2 Differential forms on jet prolongations
of fibred manifolds

In this chapter we present a decomposition theory of differential forms
on jet prolongations of fibred manifolds; the tools inducing the decompo-
sitions are the trace decomposition theory and the canonical jet projec-
tions. Of particular interest is the structure of the contact forms, annihilat-
ing integrable sections of the jet prolongations. We also study decomposi-
tions of forms defined by fibred homotopy operators and state the corre-
sponding fibred Poincare-Volterra lemma.

The theory of differential forms explained in this chapter has been de-
veloped along the lines indicated in the approach of Lepage and Dedecker
to the calculus of variations (see Dedecker [D1]), Goldschmidt and Stern-
berg [GS] and Krupka [K13]). The exposition extends the theory ex-
plained in the handbook chapter Krupka [K4].

Throughout, Y is a smooth fibred manifold with base X and projection
n,n=dimX, n+m=dimY . J'Y is the r-jet prolongation of Y, and
n':J’Y—>X, n":J'Y = X are the canonical jet projections. For any
open set WCY, Q;W denotes the module of g-forms on the open set
W =@y (W) in"JY ,and QW is the exterior algebra of differential
forms on the set W' . We say that a form n is generated by a finite family
of forms p_,if 1 is expressible as 1=1" Ay, for some forms 1" ; note
that in this terminology we do not require (i, to be 1-forms, or k-forms
for a fixed integer k.

2.1 The contact ideal

We introduced in Section 1.5 a vector bundle homomorphism / between
the tangent bundles 7J"'Y and TJ'Y over the canonical jet projection
™" J™MY — J'Y | the horizontalisation. In this section the associated dual
mapping between the modules of 1-forms QW and Q"W is studied. We
show, in particular, that this mapping allows us to associate to any fibred
chart (V,i) on Y and any function, defined on V", its formal (or total) par-
tial derivatives in a geometric way and a specific basis of 1-forms on V',
termed the contact basis. Then we introduce by means of the contact basis a
differential ideal in the exterior algebra Q"W , characterizing the structure of
forms on jet prolongations of fibred manifolds, the contact ideal.
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Recall that the horizontalisation 4 is defined by the formula

(1) We=TJyoTr™" &,

r+l1

where £ is a tangent vector to the manifold J™*'Y at a point J/"'y . The

mapping 7 makes the following diagram

TJ™'Y L TI'Y

2) \J l

n_r+],r
JNYY ——— JY
commutative, and induces a decomposition of the projections of the tangent
vectors Tr'*'" - &,

3) Tra™'"-&=hé+ pé.

h& (resp. p&) is the horizontal (resp. contact) component of the vector & .
Note, however, that the terminology is not standard: the vectors & and h&
do not belong to the same vector space. The horizontal and contact compo-
nents satisfy

4) T -hE=Trn™"" &, Tr - pE=0.

The horizontalisation 4 induces a mapping of modules of linear differ-
ential forms as follows. Let J "'y € J""'Y . We set for any differential 1-form
p on W’ and any vector £ from the tangent space TJ™"'Y at J/™y

) hp(J"y)-E= p(Jy)-hE.

The mapping QW > p— hp € Q"'W is called the 7 -horizontalisation, or
just the horizontalisation (of differential forms).

Clearly, the form hp vanishes on 7"*'-vertical vectors so it is 7" -
horizontal; hp is sometimes called the horizontal component of p .

The mapping 4 is linear over the ring of functions ;W along the jet
projection 7" in the sense that

©)  h(p+p)=hp,+hp, h(fp)=(fox"")hp

forall p,p,,p€QW and feQW .
If in the fibred chart (V,y), v =(x',y°),a I-form p is expressed by

(7) p= Aidxi + 2 z Béljzmjkdyz_/zmjk’

0<k<r ji<jr<.. <y

then we have from (5) at any point J/"'y € V"™
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hp(J"y)-E= A(Jy)dx' (Jy)-hé
(8) + 2 2 B‘.;I./A:u._/.k (‘];y)dyz_izm_/k (J,fy)~h§

0<k<r j<jr<.. <jy

=(Ai<fiv>+2 > Bé”"“f*'<J;y>y;{jzm,~k,~]af",

0SkSr ji<<.. S
thus,
©  hp= (A,- SDIDY Bé"’”"*yijz...jkidei-
0SkSr jiSjp.. <jg
In particular, for any function f:W" — R
(10)  hdf =d.f-dx',

where

0 d .
(1 1) dlf = —f; + z O'f Jidae-Jid
0x' i Vi

The function d,f :V™*' — R is the i-th formal derivative of f with respect to
the fibred chart (V,y). From (10) it follows are components of an invariant
object, the horizontal component hdf of the exterior derivative of f. Note
that formal derivatives d;f have already been introduced in Section 1.5.

The following lemma summarizes basic rules for computations with the
horizontalisation and formal derivatives. We denote by d; the formal deriva-
tive operator with respect to a fibred chart (V,y), v =(x',y°) .

Lemmal Let (V,y), v = (x',y°), be a fibred chart on Y.
(@) The horizontalisation h satisfies

ay T=ydx, hdyj=ypde', hdyy, = ide
‘o hd)’;jz...j, = yjo'l-jzu.j,.idxl'

b(b) The i-th formal derivative of the coordinate function y; g, IS gIv-

en by

(13) AVt = Vi

) If Vw), w= ()_c",yg)iis another chart on Y such that VAV #Q,
then for every function f:V' NV >R,

o'

(4 df=df— .
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(d) For any two functions f,g:V"' >R,
(15  d(f-g)=g-df+[f-dg.
(e) For every function f:V"— R and every section v :U—->V CY ,

, O(foJ"
(16) difo‘]’”»y:(fiiy).

Jdx

Remark 1 By (13), y7, . =d,y;, . . Thus, applying (14) to coordi-
nates, we obtain the following prolongation formula for coordinate trans-
formations in jet prolongations of fibred manifolds

—O0 —O0 axl
a7) Vicoode =45 i Coxk

Remark 2 If two functions f,g:V"— R coincide along a section
J'y ,that is, foJ"y =goJ"y, then their formal derivatives coincide along
the (r+1) -prolongation J"'y ,

(18) dfoly=dgoJ™y.
This is an immediate consequence of formula (16).

Now we study properties of 1-forms, belonging to the kernel of the hor-
izontalisation QIW > p—hp € Q"W . We say that a 1-form pe€ QW is
contact, if

(19) hp=0.

It is easy to find the chart expression of a contact 1-form. Writing p as
in (7), condition (19) yields

20) A+, Y, By =0,

0<k<r ji<jr<.. <y

or, equivalently,

(21) B('szmj' — 0’ Ai - _ 2 Z Béljzmjky_z_/@“jki .

0<k<r—1 ji<jp<.. <jy
Thus, setting forall k, 0<k<r-1,
j

(22) w;jrujk = dy;:jz»»ik - yzf2<--jAjdx ’

we see that p has the chart expression



36 Global Variational Geometry

23 p= Y Y Bl .

0<k<r—1 j,<j, <. <jy

This formula shows that any contact 1-form is expressible as a linear combi-
nation of the forms ¢ e

The following two theorems summarize properties of the forms @ R

Theorem 1 (a) For any fibred chart (V,W), v = (x',y%), the forms

Q@4 A of, s
such that 1<i<n, 1<o<m, 1<k<r-1, 1<j<j,<...<j <n, and
1<, <1, £...<1, <n, constitute a basis of linear forms on the set V'

®) If Vy), y=(x"y),and VW), v =(x",y°), are two fibred
chart such that VNV # @, then

25 @,,= 2 X D, @

0<msk ji<j,<.. <jy leJz o

(c) Let (V.y), w=(x',y°), and (V.ff), ¥ =(x',y°), be two fibred
chart and o an automorphism of Y, defined on V and such that a(V)CV .
Then

o7, oJ'a)
T, sk 20 _ JiJ2---Jk v
26  Jarel, = ¥ 2y
i <iy<..<i, Yiiy..d,

Proof (a) Clearly, from formula (22) we conclude that the forms (24)
are expressible as linear combinations of the forms of the canonical basis
dx dy./l./Z Jk dy”

(b) Cons1der two charts V), = (x',y°),and (V, V), ¥ = x',5%),
such that VNV # @ . For any function f, defined on V",

af v

.. 1,

(n_rH,r)*df: hdf+pdf:d,fdxl + Z

0<ksr <l <.. <1, ayz,zz.“zk

@7) =d,f-dx"+ Y, Y

Oksr ji<jp<.. S/k J1Jz Jm

A Y 3 % 4 e

0sksr jiSjS.. Sjp hshs. <l ayl Wy y.]l./’7

Setting f = y;hmpk ,where p, < p, <...<p,,and using (17) we get (25).
(c) By definition

(28) J a J|J7 Ji = d(yj?.jz-»»jk ° Jra)_ (yjol-jZ'“jkl o‘]ra)d(f[ ° Jra)
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Denote by «, the 7 -projection of ¢ . Since from Section 1.6, (9)

)_)_IT/'QH._/kI ° JrOC(J;y)

(29) _ a(yﬁ'jzu.h OJraOJr,yqu—l) a(xsaal(ﬁ—l)
ox* ox'
then
0y?. . oJ o A% . oJa
J"OC*CT’Z,-ZM.& :%dx:’ +A 2 | (y./l(;;)';/].k . ) ivlizujp

L0, e acd Yo ) (e ') AE 0 J ) e

ax* ox' dx”
a(yo . oJrO() a(yG ) o]r(x)
(30) — ]1/2~-lkp dxp + z ./|./z~-;//k w:i,“_i
0x i <iy<..<i, ayiliz.uil, o
-0 r
2 a(y./l./z---/k oJ a) Voo dx’
v ijiy...ipS
i <ip<..<i, yi,izu.ip
—0 r r -1 —0 r
— a(yjljzu-jk oJ'oroJ Vo0 )dXS — Z a(yjljzu-h oJ a)
, v iy ) *
dx’ i <iy<..<i, Yiiy..d, e

These conditions mean that the section & is of the form § =J (7'°08) as
required.

The basis of 1-forms (24) on V' is usually called the contact basis.

The following observations show that the contact forms @7, ., defined
by a fibred atlas on Y, define a (global) module of 1-forms, and an ideal of
the exterior algebra Q"W (for elementary definitions see Appendix 7).

i, locally generate a submodule

Corollary 1 The contact 1-forms @
of the module QW .

Corollary 2 The contact 1-forms @7, . locally generate an ideal of
the exterior algebra Q"W . This ideal is not closed under the exterior de-
rivative operator.

Proof Existence of the ideal is ensured by the transformation properties
of the contact 1-forms @7, . (Theorem I, (b)). It remains to show that the
ideal contains a form, which is not generated by the forms @7, . .If p isa

contact 1-form expressed as

G1) p= Z Z Bél./zm_/sz./_zm./_k ,

0<k<r—1 j,<j <. <jy
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then
(32 dp= Y, Y dB A, +BYde?, ).
0<k<r—1 ji<jp<.. <j; '

But in this expression

—0f, Adx', 0<k<r-2,
(33  dog, = - ,

=dy;, o Ndx', k=r-—1,
thus, do? J and in general the form p are not generated by the contact
forms o’

Jaedi”

The ideal of the exterior algebra Q"W , locally generated by the 1-forms
o7, ., where 0<k<r—1,is denoted by ©W . The l-forms @], .
where 0<k<r-1, and 2- forms da)j i locally generate an ideal O W
of the exterior algebra Q'W , closed under the exterior derivative operator
that is, a differential ideal. This ideal is called the contact ideal of the exteri-

or algebra Q'W , and its elements are called contact forms. We denote
(34) OW=QWNO'W.

