3 Formal divergence equations

In this chapter we introduce formal divergence equations on Euclidean
spaces and study their basic properties. These partial differential equations
naturally appear in the variational geometry on fibred manifolds, but also
have a broader meaning related to differential equations, conservation
laws, and integration of forms on manifolds with boundary. A formal di-
vergence equation is not always integrable; we show that the obstructions
are connected with the FEuler-Lagrange expressions known from the high-
er-order variational theory of multiple integrals. If a solution exists, then it
defines a solution of the associated “ordinary” divergence equation along
any section of the underlying fibred manifold. The notable fact is that the
solutions of formal divergence equations of order r are in one-one corre-
spondence with a class of differential forms on the (r —1) -st jet prolonga-
tion of the underlying fibred manifold, defined by the exterior derivative
operator.

The chapter extends the theory introduced in Krupka [K14].

3.1 Formal divergence equations

Let U CR" be an open set, let VCR"™ be an open ball with centre
0€R™,and denote W =U XV . We consider W as a fibred manifold over U
with the first Cartesian projection 7 :W — U . As before, we denote by W’
the r-jet prolongation of W. The set W™ can explicitly be expressed as the
Cartesian product
(1) W' =UxVxLR"R")x L (R"R")x..xL, (R"R"),
where L’;ym(R”,R’”) is the vector space of k-linear, symmetric mappings
from R" to R™. The Cartesian coordinates on W, and the associated jet co-
ordinates on W', are denoted by (x',y°), and (x',y°.,y7,¥7, ,....¥7, ),
respectively.

Let s=1 and let f:W*®— R be a function. In this section we study the
differential equation

@) dg'=f

for a collection g =g’ of differentiable functions g':W’" — R, where r>s,
and
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is the formal divergence of the collection g'. Equation (2) is the formal di-
vergence equation, and g' is its solution of order r. Clearly a solution of
order r is also a solution of order r+1. Our aim will be to find all solutions
of order s, defined on the same domain as the function f.

In expression (3) we differentiate with respect to independent variables
Vi > Where j <j,<...<j, . However, it will be convenient to find an-
other expression for the formal divergence with no restriction to the summa-
tion indices. According to Appendix 2,

4 2 2 Yivdpdd = (:)y‘;g Vi iyi®

i jiShs. Sy y]1]2 -Jk iyl dy

where y” ., onthe rlght side stands for the canonical extension of the vari-

ables y7, ', i <j,<...<j, to all values of the subscripts. With this con-
vention, the formal derivative (3) can be expressed as

,_0g' g’ g’ ag' ag'

Q) dl.g’=il.+ gg i & ‘/’,+—g FITE S &
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From expression (5) we immediately see that every solution g', defined
on the set W" such that r >y, satisfies the system of partial differential
equations

9 i 9 i 9 J 9 Jra1 9 Jr
(6) Gg + Gg + Gg ...t Gg + og =0.
Yidoodr Wi 0Viiaji, Yisaoirai WViisroji

Our first aim will be to find solutions of this system.
The proof of the following lemma is based on the Young decomposition
theory of tensor spaces.

Lemma 1 (a) Every solution g=g' of the system (6) is a polynomial
function of the variables yh P

(b) If the system (6) has a solution g=g' of order r=s, then it also
has a solution of order s.

Proof (a) To prove Lemma 1 it is convenient to use multi-indices of the
form J=(j,j,...j,) . First we show that condition (6) implies that the ex-
pression

(7) a—gc
ay ay .0yy"

vanishes for all o0,,0,,...,0, and J,,J,....,J, . This expression is indexed
with nr+1 indices ¢,, where [=12,...,n,n+1,n+2,,...,nr,nr+1 and
1<gq, <n (entries of the multi-indices and the index 7). The (unique) cycle
decomposition of the number nr+1 includes exactly one scheme, namely
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the scheme (r+1,r,...,r) (one row with r+1 boxes, n—1 rows with r box-
es). The corresponding Young diagrams as well as (nontrivial) Young pro-
jectors are then necessarily of the form

7, |

®) 7,

The first row represents symmetrization in the entries of the multi-index J,
and the index i. But according to (6), these Young symmetrizers annihilate
(7), so the Young decomposition yields
an i
O =0
ayjl' ayjzz ...ay,""

Consequently, g' is polynomial in the variables y? .

