
 
Appendix 

Analysis on Euclidean spaces and smooth 
manifolds 

 In this appendix we summarize for the reference essential notions and 
theorems of differentiation and integration theory on Euclidean spaces as 
needed in this book. Main coordinate formulas of the calculus of vector 
fields and differential forms on smooth manifolds are also given. We have 
included elementary concepts from multi-linear algebra, and the trace de-
composition theory over a real vector space.  

1   Jets of mappings of Euclidean spaces 

 Let L(Rn ,Rm )  be the vector space of linear mappings of Rn  into Rm , 
Lk (Rn ,Rm )  the vector space of k-linear mappings of the Cartesian product 
 Rn !Rn !…!Rn  (k factors) into Rm , and let Lsym

k (Rn ,Rm )  be the vector 
space of k-linear symmetric mappings from of  Rn !Rn !…!Rn  (k factors) 
into Rm . Let  U !R

n  and  V !R
m  be open sets, and denote  

(1)  
 
J r (U,V ) =U !V ! L(Rn ,Rm )! Lsym

2 (Rn ,Rm )!…! Lsym
r (Rn ,Rm ).  

J r (U,V )  is an open set in the Euclidean vector space  

(2)  
 
Rn !Rm ! L(Rn ,Rm )! Lsym

2 (Rn ,Rm )!…! Lsym
r (Rn ,Rm ).  

Using the canonical bases of the vector spaces Rn  and Rm , this vector space 
can be identified with the Euclidean vector space RN  of dimension  

(3)  
 
N = n +m 1+ n + 2

n+1( ) + 2
n+2( ) +…+ r

n+r!1( )( ).  
The set J r (U,V )  can be identified with collections of real numbers 

 
P = (xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… jr

! ) ,  1! i, j1, j2 ,…, jr ! n , 1!" ! m , such that the 
systems 

 
yj1 j2! jk
!  are symmetric in the subscripts. We call P an r-jet; the point 

 x!U , x = xi  is called the source of P and the point  y!V , y = y! , is 
called the target of P.  
 We set for every point  P! J

r (U,V ) , 
 
P = (xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… jr

! ) ,  

(4)  
 
xi = xi (P), y! = y! (P), yj1 j2! jk

! = yj1 j2! jk
! (P), 1" k " r.  
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Then, by abuse of language, xi , y! , and 
 
yj1 j2! jk
! , denote both the compo-

nents of P and also real-valued functions on J r (U,V ) . Restricting ourselves 
to independent functions, we get a global chart, the canonical chart 

 
(xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… jr

! ) ,  j1 ! j2 !…! jk , defining the canonical smooth 
manifold structure on J r (U,V ) ; elements of this chart are the canonical co-
ordinates on J r (U,V ) . The set J r (U,V ) , endowed with its canonical 
smooth manifold structure, is called the manifold of r-jets (with source in U 
and target in V).  
 We sometimes express without notice an element  P! J

r (U,V )  as a col-
lection of real numbers 

 
P = (xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… jr

! ) , subject to the condi-
tion  j1 ! j2 !…! jk .  
 We show that the r-jets can be viewed as classes of mappings, transfer-
ring the source of an r-jet to its target. Given an r-jet P = J r (U,V ) , 

 
P = (xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… jr

! ) , one can always find a mapping f = f ! , de-
fined on a neighbourhood of the source  x!U , such that f (x) = y , whose 
derivatives satisfy 

(5)  
 

Di1
f ! (xi (P)) = yi1

! (P), Di1
Di2

f ! (xi (P)) = yi1i2
! (P),

…, Di1
Di2

…Dir
f ! (xi (P)) = yj1 j2! jr

! (P).
 

Indeed, one can choose for the components of f the polynomials  

(6)  

 

f ! (t j ) = y! + 1
1!
yj1
! (t j1 " x j1 )+ 1

2!
yj1 j2
! (t j1 " x j1 )(t j2 " x j2 )

+…+ 1
r!
yj1 j2! jr
! (t j1 " x j1 )(t j2 " x j2 )!(t jr " x jr ).

 

Any mapping f, satisfying conditions (5), is called a representative of the r-
jet P. Using representatives, we usually denote P = Jx

r f .  

2  Summation conventions  

 This section contains some remarks to the summation conventions used 
in this book. We distinguish essentially three different cases:  
 (a) Summations through pairs of indices, one in contravariant and one 
in covariant position (the Einstein summation convention). In this case the 
summation symbol is not explicitly designated.  
 (b) Summations through more indices or multi-indices. In this case we 
usually omit the summation symbols for summations, which are evident.  
 (c) Summations of expressions through variables, labelled with non-
decreasing sequences of integers. In this Appendix we discuss the corre-
sponding conventions in more detail.  
 Let k be a positive integer, let LkRn  be the vector space of collections 
of real numbers 

 
u = ui1i2…ik

, where  1! i1,i2 ,…,ik ! n , and J kRn  the vector 
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space of collections of real numbers 
 
v = vi1i2…ik

, where  1! i1 ! i2 !…! ik ! n . 
We introduce two mappings ! : J kRn " LkRn  and ! :LkRn " J kRn  as fol-
lows. Choose a vector  v! J kRn , 

 
v = vi1i2…ik

, where  1! i1 ! i2 !…! ik ! n , 
and set for any sequence of the indices  j1, j2 ,…, jk , not necessarily a non-
decreasing one,  

(1)  
 
vj1 j2… jk

= vj! (1) j! (2 )… j! ( k )
,  

where !  is any permutation of the set  {1,2,…,k} , such that the subscripts 
satisfy  j! (1) " j! (2) "…" j! (k ) . Then set  

(2)  
 
!(v) = vj1 j2… jk

.  

The vector !(v)  is symmetric in all subscripts, and is called the canonical 
extension of v to LkRn ; the mapping !  is the canonical extension (by sym-
metry). If  u! LkRn , 

 
u = ui1i2…ik

, set  

(3)  
 
! (u) = vj1 j2… jk

= 1
k!

u j" (1) j" (2 )… j" ( k )
"
# ,  

whenever  j1 ! j2 !…! jk ; !  is called the symmetrization. For any function 
f : J kRn ! R , the function  f !! :L

kRn " R  is called the canonical exten-
sion of f. When no misunderstanding may possibly arise we write just f in-
stead of  f !! . Clearly definitions (2) and (3) imply  

(4)  
 
! !" = idJ kRn .  

 Note that in the finite-dimensional Euclidean vector space RN , the 
points of RN  are canonically identified with the canonical coordinates of 
these point. In what follows we shall consider the symbols 

 
ui1i2…ik

 and 
 
vi1i2…ik

 
both as the points of RN  as well as the canonical coordinates on the vector 
spaces LkRn  and J kRn , respectively.  
 Denote  

(5)  
 
N ( j1 j2… jk ) =

N1!N2!…Nn!
k!

,  

where Nl  is the number of occurrences of the index  l = 1,2,…,n  in the k-
tuple  ( j1, j2 ,…, jk ) . The following lemma states two formulas how to ex-
press a linear form, whose variables are indexed with non-decreasing se-
quences; these formulas are based on simple algebraic relations.  
 Let  

(6)  
 
! = Ai1i2…ik vi1i2…ik

i1"i2"…"ik
#  

be a linear form on J kRn .  
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 Lemma 1  A linear form !  (6) on J kRn  can be expressed as  

(7)  
 
! = B j1 j2… jk v j1 j2… jk

,  

where  

(8)  
 
B j1 j2… jk = 1

N ( j1 j2… jk )
Ai1i2…ik .  

 Proof  Supposing that  B j1 j2… jk  and 
 
vj1 j2… jk

 are symmetric, we have  

(9)  

 

B j1 j2… jk v j1 j2… jk
= 1

k!
B j! (1) j! (2 )… j! ( k )vj! (1) j! (2 )… j! ( k )

!
"

j1, j2 ,…, jk
"

= 1
k!
N1!N2 !…Nn!B

j1 j2… jk v j1 j2… jk
j1# j2#…# jk
"

= N (i1i2…ik )B
j1 j2… jk v j1 j2… jk

j1# j2#…# jk
" .

 

If this expression equals !  we get (8).  

 Lemma 1 can be applied to linear forms df , where f : J kRn ! R  is a 
function. df  is defined by  

(10)  
 
df (v) !" = ! f

!vi1i2…ik

#
$%

&
'( v
"i1i2…ik

i1)i2)…)ik
* ,  

where  

(11)  
 
! = !i1i2…ik

!
!vi1i2…iki1"i2"…"ik

#  

is a tangent vector. But the chain rule yields  Tv f !" = T#(v) ( f !$ )!Tv# !" , so 
we have the following assertion.  

 Lemma 2  The linear form df  (10) can be expressed as  

(12)  
 

df (v) !" = !( f !# )
!u j1 j2… jk

$
%&

'
() *(v)

" j1 j2… jk
.  

 Proof  Using formula (4) we get from (10)  

(13)  
 
df (v) !" = !( f !# !$)

!vi1i2…ik

%
&'

(
)* v
"i1i2…ik

i1+i2+…+ik
,  
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= !( f !! )
!u j1 j2… jk

"
#$

%
&' ((v)

!(u j1 j2… jk
!()

!vi1i2…ik

"
#$

%
&' v
)i1i2…ik

j1, j2 ,…, jk
*

i1+i2+…+ik
*

= !( f !! )
!u j1 j2… jk

"
#$

%
&' ((v)

!(u j1 j2… jk
!()

!vi1i2…ik

"
#$

%
&' v
)i1i2…ik

i1+i2+…+ik
*

j1, j2 ,…, jk
* .

 

But writing  

(14)  
 
Tv! "# = # j1 j2… jk

!
!u j1 j2… jk

,  

we see that Tv!  extends the components 
 
!i1i2…ik

,  i1 ! i2 !…! ik  by the index 
symmetry, 

(15)  
 
! j1 j2… jk

=
!(u j1 j2… jk

!")
!vi1i2…ik

#
$%

&
'( v
!i1i2…ik

i1)i2)…)ik
* .  

Thus, using the symmetric components (15), one can also express the exteri-
or derivative df  (13) as in (12).  

 Corollary 1  Let f : J kRn ! R  be a function,  v! J kRn  a point, and let 

 
! = ! j1 j2… jk

, where  1! j1 ! j2 !…! jk ! n , be the components of a tangent 
vector of J kRn  at the point v. Then the derivatives of the functions f and 
 f !!  satisfy  

(16)  
 

! f
!vj1 j2… jk

!
"#

$
%& v
' j1 j2… jk

j1( j2(…( jk
) = !( f !* )

!ui1i2…ik

!
"#

$
%& +(v)

'i1i2…ik
.  

 Proof  (16) follows from (10) and (12).  