The set ©;W of contact g-forms is a submodule of the module QW , called
the contact submodule.

Since the exterior derivative of a contact form is again a contact form
we have the sequence

35 o—oew—‘sow—s. —Low,

where the arrows denote the exterior derivative operator. If p is a contact
form, p €O, W ,and fis a functionon W', f € ©,W , then the formula

(36)  d(fp)=df Np+fdp

shows that the form d(fp) is again a contact form; however, the exterior
derivative in (36) is not a homomorphism of ©;W -modules. Restricting the
multiplication in (36) to constant functions f, that is, to real numbers, the
exterior derivative in (36) becomes a homomorphism of vector spaces.

Another consequence of Theorem 1 is concerned with sections of the
fibred manifold J'Y over the base X. We say that a section 6 of J'Y , de-
fined on an open set in X, is holonomic, or integrable, if there exists a sec-
tion y of Y such that

(37 §=J7.

Obviously, if 7 exists, then applying the projection 7" to both sides we get
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1’08 =7y ;thusif y exists it is unique and is determined by

(38) y=n""08.

Theorem 2 A section 6:U — J'Y is holonomic if and only if for any
fibred chart (VW) , w =(x",y°), such that the set (V) lies in the domain
of definition of 0,

(39) o *wy,

i iy

=0

for all o, k, and i, i,, ..., i, such that 1<oc<m, 0<k<r-1 and
1<i<i,<...<i,<n.

Proof By definition,

6 *wgz...ik = d(yi?iz...ik 06)_()’;’,‘2 i o 8)dx'

40 Ay’ . od
( ) :( (ylllz...zk )_yo' °6jdxl-

o' iy gl
Thus, condition (39) is equivalent with the conditions

0y, i, °0)
(41) %_yilizmikloazo
dx

that can also be written as

007°0) a5

ax' ! =0,
8 .G 06 62 o 05
7()}1' ; )—y;‘lo5:7(y l)—yﬁoE:O,
(42) dx ! dx" dx !
Iy, °0) o S= I (37 09) o 5=0
— a0 Viiu®0= T, it a il i1 09 =Y
0x dx"9x™...0x"" dx

These conditions mean that the section & is of the form § =J (7'°08) as
required.

2.2 The trace decomposition

Main objective in this section is the application of the trace decomposi-
tion theory of tensor spaces to differential forms defined on the r-jet prolon-
gation J'Y of a fibred manifold Y. We decompose the components of a
form, expressed in a fibred chart, by the trace operation (see Appendix 9);
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the resulting decomposition of differential forms will be referred to as the
trace decomposition.

In order to study the structure of the components of a form p € QW
for general r, it will be convenient to introduce a multi-index notation. We
also need a convention on the alternation and symmetrization of tensor com-
ponents in a given set of indices.

Convention 1 (Multi-indices) We introduce a multi-index / as an or-
dered k-tuple I =(ii,...i,), where k=0,1,2,...,r and the entries are indices
such that 1<1,,i,,...,i;, <n.The number k is the length of I and is denoted by
| 11.1If j is any integer such that 1< j<n, we denote by Ij the multi-index
Ij =(ii,...i, j) . In this notation the contact basis of 1-forms, introduced in
Section 2.1, Theorem 1, (a), is sometimes denoted as (dx',@7 ,dy7 ), where
the multi-indices satisfy 0 <|JI<r—1 and |/ |=r; it is understood, howev-
er, that the basis includes only linearly independent 1-forms @7 , where the
multi-indices [ =(ii,...i,) satisfy i, <i, <...<i, .

Convention 2 (Alternation, symmetrization) We introduce the sym-
bol Alt(ii,...i,) to denote alternation in the indices i,i,,....i, . If U=U,, .
is a collection of real numbers, we denote by U,, , Alt(ii,...i;) the skew-
symmetric component of U. Analogously, Sym(i,i,...i,) denotes symmetri-
zation in the indices i,,i,,...,i; , and the symbol U,, . Sym(ii,...i,) means

the symmetric component of U. The operators Alt and Sym are understood
as projectors (the coefficient 1/k! is included).

Note that there exists a close relationship between the trace operation on
one hand, and the exterior derivative operator on the other hand. For in-
stance, decomposing in a fibred chart the 2-form dyf, Adx"* by the trace op-
eration, we get

o 1 o N (o} l (o} N
(1) dyjj/\dxk=;5_fdyk/\dx +dyjj/\dxk—;5_;‘dyjs/\dx ,

where the summand, representing the Kronecker component of dyj. Adx" |
coincides, up to a constant factor, with the exterior derivative dmj , and is
therefore a contact form:

1 o s 1. o
) ;5]’fdyh Ndx* == doj.

The complementary summand in the decomposition (1), represented by the
second and the third terms, is traceless in the indices j and k. We wish to use
this observation to generalize decomposition (1) to any g-forms on J'Y .
First we apply the trace decomposition theorem (Appendix 9, Theo-
rem 1) to g-forms of a specific type, not containing the contact forms o) .
Lemma2 Let (V,y), w=(x',y°), be a fibred chart on Y. Let L be a
q-form on V' such that
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p=A,  dx' Adx® AL Adx"

+B.

Oy lplz..0,

3) +Bh dy; ANdy7> A dx™ Adx* A.. N\dx"

010,304y

dy;' A dx Ndx" A...N\dx"

+...+B'L 2’7_]11; dy;t Ndy* A Ndy)"! Adx"

5,0,

+ Af;lf,zz f;’] dy; Ndy7r A. ../\dyfq“ ,

where the multi-indices satisfy 11, 1,11, 1,...)l I‘F1 |=r.Then U has a decom-
position

@ HEpt

satisfying the following conditions:
(a) W, is generated by the forms dw§ , where | J |=r—1, that is,

(5) o= Y, doj N D,

l=r-1

for some (q—2)-forms @ .
(b) U’ has an expression

W=A,  dx Adx® AL Adx"

+AD dy;' A dx' Adx” A...\dx"

O lpl3...0,

(6) +ALE Y] Ndy] Ndx® Adx AL A dx"

00, ihi3...dy

+o A ALD LAy Ny A Ny Adx”

5,0, 0"

+ Af;lf,zz f;’] dy; Ndy7r A ../\dyfq“ ,

1 I 1 11 1,
where A} 12 A2 ... are traceless components of the

O\ iyi3...0, 0 010, 0yiy,..0, > *°* 0,0, "0, i,
1 I'h Iﬁi 7 gy

. . g
coefficients B()'lizi344.iq » B oyigisiy o0 Bojoyvo, i, -
Proof Applying the trace decomposition theorem (Appendix 9) to the

101 I L I 11, Ly 1
coefficients B ;. . Bs s, i+ » Bsg,-ooa, ;i (3), we get
I — Al I
Oy igizdy Ao’,izzgu.iq + Coligi,uiq >
11 12 —_ 1] 12 11 12
00,5040y~ 17010, 0504. 0, 010, i3i4..d, °

)

B’] I Iya — Ii 1, Iga Ii I Iya
010, " "0 il 010, ° "0, il 010, "0 plg iy
I 1, I, _ ALL I, I 1, I

0,0, "0, iq,,iq 0,0, "0, iq,,iq 0,0, "0, iq,,iq ’
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1 I 1 11 I
where the systems A}, ., AG'I(;% iy s Adg, e are traceless and
I I I a1 > &
oyisd, 5'1521213 iyr e Cogyee ;,iq ‘are of Kronecker type. Thus, writing

the multi-index / | as I =J,j,, we have

Co. ,q_ale;; v AltGoiiy. i) Sym(J, jp),
Coii. B =8'De, o AltGiis...i) Sym(J,j) Sym(J,},),
@) C;l 5722 . oq;ziq,,z;, :5ii],,D;:cIrzz£;"'g:2iq Alt(lq lq) Sym(J,j,)
Sym(J,j,) ... Sym(J,_,j, ),
Codooas =8DJ2E 0 Sym(J,j)  Sym(J,),)

Sym(J, ,j,,)-

Then
u=A4, , dxi‘ Adx® A...Ndx"
+A(1;llm oy Adx™ Ndx™ A...Ndx"
AL YT YT Ndx Adx AL A dx
o o AL LAy Ay AL Ady A d

+A] 2 ;" dy"' /\dyCvz /\.../\dyf"

+ 6"DJ‘ dy7 N dx® Ndx® A Ndx"

Oy i3l Iy

+8 Dy dy], /\dyZz Adx™ Ndx'* A.. N\dx"

010y iyis..i,

+o A SIDIRE . Ndy] A...Adyj’qudx"',

010,03 " 1111

and now our assertion follows from formula (2).

The following theorem generalizes Lemma 2 to arbitrary forms on open
sets in the r-jet prolongation J'Y .

Theorem 3 (The trace decomposition theorem) Let g be any positive
integer, and let p € QW be a q-form. Let (V.,y), y =(x',y°), be a fibered
chart on Y, such that V.CW .Then p hason V' an expression

(10)  p=py+p’,

with the following properties:
(a) p, is generated by the 1-forms @] with 0<IJ1<r—1, and 2-
forms dw] where |Il=r—1.
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(b) p’ has an expression

P =A. . dx" Ndx® A.. Ndx"

iyl Ay

+AL L dyy Adx" N dx® A...Adx"

O lyi3...
(11) +A] 2 i, V1 N YN dx® Ndx'* A...Ndx"

g
o i

Fo AL LAy AdYD AL Ay Ndx”

g-1lq

+ AN .f;’q dy; Ndy?? /\.../\dyzf‘,

G0, "

I I
iyiy..dy A0y 0y gy 2

.. I
where |111 LI ...l I‘F1 |=r, and all coefficients A(,‘1
1, I -
Al 2ot aretraceless.

Proof To prove Theorem 3, we express p in the contact basis. Then
p=p, +U, where p, is generated by contact 1-forms @7, 0<IJI<r-1,
and u does not contain any factor @9 . Thus, y has an expression (3), and
can be decomposed as in Lemma 2, (4). Using this decomposition we get
formula (10).

Theorem 3 is the trace decomposition theorem for differential forms;
formula (10) is referred to as the trace decomposition formula. The form p,
in this decomposition (1) is contact, and is called the contact component of
p; the form p’ is the traceless component of p with respect to the fibred
chart (V,y).

~ Lemma3 Let p€ Q;W be a g-form, and let (V.,y), ¥ = (x',y°), and
VW), y=(x',y°), be two fibred charts such that VNV =@ . Suppose
that we have the trace decomposition of the form p with respect to (V,y)
and (V. W), respectively,

(12)  p=py+p'=p,+p".
Then the traceless components satisfy
(13)  p'=p'+17,

where 1 is a contact form on the intersection VNV .

Proof Lemma 3 can be easily verified by a direct calculation. Consider
for instance the term Ay, . dy; Adx® Adx" A...Adx" in formula (11), and

the transformation equation

dyg, . _ 9y° axh ax”  ox”

14 = . —...—— Sym(j,j,...j.)-
A M M M
Denote @}, . =dy;, . -y . dx'. Thenwehave
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Al Adx Ndx® A...Ndx"

$783...84 yiliz...i,
ax™ 9x"™  9x™
DX afl2 8)7(:13 axlq

(15) ayl?;vl aygizmir Y ayl(;vl —V
1 axr + Z S Y |47 2 v @y

0<k<r-1 ayj,jzu.jk osk<r-1 9,

— Abiad:
[}

7dyV1]/\dxl Adx" ... Ndx".

