is different from 0, and is equal to (15).
Conversely, if (16) is different from 0, then

1 [} l} l}
k+1 k+2 s
22) K=kl 3000+ 0L E i

Alt(jlj2 . 'jkjk+1jk+2 . 'js)’

we obtain again conditions (a), (b), and (c).
Corollary 1 If k=n, (7) coincides with (6). If k=0, we have

(23) £ gt =pl,

518728,

Corollary 2 (Bases of forms) Let X be an n-dimensional smooth mani-
fold, and let (U,p), @ =(x"), be a chart on X. Then the forms

24 = Lo v Ade® A ndiv

n! iyiy.. 0,
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1 i i ;
— p+l p+2 1,
(24) O, ke, = (n—p)! gklkz...kp,]kl,ipﬂipn...i“dx Ndx"? AL Ndx"

1<p<n-1,
define bases of n-forms, (n—1) -forms, ..., 2-forms, and 1-forms, respective-
ly. The inverse transformation formulas are
ety =dx" Adx® AL N dx",
(25) Sklkz..4k,,1p+111,+2..41,,wk o — A Adx AL /\dx

1<p<n
Proof Immediate: The forms (24) are defined by
W, =dx' Ndx* N NdY", o =i 0, O, =

(26) alaxh

v Opg g T, Oy k5 s

a/a X2 wkl

w =i

kiky.. .k, /9 xkn-1 wk,kr Lk ?

and are linearly independent.

9 The trace decomposition

This appendix is devoted to specific algebraic methods, used in the de-
composition theory of differential forms on jet manifolds. We present ele-
mentary trace decomposition formulas and and their proofs (Krupka [K15]).

Beside the usual index notation we also use multi-indices of the form
I=(,.. ik) where r and n are positive integers, k=0,1,2,.. and
1<i,,i,,...,i; <n. The number k is called the length of I and is denoted by
| I1. For any index j, such that 1< j<n we denote by Ij the multi-index
(@i,...i,j). The symbol Alt(ii,...i,) (resp. Sym(ii,...i,)) denotes alterna-
tion (resp. symmetrisation) in the indices i, i,, ..., I, .

Let E be an n-dimensional vector space, E* its dual vector space, and
let r and s be two non-negative integers; suppose that at least one of these
integers is non-zero. Then by a tensor of type (r,s) over E we mean a multi-
linear mapping U :E*XE*X.. X E*XEXEX...XxE—R (r factors E* s
factors E); r (resp. s) is called the contravariant (resp. covariant) degree of
U. A tensor of type (r,0) (resp. (0,s)) is called contravariant (covariant) of
degree r (resp. s). The set of tensors of type (r,s) considered with its natural
real vector space structure, is called the fensor space of type (r,s) over E,
and is denoted by 7E .

Let e; be a basis of the vector space E, e’ the dual basis of E*. The
tensors e, ®e; @...Q¢, Re"Re@...R€", 1< j,jyreesfirdyslyreari, <1,
form a basis of the vector space T/E . Each tensor U € T/E has a unique
expression
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(1) U=UMer, e Qe ®.Q¢, Qe'®e*®...Q¢",

iy d

where the numbers U™ are the components of U in the basis e. .
; /4 i

iy
Remark 1 If a basis of the vector space FE is fixed, it is sometimes con-

venient to denote the tensors simply by their components; in this case a ten-

sor U of type (r,s) over E is usually written as

(2) U= UjljZ"'jr

iy *

Remark 2 The canonical basis of the vector space E=R" consists of
the vectors e, =(1,0,0,...,0), e, =(0,1,0,0.,...,0), ..., e,=(0,0,...,0,1).
The basis of the tensor space T/R", associated with (e,e,,...,e,) is also
called canonical. A tensor U € T/R" can be expressed either by formula (1)
or by (2); these formulas define the canonical identification of the vector
space T/R" with the vector space R" of the collections U =U"""
where N=dim7/R"=n".

iy ds

Remark 3 The transformation equations for the associated bases in
TE are easily derived from the transformation equations for bases of the
vector space E. Suppose we have two bases ¢, and €, of E. Let € =A¢,
and €' = B, e’ be the corresponding transformation equations. Then

3) A'B =59,
where 6/ is the Kronecker symbol, 67 =1 and 6, =0 if p#q,and
@ €, 08, 0...0F,08'0e"®...Q8e"
=Al'A» . A'B!B}...Bje,®e, ®..Q¢, ®e"®e”®...0e" .

