
4  Variational structures 

 In this chapter a complete treatment of the foundations of the calculus 
of variations on fibred manifolds is presented. Using the calculus of dif-
ferential forms as the main tool, the aim is to study higher-order integral 
variational functionals of the form  ! " ! J r! * # , depending on sections 
!  of a fibred manifold Y, where !  is a general differential form on the jet 
manifold J rY  and J r!  is the r-jet prolongation ! . The horizontal forms 
!  are the Lagrangians.  
 In Sections 4.1 – 4.7 we consider variations (deformations) of sections 
of Y as vector fields, permuting the set of sections, and the prolongations 
of these vector fields to the jet manifolds J rY . The variations are applied 
to the functionals in a geometric way by means of the Lepage forms, 
(Krupka [K13], [K1]). The main idea can be introduced by means of the 
Cartan’s formula for the Lie derivative of a differential form !  on a man-
ifold Z, !"# = i"d# + di"# , where i!  is the contraction by a vector field !  
and d is the exterior derivative operator. For any manifold X and any map-
ping f : X! Z , the Lie derivative satisfies f *!"# = f * i"d# + df * i"# . 
Replacing Z with the r-jet prolongation J rY  and !  with ! , we prove 
that the form !  in the variational functional  ! " ! J r! * #  may be cho-
sen in such a way that the Cartan’s formula for !  becomes a geometric 
version of the classical first variation formula. These forms are the Lepage 
forms; a structure theorem we prove implies that for different underlying 
manifold structures and order of their jet prolongations, this concept gen-
eralizes the well-known Cartan form in classical mechanics (Cartan [C]), 
the Poincaré-Cartan forms in the first order field theory (Garcia [G]), the 
so-called fundamental forms (Krupka [K2], [K13], Betounes [B]), the 2nd-
order generalisation of the Poincaré-Cartan form (Krupka [K13]), the 
Carathéodory form (Crampin and Saunders [CS]), and the Hilbert form in 
Finsler geometry (Crampin and Saunders [CS], Krupka [K7]). For survey 
research we refer to Krupka, Krupková and Saunders [KKS1], [KKS2].  
 The first variation formula, expressed by means of a Lepage form ! , 
leads to the concept of the Euler-Lagrange form, a global differential 
form, defined by means of the exterior derivative d!  (cf. Krupka [K13] 
and also Goldschmidt and Sternberg [GS], where the Euler-Lagrange form 
is interpreted as a vector-valued form). The coordinate components of the 
Euler-Lagrange form coincide with the Euler-Lagrange expressions of the 
classical variational calculus, and its classical analogue is simply the col-
lection of the Euler-Lagrange expression. The corresponding Euler-
Lagrange equations for extremals of a variational functional are then re-
lated to each fibered chart, and should be analysed in any concrete case 
from local and global viewpoints.  
 The first variation formula also gives rise to the Euler-Lagrange map-
ping, assigning to a Lagrangian its Euler-Lagrange form. The domain and 
image of this mapping are some Abelian groups of differential forms. A 
complete treatment of the local theory is presented in Sections 4.9 – 4.11, 
using the fibred homotopy operator as the basic tool. First the Vainberg-
Tonti formula, allowing us to assign a Lagrangian to any source form, is 
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considered (Vainberg [V], Tonti [To]), and is extended to the higher-order 
variational theory (Krupka [K8], [K16]). The theorem on the Euler-
Lagrange equations of the Vainberg-Tonti Lagrangian, proved in Sec-
tion 4.9, determining the image of the Euler-Lagrange mapping in terms of 
the (local variationality) Helmholtz conditions, is a basic instrument for 
the local inverse variational problem, treated in Sections 4.10 and 4.11 
(Anderson and Duchamp [AD], Krupka [K11]).  
 Specific research directions in the variational geometry have been de-
veloped for several decades. Different aspects of the local inverse problem 
are given extensive investigation in Anderson and Thompson [AT], Bloch, 
Krupka, Urban, Voicu, Volna and Zenkov [Bl], Bucataru [Bu], Crampin 
[Cr], Krupka and Saunders [KS], Krupková and Prince [KrP], Olver [O2], 
Sarlet, Crampin and Martinez [SCM], Urban and Krupka [UK2] and many 
others. Remarks on the history of the inverse problem can be found in Ha-
vas [H]; original sources are Helmholtz [He] (the inverse problem for sys-
tems of second-order ordinary differential equations) and Sonin [So] and 
Douglas [Do] (for variational integrating factors).   
 The theorem on the kernel of the Euler-Lagrange mapping is proved in 
Section 4.10 on the basis of the formal divergence equations (Chapter 3) 
and the approach initiated in Krupka [K12], Krupka and Musilová [KM]. 
 Our basic notation in this chapter follows Chapter 2 and Chapter 3: Y is 
a fixed fibred manifold with orientable base manifold X and projection ! , 
and dim X = n , dimY = n + m . J rY  is the r-jet prolongation of Y, ! r ,s  
and ! r  are the canonical jet projections. For any set  W !Y  we denote 
W r = (! r ,0 )"1(W ) . !q

rW is the module of q-forms defined on W r . Some-
times, when no misunderstanding may possibly arise, to simplify formulas 
we do not distinguish between the differential forms ! , defined on the 
base manifold X of a fibred manifold ! s : J sY " X  and its canonical lift-
ing (! s )*"  to the jet manifold J sY . Similarly, the Lie derivative !J r" #  
and contraction iJ r!"  are denoted simply by !" #  and i!" .  
 Since the subject of this chapter is the higher order calculus of varia-
tions, some proofs of our statements include extensive coordinate calcula-
tions; in order not to make difficult the understanding we prefer to present 
them as complete as possible.  