(b) Consider the formal divergence equation (2) with the right-hand
side  f=f(x',y°,y7,y7, .-}, ; ), and its solution g=g of order
r=s+1.Then

i i i

ag' 98" 5 98 o . g .
(10 St oY T e Yt e Vit ag Yivia i = Js
ax ay ayj1 2 Jiaee-dr

and condition (6) is satisfied. Then by the first part of this proof
(D =g tatat..+g .

where g; is a homogeneous polynomial of degree p in the variables y;jz_”jr .
Substituting from (11) into (10) we get, because f does not depend on

o
Yoy ?

i

98 98 o . 98 o 08 o 98 o
(12) Y A Yt S Yo =T
ox ay ayh ayj1jz Jiaeedrat

Repeating this procedure, we get some functions 4= h', defined on V*, sat-
isfying

o' on' oh' oh' oh'
(13) et Yt Yt Y =]
dx'  dy ay;, " Y5, e Yoo, e

h' is a solution of order s.
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Remark 1 If g=g' is a solution of order r of the formal divergence
equation (2), then equations (6) represent restrictions to the coefficients of
the polynomials g'.

Remark 2 Every solution of the homogeneous formal divergence equa-
tion
(14)  dg'=0
is defined on U. Indeed, according to Lemma 1, if (14) has a solution, then
this solution is defined on V ; thus

g 9
(15) § + 28 oo,
ox'  dy

hence (dg' /dy°)=0 and g' depends on x' only.

Let s>1 and let f:W® — R be a differentiable function. Sometimes it
is useful to divide the formal derivative d,f of the function fin two terms;
by the i-th cut formal derivative of f we mean the function d/f:W*'—R
defined by

Jd af - of . d . d -
=_f;+—];yi +—J;y_/li { y.fljzi+'-'+07fyj.jzmjs,,i'
ox'  dy ay; ay?.

Jil2 Jida-eJs-1

)] d'f

The i-th formal derivative, which is defined on W**' | is then expressed as

’ a ()
(2) dlf = dlf + f y./]./2~~»./55 :

o

Y,

The following assertion is a restatement of the definition of a solution of
the formal divergence equation (2), Section 3.1.

Lemma2 Let f:W'—>R and g :W°'—=R be differentiable func-
tions. The following conditions are equivalent:

(a) The functions g' satisfy the formal divergence equation.

(b) The functions g' satisfy the system

) dig'=f
and
i i J Js
@) g og g 98" _.

+ + ..+
o o o o
Yiiis Winini Wiiiseod, Y

Proof Immediate.
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3.2 Integrability of formal divergence equations

We introduce the concepts, responsible for integrability of the formal
divergence equation, and prove the integrability theorem.

To any function f:W®— R we assign an n-form A, and an (n+1)-
form E, on W*, by

(D A = fa,,
and
(2) E, =E (o’ No,,

where the components E_(f) are defined by

0 N 1 d
(3) Ea(f): any +2(_1)kdﬁldl’2"'dl’k d Gf
y k=1 PiP2---Pr

We call ;tf the Lagrange form, or the Lagrangian, and E; the Euler-
Lagrange form, associated with f. The components E_(f) are called the Eu-
ler-Lagrange expressions.

In the following lemma we use the horizontalization homomorphism h
and the l-contact homomorphism p,, acting on modules of differential
forms on the r-jet prolongation W' =J'W of the fibred manifold W (see
Chapter 2).

Lemma 3 For any function f:W®—R, there exists an n-form O,
defined on W such that

(a) hO,=4,.