Expressing a tensor U € T/E as in (1), we have

U=0Mer, € 08 0.0F 1 08'ReQ...08"

iji

=U . €,0€, 8.0, ®e"Qe”®...Qe".

D924

)

Clearly, then

PiPy---Py — APILAP2 Pr R Rh iy F7J1ja--Jr
(6) U =AMAP _A"BIB: . B:U

G@92---qs iy dy "

The Kronecker tensor over E is a (1,1)-tensor O , defined in any basis of
E as

@) d=¢®c¢'.
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It is immediately seen that the tensor 6 does not depend on the choice of the
basis e;. We can also write 6 =6;e,®e’, where §; is the Kronecker symbol
(Remark 3).

This definition can be extended to tensors of type (r,s) for any positive
integers r and s. Let o and B be integers such that 1< <r,1<f<s,and
let e, be a basis of E. We introduce a linear mapping 1; : T’ 'E—ST'E as
follows. For every VeT'E,

(8) V=yhia e Qe .0, Qe'®e’®...0e",

Gy 0y
define a tensor 1V €T E by

9) V=W e ®e ®..0e 00 ®...08",

iiy.. Qg

where

N2 Jatiadas---Jr — SJa\h2Jo-tosie-Jr
(10) w iy dprigipan iy 6iﬁ 14 iy priganeods *
Thus,

(11) EV =V, €,0e,8..0e, ®e®e; ®..0€¢;
Re'Re"R...0e"Re'¥e™®...Qe"

(summation through s on the right-hand side). It is easily verified that this
tensor is independent of the choice of e, .

The mapping lg defined by formulas (9), (10) is the (,f)-canonical
injection. A tensor U € T E , belonging to the vector subspace generated by
the subspaces 13 (I, 'E)CT,E , where 1<a<r and 1< <s, is called a
Kronecker tensor, or a tensor of Kronecker type.

Atensor VET/E, V=V""  isa Kronecker tensor if and only if
there exist some tensors VeTE, V(")) Vit where the in-
dices satisfy 1< p<r, 1<g<s, such that V44" ,i,... can be expressed in
the form ‘

JiJa---dr
14 Ul

_5J|V(1)]z]z Jr +61|V(1)12h Jr + +6J1V(1)]2]3 -Jr
M bls... Ils...

(2) (s) iyl
A VA VEaD Y7 )jiise--Jr vy ) jiis--dr
(12) 5 V(l) 1/3,1 5 V(z) Iis... + +6 V(a) Iy Ay
+...
Jryy (Nvja--Jr Jryy (D didz-ewdra Jry (Ddva-dra
+6 V(l) bls... +5 V(z) 1,13..413+---+51,V(s) Ly do

A tensor U € TE expressed as in (1), is said to be traceless, if its traces
are all zero,
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shly.. 0, _ Lisly.. ., _ Ly d s _
Y Sjaeedot O’ U Sjaedsa 0’ e U Siae-dot 0’
shily.. 0., _ 0 Ul,slz...l,,, _ 0 Ul,lz.ul,,,s _ 0
1Sy dyy 0 TR0 P R 1Sy e dg 0
(13) J18)2+ T 51 N8z Js-1 N18J2- - Js-1
shily.. 0, _ Iisly.. 0, _ L. 0 _
U Jiheedsas T 0’ U Jiheedsas T 0’ e U Jiheedsas T 0

To prove a theorem of the decomposition of the tensor space 7E by
the trace operation, recall that every scalar product g on the vector space E
induces a scalar product on 7 E as follows. Let g be expressed in a basis as

(14)  g&.0)=g,L'C,

where {=¢', { =" are any vectors from E. Let U,V €T'E be any tensors,

U=y . v=Viei . . We define a bilinear form on T,E , denot-
ed by the same letter, g, by

gWU.v)
(15)

— ily il 0y S @IV M kyky. ..k,
=88k, 8jx8 8 -8 U ilizu.i\V Ly Ly L,

Lemma 1 Formula (15) defines a scalar product on the tensor space
T'E.
Proof Only positive definiteness of the bilinear form (15) needs proof.

