
1  Jet prolongations of fibred manifolds 

 
 
 
 
 
 This chapter introduces fibred manifolds and their jet prolongations. 
First we recall properties of differentiable mappings of constant rank and 
introduce, with the help of rank, the notion of a fibred manifold. Then we 
define automorphisms of fibred manifolds as the mappings preserving 
their fibred structure. The r-jets of sections of a fibred manifold Y, with a 
fixed positive integer r, constitute a new fibred manifold, the r-jet prolon-
gation J rY  of Y; we describe the structure of J rY  and a canonical con-
struction of automorphisms of J rY  from automorphisms of the fibred 
manifold Y, the r-jet prolongation. The prolongation procedure immedi-
ately extends, via flows, to vector fields. For this background material we 
refer to Krupka [K17], Lee [L] and Saunders [S]).  
 These concepts are prerequisites for the geometric definition of varia-
tions of sections of a fibred manifold, extending the corresponding notion 
used in the classical multiple-integral variational theory on Euclidean 
spaces to smooth fibred manifolds.  

1.1  The rank theorem  

 Recall that the rank of a linear mapping u :E! F  of vector spaces is 
defined to be the dimension of its image space, ranku = dimImu . This defi-
nition applies to tangent mappings of differentiable mappings of smooth 
manifolds. Let f :X!Y  be a Cr mapping of smooth manifolds, where 
r !1 . We define the rank of f at a point  x! X  to be the rank of the tangent 
mapping Tx f :TxX! Tf (x )Y . We denote  

(1)  rank x f = dimImTx f .  

The function x! rank x f , defined on X, is the rank function.  
 Elementary examples of real-valued functions f of one real variable 
show that the rank function is not, in general, locally constant. Our main ob-
jective in this section is to study differentiable mappings whose rank func-
tion is locally constant.  
 First we prove a manifold version of the constant rank theorem, a fun-
damental tool for a classification of differentiable mappings. The proof is 
based on the rank theorem in Euclidean spaces (see Appendix 3) and a 
standard use of charts on a smooth manifold.  
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 Theorem 1 (Rank theorem)  Let X and Y be two manifolds, n = dim X , 
m = dimY , and let q be a positive integer such that q !min(n,m) . Let 
 W ! X  be an open set, and let f :W !Y  be a Cr mapping. The following 
conditions are equivalent: 
 (1) f has constant rank on W equal to q.  
 (2) To every point  x0 !W  there exist a chart (U,! ) , ! = (xi )  at x0 , 
an open rectangle  P!R

n  with centre 0 such that !(U ) = P , !(x0 ) = 0 , a 
chart (V ,! ) , ! = (y" ) , at y0 = f (x0 ) , such that  f (U )!V , and an open 
rectangle  Q!R

m  with centre 0 such that ! (V ) =Q , ! (y0 ) = 0 , and  

(2)  
 

y! ! f =
x! , ! = 1,2,…,q,
0, ! = q +1,q + 2,…,m.

"
#
$

%$
 

 Proof  1. Suppose that f has constant rank on W equal to q. We choose a 
chart (U,! ) , ! = (x i ) , at x0 , and a chart (V ,! ) , ! = (y" ) , at y0 , and set 
g =! f" #1 ; g is a Cr mapping from  ! (U )!R

n  into  ! (V )!R
m . Since for 

every tangent vector  ! !TxX  expressed as  

(3)  ! = ! i !
!xi

"
#

$
% x
,  

we have  

(4)  Tx f !" = Di (y
# f$ %1)($ (x))" i !

!y#
&
'(

)
*+ f (x )

,  

the rank of f at x is rankTx f = rankDi (y
! f" #1)(" (x)) . Consequently, the 

rank of f is constant on the open set  ! (U )!R
n , and is equal to q. Shrinking 

U  to a neighbourhood U of x0  and V  to a neighbourhood V of y0  if neces-
sary we may suppose that there exist an open rectangle  P!R

n  with centre 
0, a diffeomorphism ! :" (U )# P , an open rectangle  Q!R

m  with centre 
0, and a diffeomorphism ! :" (V )#Q , such that in the canonical coordi-
nates zi  on P and w!  on Q,  !g"

#1(z1,z2 ,…,zn ) = (z1,z2 ,…,zq ,0,0,…,0) . 
We set ! ="! , ! = (xi ) , and ! = "! , ! = (y" ) . Then (U,! )  and (V ,! )  
are charts on the manifolds X and Y respectively. In these charts, the map-
ping ! f"#1  can be expressed as ! f"#1 = $! f" #1% #1 = $g% #1 ; thus, for 
every point  x!U   

(5)  

 

! f (x) =! f"#1"(x) = $g% #1"(x)
= $g% #1(x1(x), x2 (x),…, xn (x))
= (x1(x), x2 (x),…, xq (x),0,0,…,0).

 

In components,  



1.  Jet prolongations of fibred manifolds 
 

3 

(6)  
 

y! ! f (x) =
x! (x), ! = 1,2,…,q,
0, ! = q +1,q + 2,…,m,

"
#
$

%$
 

proving (2).  
 2. Conversely, suppose that on a neighbourhood of  x0 !W  the mapping 
f is expressed by (2). Then rankTx0 f = rankDi (y

! f"#1)("(x0 )) = q .  

 Let f :X!Y  be a Cr mapping, and let  x0 ! X  be a point. We say that 
f is a constant rank mapping at x0 , if there exists a neighbourhood W of x0  
such that the rank function x! rank x f  is constant on W. Then the charts 
(U,! )  and (V ,! )  in which the mapping f has an expression (2), are said to 
be adapted to f at x0 , or just f-adapted. A Cr mapping f that is a constant 
rank mapping at every point is called a Cr mapping of locally constant rank.  
 A Cr mapping f :W !Y  such that the tangent mapping Tx0 f  is injec-
tive is called an immersion at x0 . From the definition of the rank it is imme-
diate that f is an immersion at x0  if and only if rank x0 f = n ! m . If f is an 
immersion at every point of the set W, we say that f is an immersion.  
 From the rank theorem we get the following criterion.  

 Theorem 2 (Immersions)  Let X and Y be two manifolds, n = dim X , 
m = dimY ! n . Let f :X!Y  be a Cr mapping,  x0 ! X  a point, and let 
y0 = f (x0 ) . The following two conditions are equivalent: 
 (1) f is an immersion at x0 .  
 (2) There exist a chart (U,! ) , ! = (xi )  at x0 , an open rectangle 
 P!R

n  with centre 0 such that !(U ) = P  and !(x0 ) = 0 , a chart (V ,! ) , 
! = (y" )  at y0 = f (x0 ) , and an open rectangle  Q!R

m  with centre 0 such 
that ! (V ) =Q  and ! (y0 ) = 0 , such that in these charts f is expressed by  

(7)  
 

y! ! f =
x! , ! = 1,2,…,n,
0, ! = n +1,n + 2,…,m.

"
#
$

%$
 

 Proof  The matrix of the linear operator Tx0 f  in some charts (U,! ) , 
! = (xi ) , at x0  and (V ,! ) , ! = (y" ) , at y0  is formed by partial derivatives 
Di (y

! f"#1)("(x0 )) , and is of dimension n !m . If rankTx0 f = n  at x0 , then 
rankTx f = n  on a neighbourhood of x0 , by continuity of the determinant 
function. Equivalence of conditions (1) and (2) is now an immediate conse-
quence of Theorem 1.  
 Let f :X!Y  be an immersion, let  x0 ! X  be a point, and let (U,! )  
and (V ,! )  be the charts from Theorem 2, (2). Shrinking P and Q if neces-
sary we may suppose without loss of generality that the rectangle Q is of the 
form Q = P ! R , where R is an open rectangle in Rm!n . Then the chart ex-
pression ! f"#1 :P$ P % R  of the immersion f in these charts is the map-
ping  (x

1, x2 ,…, xn )! (x1, x2 ,…, xn ,0,0,…,0) . The charts (U,! ) , (V ,! )  with 
these properties are said to be adapted to the immersion f at x0 .  
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 Example 1 (Sections)  Let s ! r , let f :X!Y  be a surjective mapping 
of smooth manifolds. By a Cr section, or simply a section of f we mean a 
Cr mapping ! :Y " X  such that  

(8)   f !! = idY .  

Every section is an immersion. Indeed, 
 
T! (y) f !Ty! = idTyY  at any point 

 y!Y . Thus, for any two tangent vectors  !1,!2 !TyY  satisfying the condi-
tion Ty! "#1 = Ty! "#2 , we have 

 
T! (y) f !Ty! "#1 = T! (y) f !Ty! "#2 . From this 

condition we conclude that !1 = !2 .  
 A Cr mapping f :W !Y  such that the tangent mapping Tx0 f  is surjec-
tive, is called a submersion at x0 . From the definition of the rank it is im-
mediate that f is a submersion at x0  if and only if rank x0 = m ! n . A sub-
mersion f :W !Y  is a Cr mapping that is a submersion at every point 
 x!W . 

 Theorem 3 (Submersions)  Let X and Y be manifolds, let n = dim X , 
m = dimY . Let f :X!Y  be a Cr mapping, x0  a point of X, y0 = f (x0 ) . 
The following conditions are equivalent: 
 (1) f is a submersion at x0 . 
 (2) There exist a chart (U,! ) , ! = (xi ) , at x0 , an open rectangle 
 P!R

n  with centre 0 such that !(U ) = P , !(x0 ) = 0 , a chart (V ,! ) , 
! = (y" ) , at y0 = f (x0 ) , and an open rectangle  Q!R

m  with centre 0 such 
that ! (V ) =Q , ! (y0 ) = 0 , such that  
(9)   y

! ! f = x! , ! = 1,2,…,m.  

