4 Variational structures

In this chapter a complete treatment of the foundations of the calculus
of variations on fibred manifolds is presented. Using the calculus of dif-
ferential forms as the main tool, the aim is to study higher-order integral
variational functionals of the form y — [J'y * p, depending on sections
y of a fibred manifold Y, where p is a general differential form on the jet
manifold J'Y and J'y is the r-jet prolongation ¥ . The horizontal forms
p are the Lagrangians.

In Sections 4.1 — 4.7 we consider variations (deformations) of sections
of Y as vector fields, permuting the set of sections, and the prolongations
of these vector fields to the jet manifolds J'Y . The variations are applied
to the functionals in a geometric way by means of the Lepage forms,
(Krupka [K13], [K1]). The main idea can be introduced by means of the
Cartan’s formula for the Lie derivative of a differential form 1 on a man-
ifold Z, d,n=i.dn+di ¢1 , where i, is the contraction by a vector field 3
and d is the exterior derivative operator. For any manifold X and any map-
ping f:X — Z , the Lie derivative satisfies f*d.n= fridn+df*i.n .
Replacing Z with the r-jet prolongation J'Y ancf n with” p, we prove
that the form p in the variational functional y — [J'y * p may be cho-
sen in such a way that the Cartan’s formula for p becomes a geometric
version of the classical first variation formula. These forms are the Lepage
forms; a structure theorem we prove implies that for different underlying
manifold structures and order of their jet prolongations, this concept gen-
eralizes the well-known Cartan form in classical mechanics (Cartan [C]),
the Poincaré-Cartan forms in the first order field theory (Garcia [G]), the
so-called fundamental forms (Krupka [K2], [K13], Betounes [B]), the 2nd-
order generalisation of the Poincaré-Cartan form (Krupka [K13]), the
Carathéodory form (Crampin and Saunders [CS]), and the Hilbert form in
Finsler geometry (Crampin and Saunders [CS], Krupka [K7]). For survey
research we refer to Krupka, Krupkova and Saunders [KKS1], [KKS2].

The first variation formula, expressed by means of a Lepage form p,
leads to the concept of the Euler-Lagrange form, a global differential
form, defined by means of the exterior derivative dp (cf. Krupka [K13]
and also Goldschmidt and Sternberg [GS], where the Euler-Lagrange form
is interpreted as a vector-valued form). The coordinate components of the
Euler-Lagrange form coincide with the Euler-Lagrange expressions of the
classical variational calculus, and its classical analogue is simply the col-
lection of the Euler-Lagrange expression. The corresponding Euler-
Lagrange equations for extremals of a variational functional are then re-
lated to each fibered chart, and should be analysed in any concrete case
from local and global viewpoints.

The first variation formula also gives rise to the Euler-Lagrange map-
ping, assigning to a Lagrangian its Euler-Lagrange form. The domain and
image of this mapping are some Abelian groups of differential forms. A
complete treatment of the local theory is presented in Sections 4.9 — 4.11,
using the fibred homotopy operator as the basic tool. First the Vainberg-
Tonti formula, allowing us to assign a Lagrangian to any source form, is
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considered (Vainberg [V], Tonti [To]), and is extended to the higher-order
variational theory (Krupka [K8], [K16]). The theorem on the Euler-
Lagrange equations of the Vainberg-Tonti Lagrangian, proved in Sec-
tion 4.9, determining the image of the Euler-Lagrange mapping in terms of
the (local variationality) Helmholtz conditions, is a basic instrument for
the local inverse variational problem, treated in Sections 4.10 and 4.11
(Anderson and Duchamp [AD], Krupka [K11]).

Specific research directions in the variational geometry have been de-
veloped for several decades. Different aspects of the local inverse problem
are given extensive investigation in Anderson and Thompson [AT], Bloch,
Krupka, Urban, Voicu, Volna and Zenkov [BI], Bucataru [Bu], Crampin
[Cr], Krupka and Saunders [KS], Krupkova and Prince [KrP], Olver [O2],
Sarlet, Crampin and Martinez [SCM], Urban and Krupka [UK2] and many
others. Remarks on the history of the inverse problem can be found in Ha-
vas [H]; original sources are Helmholtz [He] (the inverse problem for sys-
tems of second-order ordinary differential equations) and Sonin [So] and
Douglas [Do] (for variational integrating factors).

The theorem on the kernel of the Euler-Lagrange mapping is proved in
Section 4.10 on the basis of the formal divergence equations (Chapter 3)
and the approach initiated in Krupka [K12], Krupka and Musilova [KM].

Our basic notation in this chapter follows Chapter 2 and Chapter 3: Y is
a fixed fibred manifold with orientable base manifold X and projection 7 ,
and dimX =n, dimY =n+m. J'Y is the r-jet prolongation of Y, ©"*
and 7" are the canonical jet projections. For any set W CY we denote
W =@ (W). QW is the module of g-forms defined on W' . Some-
times, when no misungierstanding may possibly arise, to simplify formulas
we do not distinguish between the differential forms p, defined on the
base manifold X of a fibred manifold z*:J'Y — X and its canonical lift-
ing (')* p to the jet manifold J'Y . Similarly, the Lie derivative d =P
and contraction i ,_p are denoted simply by d-p and i-p . b

Since the subject of this chapter is the higher order calculus of varia-
tions, some proofs of our statements include extensive coordinate calcula-
tions; in order not to make difficult the understanding we prefer to present
them as complete as possible.

4.1 Variational structures on fibred manifolds

95

By a variational structure we shall mean a pair (Y,p), where Y is a fi-

bred manifold over an n-dimensional manifold X with projection 7 and p
is an n-form on the r-jet prolongation J'Y .

Suppose that we have a variational structure (¥,p). Let € be a com-

pa(r)=[J7*p.
Q

pact, n-dimensional submanifold of X with boundary (a piece of X). Denote
by I',(7) the set of differentiable sections of 7 over Q (of a fixed order of
differentiability). Then for any section y €I'y(xw) of Y, the pull-back
Jy*p by the r-jet prolongation J'y is an n-form on a neighbourhood of
the piece €. Integrating the n-form Jy*p on €, we get a function
I'o(@)>y7 = po(y)€R, defined by
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P is called the variational functional, associated with (Y,p) (over Q).

The variational functional of the form (1) is referred to as the integral
variational functional, associated with p .

If W is an open set in Y, considered as a fibred manifold with projection
|, , then restricting the n-form p to W" CJ'Y we get a variational struc-
ture (W,p) . The corresponding variational functional is the restriction of the
variational functional (1) to the set I',(7|,)CI',(). Elements of this set
are sections whose values lie in W.

On the other hand, any n-form p on the set W' defines a variational
structure (W, p) . The corresponding variational functional is given by

@  Tarh)37 > pa)=[Iy*peR.

If W=Y ,then I',(r|,)=T,(7)and formula (2) reduces to (1).