(b) The form p,d®, is @’ -generated.

Proof We search for © f of the form
0, = fo,

+(fio'wo- +f’ga)i +fi.¢;1j2w;)1-jz +'“+fi.(;ljzmjklwZ—jz---j.:—l)/\wi’

“)

where the coefficients f' /7 are supposed to be symmetric in the super-
scripts i,j,j,,...,Jj, - Then condition (a) is obviously satisfied. Computing
p,dO we have

pdO, =df A, +(hdf', Ao® + f' dw® + hdf' iNa¢
(5) +f' hde +hdf AT, + f 1 def,

A c N c
+”'+hdfl gh ! l/\w.ﬁ./‘zn-jsfl +fl gh ! ldwjljzml}fl)/\wi
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d
( f 6_]:% {: a)m +...+ of w;f,,m_'j J/\wo
ay ay/ ay/llz ayfliz -Js T

+(d f'dx N7 +d, f hd AT +d, f 1 dx Aw?,

i Jijaee-Jsa
+...+d f') dx* /\wm SN,
—(f' o Ndx* + f "(ojk/\dx +f”"2a)]m Adx*
i Jijasedst
+.o.+f o7, lk/\dx )Aw,.

This expression can also be written as

plde:[aay]:—dl.f"aja)"/\a)0+(;yf —d f'h—f7 J o7 N0,
1

+( af _dfljlz f/z “J(x) /\w()

a o
(6) J1Jz a
+.“+[ Gf _dfl Jija-- f/lel/z Js-2 )whh » Awo
Y
af 1J2- 1
+( o fjr” o ]wjm mjx/\wo'
yjljZ"']s
But we can choose f'_, f'/, f%2 ..., f'Wra from the conditions
f]} j1jz<<-j4-7|: af _
Yiiineeis
fjH Ji2eds2— af _ dfl Sz dso1 — af —d af ,
s Vioois i
9 9 d 0
(7) sz J| f difl gh: 7{_ dil of +dil di2 Gf
i Vi i it
J
LA+ (ED)dd, . d, 04]0
yjl/zilizwis—z
. 0 .0 Jd 0
[l = J:_diflgziji_di, { +di,di2 of
9y; ay; A Yy

—.. 4+ (=)"dd, ...d, of

[} [ ’
Jity- Ay

and for this choice the form p,d© is ®° -generated, proving (b).
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Using formulas (4) and (7), we see that the form © =0, constructed in
the proof, has the expression

s s—k-1 a o
®) O, =fa,+ 2( (-Dd,d,..d, aaf]w.f.jz---jk N,
k=0

= =0 iz JkPiP2---PI

This form obeys properties (a) and (b) of Lemma 3. We call ©, the princi-
pal Lepage equivalent of the function f, or of the Lagrange form A,. Com-
puting p,dO,, we get the Euler-Lagrange form, associated with f,

) pdO, =E,.

Now we are in a position to study integrability of the formal divergence
equation; the proof includes the construction of the solutions.

Theorem 1 Let f:W*® — R be a function. The following two condi-
tions are equivalent: .

(a) The formal divergence equation d,g' = f has a solution defined on
the set W*.

(b) The Euler-Lagrange form, associated with f, vanishes,

(100  E, =0.

Proof 1. Suppose that condition (a) is satisfied and the formal diver-
gence equation has a solution g=g', defined on W*. Differentiating the
function d,g", we get the formulas

dd.g" dg'
an sy 08
dy dy

and foreveryk=1,2,...,s ,

ad. o' i
8 _g a8
aygizmik aytg’z.uik
(12) 4 . ; ;
41 af + af + ig ig .
k ayi2i3mik ayi,izujk ayizi|i4mik a)’52i3..4ik,,

Using these formulas, we can compute the Euler-Lagrange expressions
E_(f)=E_(dg'") in several steps. First, we have