4.1  Variational structures on fibred manifolds 

 By a variational structure we shall mean a pair (Y ,!) , where Y is a fi-
bred manifold over an n-dimensional manifold X with projection !  and !  
is an n-form on the r-jet prolongation J rY .  
 Suppose that we have a variational structure (Y ,!) . Let !  be a com-
pact, n-dimensional submanifold of X with boundary (a piece of X). Denote 
by !"(# )  the set of differentiable sections of !  over !  (of a fixed order of 
differentiability). Then for any section  ! !"#($ )  of Y, the pull-back 
J r! *"  by the r-jet prolongation J r!  is an n-form on a neighbourhood of 
the piece ! . Integrating the n-form J r! *"  on ! , we get a function 
 !"(# )!$ % &"($ )"R , defined by  

(1)  !"(# ) = J r# *!
"
$ .  
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!"  is called the variational functional, associated with (Y ,!)  (over ! ).  
 The variational functional of the form (1) is referred to as the integral 
variational functional, associated with ! .  
 If W is an open set in Y, considered as a fibred manifold with projection 
 ! |W , then restricting the n-form !  to  W

r ! J rY  we get a variational struc-
ture (W ,!) . The corresponding variational functional is the restriction of the 
variational functional (1) to the set   !"(# |W )!!"(# ) . Elements of this set 
are sections whose values lie in W.  
 On the other hand, any n-form !  on the set W r  defines a variational 
structure (W ,!) . The corresponding variational functional is given by  

(2)  
  
!"(# |W )!$ % &"($ ) = J r$ *&

"
' "R.  

If W = Y , then   !"(# |W )= !"(# ) and formula (2) reduces to (1).  
 Let W be an open set in Y. For every r we denote by !n,X

r W  the sub-
module of the module of q-forms !n

rW , consisting of ! r -horizontal forms. 
Elements of the set !n,X

r W  are called Lagrangians (of order r) for the fibred 
manifold Y.  
 Let  ! !"n

rW . There exists a unique Lagrangian  !" !#n,X
r+1W  such that  

(3)  J r+1! *"# = J
r! *#  

for all sections !  of Y. The n-form !"  can alternatively be defined by the 
first canonical decomposition to the form !  (Chapter 2, Section 2.4)  

(4)   (!
r+1,r )*" = h" + p1" + p2" +…+ pn"  

as the horizontal component of ! ,  

(5)  !" = h".  

!"  is a Lagrangian, said to be associated with ! . Property (3) says that the 
variational functional !"  can also be expressed as  

(6)  !"(# ) = J r+1# *$!
"
% .  

 We give the chart expressions of !  and h!  in a fibred chart (V ,! ) , 
! = (xi , y" ) , on Y (or, more exactly, in the associated charts on J rY  and 
J r+1Y ). Recall that in multi-index notation the contact basis of 1-forms on 
V r  (and analogously on V r+1 ) is defined to be the basis (dxi ,! J

" ,dyI
" ) , 

where the multi-indices satisfy 0 ! | J | ! r "1 , | I | = r , and  

(7)  ! J
" = dyJ

" # yJj
"dx j .  

We also associate with the given chart the n-form  
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(8)    ! 0 = dx
1!dx2 !…!dxn ,  

(considered on  U = ! (V )! X , and also on V r ), sometimes called the local 
volume form, associated with (V ,! ) .  
 According to the trace decomposition theorem (Section 2.2, Theo-
rem 3), !  has an expression  

(9)  
 
! = " J

# !$#
J

0%|J |%r&1
' + d" J

# !(#
J

|J |=r&1
' + !0 ,  

where  

(10)  

  

!0 = Ai1i2…in
dxi1 !dxi2 !…!dxin

+ A"1
J1

i2i3…in
dyJ1

"1 !dxi2 !dxi3 !…!dxin

+ A"1
J1

" 2
J2

i3i4…in
dyJ1

"1 !dyJ2
" 2 !dxi3 !dxi4 !…!dxin

+…+ A"1
J1

" 2
J2…" n#1

Jn#1
in
dyJ1

"1 !dyJ2
" 2 !…!dyJn#1

" n#1 !dxin

+ A"1
J1

" 2
J2…" n

Jn dyJ1
"1 !dyJ2

" 2 !…!dyJn
" n ,

 

and the coefficients 
 
A!1
J1

! 2
J2…! s

Js
is+1is+2…in

 are traceless. Then h! = h!0  because 
h is an exterior algebra homomorphism, annihilating the contact forms ! J