Let W be an open set in Y. For every r we denote by € \W the sub-
module of the module of g-forms Q' W , consisting of 7" -horizontal forms.
Elements of the set €, \W are called Lagrangians (of order r) for the fibred
manifold Y.

Let p € QW . There exists a unique Lagrangian 1, € QW such that

3) JTy# A, ="y p

for all sections y of Y. The n-form /"LP can alternatively be defined by the
first canonical decomposition to the form p (Chapter 2, Section 2.4)

(4) (") p=hp+pp+p,pt..tp,p
as the horizontal component of p ,
5 /lp =hp.

/"LP is a Lagrangian, said to be associated with p . Property (3) says that the

variational functional p, can also be expressed as
©  pan)=[I7y ¥4,
Q

We give the chart expressions of p and hp in a fibred chart (V,y),
v =(x',y°), on Y (or, more exactly, in the associated charts on J'Y and
J™'Y ). Recall that in multi-index notation the contact basis of 1-forms on
V" (and analogously on V') is defined to be the basis (dx',w?,dy?),
where the multi-indices satisfy 0 <I1JI<r—1,|Il=r,and
(7) w7 =dy; —yjdx’.

]

We also associate with the given chart the n-form
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() o, =dx' Ndx* A...Ndx",

(considered on U=m(V)C X, and also on V"), sometimes called the local
volume form, associated with (V,y).

According to the trace decomposition theorem (Section 2.2, Theo-
rem 3), p has an expression

) p= D, 0 ADL+ Y do] NV, +p,,

0<llI<r-1 IJ1=r-1
where
Po=A,, , dx" Ndx® N Ndx"
+A L dy) Ndx® Ndx® AL A dx"
(10) HAN R i dYT NYT NdxD Ndxt AL A\ dx”

Jy I o o O, i,
totAD Gt dyy ANy ALY Ndx
Jy J, I (of (o o,
+AS G dyy ANdy AL ANy
and the coefficients A7 >...%, . are traceless. Then hp=hp, because
h is an exterior algebra homomorphism, annihilating the contact forms @?¢
> J
and dw; . Thus,
_ J| o Jy I o) ,,0,
A‘p = (Ailiz.“i” +Aoll bivi Yoi T Aa: o isiai Y10 V1ohs
Jy J o1 ,,0; O, Ji Jy Jy 1,01 4,0 o,
(1 1) Tt Ao'll 022' o ] yfllilyjziz e .y‘/n—llin—] + AU: 0, "0, yjllilyJ;jz e 'yfnin)

n-1 In

dxt ANdx® AL N dx"
Using the local volume form (8) we also write

(12) }Lp =%w,,
where

— phidy Jy Oy Jy Ty 01 1,02
L=¢ (Ailiz...i,, + Aol iz iy Vi +AG| 0y isigedy Y iy Vi

(13)
Jy Joon o) .,0 O, Jy J J, 1,01 1,0 o,
ot AL e Y Y Y A G Vi Vi Y )-
% is a function on V'*' called the Lagrange function, associated with p (or
with the Lagrangian 1,).

Remark 1 Sometimes the integration domain € in the variational
functional p,, is not fixed, but is arbitrary. Then formula (2) defines a family
of variational functionals labelled by €. This situation usually appears in
variational principles in physics.



98 Global Variational Geometry

Remark 2 Orientability of the base X of the fibred manifold Y is not an
essential assumption; replacing differential forms by twisted base differential
forms, one can also develop the variational theory for non-orientable bases X
(Krupka [K10]). Variational functionals, defined on fibred manifolds over
non-orientable bases, may appear in the general relativity theory and field
theory, and in the variational theory for submanifolds.

Remark 3 (The structure of Lagrange functions) Formulas (12) and
(13) describe general structure of the Lagrangians, associated with the class
of variational functionals (2). The Lagrange functions & that appear in chart
descriptions of the Lagrangians are multi-linear, symmetric functions of the
variables y; , where [Il=r+1.

Remark 4 (Lagrangians) Let p be an n-form belonging to the sub-
module Q| W CQW of n"-horizontal forms, expressed as

14 p=_

L dx Adx® AL A dx"
p iy
Then since dx" Adx" A...Adx" =" ", , one can equivalently write

(15) p=%wo,,

where the Lagrange function & is given by

gl

iyiy.. 0,

16)  L=14
n!

The following lemma describes all n-forms p € Q' W , whose associated
Lagrangians belong to the same module Q' W , that is, are of order r.

Lemmal For a form pcQW the following two conditions are
equivalent:

(1) The Lagrangian A, is defined on W'

(2) In any fibred chart (V,W), yw =(x',y°),onY, p has an expression
(A7) p=ZFa,+ Y, @ADL+ Y, doj A

0<I/I<r-1 Jl=r-1

for some function £ and some forms ®. and ¥ .

Proof This follows from (5) and (13).

4.2 Variational derivatives

Let U be an open subset of X, v :U —Y be a section, and let = be a
7 -projectable vector field on an open set W CY such that y(U)CW . If
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o, is the local 1-parameter group of Z,and «,, its 7 -projection, then
_ -1
(1) V=0 0y,

is a 1-parameter family of sections of Y, depending differentiably on the pa-
rameter 7: Indeed, since 7o, = @, T , we have
() Ty, (x) = 0L, Yo g, (X) = O g, YOl (X) = O, Ol (X) = X

on the domain of ¥,,so 7, is a section for each ¢. The family ¥, is called the
variation, or deformation, of the section ¥ , induced by the vector field = .
Recall that a vector field along y is a mapping Z:U — TY such that

E(x)eT, Y forevery point x €U . Given Z , formula

3) E=Trn-Z

then defines a vector field & on U, called the 7 -projection of Z .

The following theorem says that every vector field along a section ¥y
can be extended to a & -projectable vector field, defined on a neighbourhood
of the image of ¥ in Y. Moreover, the r-jet prolongation of the extended
vector field, considered along J'y , is independent of the extension.

Theorem 1 Let y be a section of Y defined on an open set U C X , let
E be a vector field along vy . _

(a) There exists a T -projectable vector field Z, defined on a neigh-
bourhood of the set y(U), such that for each x € U

(4) E(y (x) =E(x).

(b) Any two 1 -projectable vector fields Z,, E,, defined on a neigh-
bourhood of y(U), such that Z,(y(x))=E,(y(x)) for all xc U, satisfy

(5) JrEl(J;Y) = J’.'Ez(‘];}/)-

Proof (a) Choose x, €U and a fibred chart (V,,y,), v, =(x,,y]), at
the point y(x,)€Y , such that 7(V,) CU and y(w(V,))CV,. E has in this

chart an expression
0
) +E“(x)( 0) .
() dy 7(x)

on (V). Set for any y€eV,, E()=E @), Z°(»)=E"(n(y)), and de-
fine a vector field = on V, by

0
ax'

(6) E(y(x)=¢ '(X)(

9 =y 0
+Z

dx' a9y’

[1

) =&
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Ix

The vector field Z satisfies _(y(x) =E(y(x)) on w(V,).