 Corollary 2  (a) Partial derivatives of the functions f and  f !!  satisfy 
the condition  

(17)  
 

!( f !! )
!u j1 j2… jk

= N ( j1 j2… jk )
! f

!vj" (1) j" (2 )… j" ( k )

!! ,  

where !  is any permutation of the index set  {1,2,…,k} , such that 

 j! (1) " j! (2) "…" j! (k ) , and 
 

(18)  
 

! f
!vi1i2…ik

= 1
N (i1i2…ik )

!( f !! )
!ui" (1)i" (2 )…i" ( k )

!#  

for any permutation ! . 
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 (b) For any permutation  l! (1),l! (2),…,l! (k )  of the indices  l1,l2 ,…,lk , the 
derivatives of the function  f !!  satisfy  

(19)  
 

!( f !! )
!ul" (1)l" (2 )…l" ( k )

= !( f !! )
!ul1l2…lk

.  

 Proof  (a) From the chain rule we have for any  ( j1, j2 ,…, jk )   

(20)  
 

!( f !! )
!u j1 j2… jk

= ! f
!vi1i2…ik

!!
"
#$

%
&'
!(vi1i2…ik

!! )
!u j1 j2… jki1(i2(…(ik

) ,  

But from equation (3), there is exactly one non-zero term on the right-hand 
side, namely the term in which  (i1i2…ik ) = ( j! (1) j! (2)… j! (k ) ) , such that 
 j! (1) " j! (2) "…" j! (k )  for some permutation ! . Then  

(21)  
 

!( f !! )
!u j1 j2… jk

= ! f
!vj" (1) j" (2 )… j" ( k )

!! #
!(vj" (1) j" (2 )… j" ( k )

!! )
!u j1 j2… jk

,  

where by (3)  

(22)  
 
vj! (1) j! (2 )… j! ( k )

!" = 1
k!

u j# (1) j# (2 )… j# ( k )
#
$ .  

Differentiating (18) we get  

(23)  

 

!(vj! (1) j! (2 )… j! ( k )
!" )

!u j1 j2… jk

= 1
k!

!u j# (1) j# (2 )… j# ( k )

!u j1 j2… jk#
$

= N1!N2!…Nn!
k!

.

 

Substituting from (23) back to (21) we have  

(24)  
 

!( f !! )
!u j1 j2… jk

= N ( j1 j2… jk )
! f

!vj" (1) j" (2 )… j" ( k )

!! .  

 Conversely, given a k-tuple of indices  (i1,i2 ,…,ik )  such that 
 1! i1 ! i2 !…! ik ! n , we get from (24) and (4)  

(25)  
 

! f
!vi1i2…ik

= 1
N (i1i2…ik )

!( f !! )
!ui" (1)i" (2 )…i" ( k )

!#  

for any permutation ! . Formulas (24) and (25) prove Corollary 2.  
 (b) Formula (19) follows from (17).  



Appendix 
 

285 

 Remark  Formula (16) can also be used, with obvious simplification, in 
the form  

(26)  
 

! f
!u j1 j2… jk

! j1 j2… jk
j1" j2"…" jk
# = ! f

!ui1i2…ik

!i1i2…ik
.  

3  The rank theorem 

 In the following two basic theorems of analysis of real-valued functions 
on finite-dimensional Euclidean spaces we denote by xi  and y!  the canoni-
cal coordinates on the Euclidean spaces Rn  and Rm , respectively.  

 Theorem 1 (The Rank theorem)  Let W be an open set in Rn , and let 
f :W ! Rm  be a Cr mapping. Let q !min(m,n)  be a positive integer. The 

following conditions are equivalent: 
 (1) The mapping f has constant rank rankDf (x) = q  on W.  
 (2) For every point  x0 !W  there exist a neighbourhood U of x0  in W, 
an open rectangle  P!R

n  with centre 0, a Cr diffeomorphism ! :U" P  
such that !(x0 ) = 0 , a neighbourhood V of f (x0 )  such that  f (U )!V , an 
open rectangle  Q!R

m  with centre 0, and a Cr diffeomorphism ! :V "Q  
such that ! ( f (x0 )) = 0 , and on P,  

(1)   ! f"#1(x1, x2 ,…, xq , xq+1, xq+2 ,…, xn ) = (x1, x2 ,…, xq ,0,0,…,0).  

 Formula (1) can be expressed in terms of equations of the mapping 
! f"#1 , which are of the form  

(2)  
 

y! ! f =
x! , 1"! " q,
0, q +1"! " m.

#
$
%

&%
 

In particular, if q = n ! m , then ! f"#1  is the restriction of the canonical 
injection  (x

1, x2 ,…, xn )! (x1, x2 ,…, xn ,0,0,…,0)  of Euclidean spaces; if 
q = n = m , ! f"#1  is the restriction of the identity mapping of Rn ; if the 
dimensions n and m satisfy n > m , then ! f"#1  is the restriction of the Car-
tesian projection  (x

1, x2 ,…, xm , xm+1, xm+2 ,…, xn )! (x1, x2 ,…, xm )  of Euclide-
an spaces.  
 The following is an immediate consequence of Theorem 1.  

 Theorem 2 (The Inverse function theorem)  Let  W !R
n  be an open 

set, and let f :W ! Rn  be a Cr mapping. Suppose that detDf (x0 ) ! 0  at a 
point  x0 !W . Then there exists a neighbourhood U of x0  in W and a neigh-
bourhood V of f (x0 )  in Rn  such that f (U ) =V  and the restriction 
 f |U :U!V  is a Cr diffeomorphism.  
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4   Local flows of vector fields 

 In this book, the symbol Tx f  denotes the tangent mapping of a mapping 
f at a point x. Sometimes we also use another notation, which may simplify 
calculations and resulting formulas. If t!" (t)  is a curve in a manifold, 
then its tangent vector at a point t0  is denoted by either of the symbols  

(1)  Tt0! "1, d!
dt

#
$

%
& t0
.  

The tangent vector field is denoted by  

(2)  Tt! "1= d!
dt
.  

Note, however, that sometimes the symbol d! / dt  may cause notational 
problems when using the chain rule.  
 The following is a well-known result of the theory of integral curves of 
vector fields on smooth manifolds.  

 Theorem (The local flow theorem)  Let r !1  and let !  be a Cr vector 
field on a smooth manifold X.  
 (a) For every point  x0 ! X  there exists an open interval J containing 
the point  0!R , a neighbourhood V of x0 , and a unique Cr mapping 
! : J "V # X  such that for every point  x!V , ! (0, x) = x  and the mapping 
 J ! t!" x (t) =" (t, x)" X  satisfies  

(3)  Tt! x = "(! x (t)).  

 (b) There exist a subinterval K of J with centre 0 and a neighbourhood 
W of x0  in V such that  

(4)  ! (s + t, x) =! (s,! (t, x)), ! ("t,! (t, x)) = x  

for all points  (s,t)!K  and  x!W . For every  t !K , the mapping 
 W ! x!" (t, x)" X  is a Ck diffeomorphism.  

 Condition (3) means that t!" x (t)  is an integral curve of the vector 
field ! , and the mapping (t, x)!" x (t) =" (t, x)  is a local flow of !  at the 
point x0 ; we also say that !  is a local flow of !  on the set V. Equation (3) 
can also be written as  

(5)  d! x

dt
= "(! x (t)).  
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5  Calculus on manifolds 

 In this Appendix we give a list of basic rules and coordinate formulas of 
the calculus of differential forms and vector fields on smooth manifolds.  
 We use the following notation:  

 Tf   tangent mapping of a differentiable mapping f  
 f *!  pull-back of a differential form !  by f  
 !,"[ ]  Lie bracket of vector fields !  and !  
 d  exterior derivative of a differential form 
 i!"   contraction of a differential form !  by a vector field !  
 !"#  Lie derivative of a differential form !  by a vector field !  

 Theorem 1 (The pull-back of a differential form)  Let X, Y and Z be 
smooth manifolds.  
 (a) For any differentiable mapping f :X!Y , any p-form !  and any 
q-form !  on Y 

(1)   f *(!! ") = f *!! f *".  

 (b) Let f :X!Y  and g :Y ! Z  be differentiable mappings. Then for 
any p-form µ  on Z 

(2)   f *g*µ = (g ! f )*µ.  

 Theorem 2 (Exterior derivative)  Let X and Y be smooth manifolds.  
 (a) For any p-form !  and q-form !  on X  

(3)   d(!! ") = d!! " + (#1)p!!d".  

 (b) For every p-form !  on X 

(4)  d(d!) = 0.  

 (c) For any differentiable mapping f :X!Y  and any p-form !  on Y  

(5)  df *! = f *d!.  

 Theorem 3 (Contraction of forms by a vector field)  Let X and Y be 
smooth manifolds. 
 (a) Let !  be a p-form on X, and let !  and !  be two vector fields on X. 
Then  

(6)  i! i"# = $i"i!#.  
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 (b) Let !  be a p-form, !  a q-form, and let !  be a vector field on X. 
Then  

(7)  
 
i! ("! #) = i!"! # + ($1)p"! i! #.  

 (c) Let f :X!Y  be a differentiable mapping, !  a p-form on Y, and 
let !  be a vector field on X, !  a vector field on Y. Suppose that !  and !  
are f-related. Then  

(8)  f * i!" = i# f *".  

 Theorem 4 (Lie derivative)  (a) Let X be a smooth manifold, !  a p-
form, !  a q-form, and let !  and !  be vector fields on X. Then  

(9)  !"# = i"d# + di"#,  

(10)  !" d# = d !"#,  

(11)  
 
!" (#! $) = !"#! $ +#!!" $,  

(12)  i[! ," ]# = $! i"# % i" $!#,  

(13)  ![" ,# ]$ = !" !#$ % !# !"$.  

 (b) Let f :X!Y  be a differentiable mapping of smooth manifolds, let 
!  be a vector field on X, and !  be a vector field on Y. Suppose that !  and 
!  are f-compatible. Then for any p-form !  on Y  

(14)  f *!"# = !$ f *#.  

 Theorem 5  Let X and Y be smooth manifolds, f :X!Y  a C1map-
ping. Let (U,! ) , ! = (xi ) , be a chart on X, and (V ,! ) , ! = (y" ) , a chart 
on Y, such that  f (U )!V .  
 (a) For any point  x!U  and any tangent vector  ! !TxX  at the point x, 
expressed as  

(15)  ! = ! k !
!xk( )

x
,  

the image Tf !"  is  

(16)  Tf !" = !(y# f$%1)
!xi

&
'

(
)$ (x )

" i !
!y#

&
'*

(
)+ f (x )

.  

 (b) The pull-back f *!  of a differential p-form !  on Y, expressed as 
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(17)  
  
! = 1

p!
!i1i2…ip

dxi1 !dxi2 !…!dxip ,  

is given by  

(18)  

  

f *! = 1
p!
!(y"1 f#$1)
!xi1

!(y" 2 f#$1)
!xi2

…
!(y" p f#$1)
!xip

%(!"1" 2…" p
! f ) %dxi1 !dxi2 !…!dxip .

 

 Theorem 6  Let (U,! ) , ! = (xi ) , be a chart on X.  
 (a) For any two vector fields !  and !  on X, expressed by 

(19)  ! = ! i !
!xi

, " = " i !
!xi

,  

the Lie bracket !,"[ ]  is expressed by  

(20)  !,"[ ] = !" i

!xl
! l # !!

i

!xl
" l$

%
&
'
!
!xi

.  