E,(dg")
(13) i . i ] i - ] i
—q |80 048, 08 (iyad ..q 248
1 ay ayi] 2 ay 2 3 s a

iy i dg
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—dq |98 048 4 048, L Ciyad ..aq 048,
1k aylf])' ayU 3 3l s

iy iy iy

Second, using symmetrization,

_% +d, 98 +l 98 +ag'
oy oy, 2\ oy

Ea (digi) = dildiz (

(14) —d. ad‘iwg‘+...+(—1)rdl-3d,-4---di, (;%‘;YgJ

i3 o
ijiyiy iyiy.. i,

—ddd [jgg g ciydd,..d 248 J
13 y 4 s r

iy iyisis iy
We continue this process and obtain after s—1 steps

i

o .

(15)  E,(dg)=(-1’dd, ...d, d.d, ; 98

iy d,
But since fis defined on W*, the solution g' necessarily satisfies

(16) 0g" , O¢" 08" |, 98" _

o o o (on
ay dy igig s dy ipiyigis. gy dy gl ds_yiy

i3l

proving that E_(d,g')=0 .

2. Suppose that E_(f)=0. We want to show that there exist functions
g :V' =R such that f=d,g". Let I be the fibred homotopy operator for
differential forms on V**, associated with the projection 7°°:V — U (Chap-
ter 2, Section 2.7). We have

(16)  ©,=1d0,+dIO,+©, = IpdO, +Ip,d®, +dI®, +0,,

where O, is an n-form, projectable on U. In this formula, p,d®,=0 by
hypothesis, Ip,d®, is l-contact, and since d©,=0 identically, we have
©,=d9, for some ¥, (on U). Moreover h®, =hd(I0,+9,)= fw, . De-
fining functions g’ on V*>* by the condition

(17) h(1©,+9,)=g'w,,

we see we have constructed a solution of the formal divergence equation.
Indeed, from (16), hd(I1©,+9,)=hdh(I0,+0,)=dg" -®,= f@,. Then,
however, we may choose g’ to be defined on W* as required (Section 3.1,
Lemma 1).

If the formal divergence equation has a solution, then this solution is
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unique, up to a system of functions g' = g'(x’) , such that (g’ /dx')=0 .

Remark 3 If a formal divergence equation d,g’ = f has a solution g',
defined on the set W*, then any other solution is given as g'+h', where A'
are functions on U such that oA’ /dx' =0 (see Section 3.1, Remark 2).

Condition E, =0 (9) is called the integrability condition for the formal
divergence equation. In terms of differential equations, this condition can
equivalently be written as

(18)  E,(f)=0.

3.3 Projectable extensions of differential forms

Denote
(D o, =dx' Ndx* A...Ndx",
and @, =1, .0, ,thatis,
(2) W, = (nil)!gifzhwfndsz Adx? A Ndx".

Consider a 7° - horizontal (n—1)-form 17 on W*, expressed as
3) n=gw,=——h, ',.nj,,dsz Adx" AL N\dx

Note that from expression (2), the components of the form 7 satisfy the
transformation formulas

Ko Js-+-n

_ PGk
) hij.i = €518 8 = (n=1)! s

In the following lemma we derive a formula for the derivatives of the func-
tions h, ; . and g" ; to this purpose a straightforward calculation is needed.
Denote by Alt and Sym the alternation and symmetrization in the corre-
sponding indices.