Applying this construction to every point of the domain of definition U
of = we _may suppose that we have families of fibred charts (V,y,),
v, =(x,y7), and vector fields =, , where t runs through an index set I such
that 7(V)CU, y(rn(V)CV, for every 1€/, E is defined on V, and

E @) =E@ () forall 7(V,).

Let {y,},, be a partition of unity, subordinate to the covering {V },, of

the set y(U)CY . Setting

= 2%1?‘1 ’

el

[1]r

()

we get a vector field on the open set V =UV,. For any x €U the point y(x)
belongs to some of the sets V , thus, y(U) CV . The value of H(y(x)) is

© E(y ()= 1Y ()E (y(x) = (Zx, <y<x)>)5(y<x>)

=E(r(x)

because {y,},, is a partition of unity.
(b) It is sufficient to verify equality (5) in a chart. Suppose that

;0
10 E = 17.+._.
( ) 1 é axz ayo'

I , E,=( ai+ZG 80
ox dy

=0

and
(11) E'=(", Eoy=Z°0y.

Then from the formulas

i
= —az oy %
JiJ2---Jk Ji 2 k-t JiJae gt a ik’
(12) o
7°. . =d. 7%, -7
JiJa---Jk Jk T dka JiJa-eJiai (:)x/A

for the components of J'Z, and J'E, (Section 1.7, Lemma 10), and from
the formal derivative formula (11), Section 2.1 we observe that the left-hand
sides in (12) are polynomials in the variables y, ., 1<s<r. Therefore,
condition (11) applies to the coefficients of these polynomials and we get
g% Jk oJ' V= Z(;Jz -Jk OJ’.}/ :

JiJa-
A 1 -projectable vector field =, satisfying condition (a) of Theorem 1,
is called a 7 —projectable extension of = . Using (b) and any 7 —projectable

extension = , we may define, for the given section 7,
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(13)  JEU Y =IEUY).

Then J'Z is a vector field along the r-jet prolongation J'y of y; we call
this vector field the r-jet prolongation of the vector field (along y) = .

Variations (“deformations”) of sections induce the corresponding varia-
tions (“deformations”) of the variational functionals. Let pcQ W be a
form, QC (W) a piece of X. Choose a section y €I'y(x|,) and a 7 -
projectable vector field = on W, and consider the variation (1) of 7, in-
duced by Z. Since the domain of ¥, contains € for all sufficiently small ¢,
the value of the variational functional ' (7|,)>7 — p,(¥)ER at 7y, is
defined, and we get a real-valued function, defined on a neighbourhood
(—€,€) of the point 0 R,

(14) (€821 p, o(0W,,)= J J (o, y0,) % p ER.

a(ﬂ)/(Q)
It is easily seen that this function is differentiable. Since
(15) T (o ) p=(ag)* (' *Ua)*p,

where J'q, is the local 1-paremeter group of the r-jet prolongation J'= of
the vector field Z , we have, using properties of the pull-back operation and
the theorem on transformation of the integration domain,

16 | e Fp= [Ty ).
Q

a(O)r(Q)

Thus, since the piece € is compact, differentiability of the function (14)
follows from the theorem on differentiation of an integral, depending upon a
parameter.

Differentiating (14) at =0 one obtains, using (16) and the definition of
the Lie derivative,

d - r
(17) (dl‘ pg(a,ya(ol),))o = sJ;J Y *aJ’Ep‘

Note that this expression can be written, in the notation introduced by for-
mula (2), Section 4.1, as

(18)  @,.pa=[I7*3,_p.

The number (18) is called the variation of the integral variational functional
Pq at the point 7y , induced by the vector field Z .

This formula shows that the function I'y(7|,)>y = (0 ,.A)o(y)ER
is the variational functional (over ), defined by the form d J; p . We call
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this functional the variational derivative, or the first variation of the varia-
tional functional p, by the vector field = .

Formula (18) admits a direct generalization. If Z is another 7 -
projectable vector field on W, then the second variational derivative, or the
second variation, of the variational functional p, by the vector fields E
and Z , is the mapping I'y(7|,)27y — (@ P)o(¥) € R, defined by

J'Z 81’3

(19)  9,,9,.P)(¥)= J Jy*d,,0,_p.
Q

It is now obvious how higher-order variational derivatives are defined: one
should simply apply the Lie derivative (with respect to different vector
fields) several times.

A section y €T(m |, ) is called a stable point of the variational func-
tional A, with respect to its variation =, if

20)  @,.Pa()=0.

In practice, one usually requires that a section be a stable point with respect
to a family of its variations, defined by the problem considered.

Formula (18) can also be expressed in terms of the Lagrangian
/lp = hp , the horizontal component of p . Since for any = -projectable vec-
tor field = the Lie derivative by its r-jet prolongation J'= commutes with
the horizontalisation,

21)  hd,_p=9,_hp

(see Section 2.5, Theorem 9, (d)), the first variation of the integral variation-
al functional p, ata point y € ', (1|, ), induced by the vector field =, can
be written as

22 @,Pa@)= [T 0,04,
Q

4.3 Lepage forms

In this section we introduce a class of n-forms p on the r-jet prolonga-
tion J'Y of the fibred manifold Y, defining variational structures (W,p) by
imposing certain conditions on the exterior derivative dp . Properties of the-
se forms determine the structure of the Lie derivatives d,_p , where Z is a
7 -projectable vector field on Y, and of the integrands of the variational
functionals ¥ —(d,,_p)o(y) (Section 4.2, (18)). Roughly speaking, we
study those forms p for which the well-known Cartan’s formula
d,.p=i,dp+di,_p of the calculus of forms becomes an infinitesimal
analogue of the integral first variation formula, known from the classical
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calculus of variations on Euclidean spaces.
First we summarize some useful notation related with a chart (U,@),
¢ =(x") , on an n-dimensional manifold X. Denote
1 ) . ;
Wy =—&; ,dx" Ndx® N\...Ndx",
n! e
1 i i i
(1) W, =———&,, dx" Ndx" N...\Ndx",
L (1)t i
1

a)klkz:mgklkziﬁm-%dx /\dx /\.../\dx".

The inverse transformation formulas are

dx" Ndx" AL Ndx" = 8"'2“‘l"w0,
2) dx" Ndx"® N.. Ndxh = 8k1]213"'l”wk1 ,

dx"® Ndx" AL Ndx = ek'kzl3l4“‘l”wklk2

(cf. Appendix 10). Also note that @, can be written as

w, =i

3) !

a/a.xfla/ax"wO

= (=DM dx" AdxP AN N AL N AL AN dX
whenever j <k .Then
4) d' N\, =80, -8,0,,

which is an immediate consequence of definitions: since se have the identity
o, =(=D""dx' Ndx' Adx A AdX T AdX AL A dx , then

I gl
kla/axfwo - Bkwj’

! 1A - N gl
0,0, —dx Ni, . @, =0,0,—dx N®,.