 (3) There exist a neighbourhood V of y0  and a Cr section ! :V "Y  
such that ! (y0 ) = x0 .  
 Proof  1. Suppose that f is a submersion at x0 . Then rankTx f = m  on a 
neighbourhood of x0 , and equivalence of conditions (1) and (2) follows 
from Theorem 1.  
 2. Suppose that condition (2) is satisfied. Consider the chart expression 
! f"#1 :P$Q  of the submersion f that is equal to the Cartesian projection 
 (x

1, x2 ,…, xm , xm+1, xm+1,…, xn )! (x1, x2 ,…, xm ) . ! f"#1  admits a Cr section 
! . Since 

 
! f"#1 !$ = idQ  hence  f!

"1 !# =$ "1 . Setting ! ="#1$%  we have 
f! = f"#1$% =% #1% = idV  proving that !  is a section of f. This proves (3). 

 3. If f admits a Cr section !  defined on a neighbourhood V of a point y, 
then  f !! = idV  and 

 
Ty ( f !! ) = Tx f !Ty! = Ty idV = idTyY , where x = ! (y) . 

Thus Tx0 f  must be surjective, proving (1).  

 Let f be a Cr submersion,  x0 ! X  a point, and let (U,! )  and (V ,! )  be 
the charts from Theorem 3, (2). Shrinking P and Q if necessary we may sup-
pose that the rectangle P is of the form P =Q ! R , where R is an open rec-
tangle in Rn!m . Then the chart expression (9) of the submersion f is the 
mapping  (x

1, x2 ,…, xm , xm+1, xm+1,…, xn )! (x1, x2 ,…, xm ) . The charts (U,! ) , 
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(V ,! )  with these properties are said to be adapted to the submersion f at x0 . 

 Corollary 1  A submersion is an open mapping.  
 Proof  In adapted charts, a submersion is expressed as a Cartesian pro-
jection that is an open mapping. Corollary 1 now follows from the definition 
of the manifold topology in which the charts are homeomorphisms.  

 Corollary 2  Let f :X!Y  be a submersion, (U,! )  a chart on X and 
(V ,! )  a chart on Y. If (U,! )  and (V ,! )  are adapted to f at a point  x0 ! X , 
and V = f (U ) , then the chart (V ,! )  is uniquely determined by (U,! ) .  
 Proof  This is an immediate consequence of the definition of adapted 
charts and of Corollary 1.  

 Example 2 (Cartesian projections)  Cartesian projections of the Carte-
sian product of C! manifolds X and Y, pr1 :X !Y " X  and pr2 :X !Y "Y , 
are C! submersions. Indeed, let us verify for instance the rank condition for 
the projection pr1 . If  (x, y)! X !Y  is a point and (U,! ) , ! = (xi )  (resp. 
(V ,! ) , ! = (y" ) ) is a chart at x (resp. y), we have on the chart neighbour-
hood  U !V ! X !Y ,  (x, y) =!

"1! (x, y) =! "1(x1, x2 ,…, xn , y1, y2 ,…, ym )  and 
 pr1(x, y) = x =!

"1!(x) =!"1(x1, x2 ,…, xn ) . Then for all vectors  ! !TxX  and 

 ! !TyY , expressed as  

(10)  ! = ! i !
!xi

"
#

$
% x
, & = & i !

!xi
"
#

$
% y
,  

equations of the projection pr1  yield  

(11)  
 
T(x,y) pr1!(",# ) =

!(xi !pr1)
!xk

" k !
!xi

+ !(x
i !pr1)
!y$

# $ !
!y$

= ".  

In particular, T(x,y) pr1  is surjective so pr1  is a surjective submersion.  

 Example 3  The tangent bundle projection is a surjective submersion. 
All tensor bundle projections are surjective submersions.  

 With the help of Corollary 1, submersions at a point can be character-
ized as follows.  

 Corollary 3  Let X and Y be manifolds, n = dim X ,m = dimY ! n . A 
Cr mapping f :X!Y  is a submersion at a point  x0 ! X  if and only if there 
exist a neighbourhood U of x0 , an open rectangle  R!R

n!m , and a dif-
feomorphism ! :U" f (U )#Rn$m  such that  pr1! ! = f .  
 Proof  1. Suppose f is a submersion at x0 , and choose some adapted 
charts (U,! ) , ! = (xi ) , at x0  and (V ,! ) , ! = (y" )  at y0 . Every point 
 x!U  has the coordinates  (x

1(x), x2 (x),…, xm (x), xm+1(x), xm+2 (x),…, xn (x)) . 
We define a mapping ! :U"Y #Rn$m  by  
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(12)   !(x) = ( f (x), x
m+1(x), xm+2 (x),…, xn (x)).  

Then  pr1! ! = f , and from Corollary 1, f (U )  is an open set in Y. It remains 
to show that !  is a diffeomorphism. We easily find the chart expression of 
the mapping !  with respect to the chart (U,! )  and the chart (V !Rn"m ,#) , 
 ! = (y1, y2 ,…ym ,t1,t 2 ,…,t n"m ) , on Y !Rn"m , where t k  are the canonical co-
ordinates on Rn!m . We have for every  x!U , y! "(x) = y! f (x) = x! (x) , 
1!" ! m , and t k!(x) = xm+k (x) , 1! k ! n "m , that is,  

(13)  
 

yi! = xi , i = 1,2,…,m,
t k! = xm+k , k = 1,2,…,n "m,

 

that is,  ! ! " =# . Thus ! ="#1$  is a diffeomorphism.  
 2. Conversely, if  pr1! ! = f , we have 

 
Tx0 f = T! (x0 )

pr1!Tx0! , and since 
!  is by hypothesis a diffeomorphism, rankTx0 f = rankT! (x0 )

pr1 . But the 
rank of the projection pr1  is m (Example 2).  

1.2  Fibred manifolds  

 By a fibred manifold structure on C! manifold Y we mean a C! mani-
fold X together with a surjective submersion ! :Y " X  of class C! . A man-
ifold Y endowed with a fibred manifold structure is called a fibred manifold 
of class C! , or just a fibred manifold. X is the base, and !  is the projection 
of the fibred manifold Y. 
 According to Section 1.1, Theorem 3 and Corollary 2, any manifold, 
endowed with a fibred manifold structure, admits the charts with some spe-
cific properties. Let Y be a fibred manifold with base X and projection ! , 
dim X = n , and dimY = n +m . By hypothesis, to every point  y!Y  there 
exists a chart at y, (V ,! ) , ! = (ui , y" ) , where 1! i ! n , 1!" ! m , with the 
following properties:  
 (a) There exists a chart (U,! ) , ! = (xi ) , at x = ! (y) , where 1! i ! n , 
in which the projection !  is expressed by the equations  x

i !! = ui .   
 (b) U = ! (V ) .  
 The chart (V ,! )  with these properties is called a fibred chart on Y. The 
chart (U,! )  is defined uniquely, and is said to be associated with (V ,! ) . 
Having in mind this correspondence, we usually write xi  instead of ui , and 
denote a fibred chart as (V ,! ) , ! = (xi , y" ) .  

 Lemma 1  Every fibred manifold has an atlas consisting of fibred 
charts.  
 Proof  An immediate consequence of the definition of a submersion.  

 A Cr section of the fibred manifold Y, defined on an open set  W ! X , is 
by definition a Cr section ! :W "Y  of its projection !  (cf. Section 1.1, 
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Example 1). In terms of a fibred chart (V ,! ) , ! = (xi , y" ) , and the associat-
ed chart (U,! ) , ! = (xi ) , such that  U !W  and  ! (U )!V , !  has equations 
of the form  

(1)   x
i !! = xi , y" !! = f " ,  

where f !  are real Cr functions, defined on U.  
 Let Y1  (resp. Y2 ) be a fibred manifold with base X1  (resp. X2 ) and pro-
jection !1  (resp. ! 2 ). A Cr mapping ! :W "Y2 , where W is an open set in 
Y1 , is called a Cr morphism of the fibred manifold Y1  into Y2 , if there exists 
a Cr mapping ! 0 :W0 " X2  where W0 = !1(W1) , such that  

(2)   ! 2 !" =" 0 !!1.  

Note that W0  is always an open set in X1  (Section 1.1, Corollary 1). If ! 0  
exists it is unique, and is called the projection of ! . We also say that !  is a 
morphism over ! 0 . A morphism of fibred manifolds ! :Y1"Y2  that is a 
diffeomorphism is called an isomorphism; the projection of an isomorphism 
of fibred manifolds is a diffeomorphism of their bases. 
 If the fibred manifolds Y1  and Y2  coincide, Y1 = Y2 = Y , then a 
morphism ! :W "Y  is also called an automorphism of Y.  
 We find the expression of a morphism of fibred manifolds in fibred 
charts. Consider a fibred chart (V1,! 1) , ! 1 = (x1

i , y1
" ) , on Y1  and a fibred 

chart (V2 ,! 2 ) , ! 2 = (x2
p , y2

" ) , on Y2  such that  ! (V1)!V2 . We have the 
commutative diagram  

(3)  
V1

!" #" V2
$ $

%1(V1)
!0" #" % 2 (V2 )

 

expressing condition (2). In terms of the charts we can write  

(4)  
 

! 0"1 =#2
$1 !#2! 0#1

$1 !#1"1% 1
$1 !% 1,

" 2! =#2
$1 !#2" 2% 2

$1 !% 2!% 1
$1 !% 1,

 

so the commutativity yields  

(5)   !2" 0!1
#1 !!1$1% 1

#1 =!2$ 2% 2
#1 !% 2"% 1

#1.  