Consequently, the last summand in (15) implies

dx™ ax™  9x™ 3}1,?,, i
szt3..,sqajlz afg ax ay

(16) A\{]J B Ll ., Al‘l2 o

Jija-

Substituting from (14) in this formula we see that the trace of A}
vanishes if and only if the same is true for the trace of A'>* . . Thus,
the decomposition (13) is valid for the summand (14). The same apphes to
any other summand.

Following Theorem 3, we can write the g-form p in the contact basis as
p=p,+p,+p’, where p, is generated by the forms @7, 0<IJI<r-1,
p, is generated by dw; , |I1=r—1, and does not contain any factor @7 ,
and the form p” is traceless. Thus

(17 p= Y @IAD,, p,= ) dof NV,

0<Uisr-1 r=r-1
for some forms @, and W, . Then

(18) p=0 N®! + w7 Nd¥. +d(w! NVL)+p’.

Setting

(19) Pp=w AN®! +0! Nd¥Y., Qp=0A\Y., Rp=p’,
we get the following version of Theorem 3.

Theorem 4 Let g be arbitrary, and let p€ QW be a g-form. Let
V), y= (x',y°), be a fibered chart on Y such that VCW.Then p can
be expressed on V' as

(20) p=Pp+dOp+Rp.

Proof This is an immediate consequence of definitions and Theorem 3.
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In the following two examples we discuss the trace decomposition for-
mula and the transformation equations for the traceless components of some
differential forms on 1-jet prolongation of the fibred manifold Y. The aim is
to illustrate the decomposition methods, which can be applied to lower de-
gree differential forms.

Example 1 We find the trace decomposition of a 3-form g, written in
a fibred chart (V,y), w =(x",y°), as
n=Ay

+BU9 dyS Ndy! Ndx" + ALy Ndy! Ady! .

ovk ovVT

dx' ANdx! Ndx* + B? . dy° Ndx’ Adx*
Q1) o

Decomposing B, , we have B, =A’, +6/C, +0/D

traceless. Then the condition By, =—By,; yields

»;» Where A7, is

B! =6"C +6;’DGP =nC,, +D,,

p ok

=-B!, =-08/C, ~8"D,, =~C,,—nD

okp — ok>

(22)

hence C,, =—D_, . Thus,

(23) B’ =A’

o jk o jk

+0/C,,—06[C,,.

Decomposing B2?, , we have B2Y = A2 +6/C,?+6/D? . Now the condi-

: ovk ’. ovk ovk

tion B!, =-B!’, yields
rq _ P q 9N — q q

o4 Bl =0/C,u+0:D;, =nC,!+D],
_ 9P _ _Sq P PPY — q q
- _Bvcrp - _Spcva _apDvc - _CVO' - ano‘ s

hence nC, ! +C . =-nD!_ —D! .1t can be easily verified that this condi-
tion implies

(25) Coyv==Dj;.

Indeed, symmetrization and alternation yield

(26) nC,!+C)2+nC,! +C,I=-nD! —DI —nD! —D!_
and

27) nC,!+C)I —nC,! —C 5 =-nD] —DI +nD! + D!

vo?

hence C !+C,I=-D! —DI and C,/-C,=-D! +D! . These equa-
tions already imply (5). Thus

(28) B, =AM +87C,1-8IC,".

ovk ovk
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Summarizing (23) and (28), we get

p=Aydx' Ndx’ Adx*+A”

o jk

dy; Adx’ Ndx* + AP

ovk
+67C,,,dy] Ndx’ Ndx* —8/C,, dy] Ndx' Ndx*
+8/C,ldyS Ndy! Ndx" —8]C,LdyS Ndy, Ndx"
+Agvedy, Ny, Ndy;

= Aydx' Ndx’ Ndx"+ AL dy? Ndx! Adx*

(29) + A9 dyS Ndy! Ndx" + AT dyS Ady) A dy!

ovk oVvT

dy; Ndy, N dx*

+CydyS Ndx” Ndx" —C, dyS Ndx’ Ndx"
+Cyidy; Ndy, Ndx" —C,dy; Ndy, Ndx*
= Ay dx' Ndx! Ndx" + AL dyS Adx! Ndx*

+ A8 dyS Ndy! Ndx"* + AT dyS Ady) Ady!

ovk ovT

—2C, do° Ndx" +2C,lda° Ndy).

Thus, applying formula (9) to any 3-form p on V' we get the decom-
position

(30) p=p+p,+p,

where p, is generated by @’ , thatis p, =dw’ A®_, p, is generated by the
contact 2-forms dw°, p,=dw’ AN¥Y,, where the 1-forms ¥, do not con-
tain any factor 0", and p’ is traceless.

Example 2 (Transformation properties) Consider a 2-form on the 1-
jet prolongation J ].Y , expressed in two fibred charts (V,y), v =(x',y7),
and (V.p), ¥ =(x',y7),as

(31) pP=pi+tp,+p' =p+p,+p,
where according to Theorem 3

pl =w6/\Po" p2 ZQGda)G’

(32) . S S
p’=Aydx" Ndx! + A, dy] Ndx' + Aldy] Ndy;,
and
p,=0°AP, p,=0,dd°,
(33) P P>

p'=Adx' Ndx'+ A, dy’ Ndx'+ A, dy! Ndy] .

We want to determine transformation formulas for the traceless components
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,1, A, and A, . Transformation equations are of the form

0y’ 0y° Vjax’

34 ¥ 5l j, o — 3O j’v’ 3 = + _
( ) X X (x ) y y (x y ) y/ (axl ayv yl afl
and imply

dy” dy. dy’ dy" 9
(35  dy’ =| 2 y; dx? + 2~ + 2 f,dK

ax’  dy Vr ay ay" ox

Then a direct calculation yields

. 9y ay’ day, 9y,
A;iawczyf=A;i(yl+y;y:j[y’+ o q]dxwx

ax”  dy ax? Ay Y
N E N AT
+Avl[ayp ai,(y )ayad ot
+Kv"iayi€ (ailp+ay’ly )a) Adx?
ay" \Lax” dy
Yo ay’ ay* ax’
36 +A! L dx” Ady*
(36) Av(ap aKy")ala Vi
. fv af‘t
+A;iay ox" (03, +<9y1/l dyt Ndx? + ”TaL’KLI/Ia)K/\w'l
ay* 9x'  ax” ady Ya ay" dy
0y ay" dx’ 2 =10y 0x’ Ay/ 2
+ A — o ANdy' + A L dy* N
Ay oyt ox Vit A o 0yt
Ilay ax' dy* axd /\dl
T9y* 0x' ay* ox'
Similarly
i v o 0xX7(ay” 9y, !
. Ay dy) Ndx’ = A P [8x”+6 Kyp)dx”/\dx
—, ox’ 3y’ ; x’ 9y" ax’
+ A ———"0" Ndx" +
& ax' ay* A ax' ay* ax'
and
(38)  Aydx' Adv' = jg" O et '
)C

To determine the traceless components A/, A, and A, from the formulas
(36), (37) and (38) we need the terms not containing ®* ; we get



48 Global Variational Geometry

S A /N TS H s
il i i K

9y 9y’ . \oyT ax’ 2
FA Ty ——dx” Ndy’
A”(axp 3y y”)ay* e Vi

oy axt (9yF AT
+A! | L LA Ay A dx?
Aoy ax (ax" ay* 1 )

(39) 40103 9x Oy aijdy’“ Ady*
VTayK 8)7’ ayl afl N J

o 0xX7(ay) 9y !
+A . Lo =t dx? Ndx
A dx' (ax” ay* y"j

—, 0x’ 9y ox* .
+ AL _dy* Ndx

A ox oy o
_ 9x' ax’

+A.
T 9x” dx'

dx? Ndx'.

Now it is immediate that

i 9y 9y’ dy, 9y
A =AM A e ) 2y 2
P4 AVT((:)xP ayK yl’j(axq ayfl q
1, (ox/(ay’ oy’ .\ ox’'(ay’ ay’ .
40 +—A'. L 2t — L4 =70
“40) 2%(3;«1(3;#’ ayKyP) ax” L axt T 9y
+Ki4aiax
T ax? ax?
and
(41) ASj =lg";1 ﬁa_xsia_x]_iﬂa_yra_xs
ATV gyt axt 9yt ax! 9yt ax' 9y~ ax' )
y y y y

The remaining terms should determine A;, as the traceless component of the
expression

N A Ay’ ax* 0y ox’(ady’ Ay
AL S ey [ A T S Sy
dx?  dy dy" dx dy" ax'\ dx? dy
vy 9x’ 9y” ax’

7 9x? 9y~ ax'

(42)

Recall that the traceless component W, of a general system P, indexed
with one contravariant and one covariant index, is defined by
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1
s _ps_ - §s
43) W, =P~ &P,

where P = ij is the trace of P,. To apply this definition we first calculate
the trace of (42) in s and g. We get

A D O | O gy Y O[O D
ax*  dy dy* ox' ay* ax'\ dx* dy

oy E&y ax’
7axt oy ax'

(44)

Now we can determine the traceless component of (42). Since the resulting
expression must be equal to A, we get the transformation formula

ox’ 9y ox’
A=A dx? dy* ox’
(9 Y oyt axt -, 95" ax’ (9y° Ay
45 _ ! z+ i -~ 4 i : 7[_'_ !
43) A”(axq ay‘yq)ay" ox T o Laxt T oyt e

ay,  dy ay* ax™  dy yoooay!
L1 5&,1 ym yﬂym yrox" dy” ox" ay;ﬁy,lyi
dy ay* ax'  ay* ax' \ ax" dy

as desired. It is straightforward to verify that the expression on the right-
hand side is traceless.

2.3 The horizontalisation

We extend the horizontalisation QW > p— hp € Q"W , introduced in
Section 2.1, to a homomorphism /:QW — Q™'W of exterior algebras.

Let pe Q'W be a g-form, where g =1, J."'y € W™' a point. Consider
the pull-back (7""'*)* p and the value (1" r)* (J'“y)(éfl,g ..&,) on any
tangent vectors &, &,, ..., & of J™'Y at the point J] & Y. Decompose
each of these vectors into the horizontal and contact components,

(1 T”m'é:hél'i'pgz’
and set
2) hp(J )&y 08, = PULY Y(RE, HE, ... HE).

This formula defines a g-form hp € Q;“W . This definition can be extended
to O-forms (functions); we set for any function f:W"— R

3) hf =@"")* f.
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It follows from the properties of the decomposition (1) that the value
hp(J 'y )(&, L, .....E,) vanishes whenever at least one of the vectors &, &, ,
.., &, is m™-vertical (cf. Section 1.5). Thus the g-form hp is n'*'-
horizontal. In particular, hp=0 whenever g=n+1. Sometimes hp is
called the horizontal component of p .
Formulas (2) and (3) define a mapping h:Q'W — Q™'W of exterior

algebras, called the horizontalisation. The mapping h satisfies

@ h(p+p)=hp,+hp,. h(fp)=(x)E fohp

for all g-forms p,, p,, p and all functions f. In particular, restricting these
formulas to constant functions f we see that the horizontalisation % is linear
over the field of real numbers.

Theorem 5 The mapping h:Q'W — Q™'W is a homomorphism of ex-
terior algebras.