If we choose a basis of E such that g, = 0, ,then g(U,V)(15) has an ex-
pression

(16)  gUV)= Y, Y UM VIR

s
Ky kg ey Iy

Jjk >

Obviously, this is the Euclidean scalar product, which is positive definite.

Theorem 1 (The trace decomposition theorem) The vector space
T'E is the direct sum of its vector subspaces of traceless and Kronecker
tensors.

Proof We want to show that any tensor W € T E , has a unique decom-
position of the form W =U+V , where U is traceless and V is of Kronecker
type. To prove existence of the decomposition, consider a scalar product g
(16) on TE . It is immediately seen that the orthogonal complement of the
subspace of Kronecker tensors coincides with the subspace of traceless ten-
sors. Indeed, if U€T/E, U=U""", . then calculating the scalar prod-
uct g(U.,V) for any tensor VeT/E, V=V satisfying condition
(12), the condition ‘

an gl v)=0

implies that U must be traceless. The uniqueness of the direct sum follows
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from the orthogonality of subspaces of traceless and Kronecker tensors in
TE with respect to the scalar product g.

Theorem 1 states that every tensor W € T/E, W =W"", s ex-
pressible in the form '

by dy _ T7hbed,
w Uiyl =U Ul

1 >
+61,V( ) iyis.. 11213 +61|V(1)12h tlll3 4+, +61,V(1)1 i3...0,

(D (2) (s) Lily. 0y,
iy (2)ijis... iy (2)ijis...0, i (2)iiz.. d,
(18) +5 V(l) 1213. l+6 V(Z) L. + +52V(3)H Ny dg
+...
+ 6 V (r)iyiy..d,_y 5 V (r)iiy.dpy + L+ 6k V (r)iyiy..

o) bls.. @) Ui () lhy.dyy?

where U =U"" 1,.... 1s @ uniquely defined traceless tensor, and for every p
and ¢ such that 1< pr<1 r,1<g<s, the tensor V{I'=V {41 belongs
to the tensor space T, ' E .

Remark 4 The traceless component U" " ,1,.... and the complementary
Kronecker component of the tensor W in (18) are determlned uniquely.
However, this does not imply, in general, that the tensors V {” ( q) are unique. If
the contravariant and covariant degrees satisfy r+s<n+1, then the tensors

V" may not be unique.

Formula (18) is called the trace decomposition formula.

Denote by E; the vector subspace of tensors U =U"*" . in the ten-
sor space TE, symmetric in the superscripts and skew-symmetric in the
subscripts; sometimes these tensors are symmetric-skew-symmetric. We wish
to find the trace decomposition formula for the tensors, belonging to the ten-

sor space E . Set

(19) trlJ = Ui

Kijiy..dy; ?
and
(r+D)(s+1) jaised L
U=-"——"""28U" I Alt(ii,...i,
(20) q n+r—s i Iyiz...dgyy (lll2 l3+1)
Sym(j,j, .- jrur)-
These formulas define two linear mappings tr:E/ — E'~ and q:E/ — E’' .

Theorem 2 (a) Any tensor U € E! has a decomposition
2n U=trqU +qtrU.