 (b) The exterior derivative df  of a function f :X! R  is expressed by  

(21)  df = ! f
!xk

dxk .  

The exterior derivative d!  of a p-form !  (17) has the chart expression  

(22)  
  
d! = 1

p!
d!i1i2…ip

!dxi1 !dxi2 !…!dxip ,  

where the exterior derivative 
 
d!i1i2…ip

 is  of is determined by formula (21).  
 (c) The contraction i!"  of the form !  (17) by a vector field !  (19) 
has the chart expression  

(23)  
  
i!" = 1

(k#1)!
"si1i2…ik#1

! sdxi1 !dxi2 !…!dxik#1 .  

 (d) The Lie derivative !"#  of the form !  (17) by a vector field !  (19) 
has the chart expression  

(24)  

  

!"# = 1
p!

!" s

!xi1
#si2i3…ip

$ !"
s

!xi2
#si1i3i4…ip

+ !"
s

!xi3
#si1i2i4i5…ip

%
&

$…+ ($1)p$1 !"
s

!xip
#si1i2…ip$1

+
!#i1i2…ip

!xk
" k '

() dx
i1 !dxi2 !…!dxip .
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6  Fibred homotopy operators  

 In this section we study differential forms, defined on open star-shaped 
sets U in an Euclidean space Rn  and on trivial fibred manifolds U !V , 
where V is an open star-shaped set in Rm . Our aim will be to investigate 
properties of the exterior derivative operator d on U and on U !V .  
 First we consider a differential k-form ! , where k !1 , defined on an 
open star-shaped set  U !R

n  with centre at the origin  0!Rn . We shall 
study the equation  

(1)  d! = "  

for an unknown (k !1) -form !  on V. Denote by xi  the canonical coordi-
nates on U. Define a mapping ! : 0,1[ ]"V #V  as the restriction of the im-
age of the mapping  (s, x

1, x2 ,…, xn ) = (sx1,sx2 ,…,sxn )  from R !Rn  to Rn  
to the open set V; thus in short  

(2)  !(s, xi ) = (sxi ).  

Then 

(3)  ! *dxi = xids + sdxi .  

Consider the pull-back ! *"  which is a k-form on a neighbourhood of the 
set 0,1[ ]!V . Obviously, there exists a unique decomposition  

(4)   ! *" = ds! " (0) (s)+ #" (s),  

such that the k-forms ! (0) (s)  and !" (s)  do not contain ds . Note that by 
formula (3), !" (s)  arises from !  by replacing each factor dxi  with sdxi , 
and by replacing each coefficient f with  f ! ! . Thus, !" (s)  obeys 

(5)  !" (1) = ", !" (0) = 0.  

We set  

(6)  I! = ! (0) (s)
0

1

" ,  

where the expression on the right-hand side means integration of the coeffi-
cients in the form ! (0) (s)  over s from 0 to 1.  

 Lemma 1 Let U be an open ball in Rn  with centre 0. 
 (a) For every differentiable function f :U! R ,  

(7)  f = Idf + f (0).  
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 (b) Suppose that k !1 . Then for any differential k-form !  on U, 

(8)  ! = Id! + dI!.  

 Proof  1. If f is a function, then df = (! f / !xi )dxi , and we have by (3) 
 ! *df = ((! f / !x

i )! ! ) "(xids + sdxi ) . Consequently,  

(9)  
 
Idf = xi ! f

!xi
! !"

#
$
% ds0

1

& .  

Now (7) follows from the identity 

(10)  

  

f ! f (0) = ( f ! " )|s=1 !( f ! " )|s=0=
d( f ! " )
ds

ds
0

1

#
= xi ! f

!xi
! "$

%
&
' ds0

1

# .
 

 2.  Let k = 1 . Then !  has an expression ! = Bidx
i , and the pull-back 

! *"  is given by  ! *" = xi (Bi ! ! )ds + (Bi ! ! )sdx
i . Differentiating we get  

(11)  

  

! *d" = d! *" = ds! #d(xi (Bi ! ! )+
!((Bi ! ! )s)

!s
dyi$

%
&
'

+ s !(Bi ! ! )
!x j

dx j !dxi ,
 

hence  

(12)  
 
I! = xi Bi ! " #ds

0

1

$ .  

Thus,  

(13)  
 
Id! = !((Bi ! " )s)

!s
#
!(x j $Bj ! " )

!xi
%
&'

(
)*
ds

0

1

+ $dxi ,  

and 

(14)  
 
dI! =

!(x j "Bj ! # )
!xi

ds
0

1

$ "dxi .  

Consequently, 

(15)  

  

Id! + dI! = !((Bi ! " )s)
!s

#
$

%
& ds0

1

' (dxi

= ((Bi ! " ( s)|s=1 )(Bi ! " ( s)|s=0 )dx
i = !.  
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 3. Let k ! 2 . Write !  in the form 

(16)   ! = dxi !" i ,  

and define differential forms ! i
(0) (s)  and !" i (s)  by  

(17)   ! *" i = ds!" i
(0) (s)+ #" i (s).  

Then 

(18)  
 

! *" = (sdxi + xids)! (ds!# i
(0) (s)+ $# i (s))

= ds! ("sdxi !# i
(0) (s)+ y% $# i (s))+ sdy

i ! $# i (s).
 

Thus, 

(19)  
 
I! = ("sdxi !# i

(0) (s)+ xi $# i (s))0

1

% .  

 To determine Id! , we compute ! *d" . Property ! *d" = d! *"  of 
the pull-back yields  

(20)  

 

! *d" = #ds! (sdxi !d$ i
(0) (s)+ dxi ! %$ i (s)

+ xid %$ i (s))# dx
i !d(s %$ i (s)))

= ds! #sdxi !d$ i
(0) (s)# dxi ! %$ i (s)

&
'

# xid %$ i (s)+ dx
i !
!(s %$ i (s))
!s

(
) # dx

i !dx j ! !(s %$ i (s))
!x j

,

 

where !!(s) / !s  denotes the form, arising from !(s)  by differentiation with 
respect to s, followed by multiplication by ds . Now by (20) and (6), 

(21)  

 

Id! = "dxi ! sd# i
(0) (s)

0

1

$ " dxi ! %# i (s)0

1

$
" xi d %# i (s)0

1

$ + dxi ! !(s %# i (s))
!s0

1

$ .
 

It is important to notice that the exterior derivatives d!"
(0) (s) , and d !"# (s)  

have the meaning of the derivatives with respect to xi  (the terms containing 
ds  are cancelled; see the definition of I (4), (6)).  
 Now we easily get 

(22)  
 
Id! + dI! = dxi ! !(s "# i (s))

!s0

1

$ .  

Remembering that the integral symbol denotes integration of coefficients in 
the corresponding forms with respect to the parameter s from 0 to 1, and us-
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ing (5), one obtains 

(23)  
 

Id! + dI! = dxi !(1" #$ i (1)% 0 " #$ i (0))
= dxi ! #$ i (1) = dx

i !$ i = !,  

as desired.  

 As an immediate consequence, we get the following statement.  

 Lemma 2 (The Volterra-Poincare lemma)  Let U be an open ball in 
Rn  with centre 0, !  a differential k-form on U, where k !1 . The following 
two conditions are equivalent:  
 (a) There exists a form !  on U such that 

(24)  d! = ".  

 (b) !  satisfies  

(25)  d! = 0.  

 Proof  If d! = "  for some ! , we have d! = dd" = 0 . Conversely, if 
d! = 0 , we take ! = I"  in Lemma 1.  

 Condition (25) is sometimes called integrability condition for the differ-
ential equation (24).  
 Now we consider a different kind of differential equations, reducing to 
(1) for differential forms of sufficiently high degree. Let U be an open set U 
in Rn , and V an open ball V in Rm  with centre at the origin. Denote by !  
the first Cartesian projection of U !V  onto U. Suppose we are given !  on 
U !V , where !  is a positive integer. Our objective will be to study the 
equation  

(26)  d! +" *!0 = #  

for the unknowns a (k !1) -form !  on U !V , and a k-form !0  on U.  
 Let (xi , y! ) , where 1! i ! n , 1!" ! m , be the canonical coordinates 
on U !V , and ! :U"U #V  be the zero section of U !V . Consider the 
mapping  (s,(x

1, x2 ,…, xn , y1, y2 ,…, ym ))! (x1, x2 ,…, xn ,sy1,sy2 ,…,sym )  of 
R !Rm !Rm  with values in Rm !Rm . Restricting the range of this mapping 
to U !V , we define a mapping ! :[0,1]"U "V #U "V  by 

(27)  !(s,(xi , y" )) = (xi ,sy" ).  

Then  

(28)  ! *dxi = dxi , ! *dy" = y"ds + sdy" .  

Consider the pull-back ! *" , which is a k-form on a neighbourhood of the 
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set [0,1]!U !V . There exists a unique decomposition  

(29)   ! *" = ds! " (0) (s)+ #" (s)  

such that the k-forms ! (0) (s)  and !" (s)  do not contain ds . Note that by 
(28), !" (s)  arises from !  by replacing each factor dy!  with sdy! , and by 
replacing each coefficient f with  f ! ! ; the factors dxi  remain unchanged. 
Thus, !" (s)  obeys 

(30)  !" (1) = ", !" (0) = # *$ *".  

 Let k !1 . We define  

(31)  I! = ! (0) (s)
0

1

" ,  

where the expression on the right-hand side means integration of the coeffi-
cients in the form ! (0) (s)  over s from 0 to 1.  

 Theorem 1  Let  U !R
n  be an open set, and let  V !R

m  be an open 
ball with centre 0.  
 (a) For every differentiable function f :U !V " R ,  

(32)  f = Idf +! *" * f .  

 (b) Let k !1 . Then for every differential k-form !  on the Cartesian 
product U !V , 

(33)  ! = Id! + dI! +" *# *!.  

 Proof  1. We have 

(34)  df = ! f
!xi

dxi + ! f
!y!

dy! ,  

and by (28)  

(35)  
 
! * f = ! f

!xi
! !"

#
$
% dx

i + ! f
!y&
! !"

#'
$
%(
(y&ds + sdy& ).  

Now the identity 

(36)  

  

f !" *# * f = f ! $ |s=1 ! f ! $ |s=0

= d( f ! $ )
ds

ds
0

1

% = y& ! f
!y&
! $'

()
*
+,
ds

0

1

% = Idf ,
 

which follows from (31), gives the result. 
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 2.  Let k = 1 . Then !  has an expression ! = Aidx
i + B"dy

" , thus 

(37)  
 

! *" = (Ai ! ! )dx
i + (B# ! ! )(sdy

# + y#ds)
= y# (B# ! ! )ds + (Ai ! ! )dx

i + (B# ! ! )sdy
# ,

 

and  

(38)  

  

! *d" = d! *"

= ds! #d(y$ (B$ ! ! ))+
!(Ai ! ! )
!s

dxi + !((B$ ! ! )s)
!s

dy$%
&

'
(

+ !(Ai ! ! )
!x j

dx j + !(Ai ! ! )
!y)

dy)%
&*

'
(+
!dxi

+ s !(B$ ! ! )
!x j

dx j + !(B$ ! ! )
!y)

dy)%
&*

'
(+
!dy$ ,

 

hence 

(39)  
 
I! = y" B" ! # $ds

0

1

% ,  

and 

(40)  

 

Id! = !(Ai ! " )
!s

# !(y
$ %B$ ! " )
!xi

&
'(

)
*+
ds

0

1

, %dxi

+ !((B- ! " )s)
!s

# !(y
$ %B$ ! " )
!y-

&
'(

)
*+
ds

0

1

, %dy- .
 