Proof This assertion is a straightforward consequence of the definition
of exterior product and formula (2) for the horizontal component of a form
p . Indeed,

h(p /\ n)(‘])tﬂy)(gl ’52 o "éq ’€p+l ’€p+2 o "€p+q)
= (p A n)(‘];’y)(hél ’h§2 [t ’hgp ’hgp-#l ’h§p+2 [t ’h§p+q)
= ZSgnT .p(J;J/)(hér(])’hér(Z)""’hg‘r(p))

(5) 'n(‘];’}/)(hér(pﬂ)>hér(p+2)""’hé‘r(erq))
= ngm: ’hp(-];)/)(ér(l) ’ér(z)’- - ’g‘r(p))

' hn(‘],:/y)(é‘c(pﬂ) ’61(1)4—2)" . ’éf(p'*-q))
= (hp(J ") AINI T YNE G 08056t sE a6 i)

(summation through all permutations 7 of the set {1,2,....,p,p+1,...,p+q}
such that 7(1)<7(2)<...<7(p), and T(p+D)<T(p+2)<...<T(p+q)).
This means, however, that

©  h(pAm=hpAhn.

The following theorem shows that the horizontalisation is completely
determined by its action on functions and their exterior derivatives.

Theorem 6 Let W be an open set in the fibred manifold Y. Then the
horizontalisation QW > p—hp € Q""'W is a unique R -linear, exterior-
product-preserving mapping such that for any function f:W"—R, and
any fibred chart VW), w =(°),with VCW ,
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) hf = for'™, hdf =d.f-dx',

where

of,

ox' c Ik
NEhs Sy Jida-e-Jk

(®) df =

Proof The proof that %, defined by (2) and (3), has the desired proper-
ties (7) and (8), is standard. To prove uniqueness, note that (7) and (8) imply

9) hdx' = dx', hdy?, !

— o
e = Vi i *

It remains to check that any two mappings A, , h, satisfying the assumptions
of Theorem 6 that agree on functions and their exterior derivatives, coincide.

We determine the kernel and the image of the horizontalisation 4. The
following are elementary consequences of the definition.

Lemma 4 (a) A function f satisfies hf =0 if and only if f=0.
(b) If g2n+1,then every g-form p € QW satisfies hp=0.
(c) Let1<q<n, let peQW beaform.Then hp=0 if and only if

(10) Jy*p=0

for every C" section vy of Y defined on an open subset of W.
(d) If hp=0, then also the exterior derivative hdp =0 .

Proof (a) This is a mere restatement of the definition.

(b) This is an immediate consequence of the definition.

(c) Choose a section ¥y of Y, a point x from the domain of definition of
y and any tangent vectors ,.{,,...,, of X at x. Then

Jy*p(x)(,.8,5 5 8,)
=p(U)TJ Y- §.TJ Y&, . TIY-C).

r+l

1)

Since T7™*' is surjective, there exist tangent vectors &, to J™"'Y at J'''y,
such that {, =Tz -& . For these tangent vectors

Jy*p(x)(¢,.8,5 - .8,)

(12) . . . .
=p()TJy T -& T Jy - Tn™"-&,,...TJy-Tn™""-&).

But K =TJ'yoTr"" -& hence

JY*p)&,.8, s 6,) = p(J Y )R, hS, ... hS,)

(13) i
=hp(J"y)(E.8, . "’éq)'
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This correspondence already proves assertion (a).
(d) This assertion (d) follows from (c).

We are now in a position to complete the description of the kernel of the
horizontalisation / for g-forms such that 1<g<n .

Theorem 7 Let W CY be an open set, pcQW a form, and let
VW), v =(x',y), be a fibred chart such that VCW .

(a) Let gq=1.Then p satisfies hp=0 if and only if its chart expres-
sion is of the form

(14 p= 3 0]

0l Isr-1

for some functions @7 :V"—>R.
(b) Let 2<q<n.Then p satisfies hp=0 if and only if its chart ex-
pression is of the form

(15) p= Y, oA DL+ Y dof \YL,

o<l I<r-1 I11l=r-1
where CI)(J, (resp. ‘Pf, ) are some (q—1) -forms (resp. (q—2)-forms) on V' .

Proof Suppose that we have a contact g-form p on W', where
1<g<n. Write as in Section 2.2, Theorem 3, p=p,+p’, where p, is
contact and p’ is traceless. But the horizontalisation & preserves exterior
product and Ap =0 so we get hp’=0 because p, is generated by the con-
tact forms @7 , dw] , which satisfy hw7 =0, hdw; =0 . Now using formu-
la hdy] =y, dx" we get, expressing p’ as in Section 2.2, (11)

I 1,

’ __ 1] 0 O O3
hp - (Ailiz...iq + A6|i2i3...iqy11il + A6162i3i4...iqylli|ylzi2

L1, Iy o) |,03 Og-1
(16) +...+ Ao,oz coeai ViV Y1
L1, Iy (01 ,,03 Oy iy i iq
+A6162...Gqy,lily,ziz...y,qiq)dx ANdx® N...Ndx",
— 101 I, L1,
wlllle;zre I[q{}l,ll2l,...,l I, I=r and the coefficients Aj,; ;. Ajg . > >

are traceless. Then

10, "0y,

I ! I I 01 1,03
Ai,iz...iq + Ao‘,iziS...iqylli] + Ac,azi354...iqy1,i, Vi,
o

I 1, I %1 93
17 +...+ Ac,oz ceoa i Vi Y Vi

11, 1 3 o, _ .. .
+AS g, g, Vi Vi, - Yih =0 AltGg,...0)).
But the expressions on the left-hand sides of these equations are polynomial
in the variables y, with |Kl=r+1, so the corresponding homogeneous
components in (17) must vanish separately. Then we have A. . =0,

iyly. . Iy
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AL "zO,and

0,0, °

A8 =0 AltGi,...i,)) Sym(l],),

O yi3..

(18) Az, . 8167=0 Alt(,...i,) Sym(I)) Sym(l,l,),

010,340y iy iy

Ac17|£)'2 Oy 11 6[111 61122 6;::1] =0 Alt(lll2 o lq) Sym(llll)
Sym(L,h,) ...Sym({,_[,_,).
However, since the coefficients A(I;' iy ’A<If]1<1f2 Blady 2 AI' : [q i e

traceless, they must vanish 1dentlcally (see Appendlx 9, Theorem 4) Thus
we have in (16)

j— 11 —_ Il 12 —_
Ai,izmiq - 0’ Ao‘llzh iy T 0’ AG 100 iigedy 0’
(19)
AI 1, I, — 0 AI 1, I, — O
e 5,0, ° O'q Vg 0,0, "0,

hence hp’=0.Thus p=p,, and to close the proof, we just write this result
for g=1 and ¢ >1 separately.

Corollary 1 If 0< g <n then a q-form belongs to the kernel of the hor-
izontalisation h if and only if it is a contact form.

Corollary 2 Let W CY be an open set, pe QW a g-form such that
2<g<n,andlet V,W), ¥ = (x',¥°), be a fibred chart such that VCW .
Then the form p satisfies the condition hp =0 if and only if its chart ex-
pression is of the form

20)  p= Y, oADL+ Y, d] NP,

0l Isr-1 111=r-1

where CI)(J, are (q—1) -forms, and ‘Pf, are (q—2)-forms) on V', which do
not contain @5, 0<1JI1<r—1.

Proof We write (15) as
e p= Y, OSADL- ), o) AdYL+ Y, d@] ANPL).

0<I/ Isr-1 I 11=r-1 0<I ] Isr-1

The image of the horizontalisation 4 is characterized as follows.

Lemma 5 Let p € QW be a form
(@) If g=0, then hp (™ )*p
(b) If 1£g<n,then

(22) hp=hp’.
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(c) If g=n+1,then hp=hp'=0.

Proof This assertion is an immediate consequence of the definition of
the horizontalisation /4.

2.4 The canonical decomposition

Beside the horizontalisation of g-forms Q’W | introduced in Section 2.1
and Section 2.3, the vector bundle morphism 4 :TJ"™'Y — TJ'Y also induces
a decomposition of the modules of g-forms QW . Let peQ W be a g-
form, where ¢>1, J/"'y € W™ a point. Consider the pull-back (z"*"'")* p
and the value (7"'")* p(J"y)(&,.&,.....E,) on any tangent vectors &, &, ,

.., &, of J™'Y atthe point J;"'y . Write for each I,

(D Tﬂr+l-§l=h§l+p§l,

and substitute these vectors in the pull-back (z"*'")* p . We get

(@)% p TN Es 6,
= p(J Y )(hE, + p&, . h, + pE, . "’héq + péq)'

We study in this section, for each k£=0,1,2,...,q, the summands on the
right-hand side, homogeneous of degree k in the contact components p&, of
the vectors &,, and describe the corresponding decomposition of the form
(r"™'")* p . Using properties of p , we set

PP YNE 08
228.1‘1]‘2'“jkfk+1.-4fq p(J:')/)(pé]l ’pg.fz yyeee ’pgjk ,hngI ’hé.fkq gene ’héjq ),

2)

3)

where the summation is understood through all sequences j, < j, <...<j,
and j,,, < ji,, <...<Jj,.Equivalently, p,p(J;"'y) can also be defined by

PS8

S 1 Sizedidisssedy o T
= oo PUTNPE, Py weouPE ) HE  onshE)
(summation through all values of the indices j,, j,» ..oy Ji» Jisi» -oes Jy)-

Note that if k=0, then p,p coincides with the horizontal component
of p,defined in Section 2, (2),

5)  pp=hp.

We also introduce the notation
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(0) PP=DpP+Dp,p+...+ PP

These definitions can be extended to O-forms (functions). Since for a func-
tion f:W" — R, hf was defined to be (7'"")* f , we set

) pf=0.

With this notation, any g-form p € QW , where g =0, can be expressed as
(n_r+1,r)>l<p — hp+pp , Or

(8) () p=hp+pp+p,pt..tpp.

This formula will be referred to as the canonical decomposition of the form
p (however, the decomposition concerns rather the pull-back (z""'")* p
than p itself).

Lemma 6 Let g21, and let p € QW be a g-form. In any fibred chart
Vo), w=(x',y°), suchthat VCW, p,p has a chart expression
pp= >, Pk 07 NOT A N\OF

01 0y " " "Oplpsiger--dy
) VA AR A

Adx™ Adx AL Ndx",

JiJ, J, .
where the components F;'> ... are real-valued functions on the set

0y * " "Oplppiipen--y
r r
Vicw’.

Proof We express the pull-back (z"*'")*p in the contact basis on
W™ Write in a fibred chart

(10)  p=diA®+ D of AP+ dy) NG,

0<lJl<r-1 l=r

for some (¢—1) -forms @, , ¥/ ,and O] . But dy{ = ®{ +y7dx" hence

(ﬂr+1,r)*p:dxi/\((ﬂr+],r)*®i+zy;(nr+l,r)*®;)
(11) =r
+ Y 0 AR+ Y 0f A(r)*6) .

0<lJl<r-1 =r

Thus, the pull-back (7"*'")*p is generated by the form dx', ®{, where
O0<lJl<r—1,and ], |Il=r.The same decomposition can be applied to
the (g—1)-forms @,, W! , and ®. . Consequently, (x"*"")* p has an ex-
pression

(12) @) *p=p,+p+p,+...4p,

where
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Py = A, dx" Adx® A A\dx",

_ S J Jy o o o
pk - . |j||]z| " BO':GZZ "'o‘iikﬂikﬁ.uz‘q wjll Aw]; /\"‘/\wjkk
<IJ, )5, T IS
(13) e |
Adx™ Ndx"2 A Ndx'", 1<k<g-—1,
_ JiJ o, [oF o
p,= 2 B2 . ‘;iqwjl' ANOT N ADT".