Lemma 4 The functions g' and h, . satisfy
1 ag' agh agh agh
1, cg + Gg + Gg +...+ 705'
r+ ) ayklkz...k: ayikzks...ks ayklik3k4...k5 ayklkz...k:,]i
ahlzl3u.l,, _s(n—-1) ahn}u

N k,
= -5 kky..k) Al 1),
Wip.n, ST OV % Symk. k) Al 4)

ikyks.. .k,

)
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Proof Formula (5) is an immediate consequence of equations (4). Dif-
ferentiating we get

© _0g 1 iainiy My
ay/:kr..ks (n—1)! ayl?]kz...ks
hence
i k k &
0 (ag +8g‘+ag'++agJ
il 1,
s+1 "5 (')y/zkz,_,ks ayi(l;k}..k‘ ayl:ihkm--k,‘ ay’zkz-»krli
_L#S ijzfs-ufn%
- ilyl5.. 1,
s+ (n=1)! =k AV
11 e klf?f&ufn%
s+ (n=1)1 "Bk Ok k.
LI VAL VIS
7 s+1 (n=1)! Thh Vi ik i,
R S S s Miivs,
s (n=1)! b N ki

1 oh 1 ! o Coh, . .
(N + n (6ikl5ljzz5ljj...6l{l" Jodzee-dn

TSt Ay, s+ (neD)! Ytk

o
Viiksks. &, Yy ki

B ST R/ SR T VY VR i A J
2 I3 n ! 2 I3 n [

AltGLL,..1).

We calculate the alternations Alt(i/,/;...] ) of the summands in the paren-
theses in two steps. Consider the first summand. Alternating in the indices

(L,l;...1)) and then in (il,/;...1 ), we get

o

L oh
SIOp6) 5] — i Al )

Yikyks.. k,
(8) _1 Sk ohy,. . &k oy, sk Oy _ _§k ohy, ;.
- i o 1 o 1 o s 1 o
n d 20 ' "0
Yikyhs... k, Yikshey.. k, Yikshey.. ke, Yikshey.. k,
_1 ohy, _gh oy, . _ sk CLT sk CL
- o I, o I o cee l o ’
n ayklkzk},‘ks (:)yikzk}.../gx ayi/qk].../g " OYitky.

and similarly for the remaining terms. Altogether
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i K k k,
1 g + 0g + g dg
ilyl5..1, o c o o
s+l ayk,kz.uky ayz‘kzkzu.k\. a)’k,ik3k44..k‘. a)’k,kz...k\,li
! ahlzl}.,l” ah1213.‘.z” b Oy, _ st ahl2[l4l5mln
- o o A c I o
s+l ayk,kz...kx ayklkzk_;...kx ioks. .k Vikyks.. &,
_ & ah1213...1,,,1i ah1213...ln r i, & hlzil415...l,,
Ly o o b o I o
ayikzk}“k: Vidoks. . &, ayikzk}“k: Yikyks.. &,
_ K ahlzzzu./,,_li n ahzzzy../,, & ahil3l4...l” k ahlzil415...l”
1, o o I o I3 o
ayik2k3...k: Vikoky.. k, ayik,kS...k: Vit ke,
9 _ k ahzzljmln,li ahlzl}“l"
) v to
Yikiks. . k, Yok k,
_sk ahil3l4<..l,, k, ahlziIAIS.Nl,, sk ahlzl3..,l”,,i
Iy a o I3 a o i L, a o
Yikgky.. ek Yikyhs.. ik, Yikpky.. ek,
_ ahlzl3mln 1 & ahi1314.,,1,, & ahlzil4l5‘..ln I ahlzl,%'“ln—li
- o I, o Iy o Ly c
ayk,kz...ks s+l ayikzk}“k\ Yikpks.. k, Yikpks. . k,
pYe d ity d, k ahlzil4l5ml,, L 45k ahlzl}..l”,li
L a o I a o te L, a o
Vikiks.. &, Yits.. &, Yiks.. &,
oh. oh, . )
— 51;?_ 611314“41,, + 5112‘ 61211415“1” A Slkx 61213.“1”4, ,
Yikyes.. &,k ) ayik2k3.4.ks,,k, Yikyles.. ke ky

and, with the help of alternations and symmetrizations,

i k k K,
1 og' ag" N g™ N ag"
ilyl5...0, o o o 0t o
s+l ayk,kzu.ks ayl‘kzkyukx ayk,ik3k4“.ks ayklkzmkj,,i
_ oh, .
o
ayk,kz...ké
n-1 1 K ohy, ., & oy & oh,
(10) e +..+ ) Tt
s+l n=1| 2 9y° L9y gy
Yikyks.. , Yikyks. ., Yikyks.. ,
oh. oh, . oh .
o M, ., K, WM., K My i
+6," —5 0 o446,
Vikks.. &, Yiks.. &, Yiks.. &,
oh. oh, . A
k il d, k. Lilyls..d, k. Iy d, i
+o.+6, — +6,) — +.o..+0) —5