We also get  

(41)  
 
dI! = y" !(B" ! # )

!xi
ds

0

1

$ %dxi + !(y& %B& ! # )
!y"

ds
0

1

$ %dy" ,  

consequently, 

(42)  
  

Id! + dI! = Ai ! " |s=1 #Ai ! " |s=0 +(B$ ! " % s)|s=1 #(B$ ! " % s)|s=0
= ! #& *' *!.

 

 Let k ! 2 . Write !  in the form  ! = dxi !"i + dy
# !$# , and define 

differential forms !i
(0) (s) , !"i (s) , !"

(0) (s)  by 

(43)  
 

! *"i = ds!"i
(0) (s)+ #"i (s),

! *$% = ds!$%
(0) (s)+ #$% (s).
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Then 

(44)  
 

! *" = ds! (#dxi !$i
(0) (s)# sdy%&%

(0) (s)+ y% '&% (s))
+ dxi ! '$i (s)+ sdy

% + sy% '&% (s)).
 

Thus, 

(45)  
 
I! = "dxi ! #i

(0) (s)
0

1

$ " dy% ! (s&%
(0) (s)+ y% '&% (s))ds0

1

$ .  

 To determine Id! , we compute ! *d" . We get  

(46)  

 

! *d" = d! *"
= #ds! (dxi !d$i

(0) (s))+ sdy% !d&%
(0) (s)+ dy% ! '&% (s)

+ y%d '&% (s))# dx
i !d '$i (s)# dy

% !d(s '&% (s)))

= ds! #dxi!d$i
(0)(s))+dxi!! '$i (s)

!s
(
)* # sdy% !d&%

(0) (s)

# dy% ! '&% (s)# y
%d '&% (s)+ dy

% !
!(s '&% (s))

!s
+
,

# dxi ! dx j ! ! '$i (s)
!x j

+ dy- ! ! '$i (s)
!y-

(
)*

+
,.

# dy% ! dx j ! !(s '&% (s))
!x j

+ dy- ! !(s '&% (s))
!y-

(
)*

+
,.
,

 

where  !!(s)/!s  denotes the form, arising by differentiation of !(s)  with 
respect to s, followed by multiplication by ds . Now by (45) and (30), 

(47)  

 

Id! = "dxi ! d#i
(0) (s)

0

1

$ " dy% ! sd&%
(0) (s)

0

1

$ " dy% ! '&% (s)0

1

$
" y% d '&% (s)0

1

$ + dxi ! ! '#i (s)
!s0

1

$ + dy% ! !(s '&% (s))
!s

.
0

1

$
 

Note that the expressions d!i
(0) (s) , d!"

(0) (s) , and d !"# (s)  have the mean-
ing of the exterior derivatives with respect to xi , y!  (the terms containing 
ds  are cancelled; see the definition of I (30), (31)).  
 Now  

(48)  
 
Id! + dI! = dxi ! ! "#i (s)

!s0

1

$ +dy% ! !(s "&% (s))
!s0

1

$ ,  

and using formula (30), 

(49)   Id! + dI! = dxi ! ( "#i (1)$ "#i (0))+dy% ! (1& "'% (1)$ 0 & "'% (0))  
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= dxi ! !"i (1)+dy# ! !$# (1)% dx
i ! !"i (0)

= dxi !"i +dy# !$# % dxi !& *' *"i

= ( %& *' *(.
 

 As a consequence, we have the following statement.  

 Theorem 2 (The fibred Volterra-Poincare lemma)  Let  U !R
n  be an 

open set,  V !R
m  an open ball with centre 0. Let k !1   and let !  be a dif-

ferential k-form on U !V . The following two conditions are equivalent:  
 (a) There exist a (k !1) -form !  on U !V  and a k-form !0  on U such 
that 

(50)  d! +" *!0 = #.  

 (b) The form d!  is ! -projectable and its ! -projection is d!0 .  

 Proof  Suppose we have some forms !  and !0  satisfying condition (a). 
Then d! = d" *#0 = " *d#0  proving (b).  
 Conversely, if d!  is ! -projectable, then by the definition of I, 
Id! = 0 , and then by Theorem 1, ! = Id! + dI! +" *# *! = d$ +" *$0  
proving (a).  

 We also get two assertions on projectability of forms, and non-
uniqueness of solutions of equation (26).  

 Corollary 1  Let  U !R
n  be an open set,  V !R

m  an open ball with 
centre the origin 0, !  a differential form on U !V . The following two con-
ditions are equivalent: 
 (1) There exists a form !  on U such that ! = "#$ . 
 (2) Id! + dI! = 0 .  
 Proof  This follows from Theorem 1.  

 Corollary 2  Suppose that the form d!  is ! -projectable. Let (!,!0 )  
and  ( !!, !!0 )  be two solutions of equation (26). Then there exist a (p !1) -
form !  on U !V  and a (p !1) -form !  on U such that  

(51)   !! =! +" *# + d$ , !!0 =!0 % d#.  

 Proof  By hypothesis,  

(52)   d! +" *!0 = #, d !! +" * !!0 = #.  

These equations imply  d! +" *!0 = d !! +" * !!0  hence  ! *d"0 = ! *d !"0 . 
But for any section !  of the projection ! ,  

(53)   ! *" *d#0 = d#0 = ! *" *d !#0 = d !#0 .  
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Thus, by the Volterra-Poincaré lemma,  !!0 "!0 = d#  for some ! . Then, 
however,  d! +" *!0 = d !! +" *(!0 + d# ) , and  

(54)   d(! " !! "# *$ ) = 0.  

Applying the Volterra-Poincaré lemma again we get (51).  

 Remark 1 (The Volterra-Poincare lemma on manifolds)  Let X be an 
n-dimensional manifold. Every point  x! X  has a neighbourhood U such 
that the decomposition of forms, given in Theorem 1, is defined on U. In-
deed, if (U,! )  is a chart at x such that !(U )  is an open ball with centre 
 0!Rn , then formulas ! =" *µ  and (!"1)*# = µ  establish a bijective cor-
respondence between forms on U and !(U ) , commuting with the exterior 
derivative d. In general, this correspondence does not provide a construction 
of solutions of differential equations (1) and (26), defined globally on X. 

 Remark 2  For k-forms !  such that k = n , always d!0 = 0  hence 
!0 = d"  and equation d! +" *!0 = #  (26) reduces to d! = "  (1). The same 
is true for k > n  because in this case !0 = 0 .  

 Turning back to the definition of the fibred homotopy operator I (31) we 
have the following explicit assertion.  

 Lemma 3  Let !  be a differential k-form on the product of open sets 
U !V , considered as a fibered manifold over U, expressed in the canonical 
coordinates (xi , y! )  on U !V  as  

(55)  
  
! = 1

p!
A"1" 2…" p i1i2…iq

dy"1 !dy" 2 !…!dy" p !dxi1 !dxi2 !…!dxip ,  

where k = p + q . Then the fibred homotopy operator I is given by  

(56)  

  

I! = y" (A""1" 2…" p#1 i1i2…iq
(x j ,sy$ )s p#1 ds

0

1

% &dy"1 !dy" 2 !…!dy" p#1

!dxi1 !dxi2 !…!dxip .
 

I satisfies  

(57)  I 2! = 0.  

 Proof  The homotopy (xi , y! )" #(s,(xi , y! )) = (xi ,sy! )  yields  

(58)  

  

! *" = 1
p!
(py# (A##1# 2…# p$1 i1i2…iq

! ! )s p$1ds!dy#1 !dy# 2 !…!dy# p$1

+ (A#1# 2…# p i1i2…iq
! ! )s pdy#1 !dy# 2 !…!dy# p )

!dxi1 !dxi2 !…!dxip
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which implies that  

(59)  

  

I! = (A"1" 2…" p i1i2…iq
! # )# *(dy"1 !dy" 2 !…!dy" p )

= y" (A""1" 2…" p$1 i1i2…iq
! # )s p$1 ds

0

1

% &dy"1 !dy" 2 !…!dy" p$1

!dxi1 !dxi2 !…!dxip .

 

Identity (57) is now an immediate consequence of formula (56).  
 

7  Differential ideals  

 For basic concepts of the theory of differential ideals and related topics 
we refer to Bryant, Chern, Gardner, Goldschmidt and Griffiths [Br].  
 Let X be an n-dimensional smooth manifold. We denote by ! pTX  the 
bundle of alternating p-forms over X; in this notation, !1TX = T *X  is the 
cotangent bundle of X. Sections of the bundle ! pTX , differential p-forms on 
X, form a module over the ring of functions, denoted by ! pX . The direct 
sum  

(1)    !X =!0X!!1X!!2X!…!!nX  

together with the exterior multiplication of forms is the exterior algebra of 
X. We usually consider elements of ! pX  as elements of !X . The multipli-
cation  !  in !X  is associative and distributive, but not commutative; instead 
we have for any  !!" pX  and  ! !"qX ,  

(2)   !! " = (#1)pq "!!.  

 A subset  !!"X  is called an ideal, if the following two conditions are 
satisfied:  
 (a) !  is a subgroup of the additive group of !X .  
 (b) If  !!"  and  ! !"X  then   !! " !# .  
 An ideal  !!"X  is called a differential ideal, if for any  !!"  also 
 d!!" ; thus, a differential ideal is an ideal closed under exterior derivative 
operation.  
 Any non-empty set  ! !"X  generates a subgroup !"  of the additive 
group of !X , formed by (finite) sums  

(3)  
 
µ = !k ! "k# ,  

where  !k !"  and  !k !"X . !"  is an ideal, which is a subset of any ideal 
containing ! ; it is said to be generated by the set !  (or by the generators 
 !!" ). If the set !  is finite, we say that !"  is finitely generated.  
 Let  !X  denote the module of vector fields on X. We denote  



Global Variational Geometry 
 

300 

(4)  
    !(!) = {" !"X | i"#!!,#!!}.  

This set, the Cauchy characteristic space of ! , has the structure of a sub-
group of the additive group of  !X . The annihilator  

(5)  
    !(!) = {µ!"X | i#µ = 0,# !"(!)}  

is the retracting subspace of ! .  