STAT AT At

Theorem 1, Section 2.1, implies that the decomposition (12) is invariant.
We prove that p, = p,p . It is sufficient to determine the chart expres-
sion of p,p.Let & be a tangent vector,

(0 < d
(14) §=§'[ax] v 2 =, ( : ] -
Ty

k=0 jiSp<.Sji ay./l./z~~~./k

From Section 1.5, (5)

(15) hé§=c§’(( ’

d
- + s
ax' )f §]1<]2§<]kyhh M(a i ]J;}'J

/|/2 Jk

and

(16) pE=2, 2 (Eijzm./'k_y.z./2~~-jki§i)(a "a j '
Iy

k=0 ji<h<.. .<jy Yiiiereie

If K£=0,then £ =0 and we have

4 0
(17) p§ = 2 2 E?ljzm./-k (a o J :
Ty

k=0 ji$jr< . Sj Yiiieveie

If p£=0 then = £’ hence

Jil2--dk y]ljz il

(18) hé§=5’(( ’

d
- + .
ox' ); g)‘,,qgs“ym M(a H J, J

]1/2 Jk

We substitute from these formulas to expression (3). Consider the expression

pkp(JrH'Y)(él’éz» é ) for 51 > 62 > et éq such that hél =0, hgz =0, ...,
h&, =0 and pé&,,, = 0, p&, =0, éq =0 . Then (3) reduces to

PP EEs 08

(19)
= p( Y )PS,.PEs s s PG G 1 G o --ahéq)~
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Writing
\ (l)y—=o a
é[ :Z 2 :j1j2-<-jk a o ’ ISlSk’
k=0 ji<j<..<jy yjljzmjk Iy
o d
(20) hé =& . +Z Z Yo i o ,
JY k=0 ji<ps.Sj Vi Iy

k+1</<gq,
with / indexing the vectors &, , and substituting into (19) we get

pkp(‘];ﬂy)(gl ’62 2 "&k ’§k+l ’§k+2 2 "é )7

I I =0, 2m0, k—ok k+l§zk+, k+2§zk+2 gl},
ceeg i i LS = ..
0,0, O lpsiipsa-dq 1 I,

2D

But
22) Bl =0]U)E, E=d'U) ¢
Therefore, p,p(J."y) must be of the form (9).

Formula (9) implies that for any k=1 the form p,p is contact; p,p is
called the k-contact component of the form p .

If (2™*'")*p=p,p or, equivalently, if p.p=0 for all j#k, then we
say that p is k-contact, and k is the degree of contactness of p . The degree
of contactness of the g-form p=0 is equal to k for every k=0,1,2,...,q
We say that p is of degree of contactness 2k ,if p,p=0, pp=0,
P P=0.1f k=0, then the O-contact form p,p=hp is n'*" -horizontal.
The mapping QW > p—>hp e Q;“W is called the horizontalisation.

The following observation is immediate.

Lemma7 If g—k>n, then

hp=0,

(23)
pp=0, p,p=0, .., pq*rH:O'

Proof Expression p(J;y)(pS;.pE; . ,p&jjk 5 hE, h§ ) in (4)
is a (¢—k)-linear function of vectors z E/n.’ éz o = T# £

., §, =Tn""-&, , belonging to the tangent space T X . Consequently if
q- k >Sn=dimX , then the skew-symmetry of the form .y implies

PPN E, e E)=0.

To complete the local description of the decomposition (8), we express
the components P2 ...} (9) of the k-contact components p,p in

Oy ’k+1’A+ 200y

terms of the components of p .



58 Global Variational Geometry

Lemma 8 Let W be an open set in Y, an integer, N € QW a form, and
let V), v= (x',y°), be a fibred chart on Y such that VCW Assume
that 1 has on V' a chart expression

q

Il 12 I\' 1 2 s
(24) n= ZS‘(q $)! Gu 0y" "o i\+|i\-+z~-l},dyz /\dyg /\"'/\dy;
5=0

Adx™ Adx AL ANdx",

with multi-indices I,, I,, ..., I
pa of N hason V'™

. of length r. Then the k-contact component
a chart expression

1 Il I] Ik 1 2 k
05 P = 7k'(q—k)'BG‘ oo ik+]ik+2“_iqw§f Acoj‘2 /\.../\a)z

Adx Adx™ A, Ndx",

where

LLo I
Oy 02" " Oy lpalpsa- g

q
q— k) Iy ’z Iy Tpar T ].‘ O+ Of+2 O
(26) 2( A ! "0k Opyt Opin” " 'O Ll y’t+1’k+1y1A+21k+7 'y’\i.\-
s=k
Al iy gy -0

Proof To derive formula (25), we pull-back the form 1 to V™' and
express the form (7"*'")*¥ in terms of the contact basis; in the multi-index

notation the transformation equations are
(27)  dx'=dx', dyf =0 +yldx', |Ill=r

(Section 2.1, Theorem 1, (a)). Thus, we set in (24) dy“l = +y,1dx" and
consider the terms in (24) such that s>1. Then the pull back of the form
dy;' Ndy* A...Ndy] by m™*" is equal to

(28) (0] + yf’l}ldxi‘ YA (@7 + yZizdxiz)/\. A (@] + yZ;\dxi‘ ).

Collecting together all terms homogeneous of degree k in the contact 1-
forms ;" we get ( k) summands with exactly k entries the contact 1-forms
Thus using symmetry properties of the components Ag (..., . . in

(24) and interchanging multi-indices, we get the terms contalnmg k entries
;" , for fixed s and each k=1,2,...,s

1 s I I I o o O, ;O o o
1 s [ k2 s 1 2 &
(29) S!(q_s)!(k)A0'10'7 Y T VIO y1k+1’k+1ylk+2’k+7 . .yl\i.\‘wll /\wlz /\"'/\wIA

Adx Adx™ AL Adx Adx Adx AL N dx"
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Writing the factor as

1 1 —k
(30) S!(q_s)!(s) k!(g— k)v(g S)

we can express (29) as

1 q—k L1 I O Opi2 o e} o
(31) k!(q_k)!(q_s )A0]10'22 6;’«+1’«+2 Aq ylkilllk+lylki2’k+2 yl.‘i.xwlll A 0),22

A A@J Ndx T Ndx e AL A Ndxt Adx AN dx" .

Formula (29) is valid for each s=1,2,...,¢g and each k=1,2,...,s , and
includes summation through all these terms to get expression (24). The
summation through the pairs (s,k) , is given by the table

s‘l 2 3 .. qg—1 q
k\l 1,2 1,2,3 ... 1,2,3,....g—1 1,2.3,...q

(32)

It will be convenient to pass to the summation over the same written in the
opposite order. The summation through the pairs (k,s) is expressed by the
table

Koo 2 3 ... g-1 ¢
yeesq 2,3,...,g 3.4,....9 ... q—1,q q

(33)

Now we can substitute from (31) back to (24). We have, with multi-
indices of length r,

n:in A Adx® A Adx"

) iy g

q s
I 1, I K+l k2 s
(34) + 22 |( k)!(q N )Ao'lo'z O lgiiige iy yZHlkﬂyankw : 'yzis
s=1 k= q-
OF AOT A AT Ndx Ndx' AL AT Adx™ AL A dx"

hence

pkn— ! A dx' Adx® AL ANdx"

iyl Iy

9

q
I I O k41 O ks Oy
(35) + 2 ky(q k)!(Z( ) ‘7 0'22 O igyiisyn-- qylkil'k+ly1ki2?k+2 yl:isj

k=1 s=k

a)Z‘ /\COZ2 /\.../\a)Zk Adx™ Adx™ A Adx" .
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This proves formulas (25) and (26).

Remark 5 Formulas (24) and (25) are not invariant; the transformation
properties of the components are determined in Section 2.1, Theorem 1, (b)).

Lemma 8 can now be easily extended to general g-forms. It is sufficient
to consider the case of g-forms generated by p-forms @) Aw;> A...A\®, v
with fixed p, 1 < p <g— p. The proof then consists in a formal apphcatlon of
Lemma 8.

Theorem 8 Let W be an open set in Y, q a positive integer, p € QW a
g-form, and let (V,w), y=(x',y°), be a fibred chart on Y such that
V CW . Assume that p has on V" a chart expression

q-p

J I, L I, Vi v, Vp
p= E vv B T L0 /\COJ /\.../\co,
(36) = S'(q p S)' 12 pQ102 slstilss2--+lg—p 1 2 P

/\dyzl /\dyzz /\.../\dyz: /\d_xi”] /\dxi:+z /\.”/\dxiq,p,
with multi-indices J,,J,,....J

of length r. Then the k-contact component p,p of p has on V
expression

of length r—1 and multi-indices 1,,1,,...,1_
™! the chart

1 L, Iy Iip

(37) pkp = (k—p)'(q—p—k)‘ ViVy TV, 0000 0 i il pr2--dgop
A AT ANOT NG AL NG NdX T NdX AL A

Vv 1%
o) Ay

where
JIJZ JI)II 11 Ik—p
VIVy VL0000 Oy o prtik—pia--igp
q-p k
(38) — § ( q— ) W, IpL L Ly hepn Liopin Ix
q—p—S 1V2 "7V, 010, t 0y O ki * " "Oigpilsin gy
s=k—p

Ok-p+l O—pi2 o, . .
Vi pniv D T paivpn = VL Alt(lk—p+llk—p+2 Ay lq—p)'

Proof p can be expressed as

(39) pP=w; A®PA.. Aw"An’“m",

\7

where

q-p
JIJ., JiJy L L I
n.u:..
e FOSKq p—s)!

/\dyl]1 Ady,; /\.../\dyle Adx™ Adx™ AL Ndxr .

s
V1 Va 1TV, 010, 1 O iy

(40)
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5J, J . . .
We can apply to 1,/}7....” formula (25). Replacing g with g— p and k with
»
k-p,
Ny Iy — ; Ly, oL I Ty
(41) pk*l’nvl vttty (k_p)!(q_p_k)y ViVy TV, 0000 0 btk piae g
Ok—p ix—p ik ig-.
O] AOP AL AT N N AL N
-
where
JiJy ol Iy Lep
ViVy TV, 0000 " O ik pitlk-praeegp
q-p k
(42) — 2 ( q— ) Wy IoL L Ly hepn Lepa I
q—p—S 1V2 "7V, 010, t 0y O ki * " "Oigpilsnne gy

s=k—p

Ok Ot pi2 o, . . .. .
ylkﬂ#likﬂuly[k7p+2ik7p+2 o 'yl\i\- Alt(lk‘ﬂﬂlk—I”Z ELALNER 'lq—P )

The following two corollaries are immediate consequences of Theo-
rem 8 and Section 2.1, Theorem 1. The first one shows that the operators p,
behave like projectors operators in linear algebra. The second one is a con-
sequence of the identity d(z"*'")* p=(x"""")*dp for the exterior derivative
operator, the canonical decomposition of forms on jet manifolds, applied to
both sides, as well as the formula

(43)  do)=-w) Ndx’.