But in our fibred charts !1"1# 1
$1  is the Cartesian projection (x1

i , y1
! )" (x1

i ) , 
and !2" 2# 2

$1  is the Cartesian projection (x2
p , y2

! )" (x2
p ) . Consequently, 

writing in components  

(6)   !2" 0!1
#1 !!1$1% 1

#1(x1
i , y1

& ) =!2" 0!1
#1(x1

i ) = (x2
p" 0!1

#1(x1
i )),  
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!2" 2# 2
$1 !# 2%# 1

$1(x1
i , y1

& )
=!2" 2# 2

$1(x2
p%# 1

$1(x1
i , y1

& ), y2
'%# 1

$1(x1
i , y1

& ))
= (x2

p%# 1
$1(x1

i , y1
& )),

 

we see that condition (5) implies x2
p! 0"1

#1(x1
i ) = x2

p!$ 1
#1(x1

i , y1
% ) . This shows 

that the right-hand side expression is independent of the coordinates y1
! . 

Therefore, we conclude that the equations of the morphism !  in fibred 
charts are always of the form  

(7)  x2
p = f p (x1

i ), y2
! = F! (x1

i , y1
" ).  

 Let Y be a fibred manifold with base X and projection ! . If !  is a tan-
gent vector to Y at a point  y!Y , then the tangent vector !  to X at 
 x = ! (y)! X , defined by 

(8)  Ty! "# = $,  

is called the ! -projection, or simply the projection of ! . By definition of 
the submersion, the tangent mapping of the projection !  at a point y, 
Ty! :TyY " T! (x )X , is surjective.  
 A tangent vector  !!TyY  at a point  y!Y  is said to be ! -vertical, if 

(9)  Ty! "# = 0.  

The vector subspace of TyY  consisted of ! -vertical vectors, is denoted by 
VTyY . If !  is expressed in a fibred chart (V ,! ) , ! = (xi , y" ) , by 

(10)  ! = " i !
!xi

#
$

%
& y

+!' !
!y'

#
$(

%
&) y
,  

then by (8)  

(11)  ! = ! i !
!xi

"
#

$
% x

= 0.  

Thus, !  is ! -vertical if and only if  

(12)  ! = !" !
!y"

#
$%

&
'( y
.  

If in particular, dimY = n +m  and dim X = n , then dimVTyY = m .  
 The subset VTY  of the tangent bundle TY , defined by  

(13)  
  
VTY = VTyY

y!Y
! ,  
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is a vector subbundle of TY .  
 The projection ! :Y " X  induces a vector bundle morphism 
T! :TY " TX ; from the definition of a fibred manifold it follows that the 
image is ImT! = TX . The vector subbundle VTY = KerT!  of the vector 
bundle TY  is called the vertical subbundle over Y.  
 Let !  be a differential k-form, defined on an open set W in Y. We say 
that !  is ! -horizontal, or just horizontal, if it vanishes whenever one of its 
vector arguments is a ! -vertical vector.  
 We describe the chart expressions of ! -horizontal forms.  

 Lemma 2  The form !  is ! -horizontal if and only if in any fibred chart 
(V ,! ) , ! = (xi , y" ) , it has an expression  

(14)  
  
! = 1

k!
!i1i2…ik

dxi1 !dxi2 !…!dxik .  

 Proof  Choose a point  y!V  and express the form !(y)  as 

(15)  

  

!(y) = 1
k!
!i1i2…ik

(y)dxi1 (y)!dxi2 (y)!…!dxik (y)+ dy1(y)! !1(y)

+ dy2 (y)! !2 (y)+…+ dym (y)! !m (y),
 

where the forms !1(y) , !2 (y) ,  … , !m (y)  do not contain dy1(y) , the forms 
!2 (y) , !3(y) ,  … , !m (y)  do not contain dy1(y)  and dy2 (y) , etc. Suppose 
that !  is ! -horizontal. Then contracting the form !(y)  by the vertical vec-
tor (!/ !y1)y  we get i(! /!y1 )y!(y) = !1(y) = 0 . Contracting !(y)  by the vertical 
vector (!/ !y2 )y  we get i(! /!y2 )y!(y) = !2 (y) = 0 , etc.. Clearly, which proves 
formula (14).  

 Example 4  The first Cartesian projection pr1  of the product of Euclide-
an spaces Rn !Rm  onto Rn , restricted to the product of open sets U !V , 
where  U !R

n  and  V !R
m , is a fibred manifold over U. The restriction of 

pr1  to any open set  W !R
n !Rm  is a fibred manifold over  pr1(W )!R

n .  

 Example 5  Moebius band is a fibred manifold over the circle.  

 A form ! , defined on an open set W in Y, is said to be ! -projectable, 
or just projectable, if there exists a form !0 , defined on the set ! (W ) , such 
that  

(16)  ! = " *!0 .  

If the form !0  exists, it is unique and is called the ! -projection, of just the 
projection of ! .  

 Convention  Formula (16) shows that a ! -projectable form can canon-
ically be identified with its ! -projection. Thus, to simplify the notation, we 
sometimes denote a ! -projectable form ! *"0  by its ! -projection !0 .  
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1.3  The contact of differentiable mappings  

 Let X and Y be two smooth manifolds, n = dim X , and m = dimY . Let 
 x! X  be a point, f1 :W !Y  and f2 :W !Y  two mappings, defined on a 
neighbourhood W of x. We say that f1 , f2  have the contact of order 0 at x, if  

(1)  f1(x) = f2 (x).  

Suppose that f1  and f2  are of class Cr , where r is a positive integer. We say 
that f1 , f2  have the contact of order r at x, if they have the contact of order 
0, and there exist a chart (U,! ) , ! = (xi ) , at x and a chart (V ,! ) , ! = (y" ) , 
at f1(x)  such that  U !W ,  f1(U ), f2 (U )!V , and  

(2)  Dk (! f1"
#1)("(x)) = Dk (! f2"

#1)("(x))  

for all k ! r . These definitions immediately extend to C! mappings f1 , f2 ; 
in this case f1 , f2  are said to have the contact of order !  at x, if they have 
the contact of order r for every r.  
 Writing in components ! f1"

#1 = y$ f1"
#1 , ! f2"

#1 = y$ f2"
#1 , we see at 

once that f1  and f2  have contact of order r if and only if f1(x) = f2 (x)  and 

(3)  
 
Di1
Di2

…Dik
(y! f1"

#1)("(x)) = Di1
Di2

…Dik
(y! f2"

#1)("(x))  

for all  k = 1,2,…,r , all !  and all  i1,i2 ,…,ik  such that 1!" ! m  and 
 1! i1 ! i2 !…! ik ! n .  
 We claim that if f1 , f2  have contact of order r at a point x, then for any 
chart (U,! ) , ! = (x i ) , at x and any chart (V ,! ) , ! = (y" ) , at f1(x) ,  

(4)  Dk (! f1"
#1)(" (x)) = Dk (! f2"

#1)(" (x))  

for all  k = 1,2,…,r . We can verify this formula by means of the chain rule 
for derivatives of mappings of Euclidean spaces. Using the charts (U,! ) , 
(V ,! )  we express the derivative 

(5)  
 

Di1
Di2

…Dik
(y! f1"

#1)(" (x))

= Di1
Di2

…Dik
(y!$ #1 !$ f1"

#1 !"" #1)(" (x))
 

as a polynomial in the variables Dj1
(y! f1"

#1)("(x)) , Dj1
Dj2
(y! f1"

#1)("(x)) , 
 … , 

 
Dj1

Dj2
…Djk

(y! f1"
#1)("(x)) . The derivative 

 
Di1
Di2

…Dik
(y! f2"

#1)(" (x))  
is expressed by the same polynomial in the variables Dj1

(y! f2"
#1)("(x))  

Dj1
Dj2
(y! f2"

#1)("(x)) ,  … , 
 
Dj1

Dj2
…Djk

(y! f2"
#1)("(x)) . Clearly, equality 

(4) now follows from (3).  
 Fix two points  x! X ,  y!Y , and denote by C(x,y)

r (X,Y )  the set of 
Cr mappings f :W !Y , where W is a neighbourhood of x and f (x) = y . 
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The binary relation “f, g have the contact of order r at x” on C(x,y)
r (X,Y )  is 

obviously reflexive, transitive, and symmetric, so is an equivalence relation. 
Equivalence classes of this equivalence relation are called r-jets with source 
x and target y. The r-jet whose representative is a mapping  f !C(x,y)

r (X,Y )  
is called the r-jet of f at the point x, and is denoted by Jx

r f . If there is no 
danger of misunderstanding, we call an r-jet with source x and target y an r-
jet, or just a jet. The set of r-jets with source  x! X  and target  y!Y  is de-
noted by J(x,y)

r (X,Y ) .  
 Let  f !C(x,y)

r (X,Y )  be a mapping, f :W !Y , let U be a neighbour-
hood of x and V a neighbourhood of y. Assigning to f the restriction of f to 
the set  f

!1(V )!U !W , we get a bijection 
  
Jx
r f ! Jx

r ( f | f "1(V )!U!W )  of the set 
J(x,y)
r (X,Y )  onto J(x,y)

r (U,V ) .  
 Let X, Y, and Z be three smooth manifolds. Two r-jets  A! J(x,u )

r (X,Y ) , 
A = Jx

r f , and  B! J(y,z )
r (Y ,Z ) , B = Jy

rg , are said to be composable, if they 
have representatives which are composable (as mappings), i.e., if u = y ; this 
equality means that the target of A coincides with the source of B. In this 
case the composite  g ! f  of any representatives of A and B is a mapping of 
class Cr  defined on a neighbourhood of x. It is easily seen that the r-jet 
 Jx

r (g ! f )  is independent of the representatives of the r-jets A and B. If f  
and g  are such that Jx

r f = Jx
r f  and Jx

rg = Jx
rg , then for any charts (U,! ) , 

! = (xi )  at x, (V ,! ) , ! = (y" ) , at y = f (x) , and (W ,!) , ! = (z p ) , at 
z = g(y) , the derivatives 

 
Di1
Di2

…Dik
(z pgf!"1)(!(x))  are expressible in the 

form  

(6)  
 
Di1
Di2

…Dik
(z pgf!"1)(!(x)) = Di1

Di2
…Dik

(z pg# "1 !# f!"1)(!(x)).  

for all  k = 1,2,…,r . By the chain rule for mappings of Euclidean spaces, 
expressions (6) are polynomial in the variables 

 
D!1

D!2
…D!q

(z pg" #1)(" (y))  
and 

 
Di1
Di2

…Dim
(y! f"#1)("(x)) , where m,q ! k . The same polynomials in 

the derivatives 
 
D!1

D!2
…D!q

(z pg" #1)(" (y)) , 
 
Di1
Di2

…Dim
(y! f"#1)("(x))  are 

obtained when expressing 
 
Di1
Di2

…Dik
(z pgf!"1)(!(x))  by means of the 

chain rule. Now since by definition 

(7)  
 

Di1
Di2

…Dim
(y! f"#1)("(x)) = Di1

Di2
…Dim

(y! f"#1)("(x)),

D!1
D!2

…D!q
(z pg$ #1)($ (y)) = D!1

D!2
…D!q

(z pg$ #1)($ (y)),
 

we have  

(8)  
 
Di1
Di2

…Dik
(z pgf!"1)(!(x)) = Di1

Di2
…Dik

(z pgf!"1)(!(x)).  