8  The Levi‐Civita symbol  

 We introduce in this appendix a real-valued function, defined on the 
symmetric group  ! ! Sn , the Levi-Civita symbol, playing an essential role in 
algebraic computations with skew-symmetric expressions. We also derive 
basic computation formulas for the Levi-Civita symbol, needed in this book.  
 Any permutation  ! ! Sn  can be written as the composition of transposi-
tions ! k , i.e.,  ! = !M !!M"1 !…!! 2 !!1 . This decomposition of !  is not 
unique, but the number sgn! = ("1)M , the sign of the permutation ! , is in-
dependent of the choice of the decomposition. If sgn! = 1  (resp. 
sgn! = "1), the permutation !  is called even (resp. odd). The function 
 Sk !! " sgn! " {1,#1}  is sometimes called the sign function. As an imme-
diate consequence of the definition, we have  

(1)  sgn(! "# ) = sgn! "sgn#  

for all permutations  ! ," ! Sr .  
 The sign function ! " sgn!  can be considered as a function on the set 
of distinct n-tuples  (i1,i2 ,…,in )  of integers, such that  1! i1,i2 ,…,in ! n . We 
define the Levi-Civita, or permutation symbol 

 
! i1i2…in

 setting 
 
! i1i2…in

= 1  if the 
n-tuple  (i1,i2 ,…,in )  is an even permutation of  (1,2,…,n) , 

 
! i1i2…in

= "1  if 
 (i1,i2 ,…,in )  is an odd permutation of  (1,2,…,n) , and 

 
! i1i2…in

= 0  whenever at 
least two of the indices coincide. Clearly,  

(2)  
  
! i1i2…in

= sgn" #$ i" (1)
1 $ i" (2 )

2 …$ i" (n )
n

"!Sn
% .  

Sometimes it is convenient to express this formula in a different form, with-
out explicit mentioning the permutations ! . To this purpose we introduce 
the alternation operation in the indices  (i1,i2 ,…,in ) , denoted  Alt(i1i2…in ) , 
by the formula  

(3)  
  

1
n!

sgn! "# i! (1)
1 # i! (2 )

2 …# i! (n )
n

!!Sn
$ = # i1

1# i2
2…# in

n Alt(i1i2…in ).
 

It is understood in this formula that the operator  Alt(i1i2…in )  is applied to 
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the right-hand side expression, and replaces explicit expression on the left-
hand side. From (3) we get, in particular,  

(4)  
 
! i1i2…in

= n!" i# (1)
1 " i# (2 )

2 …" i# (n )
n Alt(i1i2…in ).  

 Formula (4) indicates that the Levi-Civita symbols 
 
! i1i2…in

 and  !
i1i2…in  

can be expressed by means of determinants. We have 

(5)  

 

! i1i2…in
=

" i1
1 " i1

2 … " i1
n

" i2
1 " i2

2 … " i2
n

…
" in
1 " in

2 … " in
n

, ! i1i2…in =

"1
i1 "1

i2 … "1
in

" 2
i1 " 2

i2 … " 2
in

…
" n
i1 " n

i2 … " n
in

.  

 Clearly, multiplying these determinants, we get  

(6)  

 

! i1i2…in
! j1 j2… jn =

" i1
1 " i1

2 … " i1
n

" i2
1 " i2

2 … " i2
n

…
" in
1 " in

2 … " in
n

"1
j1 "1

j2 … "1
jn

" 2
j1 " 2

j2 … " 2
jn

…
" n

j1 " n
j2 … " n

jn

=

" i1
j1 " i1

j2 … " i1
jn

" i2
j1 " i2

j2 … " i2
jn

…
" in

j1 " in
j2 … " in

jn

= n!" i1
j1" i2

j2…" in
jn Alt(i1i2…in ).

 

 Lemma 1  (a) For every k such that 1! k ! n ,  

(7)  
 
! i1i2…iksk+1sk+2…sn

! j1 j2… jksk+1sk+2…sn = k!(n " k)!# i1
j1# i2

j2…# ik
jk Alt(i1i2…ik ).  

 (b) For every k such that 0 ! k ! s ! n ,  

(8)  

 

1
s! n!s

n!k( )" j1 j2… jk jk+1 jk+2… jsis+1is+2…in
# ik+1
lk+1# ik+2

lk+2…# is
ls Alt(ik+1ik+2…isis+1is+2…in )

= 1
k!(s!k)!

# jk+1
lk+1# jk+2

lk+2 …# js
ls" j1 j2… jkik+1ik+2…isis+1is+2…in

Alt( j1 j2… jk jk+1 jk+2… js ).

 

 Proof  1. Setting  
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(9)  
 
!i1i2…il

j1 j2… jl = " i1
j1" i2

j2…" il
jl Alt(i1i2…il ),  

we have  

(10)  

 

!i1i2…il
j1 j2… jl = " i1

j1" i2
j2…" il#1

jl#1" il
jl Alt(i1i2…il#1) Alt(i1i2…il )

= !i1i2…il#1
j1 j2… jl#1" il

jl Alt(i1i2…il )

= 1
l
(!i1i2…il#1

j1 j2… jl#1" il
jl # !ili2i3…il#1

j1 j2… jl#1" i1
jl # !i1ili3i4…il#1

j1 j2… jl#1 " i2
jl

#…# !i1i2…il#3ilil#1
j1 j2… jl#1 " il#2

jl # !i1i2…il#3il#2il
j1 j2… jl#1 " il#1

jl ).

 

Note that contracting this expression we obtain  

(11)  
 
!i1i2…il"1s
i1i2…il"1s = n"l+1

l
!i1i2…il"1
i1i2…il"1 .  

Now formula (6) can be written in the form  

(12)  
 
! i1i2…in

! j1 j2… jn = n!"i1i2…in
j1 j2… jn .  

Contracting (12) in one pair of indices, we get  

(13)  
 
! i1i2…in"1s

! j1 j2… jn"1s = n!#i1i2…in"1s
j1 j2… jn"1s = (n "1)!1!#i1i2…in"1

j1 j2… jn"1 ,  

proving (7) for k = 1 . After n ! k  contractions we obtain  

(14)  
 
!i1i2…iksk+1sk+2…sn

j1 j2… jksk+1sk+2…sn = 1
(n"n+k)!

!i1i2…ik
j1 j2… jk = 1

k!
!i1i2…ik

j1 j2… jk ,
 

which leads to (7). 
 2. To prove formula (8), consider the tensors  

(15)  
 

n!s
n!k( ) 1

s!
" j1 j2… jk jk+1 jk+2… jsis+1is+2…in

# ik+1
lk+1# ik+2

lk+2…# is
ls

Alt(ik+1ik+2…isis+1is+2…in )
 

and  

(16)  

 

1
k!(s!k)!

" j1 j2… jkik+1ik+2…isis+1is+2…in
# jk+1
lk+1# jk+2

lk+2 …# js
ls

Alt( j1 j2… jk jk+1 jk+2… js ).
 

Suppose that the component (15) is different from 0. Then  
 (a) the set  {ik+1,ik+2 ,…,is ,is+1,is+2 ,…,in}  consists of distinct elements,  
 (b) the set  { j1, j2 ,…, jk , jk+1, jk+2 ,…, js}  consists of distinct elements,  
 (c) the set  {lk+1,lk+2 ,…,ls}  satisfies  



Appendix 
 

303 

(17)  
  

{ik+1,ik+2 ,…,is ,is+1,is+2 ,…,in}!{ j1, j2 ,…, jk , jk+1, jk+2 ,…, js}
= {lk+1,lk+2 ,…,ls}.

  

Take jk+1 = lk+1 , jk+2 = lk+2 ,  … , js = ls . Then (15) reduces to  

(18)  
 

n!s
n!k( ) 1

s!
" j1 j2… jklk+1lk+2…s is+1is+2…in

# ik+1
lk+1# ik+2

lk+2…# is
ls

Alt(ik+1ik+2…isis+1is+2…in ).
 

There exist exactly one (s ! k) -tuple in the set  ik+1,ik+2 ,…,is ,is+1,is+2 ,…,in , 
say  ik+1,ik+2 ,…,is  such that 

 
! ik+1
lk+1! ik+2

lk+2…! is
ls = 1 . Then  

(19)   ik+1 = jk+1 = lk+1, ik+2 = jk+2 = lk+2 , …, is = js = ls ,  

and (19) gives the expression  

(20)  
 

(n!s)!
(n!k)! n!s

n!k( ) 1
s!
" j1 j2… jklk+1lk+2…s is+1is+2…in

= 1
s!(s!k)!

" j1 j2… jklk+1lk+2…s is+1is+2…in
.  

Compute now (16) for the same indices, satisfying conditions (20). We get  

(21)  

 

1
k!(s!k)!

k!
s!
" jk+1
lk+1" jk+2

lk+2 …" js
ls# j1 j2… jklk+1lk+2…lsis+1is+2…in

= 1
s!(s!k)!

# j1 j2… jklk+1lk+2…lsis+1is+2…in
.

 

This shows that if the component (15) is different from 0, then also the com-
ponent (16) is different from 0, and is equal to (15).  
 Conversely, if (16) is different from 0, then  

(22)  

 

1
k!(s!k)!

" jk+1
lk+1" jk+2

lk+2 …" js
ls# j1 j2… jkik+1ik+2…isis+1is+2…in

Alt( j1 j2… jk jk+1 jk+2… js ),
 

we obtain again conditions (a), (b), and (c).  

 Corollary 1  If k = n , (7) coincides with (6). If k = 0 , we have  

(23)  
 
! s1s2…sn

! s1s2…sn = n!.  

 Corollary 2 (Bases of forms)  Let X be an n-dimensional smooth mani-
fold, and let (U,! ) , ! = (xi ) , be a chart on X. Then the forms  

(24)  
  
! 0 =

1
n!
" i1i2…in

dxi1 !dxi2 !…!dxin ,  
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(24)  

  

! k1k2…kp
= 1
(n" p)!

# k1k2…kp"1kpip+1ip+2…in
dxip+1 !dxip+2 !…!dxin ,

1$ p $ n "1,
 

define bases of n-forms, (n !1) -forms, … , 2-forms, and 1-forms, respective-
ly. The inverse transformation formulas are  

(25)  

  

! l1l2…ln" 0 = dx
l1 !dxl2 !…!dxln ,

! k1k2…kplp+1lp+2…ln" k1k2…kp
= dxlp+1 !dxlp+2 !…!dxln ,

1# p # n

 

 Proof  Immediate: The forms (24) are defined by  

(26)  
  

! 0 = dx
1!dx2 !…!dxn , ! k1

= i! /!xk1! 0 , ! k1k2
= i! /!xk2! k1

,
…, ! k1k2…kp

= i
! /!xkp

! k1k2…kp"1
, …, ! k1k2…kn"1

= i! /!xkn"1! k1k2…kn"2
,
 

and are linearly independent.  