(5) i (dx' No)=

We prove three lemmas characterizing the structure of n-forms on the r-
jet prolongation J'Y .

Lemma 2 An n-form p on W' CJ'Y has in a fibred chart (V,y),
v =(x',y°), an expression

(6) p=p,+p+dn

with the following properties:
(a) The n-form p, is generated by the contact forms @7, where
0LIJI<r—1, thatis,
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_ o J
(7 Po= D, 05 AND,
0<l/i<r-1

where

(8) O =)+

ey
o (1) o (2)+ cI)0' >

the forms @ a, are generated by the contact forms @7, 0<IJI<r-1,
! () are generated by dw] with |11=r~-1, and

O =@, . dx'" Adx AL Ndx

O ijiy...d,
+ d)é ‘1711 i2i3,”i”,]dyz] N dxiz A dxi3 AN dxi""
(9) +q~)é ;11 (1;2 i3i4---i,,,|dy7|1 /\dy?; /\dxiz /\dxi4 /\.-./\dxi”"

FoADI L e dy] Ndy]> A...\dy]"? Adx'™

0 0 03" " 0y iy

+@L 12...(’;:1 dy; NdyP> A...Ady

o 0, 0,

where the multi-indices are of length |1, || I[2 L...,l I, 1=r and all the coef-
-~ 760 1

L & I -
Sicients @ ;. Dy g g e Po g gy are traceless.

(b) n isa contact (n—1) -form such that

(10)  n= Y o] AY,,

Il=r-1

where the forms Y. do not contain any exterior factor ®¢ such that
0<IiJI<r-1.
(c) p has an expression

p=A, ,dx" Ndx* A...A\dx"

+A; o dyy Ndx® NdxP AL A\ dx"
(11) +AL 2 dy] Ny NdxB Adxt AL A\ dx"

+o .+ AN e L dyy ANy AL Ady Adx"

01 03" "0y iy

L I f
+AS g Ay NAYT NN

where |1, 111, \,... | I |=r and all the coefficients A hh

I I O iyl3...d, ? Oy Oy I3iy..dy > 0"
112 n—1
o 0,0, i aretraceless.

Proof From the trace decomposition theorem (Section 2.2, Theorem 3),
p can be written as

(12) P:P<1)+P(2)+f),

where p, includes all @] -generated terms, where 0 <IJI<r-1, p,, in-
cludes all dw; -generated terms with |J|=r—1 (and does not contain any
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exterior factor @7 ),and p is expressed by (11). Then
(13)  puy= 2, do] NP, =d( D a)j’/\‘lff,j— Y @) AdYL,
ITi=r—1 Ti=r—1 ITi=r—1
So we get
p=py,- Y, @ Nd¥] +d( Y w? A‘P;j+;3
(14) e =t
=P, +d( Y ! A‘Pf,j+ﬁ.

l=r-1
proving Lemma 2.

Our next aim will be to find the chart expression for the horizontal and
1-contact components of the n-form

(15) T=p,+p
from Lemma 2.

Lemma 3 Suppose that T has an expression (7) and (11).
(a) The horizontal component ht is given by

— I ! I I 1,92
ht = (Ailizu.i,, + A0'| i Vi Aal Gy igigerd, Y10y Y 1y
I I Ly 01 \,02 Ot
(16) toot AGI 03" "0 i,,ylli1y12i2 o 'y’n—lin—l

L I, 1, |,01,,02 O i ) iy
+AG oo Yia Vi, -+ Vi Jdx" Ndx® N Ndx"

0y 03"

(b) The 1-contact component p,T is given by
_ Y R I o, R L Iz 0, |03
pt= 2 (P, T D, oy igi Vi, T D, Gy Gy igiseriy Y iy Y Ly
0<IJI<r-1
URORE I 02 1,03 O 1
oA Qg g Y Y Vi

+@! L Vi Yrs o Yp @] Adx® Adx® AL Ndx"

(17) o 0, 03"
I I 1, o, 11 I 0, .03
+ Z(AO' i2i3.4.i,l+ 2A01 o, 1'31'4...1',,ylzi2 + 3Ac 0, 03 1'41'5...i,,ylzizyl3i3
=r
_ I I 03 ,03 On-1
+...+(m—-1DA, oo i Vi Yid Vi

AL 2 g ViV YD @] Adx® Adx® AL Adx"

o 0,"

Proof (a) Clearly, it =hp and (16) follows.
(b) The form p,T is given by
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(18)  pr= D, @] Nh®)+pp.

0<lJI<r-1

Then

e Y/ Y ! AV
thG :((I) 1+(I) l 1yZ’!1 +D5 5 6 yzélyziz

O ijiy...d,_ O O iylz...d,_ O O 0, izig...dy

=S M I, o, .0, (o)
+..+® oo Vi Via V"

0 0y 0" "0y iy

S . . .
D2 YTy L yP dx Adx® AL A dx

o0 0,"" e

n-2ln-2

(19)

-V R I o, R L I 0, .03
- (q)cr i2i3.4.i,,+ q)o o, i3i4...i,,yl2i2 + q)a 0, O3 i‘,i544.1',,yIZi2yl3i3
o

Y L I I, o, .03
+...+® NP e SIS

0 0, 03°°°0,

n-1

n=1ln-1

D/ L 1L (02,03 T i iy Iy
+O v Vi Vi -+ Ypi )dx® Ndx® Ao Ndx”,

0 0, 03"
and
N — Iy Iy I o) I I I 02 1,03
pPp= (Acl bivi, T 2A tigi, Vi, T 34 igise i, Y iy Vs

0, 03 i 0 03 03

_ L I, I 03 ,03 Op1
tot (n 1)A‘71 03" "0 i/xy12i2y1353 o 'y[n—liu—l

I I, 1, |,02 \,03 O 4 i i3 iy
+RAS G oo Vi Vig Y O Adx® Ndx® A Ndx

_ i I 1 o I, 1 0, .0
= Z(Ao iy, T 2Aa, oy isigiy Yoy T 34, Gy Gy igis..iy Y Ioiy Vs

=r

(20)

_ 11, 1, o, .03 O,
oot (l’l I)A(’ 0" 'G”n—l i:1y1252y13i3 o 'yly:lin—l

Il 1, {0, .03 T o i i3 iy
HNAG G g Vi Vi -V O, NdX® Ndx® AL N\dx"

o 0,

(17) now follows from (19) and (20).