This proves, that the r-jet  Jx
r (g ! f )  is independent of the choice of A and B.  

 If X, Y, and Z are three manifolds and  A! J(x,y)
r (X,Y ) , A = Jx

r f , and 

 B! J(y,z )
r (Y ,Z ) , B = Jy

rg , are composable r-jets, we define  

(9)   B !A = Jx
r (g ! f ),  
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or, explicitly,  Jx
rg ! Jx

r f = Jx
r (g ! f ) . The r-jet  B !A  is called the composite 

of A and B, and the mapping  (A,B)! B !A  of J(x, f (x ))
r (X,Y )! J(y,g(y))

r (Y ,Z )  
into J(x,z )

r (X,Z ) , where z = g(y) , is the composition of r-jets.  
 A chart on X at the point x and a chart on Y at the point y induce a chart 
on the set J(x,y)

r (X,Y ) . Let (U,! ) , ! = (xi )  (resp. (V ,! ) , ! = (xi , y" ) ), be a 
chart on X (resp. Y). We assign to any r-jet  Jx

r f ! J(x,y)r (X,Y )  the numbers  

(10)  
 
z j1 j2… jk
! (Jx

r" ) = Dj1
Dj2

…Djk
(y! f#$1)(#(x)), 1% k % r.  

Then the collection of functions 
 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , such that  

(11)   1! j1 ! j2 !…! jk ! n, 1!" ! m,  

is a bijection of the set J(x,y)
r (X,Y )  and the Euclidean space RN  of dimen-

sion  

(12)  
 
N = n +m 1+ n + 2

n+1( ) + 3
n+2( ) +…+ r

n+r!1( )( ).  
Thus, the pair (J(x,y)

r (X,Y ),! r )  is a (global) chart on J(x,y)
r (X,Y ) . This chart 

is said to be associated with the charts (U,! )  and (V ,! ) .  

 Lemma 3  (a) The associated charts (J(x,y)
r (X,Y ),! r ) , such that the 

charts (U,! )  and (V ,! )  belong to smooth structures on X and Y, form a 
smooth atlas on J(x,y)

r (X,Y ) . With this atlas, J(x,y)
r (X,Y )  is a smooth mani-

fold of dimension N.  
 (b) The composition of jets  

(13)  
  J(x,y)

r (X,Y )! J(y,z )
r (Y ,Z )! (A,B)" B !A" J(x,z )r (X,Z )  

is smooth.  
 Proof  1. It is enough to prove that the transformation equations be-
tween the associated charts are of class C! . However this follows from (5).  
 2. (b) is an immediate consequence of formula (6).  

1.4  Jet prolongations of fibred manifolds  

 In this section we apply the concept of contact of differentiable map-
pings (Section 1.3) to Cr sections of fibred manifolds. We introduce the 
smooth manifold structure on the sets of jets of sections and establish the 
coordinate transformation formulas. 
 Let Y be a fibred manifold with base X and projection ! , let n = dim X  
and m = dimY ! n . We denote by J rY , where r ! 0  is any integer, the set 
of r-jets Jx

r!  of Cr sections !  of Y with source  x! X  and target 
 y = ! (x)!Y ; if r = 0 , then J 0Y = Y . Note that the representatives of an r-
jet Jx

r!  are Cr sections ! :W "Y , where W is an open set in X; the condi-
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tion that !  is a section,  

(1)   ! !" = idW  

implies that the target y = ! (x)  of the r-jet Jx
r!  belongs to the fibre 

 !
"1(x)!Y  over the source point x. For any s such that 0 ! s ! r  we have 

surjective mappings ! r ,s : J rY " J sY  and ! r : J rY " X , defined by the 
conditions  

(2)  ! r ,s (Jx
r" ) = Jx

s" , ! r (Jx
r" ) = x.  

These mappings are called the canonical jet projections.  
 The smooth structure of the fibred manifold Y induces a smooth struc-
ture on the set J rY . This is based on a canonical construction that assigns to 
any fibred chart on Y a chart on J rY . Let (V ,! ) , ! = (xi , y" ) , be a fibred 
chart on Y, and let (U,! ) , ! = (xi ) , be the associated chart on X. We set 
V r = (! r ,0 )"1(V ) , and introduce, for all values of the indices, a family of 
functions 

 
xi , y! , yj1 j2… jk

! , defined on V r , by  

(3)  

 

xi (Jx
r! ) = xi (x),

y" (Jx
r! ) = y" (! (x)),

yj1 j2… jk
" (Jx

r! ) = Dj1
Dj2

…Djk
(y"!#$1)(#(x)), 1% k % r.

 

Then the collection of functions 
 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , where the 
indices satisfy  

(4)   1! i ! n, 1!" ! m, 1! j1 ! j2 !…! jk ! n, k = 2,3,…,r,  

is a bijection of the set V r  onto an open subset of the Euclidean space RN  
of dimension  

(5)  
 
N = n +m 1+ n + 2

n+1( ) + 3
n+2( ) +…+ r

n+r!1( )( ).  
The pair (V r ,! r ) , 

 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , is a chart on the set J rY , 
which is said to be associated with the fibred chart (V ,! ) , ! = (xi , y" ) .  

 Lemma 4 (Smooth structure on the set J rY )  The set of associated 
charts (V r ,! r ) , 

 
! r = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr

" ) , such that the fibred charts 
(V ,! )  constitute an atlas on Y, is an atlas on J rY .  
 Proof  Let  !  be an atlas on Y whose elements are fibred charts (Sec-
tion 1.2, Lemma 1). One can easily check that  !  defines a topology on J rY  
by requiring that for any fibred chart (V ,! )  from  ! , the mapping 
 !

r :V r "! r (V r )!RN  is a homeomorphism; we consider the set J rY  with 
this topology.  
 It is clear that the associated charts with fibred charts from  !  cover the 
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set J rY . Thus, to prove Lemma 4 it remains to check that the corresponding 
coordinate transformations are smooth.  
 Suppose we have two fibred chart on Y, (V ,! ) , ! = (xi , y" ) , and 
(V ,! ) , ! = (x i , y" ) , such that   V !V !Ø . Consider the associated charts 
(V r ,! r ) , (V r ,! r ) , and an element   Jx

r! !V r !V r . Let the coordinate trans-
formation !! "1  be expressed by the equations  

(6)  x i = f i (x j ), y! = g! (x j , y" ).  

Note that the functions f i  and g!  in formula (6) are defined by the formu-
las x i (x) = x i!"1(!(x)) = f i (!(x))  and y! (y) = y!" #1(" (y)) = g! (" (y)) . 
We have  

(7)  

 

x i (Jx
r! ) = x i (x) = x i"#1("(x)) = x i"#1("(Jx

r! )),
y$ (Jx

r! ) = y$ (! (x))) = (y$% #1 !% )(! (x)) = y$% #1(% (Jx
r! )),

yj1 j2… jk
$ (Jx

r! ) = Dj1
Dj2

…Djk
(y$!" #1)(" (x))

= Dj1
Dj2

…Djk
(y$% #1 !%!"#1 !"" #1)(" (x)).

 

From the chain rule it is now obvious that the left-hand sides, the coordinates 
of the r-jet Jx

r!  in the chart (V r ,! r ) , depend smoothly on the coordinates 
of Jx

r!  in the chart (V r ,! r ) .  

 From now on, the set J rY  is always considered with the smooth struc-
ture, defined by Lemma 4, and is called the r-jet prolongation of the fibred 
manifold Y. 

 Lemma 5  Each of the canonical jet projections (2) is smooth and de-
fines a fibred manifold structure on the manifold J rY .  
 Proof  Indeed, in the associated charts each of the canonical jet projec-
tions is expressed as a Cartesian projection, which is smooth.  

 Every Cr section ! :W "Y , where W is an open set in X, defines a 
mapping  

(8)   W ! x! J r" (x) = Jx
r" " J rY ,  

called the r-jet prolongation of ! .  

 Example 6 (Coordinate transformations on J 2Y )  Consider two fi-
bred charts on a fibred manifold Y, (V ,! ) , ! = (xi , y" ) , and (V ,! ) , 
! = (x i , y" ) , such that   V !V !Ø . Suppose that the corresponding trans-
formation equations are expressed as  

(9)  x i = x i (x j ), y! = y! (x j , y" ).  

Then the induced coordinate transformation on J 2Y  is expressed by the 
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equations  

(10)  

x i = x i (x j ),
y! = y! (x j , y" ),

y j1
! = !y!