9  The trace decomposition  

 This appendix is devoted to specific algebraic methods, used in the de-
composition theory of differential forms on jet manifolds. We present ele-
mentary trace decomposition formulas and and their proofs (Krupka [K15]).  
 Beside the usual index notation we also use multi-indices of the form 
 I = (i1i2…ik ) , where r and n are positive integers,  k = 0,1,2,…,r , and 
 1! i1,i2 ,…,ik ! n . The number k is called the length of I and is denoted by 
| I | . For any index j, such that 1! j ! n  we denote by Ij  the multi-index 
 (i1i2…ik j) . The symbol  Alt(i1i2…ik )  (resp.  Sym(i1i2…ik ) ) denotes alterna-
tion (resp. symmetrisation) in the indices i1 , i2 ,  … , ik .   Let E be an n-dimensional vector space, E *  its dual vector space, and 
let r and s be two non-negative integers; suppose that at least one of these 
integers is non-zero. Then by a tensor of type (r,s)  over E we mean a multi-
linear mapping  U :E *!E *!…! E *!E ! E !…! E" R  (r factors E * , s 
factors E); r (resp. s) is called the contravariant (resp. covariant) degree of 
U. A tensor of type (r,0)  (resp. (0,s) ) is called contravariant (covariant) of 
degree r (resp. s). The set of tensors of type (r,s)  considered with its natural 
real vector space structure, is called the tensor space of type (r,s)  over E, 
and is denoted by Ts

rE .  
 Let ei  be a basis of the vector space E, ei  the dual basis of E * . The 
tensors 

  
e j1!e j2!…!e jr!e

i1!ei2!…!eis ,  1! j1, j2 ,…, jr ,i1,i2 ,…,is ! n , 
form a basis of the vector space Ts

rE . Each tensor  U !Ts
rE  has a unique 

expression  
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(1)  
  
U =U j1 j2… jr

i1i2…is
e j1!e j2!…!e jr!e

i1!ei2!…!eis ,  

where the numbers 
 
Ui1i2…ir

i1i2…is
 are the components of U in the basis ei .  

 Remark 1  If a basis of the vector space E is fixed, it is sometimes con-
venient to denote the tensors simply by their components; in this case a ten-
sor U of type (r,s)  over E is usually written as  

(2)  
 
U =U j1 j2… jr

i1i2…is
.  

 Remark 2  The canonical basis of the vector space E = Rn  consists of 
the vectors  e1 = (1,0,0,…,0) ,  e2 = (0,1,0,0,…,0) ,  … ,  en = (0,0,…,0,1) . 
The basis of the tensor space Ts

rRn , associated with   (e1,e2,…,en )  is also 
called canonical. A tensor  U !Ts

rRn  can be expressed either by formula (1) 
or by (2); these formulas define the canonical identification of the vector 
space Ts

rRn  with the vector space RN  of the collections 
 
U =U j1 j2… jr

i1i2…is
, 

where N = dimTs
rRn = nrs .  

 Remark 3  The transformation equations for the associated bases in 
Ts

rE  are easily derived from the transformation equations for bases of the 
vector space E. Suppose we have two bases ei  and ei  of E. Let ei = Ai

p e p  
and e i = Bp

i e p  be the corresponding transformation equations. Then  

(3)  Ai
qBp

i = ! p
q ,  

where ! q
p  is the Kronecker symbol, ! p

p = 1  and ! q
p = 0  if p ! q , and  

(4)  
  

e j1! e j2!…! e jr! e
i1! e i2!…! e is

= Aj1
p1Aj2

p2…Ajr
pr Bq1

i1Bq2
i2 …Bqs

is e p1!e p2!…!e pr!e
q1!eq2!…!eqs .

 

Expressing a tensor  U !Ts
rE  as in (1), we have  

(5)  
  

U =U j1 j2… jr
i1i2…is

e j1! e j2!…! e jr! e
i1! e i2!…! e is

=U p1p2…pr
q1q2…qs

e p1!e p2!…!e pr!e
q1!eq2!…!eqs .

 

Clearly, then  

(6)  
 
U p1p2…pr

q1q2…qs
= Aj1

p1Aj2
p2…Ajr

pr Bq1
i1Bq2

i2 …Bqs
isU j1 j2… jr

i1i2…is
.  

 The Kronecker tensor over E is a (1,1) -tensor ! , defined in any basis of 
E as  

(7)  ! = ei" e
i .  
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It is immediately seen that the tensor !  does not depend on the choice of the 
basis ei . We can also write ! = ! j

i ei" e
j , where ! j

i  is the Kronecker symbol 
(Remark 3).  
 This definition can be extended to tensors of type (r,s)  for any positive 
integers r and s. Let !  and !  be integers such that 1!" ! r , 1! " ! s , and 
let ei  be a basis of E. We introduce a linear mapping !"

# :Ts$1
r$1E% Ts

rE  as 
follows. For every  V !Ts!1

r!1E ,  

(8)  
  
V =V j1 j2… jr!1

i1i2…is!1
e j1!e j2!…!e jr!1!e

i1!ei2!…!eis!1 ,  

define a tensor  !"
#V !TsrE  by  

(9)  
  
!"
#V =W j1 j2… jr

i1i2…is
e j1!e j2!…!e jr!e

i1!ei2!…!eis ,  

where  

(10)  
 
W j1 j2… j!"1 j! j!+1… jr

i1i2…i#"1i#i#+1…is
= $ i#

j!V j1 j2… j!"1 j!+1… jr
i1i2…i#"1i#+1…is

.  

Thus,  

(11)  
  

!"
#V =V j1 j2… jr$1

i1i2…is$1
e j1!e j2!…!e j#$1

!es!e j#+1
!…!e jr

!ei1!ei2!…!ei"$1!es!ei"+1!…!eis
 

(summation through s on the right-hand side). It is easily verified that this 
tensor is independent of the choice of ei .  
 The mapping !"

#  defined by formulas (9), (10) is the (! ," ) -canonical 
injection. A tensor  U !Ts

rE , belonging to the vector subspace generated by 
the subspaces 

 
!"
# (Ts$1

r$1E)!Ts
rE , where 1!" ! r  and 1! " ! s , is called a 

Kronecker tensor, or a tensor of Kronecker type.  
 A tensor  V !Ts

rE , 
 
V =V k1k2…kr

l1l2…ls
, is a Kronecker tensor if and only if 

there exist some tensors  V (q)
( p)!Ts!1r!1E , 

 
V (q)

( p)=V (q)
( p)k1k2…kr!1

l1l2…ls!1
, where the in-

dices satisfy 1! p ! r , 1! q ! s , such that 
 
V k1k2…kr

l1l2…ls
 can be expressed in 

the form 

(12)  

 

V j1 j2… jr
l1l2…ls

= ! l1
j1V (1)

(1) j2 j3… jr
l2l3…ls

+! l2
j1V (2)

(1) j2 j3… jr
l1l3…ls

+…+! ls
j1V (s )

(1) j2 j3… jr
l1l2…ls"1

+! l1
j2V (1)

(2) j1 j3… jr
l2l3…ls

+! l2
j2V (2)

(2) j1 j3… jr
l1l3…ls

+…+! ls
j2V (s )

(2) j1 j3… jr
l1l2…ls"1

+…

+! l1
jrV (1)

(r ) j1 j2… jr"1
l2l3…ls

+! l2
jrV (2)

(r ) j1 j2… jr"1
l1l3…ls

+…+! ls
jrV (s )

(r ) j1 j2… jr"1
l1l2…ls"1

.

 

 A tensor  U !Ts
rE  expressed as in (1), is said to be traceless, if its traces 

are all zero,  
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(13)  

 

Usl1l2…lr!1
sj1 j2… js!1

= 0, Ul1sl2…lr!1
sj1 j2… js!1

= 0, …, Ul1l2…lr!1s
sj1 j2… js!1

= 0,

Usl1l2…lr!1
j1sj2… js!1

= 0, Ul1sl2…lr!1
j1sj2… js!1

= 0, …, Ul1l2…lr!1s
j1sj2… js!1

= 0,
…

Usl1l2…lr!1
j1 j2… js!1s

= 0, Ul1sl2…lr!1
j1 j2… js!1s

= 0, …, Ul1l2…lr!1s
j1 j2… js!1s

= 0.

 

 To prove a theorem of the decomposition of the tensor space Ts
rE  by 

the trace operation, recall that every scalar product g on the vector space E 
induces a scalar product on Ts

rE  as follows. Let g be expressed in a basis as  

(14)  g(!," ) = gij!
i" j ,  

where ! = ! i , ! = ! i  are any vectors from E. Let  U,V !Ts
rE  be any tensors, 

 
U =U j1 j2… jr

i1i2…is
, 
 
V =V i1i2…ir

j1 j2… js
. We define a bilinear form on Ts

rE , denot-
ed by the same letter, g, by  

(15)  
 

g(U,V )
= gj1k1gj2k2…gjrkr g

i1l1gi2l2…gislsU j1 j2… jr
i1i2…is

V k1k2…kr
l1l2…ls l1l2…ls

.
 

 Lemma 1  Formula (15) defines a scalar product on the tensor space 
Ts

rE .  
 Proof  Only positive definiteness of the bilinear form (15) needs proof. 
If we choose a basis of E such that gjk = ! jk , then g(U,V ) (15) has an ex-
pression  

(16)  
 
g(U,V ) = U j1 j2… jr

l1l2…ls
V j1 j2… jr

l1l2…ls
l1,l2 ,…,ls
!

k1,k2 ,…,kr
! .  

Obviously, this is the Euclidean scalar product, which is positive definite.  

 Theorem 1 (The trace decomposition theorem)  The vector space 
Ts

rE  is the direct sum of its vector subspaces of traceless and Kronecker 
tensors.  
 Proof  We want to show that any tensor  W !Ts

rE , has a unique decom-
position of the form W =U +V , where U is traceless and V is of Kronecker 
type. To prove existence of the decomposition, consider a scalar product g 
(16) on Ts

rE . It is immediately seen that the orthogonal complement of the 
subspace of Kronecker tensors coincides with the subspace of traceless ten-
sors. Indeed, if  U !Ts

rE , 
 
U =Ui1i2…ir

j1 j2… js
, then calculating the scalar prod-

uct g(U,V )  for any tensor  V !Ts
rE , 

 
V =V k1k2…kr

l1l2…ls
, satisfying condition 

(12), the condition  

(17)  g(U,V ) = 0   

implies that U must be traceless. The uniqueness of the direct sum follows 



Global Variational Geometry 
 

308 

from the orthogonality of subspaces of traceless and Kronecker tensors in 
Ts

rE  with respect to the scalar product g.  

 Theorem 1 states that every tensor  W !Ts
rE , 

 
W =W i1i2…ir

l1l2…ls
 is ex-

pressible in the form  

(18)  

 

W i1i2…ir
l1l2…ls

=Ui1i2…ir
l1l2…ls

+! l1
i1V (1)

(1) i2i3…ir
l2l3…ls

+! l2
i1V (2)

(1) i2i3…ir
l1l3…ls

+…+! ls
i1V (s )

(1) i2i3…ir
l1l2…ls"1

+! l1
i2V (1)

(2)i1i3…ir
l2l3…ls

+! l2
i2V (2)

(2)i1i3…ir
l1l3…ls

+…+! ls
i2V (s )

(2)i1i3…ir
l1l2…ls"1

+…

+! l1
irV (1)

(r )i1i2…ir"1
l2l3…ls

+! l2
irV (2)

(r ) i1i2…ir"1
l1l3…ls

+…+! ls
krV (s )

(r )i1i2…ir"1
l1l2…ls"1

,

 

where 
 
U =Ui1i2…ir

l1l2…ls
 is a uniquely defined traceless tensor, and for every p 

and q such that 1! p ! r , 1! q ! s , the tensor 
 
V (q)

( p)=V (q)
( p)i1i2…ir!1

l1l2…ls!1
 belongs 

to the tensor space Ts!1
r!1E .  