Now we find the chart expression for the pull-back (7'*'")* p . Accord-
ing to Lemma 2

@) (@) Ep=hp+p(p, +p)+dn+ L,

where hp=ht and p,p,+ p,p are given by Lemma 3, and the order of con-
tactness of u is =2 . We define f, and f/ ' by the formulas

(22) hp = fy@,, pi(p,+p)= 2 foj iwf/\wi'
o<lIsr
Explicitly,

I I

_ pindy 1 o, 61,0,
fi=¢€ (Ailig...i,, +A0'1 iy, Vi, T Ao, Gy inig.dy Y 1iy Y Loy

L I I I

(23)
I, 0,02 Oy I, \,01,,02 O,
+...t Ao, oo i Vi Yo, Yt Ao‘, oy, Vi Vi, -+ Vi, ),

and, since €@, =dx" Ndx" A...Ndx",
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T i piigised, (T zJ 0, Gy, L &I I G, .0
Jo =em(@ + D55 iV, TP i Vi,

o O lyiz.. o 0, O 0, 03 iyis...,

(24) L1 I ' L1 ;
2 13 -1 92 1,93 On-1 2 13 02 1,03 0
ot CI)O' 0y 03" 'Unu—l iny12i2y13i3 o 'ylniliu—l + q)o' 0y 037" .G““ y12i2y13i3 o .yl/x/lfn )’

and

Li_ iigigedy ¢ 41 1L o, IS G, .0s

Jo =€ (A, bivi, T 2A; oy ivsiyY0iy T 34, Gy 0y igiseiy Y Dy Y Lis
_ I I, 0, 1,03 Op-1

(25) +...+(n—-1DA, oo i Vi Vg Vi

11, 1, .0,  0; o
+nA; ;.. o, Yoi, Vi, -+ Vi, ),

where 0<|JI<r—1and |Il=r. ‘
We further decompose the forms £ ‘0 A, .

Lemma 4 For k21 the forms @, . A, can be decomposed as

o _ o
Wy, N@; = k+1 (wlllz.ul,\ N@;
AN B O AN@, +...+ @) A
wilzl_;.,,lk o, wl,il3l4mlk W, +... wl,lz.“lk,,i wzk)
(26) ]
o o o o
+ m((a)h/z-»-lk N@; = wilzly..lk N wzl )+ (wzltz.../k N@; = w11i13/4...1k N wlz )

o o
+...+ (wz,zz.ua N@; — Oy, A , )-

The forms ®;, , N®,—®;, A @, are closed and can be expressed
iy.. I, i L.l 1,

il Dl

as
27 0’ A0 -0 . Ao, =d(o; A@, )

iy 1, i Wy d il il 1, [ R it, )

Proof Indeed, from (4)
c O J
dwz,lzu.l,,,,l,ﬂ,..Jk,,lk N w/,,i - wm,..1,,,,1,,+,...1k,,1k j Ndx" N wl,,i

— O i — O Joy i

(28) - wlllz.“zp,,lpﬂu.lk,,lkj Adx” N wlpi - wl,lz...lp,llpﬂ.“lk,,lk_/ A (5i wlp 51‘,(”;)

(o2 o
No; + Wy,

- _wllzr..1,,_,1,,+,...1k_,1k1p il dialgi N wzp

Now we are in a position to prove the following theorem on the struc-
ture of n-forms on W' .

Theorem 2 Let pc QW . For every fibred chart (V,y), ¥ = x',y%),
the pull-back (x"*"")* p has an expression

29)  (@)*p=fio+ Y, B o] Ao +dn+p,

osiIsr



108 Global Variational Geometry

where the components P!’ are symmetric in the superscripts, N is a 1-
contact form, and W is a contact form whose order of contactness is 22 .
The functions P!' such that |1 |=r satisfy

0
(30)  Pl'= ig
C
The forms f,0,, EPGJ ‘@9 AN, , and W in this decomposition are unique.
Proof We use formulas (21) and (22) and apply Lemma 4 to the forms
£l 'o7 AN, . Write with explicit index notation f; ‘= P/»*/«' We have the
decomposition

(31) f(){ljz-"jk i P(){ljz»»<jk i+ Q({.Ij?“-jk i’
where P i= fhRdct Sym(jj,... j,i) is the symmetric component, and
Qa7 ' ig the complementary component of the system [/ We have,

foreach k, 1<k<r,

Jija- /k'
f /1/7 ]k/\a)

i

_PNZ ’ lwmz J Ao i QMZ ’ ld(wms Ji wjli
tof,,  No,+. +a)”7 PAYN)

(32) — PJlJz Jeigy M h o, — d(QJlJz Jx t( o], . /\a)j]i
tof,, Ao+ +wm AYN))
+ LdQéljzmjk i/\ (‘".Z_/‘ /\(D it wj./w -Ji A w./’zi
+o.tf, L AO).

r+2

The exterior derivative dQéljz"‘j* " when lifted to the set V
composed as

, can be de-

(n-r*z'rﬂ)*dQéljzm./k i: th(.Q/éan i+ deéljZ"-jk i

(33) "dQs po
= dI,Q;_IJZ"'j" Id_xp +deé-1]2mjk 1.

Substituting from (33) back to (32) we get 1-contact and a 2-contact sum-
mands. The 1-contact are equal to

Jida---Jx
hdQ! /\(whh PRAYCSY +a)w4 PRAYITE +wm LN
(34) =—d Q1 (@, . ANdx" o+, Adx" Ao,
+...+t07, . Ndx" AN, ;)

JiJae i Jid
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= _dpQél'/T“jk i(w(‘y s /\(5%’_ - 5ipw‘ )

tof,, NO6lw,-6/w )+.. .+, jklA(Sj:a)l.—&”a)jk))
=—(d QP]2]3..4J1{ inj; ]k Qmwm i et

+...+d Q"’Z e "”a) Do +d Q"” i "’(a)j2h Lo,
+whm PRAYCHR +oo”2 PAYD.

__kd (Ql’/z/z Jk l_Q’/a/; Jk [7) s /\0)

Note that from the definition of the functions Q7' and from formula
(24) we easily see that this form is 7"**'*' -projectable. Thus, returning to
(32), we have on V"'

Jidoeeedi € JiJa-- /k’
f w/]/z u P /|/2 lk/\wi

Piajz--Jk i_ )laJz---Jk P
k+1 p(Q Q ) JaJ3ee-dk A,

35 _ﬁd(sz e (w PRAYLY +w/m/4 ALY

oot wll/z k-1 A w.]k’ ))

+7demv Jk /\((U AO..+0°. . . AN®

k+1 JaJ3---Jk Nt NJ3Ja---Jk i

t. +w/|/z Jiet /\wjki)'
This sum replaces f; ‘0 Aw,, where |J|= ke, with the symmetrized term
P/ ‘0] Ao, aterm d Q"= QP ot Ao, containing ©f Ao,
with | J1=k~—1,a closed form, and a 2-contact term.
Using these expressions in (21), written as

(36) (@) Ep=fiwy+ Y, f 0] Ao +dn+ o,

osi/Isr

we can redefine the coefficients and get

BN @M)*p=fiw,+ Y, flef Ao+ Y, P o Ao, +dn+ .

0<l/I<r-1 1<r

After r steps we get (29).

To prove (30), we differentiate (23) and compare the result with (25).