"  
and d! J

" . Thus,  

(11)  

  

!" = (Ai1i2…in
+ A#1

J1
i2i3…in

yJ1i1
#1 + A#1

J1
# 2
J2

i3i4…in
yJ1i1
#1 yJ2i2

# 2

+…+ A#1
J1

# 2
J2…# n$1

Jn$1
in
yJ1i1
#1 yJ2i2

# 2 …yJn$1in$1
# n$1 + A#1

J1
# 2
J2…# n

Jn yJ1i1
#1 yJ2 j2

# 2 …yJnin
# n )

%dxi1 !dxi2 !…!dxin .

 

Using the local volume form (8) we also write  

(12)  
 
!" = !# 0 ,  

where  

(13)  
  

! = ! i1i2…in (Ai1i2…in
+ A"1

J1
i2i3…in

yJ1i1
"1 + A"1

J1
" 2
J2

i3i4…in
yJ1i1
"1 yJ2i2

" 2

+…+ A"1
J1

" 2
J2…" n#1

Jn#1
in
yJ1i1
"1 yJ2i2

" 2 …yJn#1in#1
" n#1 + A"1

J1
" 2
J2…" n

Jn yJ1i1
"1 yJ2 j2

" 2 …yJnin
" n ).

 

 !  is a function on V r+1  called the Lagrange function, associated with !  (or 
with the Lagrangian !" ).  

 Remark 1  Sometimes the integration domain !  in the variational 
functional !"  is not fixed, but is arbitrary. Then formula (2) defines a family 
of variational functionals labelled by ! . This situation usually appears in 
variational principles in physics.  
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 Remark 2  Orientability of the base X of the fibred manifold Y is not an 
essential assumption; replacing differential forms by twisted base differential 
forms, one can also develop the variational theory for non-orientable bases X 
(Krupka [K10]). Variational functionals, defined on fibred manifolds over 
non-orientable bases, may appear in the general relativity theory and field 
theory, and in the variational theory for submanifolds.  

 Remark 3 (The structure of Lagrange functions)  Formulas (12) and 
(13) describe general structure of the Lagrangians, associated with the class 
of variational functionals (2). The Lagrange functions  !  that appear in chart 
descriptions of the Lagrangians are multi-linear, symmetric functions of the 
variables yI

! , where | I | = r +1 .  

 Remark 4 (Lagrangians)  Let !  be an n-form belonging to the sub-
module  !n,X

r W !!n
rW  of ! r -horizontal forms, expressed as  

(14)  
  
! = 1

n!
Ai1i2…in

dxi1 !dxi2 !…!dxin .  

Then since   dx
i1 !dxi2 !…!dxin = ! i1i2…in" 0 , one can equivalently write  

(15)   ! = !" 0 ,  

where the Lagrange function  !  is given by  

(16)  
  
! = 1

n!
Ai1i2…in

! i1i2…in .  

 The following lemma describes all n-forms  ! !"n
rW , whose associated 

Lagrangians belong to the same module !n
rW , that is, are of order r.  

 Lemma 1  For a form  ! !"n
rW  the following two conditions are 

equivalent:  
 (1) The Lagrangian !"  is defined on W r .  
 (2) In any fibred chart (V ,! ) , ! = (xi , y" ) , on Y, !  has an expression  

(17)  
  
! = !" 0 + " J

# !$#
J

0%|J |%r&1
' + d" J

# !(#
J

|J |=r&1
'  

for some function  !  and some forms !"
J  and !"

J .  
 Proof  This follows from (5) and (13).  

4.2  Variational derivatives 

 Let U be an open subset of X, ! :U"Y  be a section, and let !  be a 
! -projectable vector field on an open set  W !Y  such that  ! (U )!W . If 
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! t  is the local 1-parameter group of ! , and ! (0)t  its ! -projection, then  

(1)  ! t =" t!" (0)t
#1  

is a 1-parameter family of sections of Y, depending differentiably on the pa-
rameter t: Indeed, since !" t =" (0)t! , we have 

(2)  !" t (x) = !# t"# (0)t
$1 (x) =# (0)t!"# (0)t

$1 (x) =# (0)t# (0)t
$1 (x) = x  

on the domain of ! t , so ! t  is a section for each t. The family ! t  is called the 
variation, or deformation, of the section ! , induced by the vector field ! .  
 Recall that a vector field along !  is a mapping ! :U" TY  such that 

 !(x)!T" (x )Y  for every point  x!U . Given ! , formula  

(3)  ! = T" #$  

then defines a vector field !  on U, called the ! -projection of ! .  
 The following theorem says that every vector field along a section !  
can be extended to a ! -projectable vector field, defined on a neighbourhood 
of the image of !  in Y. Moreover, the r-jet prolongation of the extended 
vector field, considered along J r! , is independent of the extension.  