 Remark 4  The traceless component 
 
Ui1i2…ir

l1l2…ls
 and the complementary 

Kronecker component of the tensor W in (18) are determined uniquely. 
However, this does not imply, in general, that the tensors V (q)

( p)  are unique. If 
the contravariant and covariant degrees satisfy r + s ! n +1 , then the tensors 
V(q)
( p)  may not be unique.  

 Formula (18) is called the trace decomposition formula.  
 Denote by Es

r  the vector subspace of tensors 
 
U =U j1 j2… jr

i1i2…is
 in the ten-

sor space Ts
rE , symmetric in the superscripts and skew-symmetric in the 

subscripts; sometimes these tensors are symmetric-skew-symmetric. We wish 
to find the trace decomposition formula for the tensors, belonging to the ten-
sor space Es

r . Set  

(19)  
 
trU =Ukj1 j2… jr!1

ki1i2…is!1
,  

and  

(20)  
 

qU = (r+1)(s+1)
n+r!s

" i1
j1U j2 j3… jr+1

i2i3…is+1
Alt(i1i2…is+1)

Sym( j1 j2… jr+1).
 

These formulas define two linear mappings tr :Es
r ! Es"1

r"1  and q:Es
r ! Es+1

r+1 .  

 Theorem 2  (a) Any tensor  U ! Es
r  has a decomposition  

(21)  U = trqU + q trU.  

 (b) The mappings tr  and q  satisfy  

(22)  tr trU = 0, qqU = 0.  
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 Proof  (a) Using (20) we have, with obvious notation,  

(23)  

 

qU = r+1
n+r!s

(" i1
j1U j2 j3… jr+1

i2i3…is+1
!" i2

j1U j2 j3… jr+1
i1i3i4…is+1

!" i3
j1U j2 j3… jr+1

i2i1i4i5…is+1
!…!" is+1

j1 U j2 j3… jr+1
i2i3…isi1

) Sym( j1 j2… jr+1).
 

Thus,  

(24)  

 

trqU = 1
n+r!s

(" k
kU j2 j3… jr+1

i2i3…is+1
!" i2

kU j2 j3… jr+1
ki3i4…is+1

!" i3
kU j2 j3… jr+1

i2ki4i5…is+1
!…!" is+1

k U j2 j3… jr+1
i2i3…isk

+" k
j2Ukj3 j4… jr+1

i2i3…is+1
!" i2

j2Ukj3 j4… jr+1
ki3i4…is+1

!" i3
j2Ukj3 j4… jr+1

i2ki4i5…is+1
!…!" is+1

j2Ukj3 j4… jr+1
i2i3…isk

+" k
j3U j2kj4 j5… jr+1

i2i3…is+1
!" i2

j3U j2kj4 j5… jr+1
ki3i4…is+1

!" i3
j3U j2kj4 j5… jr+1

i2ki4i5…is+1
!…!" is+1

j3U j2kj4 j5… jr+1
i2i3…isk

+…+" k
jr+1U j2 j3… jrk

i2i3…is+1
!" i2

jr+1U j2 j3… jrk
ki3i4…is+1

!" i3
jr+1U j2 j3… jrk

i2ki4i5…is+1
!…!" is+1

jr+1U j2 j3… jrk
i2i3…isk

).

 

Computing the traces we get  

(25)  

 

trqU = 1
n+r!s

(nU j2 j3… jr+1
i2i3…is+1

!U j2 j3… jr+1
i2i3i4…is+1

!U j2 j3… jr+1
i2i3i4i5…is+1

!…!U j2 j3… jr+1
i2i3…isis+1

+U j2 j3 j4… jr+1
i2i3…is+1

!" i2
j2Ukj3 j4… jr+1

ki3i4…is+1

!" i3
j2Ukj3 j4… jr+1

i2ki4i5…is+1
!…!" is+1

j2Ukj3 j4… jr+1
i2i3…isk

+U j2 j3 j4 j5… jr+1
i2i3…is+1

!" i2
j3U j2kj4 j5… jr+1

ki3i4…is+1

!" i3
j3U j2kj4 j5… jr+1

i2ki4i5…is+1
!…!" is+1

j3U j2kj4 j5… jr+1
i2i3…isk

+…+U j2 j3… jr jr+1
i2i3…is+1

!" i2
jr+1U j2 j3… jrk

ki3i4…is+1

!" i3
jr+1U j2 j3… jrk

i2ki4i5…is+1
!…!" is+1

jr+1U j2 j3… jrk
i2i3…isk

).

 

Further straightforward calculations yield  

(26)  
 

trqU =U j2 j3… jr+1
i2i3…is+1

! rs
n+r!s

" i2
j2Ukj3 j4… jr+1

ki3i4…is+1

Sym( j2 j3… jr+1) Alt(i2i3…is+1).
 

But by (19), the second term is exactly q tru , proving (21).  
 (b) Formulas (22) are immediate.  

 Formula (21) is the trace decomposition formula for tensors  U ! Es
r .  
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 The following assertion is a consequence of Theorem 2. It states, in par-
ticular, that the decomposition (21) of a tensor  U ! Es

r  is unique.  

 Theorem 3 Let  U ! Es
r . 

 (a) Equation qV + trW =U  for unknown tensors  V ! Es!1
r!1  and 

 W ! Es+1
r+1  has a unique solution such that trV = 0 , qW = 0 . This solution is 

given by V = trU , W = qU .  
 (b) Equation qX =U  has a solution  X ! Es!1

r!1  if and only if qU = 0 . If 
this condition is satisfied, then X = trU  is a solution. Any other solution is 
of the form !X = X + qY  for some tensor  Y ! Es!2

r!1 .  
 Proof  (a) If qV + trW =U , trV = 0  then V = trqV = trU  because 
tr trW = 0 ; if qW = 0 , then W = q trW = q(U ! qV ) = qU .  
 (b) If equation qX =U  has a solution U, then necessarily qU = 0 . 
Conversely, if qU = 0 , then U = q trU  and X = trU  solves equation 
qX =U . Clearly, the tensors !X = X + qY , where  Y ! Es!2

r!1  also solve this 
equation.  

 Example 1  We find the trace decomposition formula (21) for r = 1. 
Writing 

 
U =U j1

i1i2…is
, we have 

 
trU =Uk

ki1i2…is!1
 and  

(27)  
 
q trU = 1

n+1!s
(" i1

j1Uk
ki2i3…is

+" i2
j1Uk

i1ki3i4…is
+…+" is

j1Uk
i1i2…is!1k

).  

Analogously  

(28)  

 

qU = 2(s+1)
n+1!s

" i1
j1U j2

i2i3…is+1
Alt(i1i2…is+1) Sym( j1 j2 )

= 1
n+1!s

(" i1
j1U j2

i2i3…is+1
!" i2

j1U j2
i1i3i4…is+1

!…!" is+1
j1 U j2

i2i3…isi1

+" i1
j2U j1

i2i3…is+1
!" i2

j2U j1
i1i3i4…is+1

!…!" is+1
j2U j1

i2i3…isi1
)

 

hence 

(29)  

 

trqU = 1
n+1!s

(nU j2
i2i3…is+1

! (s !1)U j2
i2i3i4…is+1

! 1
n+1!s

(" i2
j2Uk

ki3i4…is+1
+" i3

j2Uk
i2ki4i5…is+1

+…+" is+1
j2Uk

i2i3…isk
)

=U j2
i2i3…is+1

! q trU.

 

Formulas (28) and (30) yield U = trqU + q trU . In particular, if r = 1 and 
s = n , then 

 
U =U j

i1i2…in
, 
 
trU =Us

si1i2…in!1
 and qU = 0 . Thus,  

(30)  
 

U = n! i1
jU s

si2i3…in
Alt(i1i2…in )

= ! i1
jU s

si2i3…in
+! i2

jU s
i1si3i4…in

+…+! in
jU s

i1i2…in"1s
.
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 Example 2  We determine decomposition (21) for r = 2  and s = n !1 , 
and find explicit expressions for the traceless and Kronecker components 
trqU  and q trU  of the tensor U. Writing 

 
U =U j1 j2

i1i2…in!1
 and using the proof 

of Theorem 2 we have 

(31)  

 

trqU =U j2 j3
i2i3…in

! 1
3
(" i2

j2Ukj3
ki3i4…in

+" i3
j2Ukj3

i2ki4i5…in
+…+" in

j2Ukj3
i2i3…in!1k

+" i2
j3U j2k

ki3i4i5…in
+" i3

j3U j2k
i2ki4i5…in

+…+" in
j3U j2k

i2i3…in!1k
)

 

and  

(32)  

 

q trU = 1
3
(! i2

j2Ukj3
ki3i4…in

+! i3
j2Ukj3

i2ki4i5…in
+…+! in

j2Ukj3
i2i3…in"1k

+! i2
j3U j2k

ki3i4i5…in
+! i3

j3U j2k
i2ki4i5…in

+…+! in
j3U j2k

i2i3…in"1k
)

= 1
3
(! i2

j2Ukj3
ki3i4…in

"! i3
j2Ukj3

ki2i4i5…in
"…"! in

j2Ukj3
ki3…in"1i2

+! i2
j3Ukj2

ki3i4i5…in
"! i3

j3Ukj2
ki2i4i5…in

"…"! in
j3Ukj2

ki3…in"1i2
)

= 2(n"1)
3

! i2
j2Ukj3

ki3i4…in
Sym( j2 j3) Alt(i2i3…in ).

 

 Let s and j be positive integers such that j ! s ! n . Consider the vector 
space of tensors 

 
X = X I1I2…I j

i j+1i j+2…is , indexed with multi-indices I1 , I2 ,  … , 
I j  of length r and indices i j+1 , i j+2 ,  … , is , such that 

 
1! i j+1,i j+2 ,…is ! n , 

symmetric in the superscripts entering each of the multi-indices, and skew-
symmetric in the subscripts. Our objective will be to solve the system of ho-
mogeneous equations 

(33)  
 

! p1
p1! p2

p2…! pj
p j X I1I2…I j

i j+1i j+2…is
= 0 Alt(p1p2…pji j+1i j+2…is )

Sym(I1p1) Sym(I2p2 ) … Sym(I j pj )
 

for an unknown tensor X. In this formula, the alternation operation is applied 
to the subscripts, and the symmetrizations to the superscripts, and then the 
summations through double indices are provided.  
 In the proof of the following theorem we want to distinguish between 
two groups of indices in the expression 

 
! i1

p1! i2
p2…! i j

p j X I1I2…I j
i j+1i j+2…is ; the indi-

ces labelling the tensor 
 
X I1I2…I j

i j+1i j+2…is  will be called interior (the comple-
mentary indices, labelling the Kronecker tensors, are called exterior).  