It remains to prove uniqueness of the decomposition (29). Supposing
that (7""'")* p=0 we immediately obtain f,,=0 and tt=0 hence

(38) Y. Pl oS Ao, +dn=0.

osilsr
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Differentiating (38) and taking into account the 1-contact component of the
resulting (n+1) -form,

Y. p(dP! 'Nof Ao, - P '@ A,)
(39) osilsr ' 4
=- > (dP] NS -P! o) Nw,=0,

0<lIsr

which is only possible when P/ '=0 because P/’ are symmetric in the su-
perscripts.

In the following lemma we consider vector fields on any fibred mani-
fold Y with base X and projection 7 .

Lemma 5 Let & be a vector field on X. There exists a T -projectable
vector field & on Y whose T -projection is & .

Proof We can construct §~ by means of an atlas on Y, consisting of fi-
bred charts, and a subordinate partition of unity (cf. Theorem 1, Section 4.2).

Now we study properties of differential n-forms p, defined on
W™ CJ'Y , which play a key role in global variational geometry. To this
purpose we write the decomposition formula (29) as

40) (A *p=fw,+ P, 0% Ao+ D P 0, Ao +dn+ i,

Jida--Jk
k=1
where

. )
OV

Lemma 6 Let pcQ W . The following three conditions are equiva-
lent:

(@) pdp isa """ -horizontal (n+1) -form.

(b) For each r"°-vertical vector field & on W',

42)  hidp=0.

(c) The pull-back (x"™"")* p has the chart expression (40), such that
the coefficients satisfy

(43) af(‘) _ diPo{|f2~~.f/< i P(.yf].fz-»Jk—] Jk— 0’ k= 1’2’. F.

J1da--Jk
(d) p,dp belongs to the ideal on the exterior algebra on W'
generated by the forms @° .

, locally
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r+l1

Proof 1.Let Z be a vector field on W', Z avector field on W™ such
that Ta™" -Z=Eox"" (Lemma5). Then i.(n*"*)*dp=(n""")*i.dp ,
and the forms on both sides can canonically be decomposed into their con-

tact components. We have
(44) i:pdp+izp,dp+...+i-p,, dp=hizdp+ pi-dp+...+ p,izdp.
Comparing the horizontal components on both sides we get

(45) hi-p,dp = (£ * hi_dp.
=1 =

r r+10 _

Let pdp be 7" _horizontal. Then if = is 7" -vertical, Eis
vertical, and we get hi-p,dp=(n""*"*")*hi_dp =0, which implies, by injec-
tivity of the mapping (z"*"*")* , that hi.dp=0.

Conversely, let hi.dp =0 for each 7"°-vertical vector field & . Then by
(45), hi-pdp=i.-pdp=0 for all 7"*" -projectable, """ -vertical vector
fields = If in a fibred chart,

46) E=)ZE7
and

(47) pdp = ZAé'jz”'jszjz.,.jk A@,,
k=0
then we get

(48) Al =0, 1<k<r,

proving """ -horizontality of p,dp . This proves that conditions (a) and (b)

are equivalent.
2. Express (m""'")* p in a fibred chart by (40). Then

pldp:[afo —d.P, ’)w" A, +

ay°
(49) +2 afO _dpj.jzmjk i lejzu-jH Jk ®° N
V° i‘o c Jidaeedk 0
k=1 yl|/2/A
af, S
_ Dihaedr Jrs c
+[ yo‘ ) PG] ] w./]./2~~~./r./r+l /\wo
N2 Jr

Formula (49) proves equivalence of conditions (a) and (c).
3. Conditions (a) and (d) are obviously equivalent.
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Any form pc€Q'W such that the 1-contact form pdp is n'™"-
horizontal, is called a Lepage form. Lepage forms may equivalently be de-
fined by any of the equivalent conditions of Lemma 6.

Remark 5 (Existence of Lepage forms) It is easily seen that the sys-
tem (43) has always a solution, and the solution is unique. Indeed,

o of S
J1J2-+-Jk-1 Jk— 0 JiJ2---Jk 4
P! = d, P!

o

Yiiineeeie
— aﬁ) —-d [ a‘ﬁ) —d Pj]jz»»Jkil izj
Y Wi
0 9 o
(50) =y Oy g piiii
Yo Y
— aﬁ) —d aﬁ) +d d [ aﬁ) —d lejz--'jk—liliz i3J
Wisie  Wingi  \ Wi
r+l-k
Jd
=..= Y (-1'dd,..d, %
1=0 d i dedvin iy

so the coefficients P, ", P/V»/=1/ are completely determined by the func-
tion f,. In particular, Lepage forms always exist over fibred coordinate
neighbourhoods. One can also interpret this result in such a way that to any
form p€ QW and any fibred chart (V,y), v = (x',y°), on W, one can al-
ways assign a Lepage form, belonging to the module Q/"'V . Note that we
have already considered conditions (43) in connection with the integrability
condition for formal differential equations (cf. Section 3.2, Lemma 3).

Theorem 3 A form p e QW is a Lepage form if and only if for every
fibred chart (V,w), w=(x',y°), on Y such that VCW , (x"""")*p has an
expression

(51) (™Y p=0+dn+u,

where
r r—k ; aﬁ) -

(52)  ©=fw,+) |2 (-Dd,d, ..d ——— 0 . Ao,
k=0 \_I=0 0 JiJae--JkP1Pa---Pii

o is a function, defined by the chart expression hp= f,w,, n is a 1-
contact form, and [l is a contact form whose order of contactness is =272 .

Proof Suppose we have a Lepage form p expressed by (40) where
conditions (43) are satisfied, and consider conditions (20). Then repeating
(50) we get formula (52). The converse follows from (49) and (40).
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The n-form © defined by (52), is sometimes called the principal com-
ponent of the Lepage form p with respect to the fibred chart (V,y). Note
that ® depends only on the Lagrangian hp=;tp associated with p; the
forms © constructed this way are defined only locally, but their horizontal
components define a global form.

Remark 6 Equations (43) include conditions ensuring that the order of
the functions P/”>/*' does not exceed the order of f,. We obtained these
conditions using polynomiality of the expression on the left-hand side in the
jet variables y7. ., k>r+1. Similarly, when © is expressed by (52), the
order restrictions apply to f; since the coefficients at @7, . A®, should be
of order <r+1.

4.4 Euler-Lagrange forms

We defined in Section 4.3 a Lepage form p€Q W by a condition on
the exterior derivative p € QW , derived from the fibred manifold structure
on Y. Namely, we required that the 1-contact component p,dp should be-
long to the ideal of forms, defined on W', generated in any fibred chart
VW), yw=(x',y), by the contact 1-forms ®° . Now we study properties
of the exterior derivative dp . We express a Lepage form p as in formula
(50), Section 4.3.