 Theorem 1  Let !  be a section of Y defined on an open set  U ! X , let 
!  be a vector field along ! . 
 (a) There exists a ! -projectable vector field  !! , defined on a neigh-
bourhood of the set ! (U ) , such that for each  x!U  

(4)   
!!(" (x)) = !(x).  

 (b) Any two ! -projectable vector fields !1 , !2 , defined on a neigh-
bourhood of ! (U ) , such that !1(" (x)) = !2 (" (x))  for all  x!U , satisfy 

(5)  J r!1(Jx
r" ) = J r!2 (Jx

r" ).  

 Proof  (a) Choose  x0 !U  and a fibred chart (V0 ,! 0 ) , ! 0 = (x0
i , y0

" ) , at 
the point  ! (x0 )!Y , such that  ! (V0 )!U  and  ! (" (V0 ))!V0 . !  has in this 
chart an expression  

(6)  !(" (x)) = # i (x) !
!xi

$
%

&
' " (x )

+!( (x) !
!y(

$
%)

&
'* " (x )

.  

on ! (V0 ) . Set for any  y!V0 ,  
!! i (y) = ! i (" (y)) ,  

!!" (y) = !" (# (y)) , and de-
fine a vector field  !!  on V0  by  

(7)  
 
!! = !" i !

!xi
+ !!# !

!y#
.   
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The vector field  !!  satisfies  
!!(" (x)) = !(" (x))  on ! (V0 ) .  

 Applying this construction to every point of the domain of definition U 
of !  we may suppose that we have families of fibred charts (V! ,"! ) , 
!" = (x"

i , y"
# ) , and vector fields  

!!" , where !  runs through an index set I, such 
that  ! (V" )!U ,  ! (" (V# ))!V#  for every  !! I ,  

!!"  is defined on V! , and 
 
!!" (# (x))) = !!(# (x)))  for all ! (V" ) .  

 Let   {!"}"!I  be a partition of unity, subordinate to the covering   {V!}!!I  of 
the set  ! (U )!Y . Setting  

(8)  
  
!! = "#

!!#
#!I
$ ,  

we get a vector field on the open set  V = !V! . For any  x!U  the point ! (x)  
belongs to some of the sets V! , thus,  ! (U )!V . The value of  

!!(" (x))  is  

(9)  

  

!!(" (x)) = #$ (" (x)) !!$ (" (x))
$!I
% = #$ (" (x))

$!I
%&'(

)
*+
!(" (x))

= !(" (x))
 

because   {!"}"!I  is a partition of unity.  
 (b) It is sufficient to verify equality (5) in a chart. Suppose that  

(10)  !1 = "
i !
!xi

+!# !
!y#

, !2 = $
i !
!xi

+%# !
!y#

 

and  

(11)   !
i = " i , #$ !% = &$ !% .  

Then from the formulas  

(12)  

 

! j1 j2… jk
" = djk

! j1 j2… jk#1
" # yj1 j2… jk#1i

" !$ i

!x jk
,

% j1 j2… jk
" = djk

% j1 j2… jk#1
" # yj1 j2… jk#1i

" !& i

!x jk

 

for the components of J r!1  and J r!2  (Section 1.7, Lemma 10), and from 
the formal derivative formula (11), Section 2.1 we observe that the left-hand 
sides in (12) are polynomials in the variables 

 
yj1 j2… js
! , 1! s ! r . Therefore, 

condition (11) applies to the coefficients of these polynomials and we get 

 
! j1 j2… jk

" ! J r# = $ j1 j2… jk
" ! J r# .  

 A ! -projectable vector field  !! , satisfying condition (a) of Theorem 1, 
is called a ! –projectable extension of ! . Using (b) and any ! –projectable 
extension  !! , we may define, for the given section ! ,  
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(13)   J
r!(Jx

r" ) = J r !!(Jx
r" ).  

Then J r!  is a vector field along the r-jet prolongation J r!  of ! ; we call 
this vector field the r-jet prolongation of the vector field (along ! ) ! .  
 Variations (“deformations”) of sections induce the corresponding varia-
tions (“deformations”) of the variational functionals. Let  ! !"n

rW  be a 
form,  !!" (W )  a piece of X. Choose a section   ! !"#($ |W )  and a ! -
projectable vector field !  on W, and consider the variation (1) of ! , in-
duced by ! . Since the domain of ! t  contains !  for all sufficiently small t, 
the value of the variational functional   !"(# |W )!$ % &"($ )"R  at ! t  is 
defined, and we get a real-valued function, defined on a neighbourhood 
(!" ," )  of the point  0!R ,  

(14)  
 
(!" ," )! t# $% (0 )t (&)

(% t'% (0)t
!1 ) = J r

% (0 )t (&)
( (% t'% (0)t

!1 )*$ "R.  