(b) The mappings tr and q satisfy
(22) trtrU =0, qqU =0.
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Proof (a) Using (20) we have, with obvious notation,

qU — 7'74‘1(5le]~2]~3_”]-”14 o
(23) n+r—s b ipl3...dgy

N 7J2d3 0 Ji JoJze-dr P ;
_61‘3IU B —...—5i5'ﬂU . Hizzg.“ixil) Sym(jijy - Jou)-

_ SAy7iada i
6[2U r+

Ni3lg- e gy

bylyigls. . dgpy

Thus,

_ 5kszj3~J,+l
ipls.. gy i Kigig...ig

1 S
trqlU =——— 6"UJz]3»~J,+|
a n+r—s( ,

_ Skr7iadzdm _ _ Sk Jadz---Jrsi
5iU o

inkiyis..d p) bpiy..dk
+ 612U I3Jar-dr _5/2U J3J4 Jmk' o
k ipiz.. Qg ip igiy.. Ay
_ SRl Sk
(24) 61‘; U ipkigis. dgy T SiMU ipiy.. ik
+ 6ZSUJZ JaJs-ret 5/3UJ2 JaJs Jr+|k_ o
L R L 1304 gy

_ 6]3szkj4j5<--j,+1 _ _ 5]3 szkj4j5~-j,+|
iy bkigls. Qg 0" [

+ + 5jr+lUj2j3"'jrk _ 5jr+lUj2j3"'jrk
cee X L i

iyiy...d
_ S ais ik
oy

iyis...ik
PLEREN

41 Kizly.. iy

S Tiadaeiik
e m6mU 'iziB...iAk)-

Ipkiyls..dgy Lol

Computing the traces we get

tI' qU — 1 (ntzjs--»jm _ szj3---jy—+1 _ szj3---j.—+1
n+r—s

Dlalg- - gy Dl3lgls. gy

_ 5/2Ukj3j4-»»jy~+|
iy dgy iy
_ _ 6]2 Uk.f3j4---/r+1
Dkigis.. gy "t )
_ STy 7ikiads-dra
51‘2 U Kisiy..dyuy
_ _ 6Jw U/'zk./ds---jm
e l5+1
_ Sy yiaise-ik
61‘2 U iy iy

_ S miadsdik
5iMU i2i3...ixk)'

iply.. dgy

— =R L [J 2 sda g

iply.. Ay kisiy.. iy

_ Shyrkizia--irm
6,'3 U r+
Jad3dads--dri
(25) +U i
_ STy 7ikisds i
6,'3 U r+
.+ Uij}"'jr'er N

b3 gy
_ S aizdik
Simu

iyiz...dck
213+ s

ipkiyis.. Qg iyiy...igk
ipkiyis..igy

Further straightforward calculations yield

trqU =UPidn T hpyieda
(26) Ilz..dgyy n+r_s 123

Sym(j,js...joy)  Alt(isis...i,).

kisiy.. Qg

But by (19), the second term is exactly qtru , proving (21).
(b) Formulas (22) are immediate.

Formula (21) is the trace decomposition formula for tensors U € E .
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The following assertion is a consequence of Theorem 2. It states, in par-
ticular, that the decomposition (21) of a tensor U € E! is unique.

Theorem 3 Let U € E! .

(a) Equation qV+tuW =U for unknown tensors V EE and
W € E'!! has a unique solution such that &V =0, qW =0 . This solution is
givenby V=tulU, W=qU .

(b) Equation qX =U has a solution X € E'} if and only if QU =0 . If
this condition is satisfied, then X =trU is a solution. Any other solution is
of the form X' =X+qY for some tensor Y €E) .

Proof () If qV+tuW=U, ttV=0 then V=trqV=trU because
trtrW=0;if qW =0,then W=quW =q(U—-qV)=qU .

(b) If equation gX=U has a solution U, then necessarily qU =0.
Conversely, if qU=0, then U=qtrU and X=trU solves equation
gX =U . Clearly, the tensors X’=X+qY , where Y € E/-} also solve this
equation.