3
eyl Ky ik Yityks.. k, 1k,

Yikyks.. ky ik
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_ O,
akaZ,,‘k‘

b Mg, =l g, i, nlor Oy,
s+ 0k ay,izk}“k: s+l 7" ay;l:lk}“ks st ay"(’;k}“kﬂkl

Alt(LL,...1,)
— ahlzlsl--l“ _ S(n_l) 61(1 a]/11'1314..,1,,

- o A c
a)’klk,”kj s+l ayikzk}“k:

Ali(l,l,...1))  Sym(kk,...k.).

Let 17 be a 7’ -horizontal form 77, defined on W*. A form y on W*"
is said to be a 7**™ -projectable extension of 1 ,if 7N is equal to the horizon-
tal components of

an  n=hu.

Our objective now will be to find conditions for 1 ensuring that u does
exist. Let 11 be expressed in two bases of (n—1) -forms by formula (3).

Theorem 2 The following two conditions are equivalent:
(@ N hasa n* -projectable extension.
(b) The components g' satisfy

9 i 9 i 9 J 9 Js
( 1 2) O'g O'g O'g O'g = 0 *
iiseods Oiissecds Vs, Yidsedi

(c) The components h; .,  satisfy

In-1

oh 1) o,
bty TOZD Dtd g0 Sym(kk,.. k) Al ).

o
Vit 4, r+l Vi, .k,

(13)

Proof 1.To show that (a) implies (b), suppose that we have an (n—1) -
form u , defined on W*™', such that n=hg . Then hdn=d,g' -, , which is
a form on W' . But (7" ")*du=d(m**")*u hence hdn=hdhu=hdu,

so hdn is m**" -projectable (with projection hdu ). But
hdn=dg" -,
(14) dg' 98" o 98 . 9g g
Tl 5 e Y Yo e Vit o Vit o Vi |@oo
dx ay ayjl i Jida---Js
so 7*""" -projectability implies (12).

2. (c) follows from (b) by Lemma 4.
3. Now we prove that condition (c) implies (a). Write 17 as in (3),
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1 2 i3 jn
(15) n:mhjmmj”dxj ANdx N N dx

By Lemma 1, Section 3.1, and formula (4), the functions h;; . are poly-

nomial in the variables y‘,’j , where J is a multi-index of length s—1. Thus,

— Jiky 0 Jiky Joky o1 92
hz‘lizu.i,l,1 = Bi,iz...i,,,l + Bol i Y, T Bc, Gy gy Yk Tk
Jiky Joky Tk 01 4,02 On-2
(16) +"'+B<71 0y "0, V1i2---in—1y11k1y12k2 "'yjn—zkn—v

I 4,02 O O i
iy Y1 Yy Y k2 VT

n—1

+ B‘Ilkl Jaky Jpokn g Jpikyy

O 0y "7°0, Oy

The coefficients in this expression are supposed to be symmetric in the mul-
ti-indices 7, %/ . By hypothesis the polynomials (16) satisfy condition (13)

[

o, . o)y,
(17) bty D) Tt 56— Sym(Jk)  Alt(iiy..i,),
Yy r+ldyy ° ‘

which reduces to some conditions for the coefficients. To find these condi-
tions, we compute

oh. .
Iy dyy _ pJk Jk Jyk, o,
o _BG ili24..i,,,,+2Bc7 o, iliz.”i,,,,ngk2
d
Y
_ Jk Jyky T, 0k, o, .03 0,2
(18) +...+(n-2)B; o e e Vi Yk Y