 Theorem 4 Let q and j be positive integers such that 1! j ! s ! n . Let 

 
X = X I1I2…I j

i j+1i j+2…iq  be a tensor, indexed with multi-indices I1 , I2 ,  … , I j  of 
length r and indices i j+1 , i j+2 ,  … , is , such that 

 
1! i j+1,i j+2 ,…,is ! n , sym-

metric in the superscripts entering each of the multi-indices, and skew-
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symmetric in the subscripts. Then X  satisfies equation (33) if and only if it 
is a Kronecker tensor.  
 Proof  1. Suppose we have a tensor 

 
X = X I1I2…I j

i j+1i j+2…is , satisfying equa-
tions (34). We want to show that X is a Kronecker tensor. Consider a fixed 
component 

 
X I1I2…I j

i j+1i j+2…is . Choose p1 , p2 ,  … , pj  and i1 , i2 ,  … , i j  such 
that the s-tuples 

 
(p1, p2 ,…, pj ,i j+1,i j+2 ,…,is )  and 

 
(i1,i2 ,…,i j ,i j+1,i j+2 ,…,is )  

consist of mutually different indices, and consider expression  

(34)  
 

! i1
p1! i2

p2…! i j
p j X I1I2…I j

i j+1i j+2…is
Alt(i1i2…i ji j+1…is )

Sym(I1p1) Sym(I2p2 ) … Sym(I j pj ).
 

The summations in (34) are defined by the alternation 
 
Alt(i1i2…i ji j+1…is )  

and the symmetrizations Sym(I1p1) , Sym(I2p2 ) ,  … , Sym(I j pj ) . We divide 
the summands in four groups according to the positions of the indices p1 , 
p2 ,  … , pj  and i1 , i2 ,  … , i j . 

 (a) None of the indices p1 , p2 ,  … , pj  and i1 , i2 ,  … , i j  is interior.  
 (b) None of the indices p1 , p2 ,  … , pj  is interior, at least one of the 
indices i1 , i2 ,  … , i j  is interior.  
 (c) At least one of the indices p1 , p2 ,  … , pj  is interior, none of the 
indices i1 , i2 ,  … , i j  is interior. 
 (d) At least one of the indices p1 , p2 ,  … , pj  is interior, and at least 
one of the indices i1 , i2 ,  … , i j  is interior. 
 Equation (34) involves expressions (34) such that i1 = p1 , i2 = p2 ,  … , 
iq = pq . For this choice of indices the terms (a) become  

(35)  
 

! p1
p1! p2

p2…! pq
pq X I1I2…Iq

iq+1iq+2…is
Alt(p1p2…pqiq+1iq+2…is )

Sym(I1p1) Sym(I2p2 ) … Sym(Iq pq )
 

(no summation through p1 , p2 ,  … , pq ). Expressions (b) and (c) vanish 
identically because the indices 

 
(i1,i2 ,…,iq ,iq+1,iq+2 ,…,is )  are mutually differ-

ent and 
 
X I1I2…Iq

iq+1iq+2…is  is skew-symmetric in the subscripts. The terms in (d) 
are of Kronecker type, each summand is a multiple of the Kronecker symbol 
!"

# , where 
   
! ! {p1, p2 ,…, pq}  and 

   ! !{iq+1iq+2…is} . 
 Thus, (34) is the sum of the terms (a) and (d). But the left-hand side of 
equation (33) is determined from (34) by the trace operation in i1 = p1 , 
i2 = p2 ,  … , iq = pq . The terms entering (a) lead to an expression of the form 
cX , where c is a non-zero constant, namely to the expression  

(36)  

 

j!
s!((r+1)!)q

! p1
p1! p2

p2…! pj
p j X I1I2…I j

i j+1i j+2…is
Alt(p1p2…pj )

= 1
s!((r+1)!) j

det! pl
pi "X I1I2…I j

i j+1i j+2…is
.

 

Since the contraction of the terms (d) in i1 = p1 , i2 = p2 ,  … , iq = pq  does 
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not influence the factors !"
# , (d) leads to a Kronecker tensor.  

 Corollary 1  Assume that in addition to the assumptions of Theorem 4, 
the tensor 

 
X = X I1I2…I j

i j+1i j+2…is  is traceless. Then  

(37)  
 
X I1I2…I j

i j+1i j+2…is
= 0.  

 Proof  This follows from Theorem 4, and from the orthogonality of 
traceless and Kronecker tensors.  

 Example 3  For tensors of lower degrees equations (33) can be solved 
directly by means of the decomposition of the unknown tensor X. Consider 
for example the system  

(38)  ! p1
p1! p2

p2Xi1i2
i3
= 0 Alt(p1p2i3) Sym(i1p1) Sym(i2p2 )  

for a traceless tensor X = Xi1i2
k . The decomposition of the left-hand side is 

(39)  

! p1
p1! p2

p2Xi1i2
i3
+! p1

i1! p2
p2X p1i2

i3
+! p1

p1! p2
i2 Xi1p2

i3
+! p1

i1! p2
i2 X p1p2

i3

"! p2
p1! p1

p2Xi1i2
i3
"! p2

i1 ! p1
p2X p1i2

i3
"! p2

p1! p1
i2 Xi1p2

i3
"! p2

i1 ! p1
i2 X p1p2

i3

"! i3
p1! p2

p2Xi1i2
p1
"! i3

i1! p2
p2X p1i2

p1
"! i3

p1! p2
i2 Xi1p2

p1
"! i3

i1! p2
i2 X p1p2

p1

+! p2
p1! i3

p2Xi1i2
p1
+! p2

i1 ! i3
p2X p1i2

p1
+! p2

p1! i3
i2Xi1p2

p1
+! p2

i1 ! i3
i2X p1p2

p1

"! p1
p1! i3

p2Xi1i2
p2
"! p1

i1! i3
p2X p1i2

p2
"! p1

p1! i3
i2Xi1p2

p2
"! p1

i1! i3
i2X p1p2

p2

+! i3
p1! p1

p2Xi1i2
p2
+! i3

i1! p1
p2X p1i2

p2
+! i3

p1! p1
i2 Xi1p2

p2
+! i3

i1! p1
i2 X p1p2

p2
.

 

Contraction in p1  and p2  gives the expression  

(40)  

n2Xi1i2
i3
+ nXi1i2

i3
+ nXi1i2

i3
+ Xi1i2

i3
! nXi1i2

i3

! Xi1i2
i3
! Xi1i2

i3
! Xi2i1

i3
! Xi1i2

i3
! Xi1i2

i3

+ Xi1i2
i3
! nXi1i2

i3
! Xi1i2

i3
+ Xi1i2

i3

= (n2 ! 2)Xi1i2
i3
! Xi2i1

i3
.

 

Since this expression should vanish, we get (n2 ! 2)Xi1i2
i3
! Xi2i1

i3
= 0  which 

is only possible when Xi1i2
i3
= 0 .  

10  Bases of forms 

 We summarize for reference some useful formulas for the bases of dif-
ferential forms on an n-dimensional manifold X. 
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 Lemma 1 (Bases of forms)  Let X be an n-dimensional smooth mani-
fold, and let (U,! ) , ! = (xi ) , be a chart on X. Then the forms  

(1)  
  
! 0 =

1
n!
" i1i2…in

dxi1 !dxi2 !…!dxin  

and  

(2)  

  

! k1k2…kp
= 1
(n" p)!

# k1k2…kpip+1ip+2…in
dxip+1 !dxip+2 !…!dxin ,

1$ p $ n "1,
 

define bases of n-forms and (n ! p) -forms on U. The transformation formu-
las to the canonical bases are  

(3)  
  
! k1k2…kplp+1lp+2…ln" k1k2…kp

= dxlp+1 !dxlp+2 !…!dxln .  

 Proof  See Appendix 8.  

 The Jacobian determinant of a transformation  x
p = x p (x1, x2 ,…, xn ) , 

det(!x p / !x p ) , has the following basic properties:  

 Lemma 2 (Jacobians) (a) The local volume forms on X are on intersec-
tions of the charts are related by the formula 

(4)  ! 0 = det
!x p

!x p
"
#$

%
&'
! 0 .  

 (b) The derivative of the Jacobian satisfies  

(5)  !
!x m

det !x
r

!x s
!
"#

$
%&
= det !x

r

!x s
!
"#

$
%&
' !2 x p

!x m !x q
!x q

!x p
.  

 (c) The (n !1) -forms ! k  and ! i  obey the transformation formulas  

(6)  ! i =
!xk

!x i
det !x

r

!xs
"! k .  

 Proof  (b) To verify formula (5), consider any regular matrix a and its 
inverse a!1 , 
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(7)  a =

a1
1 a2

1 an
1

a1
2 a2

2 an
2

a1
n a2

n an
n

!

"

#
#
#
#
#

$

%

&
&
&
&
&

, a'1 =

b1
1 b2

1 bn
1

b1
2 b2

2 bn
2

b1
n b2

n b2
n

!

"

#
#
#
#
#

$

%

&
&
&
&
&

,  

and compute the derivative !deta / !aq
p . Multilinearity and the Laplace de-

composition with respect to the s-th row of the determinant of a yields 
 deta = a1

sA1
s + a2

sA2
s +…+ an

sAn
s , where with algebraic complements Ak

s . Thus 

(8)  !deta
!aq

p = Aq
p .  

But a is regular, so the inverse matrix satisfies  

(9)  

 

b1
1 b2

1 … bn
1

b1
2 b2

2 … bn
2

…
b1
n b2

n … bn
n

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

A1
1

deta
A1
2

deta
…

A1
n

deta
A2
1

deta
A2
2

deta
…

A2
n

deta
…
An
1

deta
An
2

deta
…

An
n

deta

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

,  

hence Aq
p = deta !bp

q  and we conclude that  

(10)  !deta
!aq

p = deta !bp
q .  

Now substituting  

(11)  as
r = !x

r

!x s
, bs

r = !x
r

!xs
,  

we get  

(12)  !
!x m

det !x
r

!x s
!
"#

$
%&
= !deta

!aq
p

!aq
p

!x mp,q
' = det !x

r

!x s
!
"#

$
%&
( !2 x p

!x m !x q
!x q

!x p
.  

 (c) Using the transformation properties of the forms ! 0  and ! 0  (for-
mula (4),  

(13)  ! i = i! /!x i! 0 =
!xk

!x i
det !x
!x

" i! /!xk! 0 =
!xk

!x i
det !x
!x

"! k .  
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 Remark (Different bases)  Sometimes it is convenient to consider ba-
ses of forms, differening from the forms (2) by a constant factor. If we set  

(14)  
  
! k1k2…kp

= 1
p!(n" p)!

# k1k2…kpip+1ip+2…in
dxip+1 !dxip+2 !…!dxin .  

then for example  

(15)  

  

dxl !! k1k2
= 1
2!(n"2)!

# k1k2i3i4…in
dxl !dxi3 !dxi4 !…!dxin ,

=
1

2!(n"2)!
# k1k2i3i4…in

# pli3i4…in! p =
2!(n"2)!
2!(n"2)!

1
2
($ k1

p1$ k2
l "$ k2

p1$ k1
l )! p1

= 1
2
($ k2

l ! k1
"$ k1

l ! k2
),

 

 etc. (cf. Appendix 8).  
 
 
 
 
 