Example 1 We find the trace decomposition formula (21) for r=1.
Writing U =U" we have trU =U" and

iy d Kiyiy. .y,

hyTk hyrk
kisisod, T 5i2 U ikigigd, Tooe T 6:‘5 U iliz..jj,lk)‘

27 qtrU:L(alek
n+l—-s "

Analogously
2(s+1) v, .. . ..
qU = mél{'Uﬂziwwl AltGii,...i.,,) Sym(j,j,)
1 o o ) .
(28) :7(51‘]|U]2ii i _S/IU]ZH[ i _---_6/1 Ui
n+1—s 1 203+l 2 14304+ lsty s+l 203+ L5l
_+_6:/2U./1_ o _5/2U.f1__ R _5]2 U.il )
i Iply.. gy iy iyisly. . dgyy te [ iply.. Q)
hence
QU= (U, —(s—DU*
q s gy isiy ey
1 hyrk hyTk b 7k
(29) - m(aiz U Kigiy. g + 5:'3 U inkiyis..dg, +. “+5i_j,U izi},,il\k)
— 7/ _
=U Zizi}“im quy.

Formulas (28) and (30) yield U =trqU +qtrU . In particular, if r=1 and

s=n,then U=U’,, , ,wU=U"; , and qU=0.Thus,
U=ndlU’,, . Alt(ii,...i,)
(30) S A
= 5:{U55i2i34..i,, + SiJZUSi,si3i4u.in t...+ 61{,Usilizmin,,s'
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Example 2 We determine decomposition (21) for r=2 and s=n-1,
and find explicit expressions for the traceless and Kronecker components
trqU and qtrU of the tensor U. Writing U =U"" and using the proof
of Theorem 2 we have

iy

— I3
trqU=U"", .,
(31) _l(sszka +6szkh +. +512Ukh
3 iy kisiy.. @, iy ipkiyis. . Q, iyis..d, 1k
Jay 72k Jay 12k Jay 72k
+ 6i2 U kisiyis. . 0, + 6 U ipkiyis. . Q, +ot 6[,, U izi3..jn,]k)
and
U =20, +87UM +...+82U"
q - 3 iy kisiy..d, i3 irkiyis. . d, inis.. ik
a2k VEY gl ik
+ 6i2 U Kisigls.. I, + 6i3 U ipkiyis...i, t...t 5 U 12134..i,,,lk)
(32) — 1(512 Uka _ 5.fz Ukh _ 512 Ukj3
3% Kisiy..dy i kigigis..d,  **+ 9, Kiy...dy 1iy
J3y 7ki> _ Siyrki _ _ Siyrki
+ 6‘ U Kisiyis..d, 61'3 U Kigigis.d, ** 61',, U ki34..in,li2)
2(n 1
Ja7 Tkis .. .. .
=5 0rUY o Sym(j, ) AltGys...Q,).

Let s and j be pos1t1ve 1ntegers such that j<s<n. Consider the vector
space of tensors X = X" i, 0 mdexed with multi-indices 1,, I,, ...,
I; of length r and indices i, i;,, ..., i, such that 1<i,,,i,,,...i <n,
symmetrzc in the superscripts entering each of the multi-indices, and skew-
symmetric in the subscripts. Our objective will be to solve the system of ho-
mogeneous equations

(33) 5/716!’?2 5[/)7_,.,'X1112.--[jiMiﬂz“j: = 0 Alt(plpz._‘p./_i./_+li./_+2 l;)
Sym(/,p,) Sym(l,p,) ... Sym(l_,-p_,-)

for an unknown tensor X. In this formula, the alternation operation is applied
to the subscripts, and the symmetrizations to the superscripts, and then the
summations through double indices are provided.

In the proof of the following theorem we want to dlstlngu1sh between
two groups of indices in the expression 6,5/ .. 6 X hlz- i, » the indi-
ces labelling the tensor X' " will be called interior (the comple-
mentary indices, labelling the Kronecker tensors, are called exterior).

Theorem 4 Let g and j be positive integers such that 1< j<s<n. Let
Li,..I;
X=X" I be a tensor, mdexed with multi-indices 1,, I,, ..., I]. of
J+ it g . .
length r and indices s Gjny oeey By, such that 150,06, ,...,i, <n, sym-

metric in the superscripts entering each of the multi- mdzces and skew-
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symmetric in the subscripts. Then X satisfies equation (33) if and only if it
is a Kronecker tensor.