!xl
+ !y

!

!y"
yl
"#

$%
&
'(
!xl

!x j1
,

y j1 j2
! = !2 y!

!xl !xm
+ !2 y!

!xl !yµ
ym
µ + !2 y!

!xm !y"
yl
" + !2 y!

!yµ !y"
yl
" ym

µ#
$%

+ !y
!

!y"
ylm
" &
'(
!xm

!x j2

!xl

!x j1
+ !y!

!xl
+ !y

!

!y"
yl
"#

$%
&
'(

!2 xl

!x j1 !x j2
.

 

To derive these equations, we use the chain rule for partial derivative opera-
tors. Let   Jx

2! !V 2 !V 2 . The 2-jet Jx
2!  has the coordinates  

(11)  

xi (Jx
2! ) = xi (x),

y" (Jx
2! ) = y" (! (x)),

yj1
" (Jx

r! ) = Dj1
(y"!#$1)(#(x)),

yj1 j2
" (Jx

r! ) = Dj1
Dj2
(y"!#$1)(#(x)),

 

and analogous formulas arise for the chart (V ,! ) . Then by the chain rule 

(12)  

 

Dj1
(y!"# $1)(# (x)) = Dj1

(y!% $1 !%"#$1 !## $1)(# (x))

= Dk (y
!% $1)(%" (x))Dl (x

k"#$1)(## $1(# (x))Dj1
(xl# $1)(# (x))

+ D& (y
!% $1(%" (x))Dl (y

&"#$1)(## $1(# (x))Dj1
(xl# $1)(# (x))

= Dk (y
!% $1)(%" (x))' l

kDj1
(xl# $1)(# (x))

+ D& (y
!% $1)(%" (x))Dl (y

&"# $1)(#(x))Dj1
(xl# $1)(# (x))

= (Dl (y
!% $1)(%" (x))+ D& (y

!% $1)(%" (x))Dl (y
&"# $1)(#(x)))

(Dj1
(xl# $1)(# (x)),

 

which proves the third one of equations (10). To prove the fourth equation, 
we differentiation (12) again and apply the chain rule. We can also derive 
the fourth equation by differentiating the third one.  

 Consider a morphism ! :W "Y  of a fibred manifold Y with projection 
! . The projection ! 0 :" (W )# X  of the morphism !  is a unique 
morphism of smooth manifolds such that  

(13)   ! !" =" 0 !! .  
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Suppose that ! 0  is a diffeomorphism of the open subsets ! (W )  and 
U0 =! 0 (" (W ))  in X. Then for any section !  of Y, defined on ! (W ) , for-
mula !" =#"# 0

$1  defines a section of Y over U0 : indeed, since !  is a sec-
tion, then ! "# = !$#$ 0

%1 =$ 0!#$ 0
%1 = idU0 . In this sense !  transforms sec-

tions !  of Y into sections !"! 0
#1  of Y. In particular, setting for every r-jet 

 Jx
r! !W r  

(14)  J r! (Jx
r" ) = J!0

r !"! 0
#1  

we get a mapping J r! :W r " J rY . This mapping is differentiable, and sat-
isfies, for all integers s such that 0 ! s ! r ,  

(15)   !
r ,s ! J r" = J s" !! r ,s , ! r ! J r" =" 0 !!

r .  

 These formulas show that the mapping J r!  is a morphisms of the r-jet 
prolongation J rY  of the fibred manifold Y over J sY  for all s such that 
0 ! s ! r , and over X. J r!  is called the r-jet prolongation of the morphism 
J r!  of Y. Note that J r!  is not defined for morphisms !  whose projections 
are not diffeomorphisms.  

1.5  The horizontalization  

 Let Y be a fibred manifold with base X and projection ! , dim X = n  
and dimY = n +m . For any open set  W !Y  we denote by W r  the open set 
(! r ,0 )"1(W )  in the r-jet prolongation J rY  of Y. We show that the fibred 
manifold structure on Y induces a vector bundle morphism between the tan-
gent bundles T r+1Y  and T rY  and study the decomposition of tangent vec-
tors, associated with this mapping.  
 Let Jx

r+1!  be a point of the manifold J r+1Y . We assign to any tangent 
vector !  of J r+1Y  at the point Jx

r+1!  a tangent vector of J rY  at the point 
! r+1,r (Jx

r+1" ) = Jx
r"  by  

(1)   h! = TxJ
r" !T# r+1 $!.  

We get a vector bundle morphism h :TJ r+1Y ! TJ rY  over the jet projection 
! r+1,r , called the ! -horizontalization, or simply the horizontalization. 
Sometimes we call h!  the horizontal component of !  (note, however, that 
!  and h!  do not belong to the same vector space). Using a complementary 
construction, one can also assign to every tangent vector  ! !TJ

r+1Y  at the 
point  Jx

r+1! ! J r+1Y  a tangent vector  p! !TJ
rY  at Jx

r!  by the decomposi-
tion  

(2)  T! r+1,r "# = h# + p#.  

p!  is called the contact component of the vector ! .  
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 Lemma 6  The horizontal and contact components satisfy  

(3)  T! r "h# = T! r+1 "#, T! r " p# = 0.  

 Proof  The first property follows from (1). Then, however,  

(4)  
 

T! r " p# = T! r "T! r+1,r "# $T! r "h# = T! r+1 "# $T! r "h#
= T! r+1 "# $T! r "TxJ

r% !T! r+1 "# = 0.
 

 Remark 1  If h! = 0 , then necessarily T! r+1 "# = 0  so !  is ! r+1 -
vertical. This observation may explain why h!  is called the horizontal com-
ponent of ! .  

 One can easily find the chart expressions for the vectors h!  and p! . If 
in a fibred chart (V ,! ) , ! = (xi , y" ) , !  has an expression 

(5)  
 

! = ! i !
!xi

"
#

$
% Jxr+1&

+ ' j1 j2… jk
( !

!yj1 j2… jk
(

"
#)

$
%* Jxr+1&j1+ j2+…+ jk

,
k=0

r+1

, ,  

then 

(6)  
 

h! = ! i !
!xi

"
#

$
% Jxr&

+ yj1 j2… jki
' !

!yj1 j2… jk
'

"
#(

$
%) Jxr&j1* j2*…* jk

+
k=0

r

+
"

#
(

$

%
) ,  

and  

(7)  
 

p! = (" j1 j2… jk
# $ yj1 j2… jki

# ! i )
j1% j2%…% jk
&

k=0

r

& !
!yj1 j2… jk

#

'
()

*
+, Jxr-

.  

 Note that the conditions h! = 0  and p! = 0  do not imply ! = 0 ; they 
are equivalent to the condition that !  be ! r+1,r -vertical,  

(8)  
 

! = " j1 j2… jr+1
# !

!yj1 j2… jr+1
#

$
%&

'
() Jxr+1*j1+ j2+…+ jr+1

, .  

 The structure of the chart expression (6) can also be characterized by 
means of the vector fields di  along the projection ! r+1,r , defined on V r+1  by 

(9)  
 

di =
!
!xi

!
"

#
$ Jxr%

+ yj1 j2… jki
& !

!yj1 j2… jk
&

!
"'

#
$( Jxr%j1) j2)…) jk

*
k=0

r

* .  

di  is called the i-th formal derivative operator (relative to the fibred chart 
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(V ,! ) ). Note that these vector fields are closely connected with the tangent 
mapping of the functions f : J rY ! R , composed with the prolongations 
J r!  of sections !  of Y. Namely, if (V ,! ) , ! = (xi , y" ) , is a fibred chart, 
 x!! (U )  a point and !  a section defined on U, then for every tangent vec-
tor  !0 !TxX , expressed as !0 = !0

i (!/ !xi )x ,  

(10)  
 
Tx ( f ! J

r! ) "#0 =
!( f ! J r! !$%1)

!xk
&
'(

)
*+ x
# k .  

For each i such that 1! i ! n , the formula  

(11)  
 
di f (Jx

r+1! ) = !( f ! J r! !"#1)
!xk

$
%&

'
() x

 

defines a function di f :V
r+1! R , called the i-th formal derivative of the 

function f (relative to the given fibred chart). In the chart  

(12)  
 
di f = !

i ! f
!xi

+ yj1 j2… jki
" ! f

!yj1 j2… jk
"

j1# j2#…# jk
$

k=0

r

$ .  

 Remark 2  Canonically extending the partial derivatives 
 
!/ !yj1 j2… jk

! to 
all sequences  j1, j2 ,…, jk , the formal derivative di  can be expressed as  

(13)  
 
di =

!
!xi

+ yj1 j2… jki
! !

!yj1 j2… jk
!

k=0

r

"  

(see Appendix 2).  

 Remark 3  In general, decomposition (2) of tangent vectors does not 
hold for vector fields. However, if !  is a ! r+1 -vertical vector field on W r+1 , 
then h!  is the zero vector field on W r  and condition (2) reduces to the 
! r+1,r -projectability equation  

(14)   T!
r+1,r "# = #0 !!

r+1,r  

for the ! r+1,r -projection !0  of ! . Thus p!(Jx
r+1" ) = !0 (Jx

r" ) .  