_ Jk Tyky Ty ok, Tk, 0y 1,03 Oy2 O -1
+(n—1B; Gy s Oy gy YOk Vs Va0

n-1

and
oh, . .
liyis..d, .y _ pJl JI Tk, o2
ayo - Bcr li2i3...i,,,1+ 2BO' o, 11'21'3...1',,,|-sz/<2
Ji
_ JUJoky T, 0k, o, ,,03 0,2
(19) oot (I’l 2)B0' oy 7 '0':,—2 ’ l"zi}-»jn—]yjzkzyfzkz o 'yjnn—zkn—z

_ JUJoky  Jyakng Ttk 02,03 O O
+(n—-1B; Gy O Oy igiyedyy Yk Yk Y0k o Vi k0

n-1

from which we have, changing the index notation,

ah1i3i4...i,, k_ gl Sk +2p’ 1k Skyo
— ) A

90 Ok G lisiy...d, o oy lisiy..d, O Yk,
Y
_ JUJyky Tk, k0, O3 Op-2
(20) +o..+(m=2)B; 2.0 1i3i4.4.i”5izyjzkzyJ3k3'~y1”,2k,,,2
_ JUJoky  Jyakyg Ttk k{02 1,03 On-2 Ol
+(n—1B; Gy Cry Gy li3i4..4in552)’12k2)’13k3---yjnizk,l,zyh',,kn,l

Sym(Jk)  Alt(iyis...i,).

Thus, comparing the coefficients in (20) and (18), condition (17) yields
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BJk _ s(n=1) 5 k
G iy s+ o liyiz..iyy i)

Bk 1k _s(n—1) ,u Jyky k
o 0, ijip..dyy s+1 o 0, liyiz..d, 1§

(21) {

Bk Dok Tiks ok Ul Y N N S SN ¥
o 0, 03 "0, Gy dyy s+1 o 0, O3 ""'0C,, liyiy..dy 0y

Bk ok Tk ik _s(n—-1) ,u Joky Tsks  J ke k
G 0, O3 "*°0,  Qjiyedyy s+1 6 0, 03 "* 0, lijiy.dp, i

Sym(Jk) AltGii,...i, ).
On the other hand, any (n—1) -form g on W*"' can be expressed as

(22)  u=p,+o) AN® +dw) NP,

where
Mo =A, , dx" Ndx® AL Adx™
+ A;: i2i3.ui”,]dy(;]] Adx™ Ndx" A.. N\ dx
(23) +A;i éz, i3i4.,,i,,,ldyzl /\dyj’; Adx® Ndx™ A...N\dx™

o AN 2L dyS Ay AL A Adx

01 03" "0y iy

+ A;i (’; . .é"jl dyj’]‘ A dyf; AN dy‘f:]‘ ,
and the coefficients are traceless (Section 2.2, Theorem 3). Then hu=hy,
because h is an exterior algebra homomorphism, annihilating the contact
forms ", and

— Jy 0 Ji Ty 1,02
hu= (Ai,izmi,,,l +A0'1 iivin Yoiy T Aa, Gy iigerdoy I oy
JiJy o i 01 4,02 On-2 JiJy e 4,01 4,02 On-1
(24) toot Ao'l 03" "0, in—ly‘]lily'lziz o 'yfn-ziy,-z + AO'I [ P y'/lilyJZjZ o 'yjn-lin-l )

dx" Ndx® AL N dx

Now comparing the coefficients in (24) and (16) we see that the equa-
tion hu=mn for 7' -projectable extensions of the form 71 is equivalent
with the system

Bi,iz...i,,,l = Aiﬂz»--im >
(25) B;:kl iy A;: izigu.in,lgil:l Sym(Jik,)  AltCidy....i,,),
B(‘)l'llk] é'zzkz l'|l'2mi,,,1: A;: ?2 i3i4“.i,,,|5l']1<l5li2 Sym(Jlkl) Sym(-lzkz)