Corollary 1 For any k and |

(ﬂr+2,r+1 ) *

0, k=l

p.p, k=I,
@4 ppp= P

Corollary 2 For every k21

(45) (75”21+l ) PP = pidp P+ P p.

Remark 6 According to Section 2.3, Theorem 5 the horizontalisation
h:QW — Q*'W is a morphism of exterior algebras. On the other hand, if k
is a positive integer, then the mapping p, :Q'W — Q™"'W satisfies

(46) Pk(P+T])=PkP+Pm, Pk(fp)=(f°77:r+lqr)pkp

for all p, n and f. However, p, :Q'W — Q™"'W are not morphisms of exte-
rior algebras.
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2.5 Contact components and geometric operations

In this section we summarize some properties of the contact components
and the differential-geometric operations acting on forms, such as the wedge
product A, the contraction i, of a form by a vector £, and the Lie deriva-
tive d, by a vector field & .

Theorem 9 Let W be an open setin'Y.
(a) For any two forms p and n on W' CJ'Y ,

(1) p(pAM= Y, pp AP

i+j=k

r+lr

(b) For any form p and any n'*'-vertical, &
field & on W™, with ™" -projection &,

-projectable vector

@ PP =P

(c) For any form p and any automorphism o of Y, defined on W,
3 pUarp)=J"akpp.

(d) For any form p and any m -projectable vector field on Y on W
4) Pi(0,_p)=0 ,._p.p-

Proof (a) The exterior product (7"*'")*(pAmn) commutes with the
pull-back, so we have (z""'")*(pAn)=@™*"")*pA(x™"")*n. Applying
the trace decomposition formula (Section 2.2, Theorem 3) to (7""'")* p and
(7""")*n , and comparing the k-contact components on both sides we ob-
tain formula (1).

(b) To prove formula (2) we use the definition of the k-contact compo-
nent of a form (Section 2.4, (3)) and the identity p=(J"y)=&E(Jy) (Sec-
tion 1.5, Remark 2). Set & =Z(J/"'y). Then h& =0 and p& =&(J0y) . By
definition,

i=p P& 508,
= pPUEJE S8
= p P8y s 06,
= Y M DTy )G, PEj oo DEj HE R i)

)

with summation through the sequences j, < j, <...<j,, Jiy <Jiua <---<J,
(Section 2.4, (3)). On the other hand
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D 1i§P(Jr+l'}’)(5z CynenSy)
(6) _ 28121 g lgp(‘])(/y)(pglz ,pé,} 99e 7p§lk §Lk+1
_ ZEWSU'WH]”J({ p(]x']/)(pgl ’p§i2 ’p§i3 990 ’péik ’hé

L1

B, i,
DE, o hE)

Iet2
(summation through i, <iy<...<i,, f,, <i,, <...<i ). Since h§ =0, the
summation in (6) can be extended to the sequences 1<i, <i;<...<i, and
1<y, <iy,, <...<i,, therefore (6) coincides with (5).

(c) Formula (3) follows from the commutativity of the r-jet prolonga-
tion of automorphisms of the fibred manifold Y and the canonical jet projec-
tions, (x™")*Jo* p=J"a*(x™"")*p, and from the property of the
contact 1-forms @;;

l

r —~0 a(yTZk o‘]ra) v
@) J a*wjljzm_/'k = z - vj wi,iz.“ip
i <iy<..<i, Yiiy..d,
(Section 2.1, Theorem 1, (¢)).
(d) Formula (4) is an immediate consequence of (7).

Remark 7 If k=0, (1) reduces to the condition h(p A1) =h(p)A\h(n)
stating that 4 is a homomorphism of exterior algebras (Section 2.3, Theo-
rem 5).

2.6 Strongly contact forms

Let peQ W be a g-form such that n+1<g<dimJ'Y . Since hp=0
and also p,p=0, p,p=0, ..., p,,,p=0 (Section 2.4, Theorem 8), p is
always contact, and its canonical decomposition has the form

(1) (n-rﬂ’r)*p:qunp+pq7n+lp+"'+pqp'

We introduce by induction a class of g-forms, imposing a condition on the

contact component p,_ p.If g=n+1, then we say that p is strongly con-
tact, if for every point y, € W there exist a fibred chart (V,y), v =(x',y?),
at y, and a contact n-form 7 , defined on V", such that

@  p(p-dr)=0.

If g>n+1, then we say that p is strongly contact, if for every y, € W
there exist (V,y), v =(x',y7), at y, and a strongly contact n-form 7 , de-
fined on V', such that

3) Pyn(p—dr)=0.
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Lemma 9 The following conditions are equivalent:
(a) p is strongly contact.
(b) There exist a g-form 1 and a (q—1) -form T such that

(4) p:n'l'dT’ qunn:O’ qunflr:()‘

Proof If p is strongly contact and we have 7 such that (3) holds, then
we set 11= p—d7 . The converse is obvious.

In view of part (b) of Lemma 9, to study properties of strongly contact
forms we need the chart expressions of the g-forms p,_ p and p,, 7=0.
We also need, in particular, the chart expressions of the forms p whose
(g —n)-contact component vanishes,

(5) qunp:O'

To this purpose we use the contact basis. The formulas as well as the proof
the subsequent theorem are based on the complete trace decomposition theo-
ry and are technically tedious because we cannot avoid extensive index nota-
tion. We write

p= 2 Jily o Il Ly Lpes 0" A" N /\va
.. ;@) AT .

1V2 VpOpt10ps2 O prslprstilprst2:lq

(©) T o ,- |
Adyy" Ady]TT AN dyy T AT AT AL A

where summation is taking place through the multi-indices J,,J,,...,J, of
length less or equal to r—1 and the multi-indices /,,,,1,,,,...,1,,; of length
equal to r. Applying the trace decomposition theorem (Appendix 9, Theo-
rem 1) as many times as necessary we can write

p _ § lejz Ji K K Kivp Tipsr Tripsa L1 ps

ViVy " UVIKL K T K Op1 Otipia 7 Ot pas ls prstlie prsi2- - lo

O] NOP A A@F Ao Ndo? A Adog”

(7
O'l+p+1 Gl+p+2 0-/+p+s
A dylhpﬂ A dy[l+l)+2 AN dyalﬂ
/\dxll+[1+\+l /\dxll+[)+\+2 /\-.-/\dle ,
where
OSlJl I’|J2 Ia-~-’|Jl |Sr—1,
(8) |K1+1 |’|K1+2|7'-" |K1+p|:r_17
Ill+p+l |’|Il+p+2 l""’ Ill+p+s | = r,

and the coefficients are fraceless. The number Q in (7) is not the degree of
p; itis related with the degree ¢ by [+2p+s+Q—[/—p—s=q,thatis,
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) p+0=gq.

Theorem 10 Let W CY be an open set, q an integer such that
n+1<q<dimJ'Y, n€QW a form, and let (V,y), y =(x',y°), be a fi-
bred chart such that V.CW . Then p, ,n=0 if and only if

n= Y ) NOTA.AOT A0} Ado) A...\do)’
(10) g—n+I<l+p

/\(DJI Ja Ji LI In

0,0, oV, 'Vp 9

where @ 2 i hE D gre some (g—1—-2p)-forms on V", and the multi-

G 0y 0,V V'Y

indices satisfy 0 <1J L[ J, 1. NI ASr =1, L L L I=r=1,

Proof Expression (7) for 17 can be written as 7 =7,+1, , where

n _ 2 JiJs J1 K Ko KispTivpsr Tipsa s pis
0 VitVa " VIKG K " K O it a2 * " " pas b pisiille prssa--lo
I+p2g—n
v v v K K, K,
(11) W ADFN L ANOY Ndot ANdo 2N N o
1 2 i I+1 K2 Kisp

oz

/\dy01+p+1 /\dy61+p+2 AL /\dy I+pts /\dxil+p+s+l /\dx’ﬁpﬂﬂ A... /\d_xiQ
11+p+1 1]+p+2 I

I+p+s

and
n _ § Iy Iy I Ky K Ky T Tips T pis
1 Vit V2tttV K Ko U Ky Oripit Oripia” "Olipas bipaseilleprssa--do
l+p<q—n
v v v, K K, K;
(12) WP AOENLAOF Ndot ANdo 2N N o
1 2 i 141 Ki2 Kiip

o o Olipts it pes It prss2 i
Ay NdyT AL N YT Adx T Adx T AL N dX.
I+p+1 I+p+2 l+p+s

We want to show that the condition p,_ n=0 implies 7, =0.
To determine p,_ 7, , we need the pull-back (7"*")*n,; this can be
obtained by replacing dy; with

(13)  dyf = +yldx'.

Then the corresponding expressions on the right-hand side of formula (12)
arise by substitution

O ptl OLipi2 Ol pis
dyIHpH /\ dy[l+,)+2 /\ tee /\ dyllﬂaﬂ
— 0'1+p+1 Gl+p+l i[+p+| ) o./+])+2 Gl+p+2 i1+p+2 )
(14) - (wIHpH + yl[+[)+|i[+p+| dx /\ (wll+p+2 + yl’*l’*Zi[*F*de

/\ . /\ (w61+p+x + yo-]+p+x dxil+p+s ).

Ty pig Ty i prs

Computing the right-hand side we obtain
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l+p+1 O.[+[7+2 O'l-¢-11-+-\ — o'I-¢-17+1 0,
Ady, " N...N\dy =0, " Ao,

+p+1 +p+2 Il+p+\ +1

log

I+p+2 0-1+p+.\‘
dy, JRATRVAYC)

+ I’+]7+,s
(e}

+ syal+p+s wGHpH /\a)l

11+p+x’(+p+s 11+p+|

S O ps—1 O L1 p+s Olip+l Olips2
+ ( 5 ) y y 0] N@

D pis—iiteprs—1? Tipasiieprs Tips Tiipia

l+p+2 /\ . /\ wo-/ﬂws—l /\ dxi/+17+s

l+p+2 1/+p+s—|

(15) A N@EE Ndx" e N dx

I+p+s—2

Gl+p+2 0‘1+p+.\~—} O.[+p+§ UH»/H»I
+...+sy . ,

1[+p+2’l+p+2 : .y11+p+x—lll+p+x—] yl’+[l+)ll+p+s 1I+p+]

iip Iipas— i pes
Adx™? NN Ndx T
+ yo-HpH Gl+p+s—| O-H»]H»x dxinH /\ . /\ dxi/+p+s—l /\ dxi/+p+: .