1.6  Jet prolongations of automorphisms of fibred manifolds  

 Let (V ,! ) , ! = (xi , y" ) , be a chart, and let f :V r ! R  be a differentia-
ble function. We set for every i, 1! i ! n ,  

(1)  
 
di f =

! f
!xi

+ ! f
!yj1 j2… jk

!
0"k"r
# yj1 j2… jki

! .  
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In this formula the function di f :V
r+1! R  is the i-th formal derivative of 

the function f (Section 1.5). A notable formula 

(2)  
 
diyj1 j2… jk

! = yj1 j2… jki
!  

says that di  may be treated as a mapping, acting on jet coordinates of the 
given chart.  
 Let r be a positive integer. Consider an open set W in the fibred mani-
fold Y and a Cr automorphism ! :W "Y  with projection ! 0 :W0 " X , 
defined on an open set W0 = ! (W ) . In this section we suppose that the pro-
jection ! 0  is a Cr diffeomorphism.  
 Every section ! :W0 "Y  defines the mapping  !"! 0

#1 =! !" !! 0
#1 ; it is 

easily seen that this mapping is a section of Y over the open set  ! 0 (W0 )! X : 
indeed, using properties of morphisms and sections of fibred manifolds, we 
get 

 
! !"#" 0

$1 =" 0 !! !# !" 0
$1 =" 0 !" 0

$1 = idW0
. Then, however, the r-jets of 

the section x!"#" 0
$1(x)  are defined and are elements of the set J rY . An r-

jet J!0 (x )
r !"! 0

#1  can be decomposed as 
 
J! (x )
r " ! Jx

r! ! J"0 (x )
r " 0

#1 , so it is inde-
pendent of the choice of the representative ! , and depends on the r-jet Jx

r!  
only. We set for every  Jx

r! !W r = (" r ,0 )#1(W )  

(3)  J r! (Jx
r" ) = J!0 (x )

r !"! 0
#1.  

This formula defines a mapping J r! :W r " J rY , called the r-jet prolonga-
tion, or just prolongation of the Cr automorphism ! .  
 Note an immediate consequence of the definition (3). Given a Cr sec-
tion ! :W0 "Y , then we have  J

r! ! J r" = J r!"! 0
#1 !! 0  so the r-jet prolon-

gation J r!"! 0
#1  of the section !"! 0

#1  satisfies 

(4)   J
r!"! 0

#1 = J r! ! J r" !! 0
#1  

on the set ! 0 (W0 ) . In particular, this formula shows that the r-jet prolonga-
tions of automorphisms carry sections of Y into sections of J rY  (over X).  
 We find the chart expression of the mapping J r! .  

 Lemma 7  Suppose that in two fibred charts on Y, (V ,! ) , ! = (xi , y" ) , 
and (V ,! ) , ! = (x i , y" ) , on Y such that  ! (V )!V , the Cr automorphism 
!  is expressed by equations  

(5)   x
i !! (y) = f i (x j (x)), y" !! (y) = F" (x j (x), y# (y)).  

Then for every point  Jx
r! !V r , the transformed point J r! (Jx

r" )  has the co-
ordinates  

(6)  
 

x i ! J r! (Jx
r" ) = f i (x j (x)),

y# ! J r! (Jx
r" ) = F# (x j (x), y$ (" (x))),
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yj1 j2… jk
! ! J r" (Jx

r# )

= Dj1
Dj2

…Djk
(y!"$ %1 !$#&%1 !&" 0

%1& %1)(& (" 0 (x))),
1' k ' r.

 

 Proof  We have  

(7)  

 

x i ! J r! (Jx
r" ) = x i !! 0 (x)

= x i! 0#
$1(#(x)) = f i (x j (x)),

y% ! J r! (Jx
r" ) = y% !! (" (x)) = y%!& $1(& (" (x)))

= F% (x j (x), y' (" (x))),

 

and by definition  

(8)  

 

yj1 j2… jk
! ! J r" (Jx

s# ) = yj1 j2… jk
! (J"0 (x )

s "#" 0
$1)

= Dj1
Dj2

…Djk
(y! !"#" 0

$1% $1)(% (" 0 (x)))

= Dj1
Dj2

…Djk
(y!"& $1 !&#%$1 !%" 0

$1% $1)(% (" 0 (x))).

 

 Formula (6) contains partial derivatives of the functions f i  and F! , 
and also partial derivatives of the functions gk , representing the chart ex-
pression !" 0

#1! #1  of the inverse diffeomorphism ! 0
"1 . These functions are 

defined by  

(9)   x
k !! 0

"1( #x ) = gk (x l ( #x )).  

To obtain explicit dependence of the coordinates 
 
yj1 j2… jk
! (J r" (Jx

r# ))  on the 
coordinates of the r-jet Jx

r! , we have to use the chain rule k times, which 
leads to polynomial dependence of the jet coordinates 

 
yj1 j2… jk
! (J r" (Jx

r# ))  on 
the jet coordinates yi1

! (Jx
r" ) , yi1i2

! (Jx
r" ) ,  … , 

 
yi1i2…ik
! (Jx

r" ) . This shows, in par-
ticular, that if !  is of class Cr , then J r!  is of class C 0 ; if !  is of class 
Cs , where s ! r , then J r!  is of class Cs!r .  
 Equations (6) can be viewed as recurrence formulas for the chart ex-
pression of the mapping J r! . Writing  

(10)  
 
yj1 j2… jk!1
" ! J r# (Jx

r$ ) = (yj1 j2… jk!1
" ! J r# ! J r$ !%!1 !%# 0

!1% !1)(% (# 0 (x))),  

we have  

(11)  

 

yj1 j2… jk
! ! J r" (Jx

r# )

= Djk
(yj1 j2… jk$1

! ! J r" ! J r# !%$1 !%" 0
$1% $1)(% (" 0 (x)))

= Dl (yj1 j2… jk$1
! ! J r" ! J r# !%$1)(%(x))Djk

(xl" 0
$1% $1)(% (" 0 (x))).
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Thus, if we already have the functions 
 
yj1 j2… jk!1
" ! J r# , then the functions 

 
yj1 j2… jk
! ! J r"  are determined by (6).  

 We derive explicit expressions for the second jet prolongation J 2! .  

 Example 7 (2-jet prolongation of an automorphism)  Let r = 2 . We 
have from (5)  

(12)  

 

yj1
! ! J 2" (Jx

r# )

= Dj1
(y!"$ %1 !$#&%1 !&" 0

%1& %1)(& (" 0 (x)))

= Dk (y
!"$ %1)($# (x))Dl (x

k#&%1)(&(x)))Dj1
(xl" 0

%1& %1)(& (" 0 (x)))

= Dk (y
!"$ %1)($# (x))' l

kDj1
(xl" 0

%1& %1)(& (" 0 (x)))

+ D( (y
!"$ %1)($# (x))yl

( (Jx
r# )Dj1

(xl" 0
%1& %1)(& (" 0 (x)))

= (Dl (y
!"$ %1)($# (x))+ D( (y

!"$ %1)($# (x))yl
( (Jx

s# ))
)Dj1

(xl" 0
%1& %1)(& (" 0 (x))),

 

or, in a different notation,  

(13)  
 
yj1
! ! J 2" (Jx

r# ) = dlF
! (Jx

r# ) !gl

!x j1

$
%&

'
()* ("0 (x ))

,  

where dl  denotes the formal derivative operator. Differentiating (12) or (13) 
again we get the following equations for the 2-jet prolongation J 2!  of ! :  

(14)  
x i = f i (xi ), y! = F! (xi , y" ), yj1

! = dk1F
! # !g

k1

!x j1
,

yj1 j2
! = dk1dk2F

! # !g
k1

!x j1

!gk2

$x j2
+ dk1F

! # !2gk1

!x j1 !x j2
.

 

 We can easily prove the following statements.  

 Lemma 8  (a) For any s such that 0 ! s ! r ,  

(15)   !
r ! J r" =" 0 !!

r , ! r ,s ! J r" = J s" !! r ,s .  

 (b) If two Cr automorphisms !  and !  of the fibred manifold Y are 
composable, then J r!  and J r!  are composable and  

(16)   J
r! ! J r" = J r (! !" ).  

 Proof  All these assertions are easy consequences of definitions.  

 Formulas (15) show that J r!  is an Cr automorphism of the r-jet pro-
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longation J rY  of the fibred manifold Y, and also Cr automorphisms of J rY  
over J sY .  
 

1.7  Jet prolongations of vector fields  

 Let Y be a fibred manifold with base X and projection ! . Our aim in 
this section is to extend the theory of jet prolongations of automorphisms of 
a fibred manifold Y to local flows of vector fields, defined on Y.  
 Let !  be a Cr vector field on Y, let  y0 !Y  be a point, and consider a 
local flow !" : (#$ ,$ )%V &Y  of !  at y0  (see Appendix 4). As usual, de-
fine the mappings ! t

"  and ! y
"  by  

(1)  !"(t, y) =! t
"(y) =! y

"(t).  

Then for any point  y!V  the mapping t!" y
#(t)  is an integral curve of !  

passing through y at t = 0 , i.e.,  

(2)  Tt! y
" = "(! y

"(t)), ! y
"(0) = y.  

Moreover, shrinking the domain of definition (!" ," )#V  of !"  to a subset 
 (!" ," )#W ! (!$ ,$ )#V , where W is a neighbourhood of the point y0 , we 
have  

(3)  !"(s + t, y) =!"(s,!"(t, y)), !"(#t,!"(t, y)) = y  

for all  (s,t)! (!" ," )  and  y!W  or, which is the same, 

(4)  ! s+t
" (y) =! s

"(! t
"(y)), !# t

"! t
"(y) = y.  

Note that the second formula implies  

(5)  (! t
" )#1 =!# t

" .  

 In the following lemma we study properties of flows of a ! -projectable 
vector field.  

 Lemma 9  Let !  be a Cr vector field on Y. The following two condi-
tions are equivalent:  
 (1) The local 1-parameter groups of !  consist of Cr automorphisms of 
the fibred manifold Y.  
 (2) !  is ! -projectable.  