AltGid, ... ),
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Tk Joks ok s I, ) koo
Bo'l oy 7 '0"2—2 ' iyl Ao'l 0" 0";—2 [ 1611 5iz 6 . Sym(Jlkl)
Sym(J,k,) ...Sym(J k) AltGii,...i_ 1)
Jiky Joky gk Tk — AN J -2 Jet Sk Sk ko Skt
0p 0y ""'0, Oy higedyy 1701 037770, O, 1511 62 '5%72 6’}7

Sym(j,k,)Sym(j,k,) ... Sym(j,_,k,_,) AltGi,...i ;)

Sy Ji ) Sidy o
for unlj<njow1} fujnctlons A i s A A G i s e AG G
and A} 2.2
01 02" "0y Oy *

We can now solve this system with the help of the trace decomposition
theory, namely with the trace decomposition formula of the symmetric-
alternating tensors; in what follows we use the notation of Appendix 8 and
Appendix 9.

We consider each of equations (25) separately. The second equation is

(26) B}, . =A .. .. 6 Sym(Jk) Alt(,...i,).
Denoting B=B," ,, . and A= A; w0 - this equation can also be writ-
ten as B=qA where A= A;” . is defined by
-1) «
27 A aOY U
( ) O lyly..dy s+1 O iyiy...d,

But B satisfies the first condition (21), which can also be written as
B=qtrB. Consequently, the trace decomposition formula yields
A=trqA+qtrA=tr B because A is traceless; thus, we get a solution

s(n—1) A= s(n—-1) trB

2 A=
(28) s+l s+1

Next equation (25) is

0oy Bol o i = Ao o 518 SymUik) - Sym(Jak,)
Alt(ii,...0, ).

This equation can be understood as a condition for the trace decomposition
of the tensor B=B* "2 . (Appendix 9). According to conditions (21)

O, Oy iy,
Bk Tk _ s(n—1) B Pk Sk § m(J k)
(30) o1 Oy indii  gr] D01 01ty Qi y 1K
Alt(ig,...i, ).

Analogously
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@y gk 30D e sk gm0y AltGi, i ).

O Oy iy s+1 o Oy liyis..dy G

These conditions mean that B is a Kronecker tensor whose summands con-
tain exactly one factor of the form 8, where a runs through Jk, and i
through the set {i,i,,....i, ,} , and exactly one factor 8°, where B runs
through J,k, and i through {i,,i,,...,i, } ; thus, B must be a linear combina-
tions of the terms of the form §/'8;>, 66, , 6,'8,>, 6/, . From the com-
plete trace decomposition theorem it now follows that the coefficients at the-
se Kronecker tensors can be chosen traceless. This shows, however, that
equation (29) has a solution A} 2 . . .

To complete the construction of the 7°*”' -projectable extension u of
the form 77, we proceed in the same way.

A remarkable property of solutions of the formal divergence equation is
obtained when we combine Theorem 1 and Theorem 2: we show that the
solutions can also be described as projectable extensions of forms on W* .

Theorem 3 Let f:W®—R be a function, let g=g' be a system of
functions, defined on W*, and let = g'm, . Then the following conditions
are equivalent: A

(a) The system g' is a solution of the formal divergence equation

(32 dg'=f
(b) There exists a projectable extension L of the form 1 such that

(33) hdu= fw,.

Proof 1.1If the functions g' solve the formal divergence equation
d.g' = f, then condition (12) is satisfied and 1 has a projectable extension
[ (Theorem 2). Then 1= hu , hence

(B4)  (@"")*hdu=hdhu=hdn=dg" -0, = fo,,
proving (33).

2. Conversely, suppose that g'®, = hy . Then a direct calculation yields
hdu=hdhu=dg" -, ,hence (32) follows from (33).
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