It is easily seen that this function is differentiable. Since 

(15)  J r (! t"! (0)t
#1 ))*$ = (! (0)t

#1 )*(J r" )*(J r! t )*$,  

where J r! t  is the local 1-paremeter group of the r-jet prolongation J r!  of 
the vector field ! , we have, using properties of the pull-back operation and 
the theorem on transformation of the integration domain, 

(16)  (J r
! (0 )t (")
# (! t$! (0)t

%1 ))*& = J r$ *(J r! t )*
"
# &.  

Thus, since the piece !  is compact, differentiability of the function (14) 
follows from the theorem on differentiation of an integral, depending upon a 
parameter.  
 Differentiating (14) at t = 0  one obtains, using (16) and the definition of 
the Lie derivative, 

(17)  d
dt

!"(# t$# (0)t
%1 )( )

0
= J r$ *&J r' !

"
( .  

Note that this expression can be written, in the notation introduced by for-
mula (2), Section 4.1, as 

(18)  (!J r" #)$(% ) = J r% *!J r" #
$
& .  

The number (18) is called the variation of the integral variational functional 
!"  at the point ! , induced by the vector field ! .  
 This formula shows that the function   !"(# |W )!$ % (&J r'()"($ )"R  
is the variational functional (over ! ), defined by the form !J r" # . We call 
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this functional the variational derivative, or the first variation of the varia-
tional functional !"  by the vector field ! .  
 Formula (18) admits a direct generalization. If !  is another ! -
projectable vector field on W, then the second variational derivative, or the 
second variation, of the variational functional !"  by the vector fields !  
and ! , is the mapping   !"(# |W )!$ % (&J r' &J r( ))"($ )"R , defined by  

(19)  (!J r" !J r# $)%(& ) = J r& *!J r" !J r# $
%
' .  

It is now obvious how higher-order variational derivatives are defined: one 
should simply apply the Lie derivative (with respect to different vector 
fields) several times.  
 A section   ! !"#($ |W )  is called a stable point of the variational func-
tional !"  with respect to its variation ! , if  

(20)  (!J r" #)$(% ) = 0.  

In practice, one usually requires that a section be a stable point with respect 
to a family of its variations, defined by the problem considered.  
 Formula (18) can also be expressed in terms of the Lagrangian 
!" = h" , the horizontal component of ! . Since for any ! -projectable vec-
tor field !  the Lie derivative by its r-jet prolongation J r!  commutes with 
the horizontalisation,  

(21)  h!J r" # = !J r"h#  

(see Section 2.5, Theorem 9, (d)), the first variation of the integral variation-
al functional !"  at a point   ! !"#($ |W ) , induced by the vector field ! , can 
be written as  

(22)  (!J r" #)$(% ) = J r+1% *!J r+1"&#
$
' .  

4.3  Lepage forms 

 In this section we introduce a class of n-forms !  on the r-jet prolonga-
tion J rY  of the fibred manifold Y, defining variational structures (W ,!)  by 
imposing certain conditions on the exterior derivative d! . Properties of the-
se forms determine the structure of the Lie derivatives !J r" # , where !  is a 
! -projectable vector field on Y, and of the integrands of the variational 
functionals ! " (#J r$ %)&(! )  (Section 4.2, (18)). Roughly speaking, we 
study those forms !  for which the well-known Cartan’s formula 
!J r" # = iJ r"d# + diJr"#  of the calculus of forms becomes an infinitesimal 
analogue of the integral first variation formula, known from the classical 
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calculus of variations on Euclidean spaces.  
 First we summarize some useful notation related with a chart (U,! ) , 
! = (xi ) , on an n-dimensional manifold X. Denote  

(1)  

  

! 0 =
1
n!
" i1i2…in

dxi1 !dxi2 !…!dxin ,

! k1
= 1
1!(n#1)!

" k1i2i3…in
dxi2 !dxi3 !…!dxin ,

! k1k2
= 1
2!(n#2)!

" k1k2i3i4…in
dxi3 !dxi4 !…!dxin .

 

The inverse transformation formulas are  
 

(2)  

  

dxl1 !dxl2 !…!dxln = ! l1l2…ln" 0 ,
dxl2 !dxl3 !…!dxln = ! k1l2l3…ln" k1

,

dxl3 !dxl4 !…!dxin = ! k1k2l3l4…ln" k1k2

 

(cf. Appendix 10). Also note that ! jk  can be written as  

(3)  
  

! jk = i! /!x j i! /!xk! 0

= ("1) j+k dx1!dx2 !…!dx j"1!dx j+1!…!dxk"1!…!dxn ,
 

whenever j < k . Then  

(4)  
 
dxl !! jk = " j

l! k #" k
l! j ,  

which is an immediate consequence of definitions: since se have the identity 
  ! k = ("1)

k"1dxl !dx1!dx2 !…!dxk"1!dxk+1!…!dx , then  

(5)  

 

i! /!x j (dx
l !! k ) =

" k
l i! /!x j! 0 = " k

l! j ,

" j
l! k # dx

l ! i! /!x j! k = " j
l! k # dx

l !! jk .