 Proof  1. Let Choose  y0 !Y  be a point and let x0 = ! (y0 ) . Choose a 
local flow !" : (#$ ,$ )%V &Y  at y0 , and suppose that the mappings 
! t

" :V #Y  are Cr automorphisms of Y. Then for each t there exists a unique 
Cr mapping ! t :U" X , where U = ! (V )  is an open set, such that  
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(6)   ! !" t
# =" t !!  

on V. Setting ! (t, x) =! t (x)  we get a mapping ! : ("# ,# )$U% X . It is 
easily seen that this mapping is of class Cr . Indeed, there exists a Cr section 
! :U"Y  such that ! (x0 ) = y0  (Section 1.1, Theorem 3); using this section 
we can write  ! (t, x) =! t (x) = " !! t

# !$ (x) = " !!#(t,$ (x)) , so !  can be 
expressed as the composite of Cr -mappings. Since !  satisfies ! (0, x) = x , 
setting  

(7)  !(x) = T0" x #1  

we get a Cr!1 vector field on U.  
 On the other hand, formula (6) implies  ! !"

#(t, y) =" (t,! (y)) , that is, 

 
! !" y

# ="! (y) . Then from (2) 
 
Tt (! !" y

# ) = T
" y

# (t )! $#(" y
#(t)) = Tt"! (y)  and we 

have at the point t = 0   

(8)  T0!" (y) = Ty" #$(y).  

Combining (7) and (8),  

(9)  !(" (y)) = Ty" #$(y).  

This proves ! -projectability of !  on V. ! -projectability of !  (on Y) now 
follows form the uniqueness of the ! -projection.  
 2. Suppose that !  is ! -projectable and denote by !  its ! -projection. 
Then 

(10)  Ty! "#(y) = $(! (y))  

at every point y of the fibred manifold Y. The local flow !"  satisfies equa-
tion (2) Tt! y

" = "(! y
"(t)) . Applying the tangent mapping T!  to both sides 

we get  

(11)  
 
Tt (! !" y

# ) = T
" y

# (t )! $#(" y
#(t)) = %(! (" y

#(t))).  

This equality means that the curve t!" (# y
$(t)) =#" (y)

% (t)  is an integral 
curve of the vector field ! . Thus, denoting by !"  the local flow of !  at the 
point x0 = ! (y0 ) , we have  

(12)  ! ("#(t, y)) ="$ (t,! (y))  

as required.  

 Let !  be a ! -projectable Cr vector field on Y, !  its ! -projection. Let 
! t

"  (resp. ! t
" ) be a local 1-parameter group of !  (resp. ! ). Since the map-

pings ! t
"  are Cr diffeomorphisms, for each t the Cr automorphism ! t

"  can 
be prolonged to the jet prolongation J sY  of Y, for any s, 0 ! s ! r . The pro-
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longed mapping is an automorphism of the fibred manifold J sY  over X, de-
fined by  

(13)  J s! t
"(Jx

r# ) = J
! t

$ (x )
s ! t

"#!% t
$ ,  

the s-jet prolongation of ! t
" .  

 It is easily seen that there exists a unique Cs vector field on J sY  whose 
integral curves are exactly the curves t! J s" t

#(Jx
r$ ) . This vector field is 

defined by  

(14)  J s!(Jx
r" ) = d

dt
J s# t

!(Jx
r" )$

%
&
' 0
,  

and is called the r-jet prolongation of the vector field ! . It follows from the 
definition that the vector field J s!  is ! s -projectable (resp. ! s,k -projectable 
for every k, 0 ! k ! s ) and its ! k -projection (resp. ! s,k -projection) is !  
(resp. J k! ). 
 The following lemma explains the local structure of the jet prolonga-
tions of projectable vector fields (Krupka [13]); its proof is based on the 
chain rule.  

 Lemma 10  Let !  be a ! -projectable vector field on Y, expressed in a 
fibred chart (V ,! ) , ! = (xi , y" ) , by 

(15)  ! = " i !
!xi

+!# !
!y#

.  

Then J s!  is expressed in the associated chart (V s ,! s )  by 

(16)  
 
J s! = " i !

!xi
+!# !

!y#
+ ! j1 j2… jk

#

j1$ j2$…$ jk
%

k=1

s

% !
!yj1 j2… jk

# ,  

where the components 
 
! j1 j2… jk

"  are determined by the recurrence formula 

(17)  
 
! j1 j2… jk

" = djk
! j1 j2… jk#1

" # yj1 j2… jk#1i
" !$ i

!x jk
.  

 Proof  For all sufficiently small t we can express the local 1-parameter 
group of !  in one chart only. Equations of the Cr automorphism ! t

"  are 
expressed as  

(18)   x
i !! t

"(y) = xi! t
# (x), y$ !! t

"(y) = y$! t
"(y).  

From these equations we obtain the components of the vector field !  in the 
form  
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(19)  ! i (y) = dxi" t
! (x)
dt

#
$%

&
'( 0
, )* (y) = dy*" t

)(y)
dt

#
$%

&
'( 0
.  

 To determine the components of J s!  we use Lemma 9. The 1-
parameter group of J s!  has the equations  

(20)  

 

xi ! J r! t
"(y) = xi! t

# (x),
y$ ! J r! t

"(y) = y$! t
"(y),

yj1 j2… jk
$ ! J r! t

"(Jx
r% )

= Dj1
Dj2

…Djk
(y$! t

"& '1 !&%('1 !(!' t
# ('1)(((! t

# (x))), 1) k ) s,

 

so by (19) it is sufficient to determine 
 
! j1 j2… jk

" . By definition,  

(21)  
 
! j1 j2… jk

" (Jx
r# ) = d

dt
(yj1 j2… jk

" ! J r$ t
! )(Jx

r# )%
&

'
( 0
.  

But  

(22)  

 

yj1 j2… jk!1
" ! J r# t

$(Jx
r% )

= Dj1
Dj2

…Djk!1
(y"# t

$& !1 !&%'!1 !'#! t
( '!1)('(# t

( (x)))

= yj1 j2… jk!1
" ! J r# t

$ ! J r% !#! t
( '!1('(# t

( (x))),

 

thus,  

(23)  

 

yj1 j2… jk
! ! J r" t

#(Jx
r$ )

= Djk
(yj1 j2… jk%1

! ! J r" t
# ! J r$ !&%1 !&"% t

' &%1)(&(" t
' (x)))

= Dl (yj1 j2… jk%1
! ! J r" t

# ! J r$ !&%1)(&(x))Djk
(xl"% t

' &%1)(&(" t
' (x))).

 

 To obtain 
 
! j1 j2… jk

" (Jx
r# )  (21)  we differentiate the function 

(24)  
 
(t,!(x))" yj1 j2… jk#1

$ ! J r% t
&(Jx

r' ) = (yj1 j2… jk#1
$ ! J r% t

& ! J r' !!#1)(!(x))  

with respect to t and xl . Since the partial derivatives commute, we can first 
differentiate with respect to t at t = 0 . We get the expression 

 
! j1 j2… jk"1

# (Jx
r$ ) . 

Subsequent differentiation yields  

(25)  
 
Dl (! j1 j2… jk"1

# ! J r$ !%"1)(%(x)) = dl! j1 j2… jk"1
# (Jx

r$ ),  

where dl  is the formal derivative operator.  
 We should also differentiate expression Djk

(xl!" t
# $"1)($(! t

# (x)))  with 
respect to t. We have the identity  Dl (x

k!" t
# $"1 !$! t

#$"1)($(x)) = % l
k , that is,  
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(26)  Dj (x
k!" t

# $"1)($! t
# (x))Dl (x

j! t
#$"1)($(x)) = % l

k .  

From this formula  

(27)  

d
dt
Dj (x

k!" t
# $"1)($! t

# (x)) %Dl (x
j! t

#$"1)($(x))

+ Dj (x
k!" t

# $"1)($! t
# (x)) % d

dt
Dl (x

j! t
#$"1)($(x))

= 0

 

thus, at t = 0 , 

(28)  d
dt
Dj (x

k!" t
# $"1)($! t

# (x))%
&

'
( 0

)* l
j +* j

kDl#
j ($(x)) = 0,  

hence  

(29)  d
dt
Dl (x

k!" t
# $"1)($! t

# (x))%
&

'
( 0

= "Dl#
k ($(x)).  

 Now we can complete the differentiation of formula (23) at t = 0 . We 
have, using (25) and (29)  

(30)  

 

! j1 j2… jk
" (Jx

r# ) = d
dt
(yj1 j2… jk

" ! J r$ t
! )(Jx

r# )%
&

'
( 0

= d
dt
Dl (yj1 j2… jk)1

" ! J r$ t
! ! J r# !*)1)(*(x))%

&
'
( 0
+ jk
l

+ Dl (yj1 j2… jk)1
" ! J r# !*)1)(*(x)) d

dt
Djk
(xl$) t

, *)1)(*($ t
, (x)))%

&
'
( 0

= dl! j1 j2… jk)1
" (Jx

r+1# )+ jk
l

) Dl (yj1 j2… jk)1
" ! J r# !*)1)(*(x))Djk

, l (*(x))

= djk
! j1 j2… jk)1

" (Jx
r# )) yj1 j2… jk)1l

" (Jx
r# )Djk

, l (*(x)),

 

which coincides with (17).  

 Example 8 (2-jet prolongation of a vector field)  Let a ! -projectable 
vector field !  be expressed by  

(31)  ! = " i !
!xi

+!# !
!y#

.  

We can calculate the components of the second jet prolongation J 2!  from 
Lemma 10. We get  
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(32)  J 2! = " i !
!xi

+!# !
!y#

+! j
# !
!yj

# + ! jk
#

j$k
% !

!yjk
# ,  

we get   

(33)  
! j

" = dj!
" # yi

" !$ i

!x j
,

! jk
" = djdk!

" # yij
" !$ i

!xk
# yik

" !$ i

!x j
# yi

" !2$ i

!x j !xk
.
 

 In the following lemma we study the Lie bracket of r-jet prolongations 
of projectable vector fields.  