Theorem 4 If pcQ'W is a Lepage form, then the form (' )*dp
has an expression

(1) (T Y*dp=E+F,

where E is a 1-contact, (x""°) -horizontal (n+1)-form, and F is a form

whose order of contactness is 22 . E is unique and has the chart expression

r+l
2) E= afg -Y(h'd,d, ..d, ‘2f° ©° N,
dy =1 ayplPZ'“Pl

Proof For any p, E=pdp,and F=p,dp+pdp+...+p,,dp.But
for a Lepage form p,

3) E=p1d®=(§ig—dipa”]w“/\wo,
y

where by Section 4.3, (50),

i\ J
(4) P'=Y(-Vd,d, ..d, o

=0 PiP2---Pil
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This proves formula (2).

Note that similarly as the form ©, E depends only on the Lagrangian
A, = fow, , associated with ©. The (n+1)-form E is called the Euler-
Lagrange form, associated with the Lepage form p , or with the Lagrangian
A, = fo@, . The components of E

a r+l1 ~ a
(5) E (f)= fg—Z(—l)’ ldpldp’...a’p,agf0
N i Y pipo...
are called the Euler-Lagrange expressions of the function f;, or of the La-
grangian A, (in the given fibred chart).

4.5 Lepage equivalents and the Euler-Lagrange mapping

Our aim now will be to study Lepage forms with fixed horizontal com-
ponents — the Lagrangians. As before, denote by Q) ,W the submodule of
the module Q' W , formed by n" -horizontal n-forms (Lagrangtans of order r
for Y). Clearly, the set Q ,W contains the Lagrangians A, , associated with
the n-forms n€Q/"'W , defined on W'

The followmg is an existence theorem of Lepage forms whose horizon-
tal component is given.

Theorem 5 To any Lagrangian A€Q! W there exists an integer
s<2r—1 and a Lepage form pec QW of order or contactness <1 such
that

(1) hp=A.

Proof We show that the theorem is true for s =2r—1. Choose an atlas
{(V.,w,)} on Y, consisting of fibred charts (V.,y,), v, =(x',y°), and a par-
tition of unity {y,}, subordinate to the covering {V.} of the fibred manifold
Y. The functions y, define (global) Lagrangians y,A € Q) W . We have in
the chart (V,,y,)

2) A=% w,,,
where @,, =dx, Adx; A...Adx]'. Then we set for each 1

61 = Zl£1w01

3 r—1 ( r=1-k
( ) + (2( 1) dpld - W]w(’ ) /\w(),l’
pit

» c JiJze--Jid
k=0\_ I=0 W) jija---JxPrP2---Pi
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where ®f?, . =dy], . —y7, . .dx . Thus, O, is the principal Lepage
equivalent of the Lagrangian A= ®,,. Since the family {y,} is locally
finite, the family {©,} is also locally finite, thus the sum p=23>0, is de-
fined. Then we have p,dp=2> pdO,, thus, p is a Lepage form, because
each of the forms ©, is Lepage. It remains to show that hp=A. We have
hp=2h0O, =2 x£ 0,, . To compute this expression choose a fibred chart
(V,w), w=(x',y%), such that the intersection VNV is non-void for only
finitely many indices 1. Using this chart, we have A= o, =% 0, on
VNV, and, since

1

@ o, = det( 0 j-wo,

dx’
then
ox!
5 &L det| — |=Z.
©) ' (ax’ )
Consequently,

i

ox,
dx’

(6) hp=Xx < 0, =Z)a££ldet( j-wo = )%, = Lo,

because Xy, =1.

Let AcQ) W be a Lagrangian. A Lepage form pc QW such that
hp = A (possibly up to a canonical jet projection) is called a Lepage equiva-
lent of A . .

If A isexpressed in a fibred chart (V,y), ¢ =(x',y%), as

@) A=2w,,

then the form

r=1 [ r=1-k ag -

(8) 0, = Lo, +Z( > (-1d,d,..d, e LT
k=0\_ 1=0 JiJae--JkP1P2---PlE

is called the principal Lepage equivalent of A for the fibred chart (V,y).

This form is in general defined on the set V"' c W*"" .

Remark 7 The Lepage equivalent constructed in the proof of Theo-
rem 5 is 7£>~"""' -horizontal, and its order of contactness is <1.

Remark 8 Theorem 5 says that the class of variational functionals, as-
sociated with the variational structures (W,p), introduced in Section 4.1,
remains the same when we restrict ourselves to Lepage forms p . Thus, from
now on, we may suppose without loss of generality that the variational func-
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tionals

) To(xly)37 > pa(n)=[J7*peR

are defined by Lepage forms.
We give two basic examples of Lepage equivalents of Lagrangians.

Example 1 (Lepage forms of order 1) If A =%, is a Lagrangian of
order 1, then its principal Lepage equivalent is given by

(100  ©,=%w,+ o

o
i

0° Nw,.

The form (10) is called, due to Garcia [G], the Poincare-Cartan form. Its
invariance with respect to transformations of fibred charts can be proved by
a direct calculation (see Example 2).

Example 2 (Lepage forms of order 2) The principal Lepage equiva-
lent of a second-order Lagrangian A = %@, is given by

oL, oF
oy ayy

o
o7 N,

o
i

(11) ®$:§Ewo+( ]w“/\a)i+a§£

(Krupka [K13]). We show that in this case O, is invariant with respect to
all transformations of fibred coordinates. It is sufficient to show that ©, can
be introduced in a unique way by invariant conditions. We define a form ©
on W? by the following three conditions:

(a) © isaLepage form,thatis p,d® is 7> -horizontal.

(b) The horizontal component of ® coincides with the given Lagrangi-
an A ; this condition reads h® = A .

To state the third condition, we assign to any fibred chart (V,y),
v =(x',y%), the contact forms @7 A, . One can easily derive the transfor-
mation properties of these forms. For any other fibred chart (V,y),
v =(x',y°), the local volume elements satisfy on the intersection VNV

ox” ) _
(12) w, = det(a)Cijwo .

Using this formula, we get

, ox'  (ox") . _ _ox' (ox") _
(13) ;=i 0= Py det(a)_cq]-za/ax,wo = a—xidet(a)_cqj-wl.

On the other hand we know that
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%(T)T %(T)

—: —7 ?_%cﬁ’ﬁ?yaa—fl”
dy ady;

14 07 = = -0
( ) ayf ayf ax./ l

J

J

(Section 2.1, Theorem 1, Section 1.4, Example 5). These formulas imply

ax” \dy; ax' .
a);-f/\a)i=det( a ) RSN

0x? ) 9y*® ox' :

ax? \ay® ox' ox* _, _
tdet| — | =0, \®,.
dax? )dy® ax' dx’

(15)

In particular, the forms @] A®; +®7 A®, locally generate a submodule of
the module Q’ (W ). For 'the purpose of this example we denote this sub-
module by @2 (W ) . Now we require

(c) O¢ @ZI(W ).

Conditions (a), (b) and (c) uniquely define an n-form on W, and this n-
form is obviously the form ©, (11). Consequently, the pr1nc1pa1 Lepage
equivalent ©, of a 2nd order Lagrangian A is globally well-defined. We
usually write ©, instead of O, .