1I+p+1’l+p+1 o 'y1[+p+x—|’[+p+x—l y11+p+xl[+pﬂ

Now consider a fixed summand in expression (12), with given [, p, and s,

-l] Jg J; K]+1 Kp,z th Il+p+1 ]I+p+2 Il+p+.x
Vit V2t Ve K Ko " Ky Oipat Oripe2” " "Olipiy B prsitliprsia o

.V Va Vi Kl K2 Kiep
(16) W) AN@O; NNy Ndogt Ndog? N Ndog?
AT AN AT Adx T Adx AL N dx
I+p+1 l+p+2 I+p+s

Using (16) we get the terms

SBJ] ]2 JI KI+1 Kl+2 Kk+p 1[+p+] 11+p+2 I[+p+\
ViVa " VKL Kl T Ky Opii Oripsa " "OLipis Ui prsitliaprss2--dg
Olip+ v v \ K, K, K,
D PRI AN Nl ANRVAN I [ WaslAN [ ) WA ANRWAN'7 (1) sty
I+ p+stiepts 1 2 1 141 142 I+p
Oy

/\ wo-l+p+l /\ w

Il+p+1 Il+p

/\dxi1+p+\- /\dxih-p-hw-l /\dxi’+]7+5+2 /\”./\dxig ,

(s) BJ, Jyo 0 Ky Ky Keap Tiprn Tipra Diapas

2

p+2 /\ /\ w61+p+rl
+2

Il+p+_v71

Vit V2©' UV Kt Kot Ky Otipat Orips2” " "Oipeg T prsiilieprse-- o

0/+p+s—| GH»[H»J wV] /\ w“;; /\ . /\ w}’j

y1/+1)+:—li[+p+s—l y11+p+xi/+p+s Jl

Ly Ky Kisp Olip+l Olip+2
a7 Ndog! Ndog /\.../\da)KHp N OAY ()

p+l 11+p+2

Olipis—2 i prs-t it pis iy prstl iy prsi2 io
AN N Ndx T ANdx T ANdx TR NN DX

I+p+s-2

SBJI -/2 J[ K[H K1+2 Kk+p 11+[7+] 11+p+2 11+p+\
Vit VUV K Ko T Ky Olipat Orepia” " "OLipis T pasiiiepasea---lo
O l1p+2

Ol pts-1 OlLip+s v vy v,
.Yy y (OF AN O ARAY O

y Il+p+sflll+p+:71 11+p+s’l+p+s

1/+p+2’/+p+2 :

ANdwgt Ndog? A...A de’;P A@?
+] -+ +p

Il+p+1

A dxi1+n+z AL /\dxi1+p+k| /\dxilwﬂ A dxi1+p+x+l A dxi1+p+x+2 AN dxiQ
b

and
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BJ] Jz J, KIH KHQ Kk+p ]I+p+1 ]I+p+2 [[+[)+.\
VitV " ViK Ko " K Opst Orips2 T O pas it prsttiiprsia- g

O p+l O s prs—1 Ol ps Vi Vs \Z
. C ; W NOZNLLND
y1’+]7+ll’+]7+l y1[+p+\-—lll+p+\-—l y11+/7+,\‘l[+p+x Jy Js Ji

(18) _ _ .
ANdogt Ndog? A, Ndog? Ndx"™T AL N A Adx'r

/\dxll+[)+\+| /\dx’1+p+\+z /\.../\dle .

We see that the degrees of contactness of these terms are

(19) [+p+s>l+p+s—1>I+p+s-2>...>l+p+1>I+p,

respectively. Clearly, since we consider the terms where [+ p<g—n, (18)
does not contribute to p, 1, . We claim that among the terms (16) there is
one whose degree of contactness is g—n. Suppose the opposite; then
[+ p+s<g—n,but this is not possible, because the term satisfying this in-
equality would contain more then  factors dx' .

Thus, the condition p,n, =0 applies to one of the expressions (17) and
states that the coefficient in this expression vanishes. But the components of
1, are traceless, and we have already seen that this is only possible when
they also vanish. This implies in turn that the forms on the left of (17) all
vanish, which proves that 77, =0 . The proof is complete.

Corollary 1 Let W CY be an open set, q an integer such that
n+1<q<dimJ'Y, n€QW a form, and let (V,y), y =(x',y°), be a fi-
bred chart such that V.CW . Then p, ,n=0 if and only if

20)  m=n,+du,
where 1, and [ are ®F -generated, 0<II1<r—1, such that p,n,=0
and p,, pu=0.

Proof Write in Theorem 10 n=m,+n", where 7, includes all ®7 -
generated terms, defined by the condition /=1, and

’_ v v v, VAV A A |
n'= Y, do) Ado) A Adop AQLED0E D

010, "o ViV, Y

g-n+1<p
_ v v v, I J snn 1,
(21) = Y, d(@; Ndop A Ndoy AU
q—n+l<p

+ Y o) Ao A Ao Ad@@LE I,

010, "0 ViV,
g-n+1<p

Thus, 1 can also be written as 11 =1,+du , where 7, is ® -generated, and
u is also @7 -generated and contains p contact factors @7 and d); ; in par-
ticular, p,, ,u=0.

Remark 8 Note that the summation in Theorem 10 through the pairs
(l,p) can also be defined by the inequality g—n+1-p</<g—-2p, where
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the range of p is given by the conditions p=0,1,2,... and g—2p=>0.

Lemma 10 (a) If p is a strongly contact form such that g 2n+2 , then
Jfor any 1 -vertical vector field Z the form i,_p is strongly contact.

(b) The exterior derivative of a strongly contact form is strongly con-
tact.

Proof (a) We have i, p=i, n+i, dr=i, n+d, 7—di, 7. But by
Section 2.5, Theorem 9 p,, (i, n+8] ‘L')—zjﬂ_pq nn+81+ Py and
PynalpsT=1,0Dy i T however “these’ expressions vanish because p is
strongly contact. Now we apply Lemma 9.

(b) Let the form p be strongly contact. Then from (4), dp=dn,
where p,,1=0.We want to show that to any point y, from the domain of
definition of p there exists a fibred chart (V,y), v = (x',y%), at Y, and a
g-form 7, defined on V', such that p_,, ,(dp-dt)=0 and p,_,7=0.Tak-
ing T=1n we get the result.

For n+1<g<dimJ’Y , strongly contact forms constitute an Abelian
subgroup ©,W of the Abelian group of g-forms €W ; they do not form a
submodule of QW . It follows from Lemma 10, (b) that the subgroups
©,W together with the exterior derivative operator define a sequence

(22) OwW -0 W->..—-0,W-0.

n+l

The number M labelling the last non-zero term in this sequence is

@3)  M=m(""")+2n-1.

Remark 9 If n+1<¢g<dimJ'Y , then by Lemma 1, the canonical de-
composition of a contact form p € O, W is

Q4 @) P=p AT+ D Pt PPt D P

Remark 10 It is easily seen that the definition of a contact g-form
peQW for 1<q<n agrees with (3). Indeed, if 1< g <n, we have for any
contact form p'€®, ‘W, h(p—dp’)=hp as (n’*l)*hdp hdhp =0
(Corollary 2). Thus if hp 0 then h(p—dp’)=0 forany p’ €O,

2.7 Fibred homotopy operators on jet prolongations of
fibred manifolds

In this section we introduce the fibred homotopy operators for differen-
tial forms on jet prolongations of fibred manifolds. We study their relations
with the canonical decomposition of forms and the exactness problem for
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contact and strongly contact forms. The general theory of fibred homotopy
operators is summarized in Appendix 6.

The relevant underlying structure we need is a trivial fibred manifold
W =U XV , where U is an open set in R" and V an open ball Vin R™ with
centre at the origin; the projection is the first the first Cartesian projection of
U XV onto U, denoted by 7 . The r-jet prolongation J'W is also denoted
by W' . By definition
(1) W' =UxVxLR"R")xL, (R"R")x..xL, (R"R"),
where L’;ym(R”,R’”) is the vector space of k-linear symmetric mappings
from R" to R". The canonical coordinates on W are denoted by (x',y”),
and the associated coordinates on W' are (x',y°,y7,y7 ,....y7, .). Any
Cartesian projections 7©'* :W" — W?*, with 0 <s<r defines in an obvious
way a homotopy ™ and the fibred homotopy operator I'" (see Appen-
dix 6, (27)), so the Volterra-Poincare lemma holds in these cases.

In this section we consider the fibred homotopy operator 7 =1"" . Recall
that the homotopy y = " is a mapping from [0,1]xW" to W', defined by

@) YT Y D= (YT Sy Sy sy )

It is immediately verified that the pull-back by y satisfies

x *dx' =dx', )(*dy;’j A= y;’j L ds+ sdy;’j e
(3) 1J2 k 1J2 k 1J2 k
X ¥ wsz"-jk = y;—jz»»»jkds + Sw;-jz»»ﬂ :
In accordance with the general theory, these formulas lead to explicit de-
scription of the operator [ . For any g-form p on W', y * p has a unique

decomposition

) x*¥p=dsnp®(s)+p'(s)

such that the (¢g—1)-form p®(s) and the g-form p’(s) do not contain ds .
Then

) Ip=[p"0),

where the expression on the right-hand side denotes the integration of the
coefficients in the form p”(s) over s from 0 to 1.

The following is a version of a general theorem on fibred homotopy op-
erators on fibred manifolds. { stands for the zero section of W" over U.

Theorem 11 (a) For every differentiable function f:W"™— R,
(6) f=1df +(m")*{* f.
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(b) Let g =1.Then for every differential g-form p on W',
(7) p=Ildp+dlp+(n")*{*p.

Proof Slight modification of Theorem 1, Appendix 6.

Theorem 12 Let p be a contact g-form on W' .
(a) The contact components of p satisfy

() Ihp=0, Ipp=p.Ip, 1<sk=<gq.

(b) If p is strongly contact, then 1p is strongly contact.

Proof (a) Expressing the forms p and (r™')* p in the basis of 1-
forms (dx',dy]), 0<IJI<r,we have

(9) (n_rH,r)*Ip — I(nrﬂ,r)*p.

The canonical decomposition of the form p yields

(10) (n'“”)*lp=1(7r’“*")*p=1( > p,pj= Y. Ipp.

0<i<q 0<I<q

But by (5), Ip,p is (I—1)-contact, thus, applying p, to both sides of (9) and
comparing k-contact components we get (8).

(b) Let g=nr+1 and suppose we have a strongly contact g-form p on
W’". Then p=n+dt for some g-form 1 and (¢—1)-form 7 such that
p,,MN=0 and p, , ,t=0 hence Ip=In+ldt=In+t-dit—71,, where
T, isa (g—1)-formon U.If g>n+1 then always 7,=0.If g=n+1, then
always dt, =0 and we may replace 7 with 7—17,; then Ip=In+7-dit.
The (g—1)-form In+7 satisfies

(11) pq—n—l(ln-‘rr):Iqunn-‘rqunflf:qunfl/t:()'

If g2n+2, then g—n-220 and p_, ,IT=1Ip, ,,7=0, consequently,
Ip is strongly contact. If g=n+1,then from (9) ht =0 as required.

Corollary 1 (The fibred Volterra-Poincare lemma) If dp=0, then
there exists a (q—1) -form M such that p=dn .

The following two theorems extend the fibred Volterra-Poincare lemma
to contact and strongly contact forms.

The following result extends Corollary 1 to contact forms. Its proof is
based on the trace decomposition theorem (Section 2.2, Theorem 3), Appen-
dix 9, Theorem 4 and on the fibred Volterra-Poincare lemma.

Theorem 13 Let 1<g<n and let p be a contact g-form such that
dp=0.Then p=dn for some contact (q—1) -form 1.
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Proof 1.Let p be acontact 1-form, expressed as

(12 p= Y @l

0</lsr-1

Then

(13) dp= dD. Nw! — D! dy! Ndx').
p v J \4 Jj

0</Isr-1

Condition dp=0 implies, for |JI=r—1, ®,§; =0 Sym(Jk) and the trace
operation yields, up to the factor (n+r—1)/r,

(14) @/ =0.
Thus, p must be of the form

(15  p= ) Do)

0<Jl<r-2

Repeating the same procedure we get p=0 .

2. Let 2<g<n.We show in several steps that if p is a contact g-form
such that dp =0, then there exist a contact g-form 7 and a contact (g—1) -
form x such that

(16) p=t+dx, pT=0.
First, we find a decomposition
a7) p=p,+7,+dx,,

with the following properties:
(a) p, is generated by the forms @7 suchthat 0<IJI<r—1,

(18) po= D, 0A®L+ D ] NAL,

0<I/ Isr-2 I l=r-1

where the (g—1) -forms A! are traceless.