Proof 1. Suppose we have a tensor X = Xl sy , satisfying equa-
tions (34). We want to show that X is a Kronecker tensor. Consider a fixed

component X" ipoins.i, - ChoOOSE Pis> Prsoes D and i, 12, .ovs I; such
that the s-tuples (p,p,... Y J0 PR PSRRI 3 B -1, T¢ B (S AR N Wly)

X . Jjorjtle ]+2’
consist of mutually different indices, and consider expression

5,.”‘5[’2...5,.’_’-"X1‘12”"-"i_ L AlG, ..
(34) 1 2 j jHbj+2e ety
Sym(/,p,) Sym(l,p,) ... Sym(I_].pj).

//+l l)

The summations in (34) are defined by the alternation Alt(ii,...i;i;,,...i))
and the symmetrizations Sym(Z,p,), Sym(Z,p,), ..., Sym(I;p;) . We d1v1de
the summands in four groups according to the pos1t10ns of 'the indices D s
Pys s pyand @y, 0y, ey 0.

(a) None of the indices Pis Pys s Py and iy, i, ..., i, is interior.

(b) None of the indices p,, p,, ..., p; is interior, at least one of the
indices i, i,, ..., i, is interior.

(c) At least one of the indices p,, p,, ..., p; is interior, none of the
indices i, i,, ..., i, is interior.

(d) At least one of the indices p,, p,, ..., p; is interior, and at least
one of the indices i, , i, , ..., I; is interior.

Equation (34) involves expressions (34) such that i, =p,, i,=p,, ...,
i, = p, - For this choice of indices the terms (a) become

Py bz .. .
(35) P|6P2 5 X Igitigea-- s Alt(plpz"-pqlqﬂqurz...ls)

Sym(Ilpl) Sym(Z,p,) ... Sym(/,p,)

(no summation through p,, p,, ..., p,). Expressions (b) and (c) vanish
identically begause the indices (i},i,.... zq,iqﬂ,iq”,...,is) are mutually differ-
ent and X" . is skew-symmetric in the subscripts. The terms in (d)

lr+ll 420l

are of Kronecker type, each summand is a multiple of the Kronecker symbol
0y ,where o & {p,,p,,....p,} and BE{i i ,,...i;}.

Thus, (34) is the sum of the terms (a) and (d). But the left-hand side of
equation (33) is determined from (34) by the trace operation in i, = p,,
ILb=Dyseues 'q p, - The terms entering (a) lead to an expression of the form
cX , where c is a non-zero constant, namely to the expression

.]' Sher: . 61} Liy..d; Al
W P17 P2 iy (Plpz...pj)
(36)
=~ det§? -x"l
s((r+D!Y P i ds

Since the contraction of the terms (d) in i, =p,, i,=p,, ..., i,=p, does
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not influence the factors Z‘ , (d) leads to a Kronecker tensor.

Corollary 1 ,’,“S*?”me that in addition to the assumptions of Theorem 4,
the tensor X =X """ . is traceless. Then

USUTSREN

=0.

USUSREN

(37) x it

Proof This follows from Theorem 4, and from the orthogonality of
traceless and Kronecker tensors.

Example 3 For tensors of lower degrees equations (33) can be solved
directly by means of the decomposition of the unknown tensor X. Consider
for example the system

(38) 6;]5522Xi'i2i3 =0 Alt(p,p,i;) Sym(ip,) Sym(i,p,)
for a traceless tensor X = X" . The decomposition of the left-hand side is
5;‘5522)(['[2[3 +5;.,‘151’,’22X’"’Azi3 +5;‘5;}2Xi"’2i3 + 5;‘151’}2)(”'”2,.3
P X, 5 GEXPE, SIS X 5 5 X,
GO X, LN, 8IS, 585X,
FENOPXY 481 GEXTE 4 SIEEXT 48 X
- 6511 652 X' o 52. 61'1:2 X p 65.1 6: X P 621 6;2 % S
+ 5,.’:15]’:[2X"‘i2p2 + 525;2)(,:@2]72 + 5l.f‘5;lei"’2p2 + 525; xne .