$
%
&

'&
 

 We prove three lemmas characterizing the structure of n-forms on the r-
jet prolongation J rY . 

 Lemma 2  An n-form !  on  W
r ! J rY  has in a fibred chart (V ,! ) , 

! = (xi , y" ) , an expression  

(6)   ! = !0 + !! + d"  

with the following properties:  
 (a) The n-form !0  is generated by the contact forms ! J

" , where 
0 ! | J | ! r "1 , that is,  
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(7)  
 
!0 = " J

# !$#
J

0%|J |%r&1
' ,  

where 

(8)   !"
J = !"

J
(1)+!"

J
(2)+ !!"

J ,  

the forms !"
J
(1)  are generated by the contact forms ! J

" , 0 ! | J | ! r "1 , 
!"

J
(2)  are generated by d! I

"  with | I | = r !1 , and  

(9)  

  

!!"
J = !!"

J
i1i2…in#1

dxi1 !dxi2 !…!dxin#1

+ !!"
J

"1
I1

i2i3…in#1
dyI1

"1 !dxi2 !dxi3 !…!dxin#1

+ !!"
J

"1
I1

" 2
I2

i3i4…in#1
dyI1

"1 !dyI2
" 2 !dxi3 !dxi4 !…!dxin#1

+…+ !!"
J

"1
I1

" 2
I2…" n#2

In#2
in#1
dyI1

"1 !dyI2
" 2 !…!dyIn#2

" n#2 !dxin#1

+ !!"
J

"1
I1

" 2
I2…" n#1

In#1 dyI1
"1 !dyI2

" 2 !…!dyIn#1
" n#1 ,

 

where the multi-indices are of length  | I1 |,| I2 |,…,| In!1 | = r  and all the coef-
ficients 

 
!!"
J

"1
I1

i2i3…in#1
, 
 
!!"
J

"1
I1

" 2
I2

i3i4…in#1
,  … , 

 
!!"
J

"1
I1

" 2
I2…" n#2

In#2
in#1

 are traceless.  
 (b) !  is a contact (n !1) -form such that  

(10)  
 
! = " I

# !$#
I

|I |=r%1
& ,  

where the forms !"
I  do not contain any exterior factor ! J

"  such that 
0 ! | J | ! r "1 .  
 (c)  !!  has an expression  

(11)  

  

!! = Ai1i2…in
dxi1 !dxi2 !…!dxin

+ A"1
I1

i2i3…in
dyI1

"1 !dxi2 !dxi3 !…!dxin

+ A"1
I1

" 2
I2

i3i4…in
dyI1

"1 !dyI2
" 2 !dxi3 !dxi4 !…!dxin

+…+ A"1
I1

" 2
I2…" n#1

In#1
in
dyI1

"1 !dyI2
" 2 !…!dyIn#1

" n#1 !dxin

+ A"1
I1

" 2
I2…" n

In dyI1
"1 !dyI2

" 2 !…!dyIn
" n ,

 

where  | I1 |,| I2 |,…,| In | = r  and all the coefficients 
 
A!1
I1

i2i3…in
, 
 
A!1
I1

! 2
I2

i3i4…in
,  … , 

 
A!1
I1

! 2
I2…! n"1

In"1
in

 are traceless. 
 Proof  From the trace decomposition theorem (Section 2.2, Theorem 3), 
!  can be written as 

(12)   ! = !(1) + !(2) + !!,  

where !(1)  includes all ! J
" -generated terms, where 0 ! | J | ! r "1, !(2)  in-

cludes all d! I
" -generated terms with | J | = r !1  (and does not contain any 
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exterior factor ! J
" ), and  !!  is expressed by (11). Then  

(13)  
 
!(2) = d" I

# !$#
I

|I |=r%1
& = d " I

# !$#
I

|I |=r%1
&'()

*
+,
% " I

# !d$#
I

|I |=r%1
& ,  

so we get  

(14)  

  

! = !(1) " # I
$ !d%$

I

|I |=r"1
& + d # I

$ !%$
I

|I |=r"1
&'()

*
+,
+ !!

= !0 + d # I
$ !%$

I

|I |=r"1
&'()

*
+,
+ !!.

 

proving Lemma 2.  

 Our next aim will be to find the chart expression for the horizontal and 
1-contact components of the n-form  

(15)   ! = "0 + !"  

from Lemma 2.  

 Lemma 3  Suppose that !  has an expression (7) and (11).  
 (a) The horizontal component h!  is given by  

(16)  

  

h! = (Ai1i2…in
+ A"1

I1
i2i3…in

yI1i1
"1 + A"1

I1
" 2
I2

i3i4…in
yI1i1
"1 yI2i2

" 2

+…+ A"1
I1

" 2
I2…" n#1

In#1
in
yI1i1
"1 yI2i2

" 2 …yIn#1in#1
" n#1

+ A"1
I1

" 2
I2…" n

In yI1i1
"1 yI2i2

" 2 …yInin
" n )dxi1 !dxi2 !…!dxin .