 Lemma 11  For any two ! -projectable vector fields !  and ! , the Lie 
bracket !,"[ ]  is also ! -projectable, and 

(34)  J r !,"[ ] = J r!, J r"[ ].  

 Proof  1. First we prove (34) for r = 1. Suppose that in a fibred chart  

(35)  ! = " i !
!xi

+!# !
!y#

, $ = % k !
!xk

+$& !
!y&

.  

Then  

(36)  J1! = " i !
!xi

+!# !
!y#

+! j
# !
!yj

# , J1$ = % i !
!xi

+$# !
!y#

+$ j
# !
!yj

# ,  

where  

(37)  ! j
" = dj!

" # yi
" !$ i

!x j
, % j

" = dj%
" # yi

" !& i

!x j
,  

and  

(38)  

[J1!, J1"] = !# i

!xl
$ l % !$

i

!xl
# l&

'(
)
*+
!
!xi

+ !",

!xl
$ l + !"

,

!y-
!- % !!

,

!xl
# l % !!

,

!y-
"-&

'(
)
*+
!
!y,

+
!" j

,

!xl
$ l +

!" j
,

!y-
!- +

!" j
,

!yl
- !l

- %
!! j

,

!xl
# l %

!! j
,

!y-
"- %

!! j
,

!yl
- " l

-&
'(

)
*+
!
!yj

, .

  

On the other hand, denoting ! = [",#]  we have  
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(39)  ! =" i i !
!xi

+!# !
!y#

,  

where  

(40)  
! i = !"

i

!xs
# s $ !#

i

!xs
" s ,

%& = !'
&

!xs
# s + !'

&

!y(
)( $ !)

&

!xs
" s $ !)

&

!y(
'( ,

 

and  

(41)  J1! =" i !
!xi

+!# !
!y#

+! j
# !
!yj

# ,  

where  

(42)  ! j
" = dj!

" # yi
" !$ i

!x j
.  

Comparing formulas (34) and (42) we see that to prove our assertion for 
r = 1 it is sufficient to show that  

(43)  

dj
!!"

!xs
# s + !!

"

!y$
%$ & !%

"

!xs
' s & !%

"

!y$
!$(

)*
+
,-

& yi
" !
!x j

!' i

!xs
# s & !#

i

!xs
' s(

)*
+
,-

=
!! j

"

!xl
# l +

!! j
"

!y$
%$ +

!! j
"

!yl
$ %l

$ &
!% j

"

!xl
' l &

!% j
"

!y$
!$ &

!% j
"

!yl
$ ! l

$ .

 

 We shall consider the left- and right-hand sides of this formula separate-
ly. The left-hand side can be expressed as  

(44)  

dj
!!"

!xs
# s + !!

"

!xs
!# s

!x j
+ dj

!!"

!y$
%$ + !!

"

!y$
dj%

$

& dj
!%"

!xs
' s & !%

"

!xs
!' s

!x j
& dj

!%"

!y$
!$ & !%

"

!y$
dj!

$

& yi
" !2' i

!x j !xs
# s + !'

i

!xs
!# s

!x j
& !2# i

!x j !xs
' s & !#

i

!xs
!' s

!x j
(
)*

+
,-
.

 

The right-hand side of (43) is  
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(45)  

dj
!!"

!xl
# yi

" !2$ i

!xl !x j
%
&'

(
)*
+ l + dj

!!"

!y,
-, + !

!yl
, dj!

" # yi
" !$ i

!x j
%
&'

(
)*
-l

,

# dj
!-"

!xl
# yi

" !2+ i

!xl !x j
%
&'

(
)*
$ l # dj

!-"

!y,
!, # !

!yl
, dj-

" # yi
" !+ i

!x j
%
&'

(
)*
! l

,

= dj
!!"

!xl
# yi

" !2$ i

!xl !x j
%
&'

(
)*
+ l + dj

!!"

!y,
-, + dj-

, # yi
, !+ i

!x j
%
&'

(
)*
!!"

!y,

# dl-
" # yi

" !+ i

!xl
%
&'

(
)*
!$ l

!x j

# dj
!-"

!xl
# yi

" !2+ i

!xl !x j
%
&'

(
)*
$ l # dj

!-"

!y,
!, # dj!

, # yi
, !$ i

!x j
%
&'

(
)*
!-"

!y,

+ dl!
" # yi

" !$ i

!xl
%
&'

(
)*
!+ l

!x j
.

 

In this formula  

(46)  
dl!

" !# l

!x j
$ yi

% !# i

!x j
!!"

!y%
= !!

"

!xl
!# l

!x j
+ !!

"

!y%
yl
% !# l

!x j
$ yi

% !# i

!x j
!!"

!y%

= !!
"

!xl
!# l

!x j
,

 

and  

(47)  
!dl"

# !$ l

!x j
+ yi

% !$ i

!x j
!"#

!y%
= ! !"

#

!xl
!$ l

!x j
! !"

#

!y%
yl
% !$ l

!x j
+ yi

% !$ i

!x j
!"#

!y%

= ! !"
#

!xl
!$ l

!x j
,

 

thus,  

(48)  

!! j
"

!xl
# l +

!! j
"

!y$
%$ +

!! j
"

!yl
$ %l

$ &
!% j

"

!xl
' l &

!% j
"

!y$
!$ &

!% j
"

!yl
$ ! l

$

= dj
!!"

!xl
& yi

" !2' i

!xl !x j
(
)*

+
,-
# l + dj

!!"

!y$
%$ + dj%

$ !!"

!y$
+ yi

" !# i

!xl
!' l

!x j

& dj
!%"

!xl
& yi

" !2# i

!xl !x j
(
)*

+
,-
' l & dj

!%"

!y$
!$ & dj!

$ !%"

!y$
& yi

" !' i

!xl
!# l

!x j
.

+ !!
"

!xl
!# l

!x j
& !%

"

!xl
!' l

!x j
.
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This is, however, exactly expression (43), proving (34) for r = 1.  
 2.  In this part of the proof we consider the r-jet prolongation J r!1Y  as a 
fibred manifold with base X and projection ! r"1 : J r"1Y # X , and the 1-jet 
prolongation of this fibred manifold, J1J r!1Y . J rY  can be embedded in 
J1J r!1Y  by the canonical injection  

(49)   J
rY ! Jxr! "#(Jx

r! ) = Jx
1J r$1! " J1J r$1Y .  

Obviously, !  is compatible with jet prolongations of automorphisms !  of Y 
in the sense that  

(50)   ! ! J
r" = (J1J r#1" )!!.  

Indeed, we have for any point Jx
r!  from the domain of J r!   

(51)  !(J r" (Jx
r# )) = !(J"0 (x )

r "#" 0
$1) = J"0 (x )

1 (J r$1"#" 0
$1),  

and also  

(52)  
 
J1J r!1" (#(Jx

r$ )) = J1J r!1" (Jx
1J r!1$ ) = J"0 (x )

1 (J r!1" ! J r!1$ !" 0
!1).  

Thus (51) follows from the definition of the 1–jet prolongation of a fibred 
automorphism (Section 1.4, (14)).  
 Then, however, applying (52) to local 1-parameter groups of a ! -
projectable vector field ! , we get ! -compatibility of J1J r!1"  and J r! ,  

(53)   J
1J r!1"!# = T# $ J r".  

Since for any two ! -projectable vector fields !  and !  the vector fields 
J1J r!1"  J r!  and J1J r!1"  and J r!  are ! -compatible, the corresponding 
Lie brackets are also ! -compatible and we have  

(54)   [J
1J r!1", J1J r!1#]!$ = T$ %[J r", J r#].  

 3. Using Part 1 of this proof, we now express the vector field on the left-
hand side of (54) in a different way. First note that  

(55)  [J1J r!1", J1J r!1#] = J1[J r!1", J r!1#].  

But we may suppose that [J r!1", J r!1#] = J r!1[",#]  (induction hypothesis), 
thus [J1J r!1", J1J r!1#] = J1J r!1[",#] . Restricting both sides by !  and apply-
ing (50), 

(56)   [J
1J r!1", J1J r!1#]!$ = J1J r!1[",#]!$ = T$ % J r[",#].  

Now from (55) and (57) we conclude that T! "([J r#, J r$]% J r[#,$]) = 0 . 
This implies, however, [J r!, J r"]# J r[!,"] = 0  because T!  is at every 
point injective.  
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 This completes the proof of formula (34).  

 Remark 4 (Equations of the canonical injection)  We find the chart 
expression of the canonical injection ! : J rY " J1J r#1Y  (49) in a fibred chart 
(V ,! ) , ! = (xi , y" ) , on Y and the induced fibred chart on J rY . We also 
have a fibred chart on J1J r!1Y , induced by the fibred chart (V r!1," r!1) , 

 
! = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr#1

" ) , on J r!1Y . We denote the fibred chart on 
J1J r!1Y  by (W ,!) , where the coordinate functions are denoted as  

(57)  
 
! = (xi , y" , yj1

" , yj1 j2
" ,…, yj1 j2… jr#1

" , y" ,k, yj1,k
" , yj1 j2 ,k

" ,…, yj1 j2… jr#1,k
" ).  

Then by definition  

(58)  
 

yj1 j2… js ,k
! !"(Jx

r# ) = Dk (yj1 j2… js
! ! J r$1# !%$1)(%(x))

= DkDj1
Dj2

…Djs
(y!#%$1)(%(x)) = yj1 j2… jsk

! (Jx
r# )

 

for all  s = 1,2,…,r !1 , so the canonical injection !  is expressed by the equa-
tions  

(59)  
 

xi !! = xi , y" !! = y" , yj1 j2… js
" !! = yj1 j2… js

" , 1# s # r $1,

yj1 j2… js ,k
" !! = yj1 j2… jsk

" , 1# s # r $1.
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