(39)

Contraction in p, and p, gives the expression
X" +nX"™, +nX" X" —nX"
3 3 3 3 3
_ X xhi  _ xhi i i
3 i3 i3 i &
(40) 4+ X i x4 i
iy iy iy iy
_ 2 il iyl
—(l’l _2)X|2i3_X Ii3'

Since this expression should vanish, we get (n* —2)X"*, — X", =0 which
is only possible when X", =0.

10 Bases of forms

We summarize for reference some useful formulas for the bases of dif-
ferential forms on an n-dimensional manifold X.
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Lemma 1 (Bases of forms) Let X be an n-dimensional smooth mani-
fold, and let (U,p), @ =(x"), be a chart on X. Then the forms

1 ) . )
(1) Wy = — &, ;dx" Ndx® N...Ndx"
pn! et
and
0] = #6 dx"™ Ndx"™ AL A\ dx
(2) klkZ"'kp (n_p)! klkz-"kplp+lll)+2"'lr1 e ’
1<p<n-1,

define bases of n-forms and (n— p)-forms on U. The transformation formu-
las to the canonical bases are

kky. eyl

(3) £ g o =dx N AL A"

P

Proof See Appendix 8.

The Jacobian determinant of a transformation x” =x"(x',x*,...,x"),
det(dx” / 0x") , has the following basic properties:

Lemma 2 (Jacobians) (a) The local volume forms on X are on intersec-
tions of the charts are related by the formula

_ dx”
(4) w, = det(ﬁ) @, .
(b) The derivative of the Jacobian satisfies

d ox” ox” *x?  9x4
(5) — det o =det f _7)6_ s .
ox" d ox* ) ax"ax? ox”

=S

X
(¢c) The (n—1)-forms w, and ®, obey the transformation formulas

_axt . ox
© @ = dett
0x ox’

o,.

Proof (b) To verify formula (5), consider any regular matrix a and its
inverse a”',



1
a a,

2 2
a a,

) a=

n

n
a a,

Appendix

1 1 71
an bl b2
2 2 32
a o b b
n , a — 1 2
n n n
a, b b,

315

and compute the derivative ddeta/da, . Multilinearity and the Laplace de-
composition with respect to the s-th row of the determinant of a yields
deta=a/A’ +a;A; +...+a,A, , where with algebraic complements A; . Thus

ddeta

p q
aaq

()

Al.

n“"n >

But a is regular, so the inverse matrix satisfies

b bl

2 2
© b b ..

b bl ..

Al A A
deta deta ~ deta
A A A
=| deta deta  deta
A A Ay
deta deta ~ deta

hence A;’ =deta -bZ and we conclude that

ddeta

a

(10)

Now substituting

~ o ox"
11 a =—,
(in Tooax?

we get

r aap
(12) L ger| O |-y deta 0d, _
ox’ da; dx"

afﬂl

r

deta~b,‘j.

X

s =

B

dx*

120

ox" ox"
ox* ) 9x™ax? ax’

(c) Using the transformation properties of the forms ®, and @, (for-

mula (4),

(13) =i 0

i Ygex 0 T ox!

ax*  ox .

det—

ox Tojox

ox*
O Tdet—~
ox'
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Remark (Different bases) Sometimes it is convenient to consider ba-
ses of forms, differening from the forms (2) by a constant factor. If we set

1

i i i
=—— € CadxTt Ndx T NN X
kik,.. .k, p!(n_p)! kiky.. kpipiilpin-- iy

(14) w

then for example

' Ao, = iz i Jdx Ndx® Ndxt AL AN dx
152 I(n=2)! fratsis-dn
_ 1 pliziy.. i, _ 2'(’1_2)' 1 n St n St
(15) - 2'(”1—2)' gk1k2i3i4--»ine wl’ - 2'(}1—2)' 5(5"1 6k2 - 5k2 6k1 )wl’l

1
- 5(6’}0,(] -6,0,),

etc. (cf. Appendix 8).