(b) 7, is generated by o] Aw;, and @] Adw,, where |JI=r—-1,
O<IIISr-1,ILI=r-1.

(c) K, is acontact (g—1)-form.

Expressing p as in Section 2.3, Corollary 2, we have

(19  p= > 0 AOL+ D, 0] AN®,+dk,,

0=l Isr-2 I l=r-1

where K, is a contact (¢—1)-form. Decompose the (g—1)-forms CI)i, in-
dexed with multi-indices J of length r—1, by the trace operation. We get a
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decomposition
(20) @) =A}+Z,

where the expression A is the traceless, and Z! is the contact component.
Then

Q) p= DY @ADL+ D 0] AAL+ D, 0 AZ. +dxk,.

o<l Isr-2 I l=r-1 I l=r-1

Setting

po= D, OADL+ D ] NAL,

o<l Isr-2 I l=r-1

(22) .

T, = z w; NZ,,

I l=r-1

we get (17).

Second, we show that p has a decomposition
(23) p=p, +7, +dxk,

with the following properties:
(a) The form p, is generated by the contact forms @7, such that
0<IJI<r-2, thatis,

(24) p= D, 0SADL+ Y 0] AAL,

0=l Isr-3 I 1=r-2

where the (g—1) -forms A! are traceless.

(b) 7, is generated by W] A, and ®] ANdw;, where |JI=r—-1,
O<III<Sr-1,ILI=r-1.

(c) K, is acontact (g—1)-form.

Indeed, we apply condition dp =0 to expression (17). We have, since
do] =—dyj Ndx’,

Y, d@f A®L)
0<IJ ISr=2

= Y (dy§ Adx AAL+0F AdAL)+dT, =0.

I I=r—1

(25)

But the terms dy;; Adx’ AA; in this expression do not contain any form @;
or dw) , and must vanish separately. Thus

(26) D, dy; Adx' ANAL=0.

1=r-1
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The 1-contact component gives

Q7 Y, o) Ah(dx AAD)=0

Wi=r-1
hence
(28) h(dx’ AAL)Y=0 Sym(Jj).

The traceless form A’ can be expressed as

A =A’ . dx” AdxP ... Ndx"

Vb3 dy

+A/L dy;’2 Adx"™ Ndx* A.. N\dx"

O iziy.. Iy

(29) + A 7 Ady] Ndx" Ndx" AL N dx o
I

0, 03i4ls...d,

+. . +ARD a'],, dy;? Ndyp* A...Ady;! Adx"

0,03

+ ”2 I‘ ;" dy}’z2 /\dyfj /\.../\dyZ",

where the multi-indices 1, , I, ... I satisfty 11, LLIL,1,... IIq |=r, and
. . J1, 11, I, Ji I lq | .
all coefficients A ;. .\ AyG 5 i s s Aoy, o, are traceless in the

indices i;,i,,...,1, and the multi- 1nd1ces L,1,....1 .'Then equation (28)
reads

J JI J1, I3
(Av Ipl3...0, + O, i3iy.. y1212 + 0, 03iyis...d, ylztzylw

oA “4‘], Vi Vi o y,ql,l1
(30) AL VYT V)
-8 dx” /\dxiz Adx* A...A\dx" =0
Sym(Jj).
Setting
B = A0 00 SymUD  AltGiy,...0,),
B i A G O SymUD  AltGiid, .0,
a1 B i = A doniei 8 SymUD)  Alt(Giigs...0,),
Blro .0 =AML 8 Sym(Jl)  Alii,),

Bkl 1 phL gl Sym(JI),

V 0,03 0,0 0,03 0, i
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we get the system

le... ] =O,

V iyl 0y

B': . .8E=0 Sym(l,j,) Alt(ii,...i,),

V Oy ijisiy.. iy

Bl Is 5’25“ =0 Sym(l,j,) Sym(l,j;) Alt(ii;...i),

V 0,03iji4is..

2 B2y ..o, 6280..8] =0 Sym(l,j,) Sym(l,j,)
Sym(lq o) AltGys...0,),
B/2o ...k 62808 =0 Sym(l,j,) Sym(l,j,)
Sym(l,j,) Alt(iy;...i,).
Since the unknown functions B2 .. B':5. . B’”2 L. 1"‘” ,
AL Ll are traceless, for each ’]fi%eé multlzlﬁagx I Jl and each ﬁlld]ex

V 0,05 "0, 0 °

v, this system has only the trivial solution (see Appendix 9), and we have
from (31)

Al . 8=0 Sym(JI) AltGiy,...i),

JE 80 =0 Sym(Jl)  AltGii,...i,),
ALl 8=0 Sym(UD)  AltGiis...,).

(33)
Il q—li 5,'11 =0 Sym(Jl) Alt(iliq),

0,03 "0, 1,

Je e e 8, =0 Sym(J]).

0,03

The solutions of this system is of Kronecker type; we have, denoting the
multi-index J as J = Kk,

Kk K k Ca
A =Cri 6, Sym(Kk) - Alt(iyigi, ...0,),
Kk, _ KD k L.
orisipi, = Cv ozi4i5...fq5i3 Sym(Kk) — Alt(izi,is....1,),
Afkc[rzzf;ws.“iq = CvayzzfrziSié“.iqSin Sym(Kk)  Alt(i,isi .. ),

(34)

Kk, Iy Iq—l _ KI, I q,, k
Bt =Cle b 8E Sym(JD),

Kk 1 1o _

0_203...O_q -

Consequently,
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D, O AA =0F A(CS,, , Bldx® Adx A Adx"

V dsiy...
I/ 1=r—1

+CKE L ShdyT Adxt Ndx AL A dx"

\4 0-21415“‘1(/

+Cy G e On YT AT N Ndx® A A"

V 0,05isig. 4,

+..+CEED f,‘"l 8Ly Ndy]s Ao Ndy; " Adx™)

V6,050t

=dw7 A(=C),;,  dx® Adx" A Adx"

V isiy..

+CFE L dy) Adx Adx AL A dx"

V Oyi4is.. 0,

—CKEL L dyT AdYT Adx® Adx® AL AdX"

V 0, 03isig..

Fo A (DTSR L dy] Ady A Adyrth).

vV 0,030,

This expression splits in two terms,

(36)

and

(37

d(@F N=C) ., dx® Ndx" ... Adx"

V oisiy..

+CF 2L dyD Adx Ndx® AL N dx"

V 0, iyls.. .,

=Gy G s VT NQYT A X A AN dx

V 0,03isls. iy

oA (DO D L Yy Ady AL A dy ),

v 0,03 " -1

—0F Nd(=C)f,,, , dx® Adx" .. Adx"

V izig..

+Cy LYy Adx Ndx" AL Adx"

V Oyi4is.. 0,

=Gy G s VT AT N XS AdX® A A"

V 0,03isls..iy

oA (DO D L dyy AdyT AL A Y],

V 0,050,

75

which can be distributed to the terms dk,, and p, in the decomposition (21).
Therefore, p can be written as

(38)

p= D, 0IADL+ D oS AAL+ D, 0 NZL+dxK,

0<li<r-2 l=r-1 l=r-1
c T/ c J
= Y @ADL+ Y 0 ANZ] +dx,
0<li<r-2 l=r-1

= Y 0 DL+ Y, o) NDL+ Y, 0f AZL +dk,

0<IJ I<r-3 IJ1=r-2 l=r-1
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= Y 0SADL+ Y, @) NDL+ Y, 0f AZL +dk,

0<IJ 1<r-3 l=r-2 Jl=r-1

= > 0IADL+ Y @I AAL+ D oI AZ,
0<lJ I<r-3 l=r-2 Jl=r-2

+ Y, 0 AZ. +dk,
l=r-1

where we use the trace decomposition @/ = A’ +Z/ for |J1=r-1.
Summarizing and replacing for simplicity of notation ®/ with ®. , we
get the decomposition (23).
Third, we construct as in the second step the decompositions

Py = 2 0 NO! + Za)j’AAg,

0<IJ Isr=2 I l=r—1
pi= D, 0 DL+ Y o] NAL,
0<IJ I<r-3 I/ 1=r-2
(39) .
P, =0° AN®,+ Y 07 NAL,
j
pr—] = wo- /\ Ao‘ ’
and
(40) p=p,+7T,+dk,=p,+7,+dK, = p,+7, +dk,

e = pr—2 + Tr—2 + dKr—Z = pr—l + 7’-r—l + dKr—l .

Note, however, the different meaning of the symbols CI)(Jy and A(J, in the
lines of expressions (39), which are defined in the construction.

Finally, we show that p has a decomposition
(41) p=1_ +dx

r=1°

where 7, is generated by the contact forms ] A, and ©j Adw,,
|JI=r-1,0<III<r-1,ILI=r-1,and Kk, , is a contact (g—1) -form.

It is sufficient to show that in the decomposition p=p,  ,+7, , +dK,
(40) the form p, , vanishes. Condition dp =0 implies

(42) do° NA, —0° NdA, +dt,_ =0.
The 1-contact component yields —? Adx' AhA, —»° ANhdA, =0 hence
(43)  h(dx'AA,)=0.

Writing the traceless form A, as
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A, = A,y dx® Adx AL N dx"
+AZ i dyf2 Adx™ Ndx* A.. N\dx"
(44) t Ao VT NV AdXt NdXE A Ndx"
+o.+ARD ...(;;_lliq dy?> Ndyy /\.../\dy,q‘:‘ Adx"

0,03

+Av1’ L .f;’q dyf; /\dyZ3 /\.../\dyZ",

we have
1 _ I, Iy
h(dx A Av) - (AVlzh iy Avo- 23y 0 yl,l7 + AVC720'3’4’5 d ylzl, yl;l-;
IZ 13 I2 ]3 ‘I 2 3 o-l[
(45) Fot A g o YV Vi A G o VYT V)

cdx! Adx® Ndx AL Ndx" =0,

which implies, because the coefficients are traceless,

— LI —
Avizi}.t 0 Avo‘ 2 i34 0O 3iyis.dy 0’
(46)
A1213 Igm _0 A1213 Iy :0
V0,03 " 0,i V0,03 "0, :

Consequently, p, , =0 proving (41).

4. To conclude the proof we apply the contact homotopy decomposition
to the form 7 _, (Theorem 11). We have 7, ,=1Idt,_ +dI7t,_,.But d7,_, =0,
thus 7_, =dIt,_, , and since the order of contactness of 7, , is 22, we have
hit_,=1Ihpt _,=0,s0 It _, is contact. Then, however,

47 p=Ildr _,+dlt_ +dx,_, =d(t,_, +dx, ).

Setting =17, +dk,_, we complete the proof.

Theorem 14 If p is strongly contact and dp =0, then there exists a
strongly contact (q—1) -form 1 such that p=dn.

Proof We express p as p=Idp+dlp . But by hypothesis dp=0,
thus setting n=1Ip we have p=dn; now our assertion follows from
Therem 12, (b).

Remark 11 The concept of a strongly contact form, used in Theo-
rem 14, has been introduced by means of the exterior derivative d and the
pull-back operation by the canonical jet projection 7" :J™*'Y — J'Y . The
decompositions of the forms on J'Y , related with this concept, represent a
basic tool in the higher-order variational theory on the jet spaces J'Y . A
broader concept of a strongly contact form is considered in Chapter 8.
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