 

 (b) The 1-contact component p1!  is given by  

(17)  

  

p1! = ( !"#
J
i2i3…in

+ !"#
J

# 2
I2

i3i4…in
yI2i2
# 2 + !"#

J
# 2
I2

# 3
I3

i4i5…in
yI2i2
# 2 yI3i3

# 3

0$|J |$r%1
&

+…+ !"#
J

# 2
I2

# 3
I3…# n%1

In%1
in
yI2i2
# 2 yI3i3

# 3 …yIn%1in%1
# n%1

+ !"#
J

# 2
I2

# 3
I3…# n

In yI2i2
# 2 yI3i3

# 3 …yInin
# n )' J

# !dxi2 !dxi3 !…!dxin

+ (A#
I
i2i3…in

+ 2A#1
I

# 2
I2

i3i4…in
yI2i2
# 2 + 3A#

I
# 2
I2

# 3
I3

i4i5…in
yI2i2
# 2 yI3i3

# 3

|I |=r
&

+…+ (n %1)A#
I
# 2
I2…# n%1

In%1
in
yI2i2
# 2 yI3i3

# 3 …yIn%1in%1
# n%1

+ nA#
I
# 2
I2…# n

In yI2i2
# 2 yI3i3

# 3 …yInin
# n )' I

# !dxi2 !dxi3 !…!dxin .

 

 Proof  (a) Clearly,  h! = h !"  and (16) follows.  
 (b) The form p1!  is given by  
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(18)  
  
p1! = " J

# !h$#
J

0%|J |%r&1
' + p1 !(.  

Then  

(19)  

  

h !!"
J = ( !!"

J
i1i2…in#1

+ !!"
J

"1
I1

i2i3…in#1
yI1i1
"1 + !!"

J
"1
I1

" 2
I2

i3i4…in#1
yI1i1
"1 yI2i2

" 2

+…+ !!"
J

"1
I1

" 2
I2…" n#2

In#2
in#1
yI1i1
"1 yI2i2

" 2 …yIn#2in#2
" n#2

+ !!"
J

"1
I1

" 2
I2…" n#1

In#1 yI1i1
"1 yI2i2

" 2 …yIn#1in#1
" n#1 )dxi1 !dxi2 !…!dxin#1

= ( !!"
J
i2i3…in

+ !!"
J

" 2
I2

i3i4…in
yI2i2
" 2 + !!"

J
" 2
I2

" 3
I3

i4i5…in
yI2i2
" 2 yI3i3

" 3

+…+ !!"
J

" 2
I2

" 3
I3…" n#1

In#1
in
yI2i2
" 2 yI3i3

" 3 …yIn#1in#1
" n#1

+ !!"
J

" 2
I2

" 3
I3…" n

In yI2i2
" 2 yI3i3

" 3 …yInin
" n )dxi2 !dxi3 !…!dxin ,

 

and  

(20)  

  

p1 !! = (A"1
I1

i2i3…in
+ 2A"1

I1
" 2
I2

i3i4…in
yI2i2
" 2 + 3A"1

I1
" 2
I2

" 3
I3

i4i5…in
yI2i2
" 2 yI3i3

" 3

+…+ (n #1)A"1
I1

" 2
I2…" n#1

In#1
in
yI2i2
" 2 yI3i3

" 3 …yIn#1in#1
" n#1

+ nA"1
I1

" 2
I2…" n

In yI2i2
" 2 yI3i3

" 3 …yInin
" n )$ I1

"1 !dxi2 !dxi3 !…!dxin

= (A"
I
i2i3…in

+ 2A"1
I

" 2
I2

i3i4…in
yI2i2
" 2 + 3A"

I
" 2
I2

" 3
I3

i4i5…in
yI2i2
" 2 yI3i3

" 3

|I |=r
%

+…+ (n #1)A"
I
" 2
I2…" n#1

In#1
in
yI2i2
" 2 yI3i3

" 3 …yIn#1in#1
" n#1

+ nA"
I
" 2
I2…" n

In yI2i2
" 2 yI3i3

" 3 …yInin
" n )$ I

" !dxi2 !dxi3 !…!dxin .

 

(17) now follows from (19) and (20).  

 Now we find the chart expression for the pull-back (! r+1,r )*" . Accord-
ing to Lemma 2 

(21)   (!
r+1,r )*" = h !" + p1("0 + !")+ d# + µ,  

where  h !! = h"  and  p1!0 + p1 !!  are given by Lemma 3, and the order of con-
tactness of µ  is ! 2  . We define f0  and f!

J i  by the formulas  

(22)  
  
h !! = f0" 0 , p1(!0 + !!) = f#

J i" J
# !" i

0$|J |$r
% .  