Choosing for any Lagrangian A€ Q) W a Lepage equivalent p of 4,
we can construct the Euler-Lagrange form E associated to p (Section 4.4,
(2)); this (n+1) -form depends on A only. We denote this form by E, and
call it the Euler-Lagrange form, associated with A . Clearly, E, may be de-
fined by (local) principal Lepage equivalents ©,, . Denoting by Qi:llyW the
module of 7°" "’ -horizontal (n+1) -forms on W , we get the mapping

(16) QWsA-E, €Q W

called the Euler-Lagrange mapping.

Remark 9 We can summarize basic motivations and properties of the
Lepage forms by means of their relationship to the Euler-Lagrange forms.
Denote by Lep, W the vector subspace of the real vector space QW ,
whose elements are Lepage forms. Taking into account properties of the ex-
terior derivative of a Lepage form we see that the Euler-Lagrange mapping
makes the following diagram commutative:

Lep' W LN QW
(17) ld lE
Qr+lW QZ(rH)W

n+l nYy

Basic motivation for the notion of a Lepage form is the construction of this
diagram. Its commutativity demonstrates the relationship of the Euler-
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Lagrange mapping and the exterior derivative of differential forms, just in
the spirit of the work of Lepage [Le]. (17) shows that the Euler-Lagrange
form has its origin in the exterior derivative operator.

The following theorem describes the behaviour of the Euler-Lagrange
mapping under automorphisms of the underlying fibred manifold; it says that
transformed Lagrangians have transformed Euler-Lagrange forms.

Theorem 6 For each Lagrangian A€ Q. W and each automorphism
o ofY

(18)  JYQ*E,=E

J¥ o) "

Proof To prove (18), we apply Theorem 4 of Section 4.4 to Lepage
equivalents. Let p, € QQ’'W be any Lepage equivalent of A . Then

19  (&")*dp=E,+F,.

It is easily seen that the pull-back J'or* p is a Lepage form whose Lagran-
gian is hJ'o* p=J""a*hp=J"a* A . Then from standard commutativity
of the pull-back and the exterior derivative we have

(20) (n_sH,S)*dJsa*p:(n_sﬂ,s)*‘]sa*dp:Js+la*(n_s+1,:)*dp’
from which we conclude that J*"'a*E, +J""'a*F, =E,, . +F, .. . Theo-

rem 6 now follows from the uniqueness of the 1-contact component of these
forms.

4.6 The first variation formula

Suppose that we have a variational structure (W,p), where W is an
open set in a fibred manifold Y with n-dimensional base X, and p is a
Lepage form on the set W' C J'Y . Recall that for any piece 2 of X, and any
open set W CY, the Lepage form p defines the variational functional
Ly (m|,)>7 = pa(y)ER by

M pa=[I7*p

(Section 4.1, (2)). The first variation of p, by a 7 -projectable vector field
E is the variational functional T'y(7|,) >y — (9,.p)o(¥) ER , where

@ @,pam=]I7*d,.p

(Section 4.2, (14)). As before, denote by ;tp the horizontal component of an
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n-form p , that is the Lagrangian, associated with p . For Lepage forms, the
following theorem on the structure of the integrand in the first variation (2)
is just a restatement of definitions.

Theorem 7 Let pc QW be a Lepage form, = a 1 -projectable vector
field on W.
(a) The Lie derivative 0 =P can be expressed as

3) d,.p=i, dp+di,p.

(b) If E is & -vertical, then

A=

]r+13 P j +l-—

) J E, +hdi,_p.

(c) For any section y of Y with values in W,
5) Jy* 8/,.5 p=J"y* i,mEEzp +dJ'y*i,_p
(d) For every piece Q of X and every section y of Y defined on Q ,

©  JIyo,Lp= [Ty [ .
Q Q 0Q

Proof (a) This is a standard Lie derivative formula.

(b) If E r -vertical, then since hd,_p=9,_hp, we have from (3)
ho,_p=i,pdp+hdi,_p,but pdp= E because p is a Lepage form.

(c) Formula (4) can be proved by a stralghtforward calculation:

Jy*d,_p=Jy*i, dp+Jy*di, _p

=J"y*hi, dp+J"y*di,_p
. = =
@ ="y i pdp+ Iy ¥ _p,dp+ Ty *di,_p

=J"My i By )y ¥di p.

(d) Integrating (5) and using the Stokes’ theorem on integration of
closed (n—1) -forms on pieces of n-dimensional manifolds we get (6).

Any of the formulas (3), (4) and (5) is called, in the context of the varia-
tional theory on fibred manifolds, the infinitesimal first variation formula;
(6) is the integral first variation formula.

Remark 10 Note that the infinitesimal first variation formulas in Theo-
rem 7 have no analogue in the classical formulation of the calculus of varia-
tions. These formulas are based on the concept of a (global) Lepage form as
well as on the use of (invariant) geometric operations such as the Lie deriva-
tive, exterior derivative and contraction of a form by a vector field, describ-
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ing the variation procedure.

Remark 11 Theorem 7 can be used to obtain the corresponding formu-
las for higher variational derivatives (see Section 4.2).

4.7 Extremals

Let U C X be an open set, ¥y :U — W asection, and let Z2:U —-TY be
a vector field along the section ¥ ; in our standard notation, y is an element
of the set I', (7 |,) . The support of the vector field = is defined to be the set
suppE=cl{x €U |E(x)#0} (cl means closure). We know that each differ-
entiable vector field = along ¥ can be differentiably prolonged to a 7 -
projectable vector field = defined on a neighbourhood of the set y(U) in W

—_—

(Section 4.2, Theorem 1). Z satisfies

(1)

This property of vector fields along sections will be used in the definition of
extremal sections, which can be introduced as follows.

Consider a Lepage form p€Q W , and fix a piece € of X. We shall
say that a section y € T (7 |,) is an extremal of the variational functional
I,(|,)27 = po(y)ER on Q, if for all 7 -projectable vector fields =,
such that supp(Zcy)CQ,

[1]r
(m

O’}/:

) [r7*0,.p=0.
Q

Condition (2) can also be expressed as (d e P)o(¥)=0. 7y is called an ex-
tremal of the Lagrange structure (W,p), or simply an extremal, if it is an
extremal of the variational functional p,, for every € in the domain of def-
inition of 7 .

In this sense the extremals can also be defined as those sections y for
which the values p,(y) of the variational functional p, are not sensitive to
small compact deformations of y .

In the following necessary and sufficient conditions for a section to be
an extremal, we use the Euler-Lagrange form E 2 associated with the La-

grangian A, =hp , written in a fibred chart as

3) E, = E (Lo’ Nw,,

where the components E_(Z) are the Euler-Lagrange expressions (Sec-
tion 4.4). Explicitly, if hp=Z%®,, then

->Y)"dd ..d
ayo' E( ) PP 17 ayo'

P1P2---P1

“) E, ()=