Explicitly,  

(23)  
 

f0 = ! i1i2…in (Ai1i2…in
+ A"1

I1
i2i3…in

yI1i1
"1 + A"1

I1
" 2
I2

i3i4…in
yI1i1
"1 yI2i2

" 2

+…+ A"1
I1

" 2
I2…" n#1

In#1
in
yI1i1
"1 yI2i2

" 2 …yIn#1in#1
" n#1 + A"1

I1
" 2
I2…" n

In yI1i1
"1 yI2i2

" 2 …yInin
" n ),

 

and, since   !
ii2i3…in" i = dx

i2 !dxi3 !…!dxin ,  
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(24)  
 

f!
J i= " ii2i3…in ( !#!

J
i2i3…in

+ !#!
J

! 2
I2

i3i4…in
yI2i2
! 2 + !#!

J
! 2
I2

! 3
I3

i4i5…in
yI2i2
! 2 yI3i3

! 3

+…+ !#!
J

! 2
I2

! 3
I3…! n$1

In$1
in
yI2i2
! 2 yI3i3

! 3 …yIn$1in$1
! n$1 + !#!

J
! 2
I2

! 3
I3…! n

In yI2i2
! 2 yI3i3

! 3 …yInin
! n ),

 

and  

(25)  

 

f!
I i= " ii2i3…in (A!

I
i2i3…in

+ 2A!
I
! 2
I2

i3i4…in
yI2i2
! 2 + 3A!

I
! 2
I2

! 3
I3

i4i5…in
yI2i2
! 2 yI3i3

! 3

+…+ (n #1)A!
I
! 2
I2…! n#1

In#1
in
yI2i2
! 2 yI3i3

! 3 …yIn#1in#1
! n#1

+ nA!
I
! 2
I2…! n

In yI2i2
! 2 yI3i3

! 3 …yInin
! n ),

 

where 0 ! | J | ! r "1  and | I | = r .  
 We further decompose the forms  f!

J i" J
! !" i .  

 Lemma 4  For k !1  the forms 
  
! j1 j2… jk

" !! i  can be decomposed as  

(26)  

  

! l1l2…lk
" !! i =

1
k+1

(! l1l2…lk
" !! i

+! il2l3…lk
" !! l1

+! l1il3l4…lk
" !! l2

+…+! l1l2…lk#1i
" !! lk

)

+ 1
k+1

((! l1l2…lk
" !! i #! il2l3…lk

" !! l1
)+ (! l1l2…lk

" !! i #! l1il3l4…lk
" !! l2

)

+…+ (! l1l2…lk
" !! i #! l1l2…lk#1i

" !! lk
)).

 

The forms 
  
! l1l2…lk

" !! i #! l1l2…lp#1ilp+1…lk#1lk
" !! lp

 are closed and can be expressed 
as  

(27)  
  
! l1l2…lk

" !! i #! l1l2…lp#1ilp+1…lk#1lk
" !! lp

= d(! l1l2…lp#1lp+1…lk#1lk
" !! ilp

).  

 Proof  Indeed, from (4)  

(28)  

  

d! l1l2…lp"1lp+1…lk"1lk
# !! lpi

= "! l1l2…lp"1lp+1…lk"1lk j
# !dx j !! lpi

= "! l1l2…lp"1lp+1…lk"1lk j
# !dx j !! lpi

=! l1l2…lp"1lp+1…lk"1lk j
# ! ($ i

j! lp
"$ lp

j! i )

= "! l1l2…lp"1lp+1…lk"1lklp
# !! i +! l1l2…lp"1lp+1…lk"1lki

# !! lp
.

 

 Now we are in a position to prove the following theorem on the struc-
ture of n-forms on W r .  

 Theorem 2  Let  ! !"n
rW . For every fibred chart (V ,! ) , ! = (xi , y" ) , 

the pull-back (! r+1,r )*"  has an expression  

(29)  
 
(! r+1,r )*" = f0# 0 + P$

J i# J
$ !# i

0%|J |%r
& + d' + µ,  
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where the components P!
J i  are symmetric in the superscripts, !  is a 1-

contact form, and µ  is a contact form whose order of contactness is ! 2 . 
The functions P!

I i  such that | I | = r  satisfy  

(30)  P!
I i= ! f0

!yIi
! .  

The forms f0! 0 , 
 

P!
J i" J

! !" i# , and µ  in this decomposition are unique.  
 Proof  We use formulas (21) and (22) and apply Lemma 4 to the forms 
 f!

J i" J
! !" i . Write with explicit index notation  f!

J i= P!
j1 j2… jk i . We have the 

decomposition  

(31)   f!
j1 j2… jk i= P!

j1 j2… jk i+Q!
j1 j2… jk i,  

where  P!
j1 j2… jk i= f!

j1 j2… jk i Sym( j1 j2… jki)  is the symmetric component, and 
 Q!

j1 j2… jk i  is the complementary component of the system  f!
j1 j2… jk i . We have, 

for each k, 1! k ! r , 

(32)  

  

f!
j1 j2… jk i" j1 j2… jk

! !" i

= P!
j1 j2… jk i" j1 j2… jk

! !" i #
1
k+1

Q!
j1 j2… jk id(" j2 j3… jk

! !" j1i

+" j1 j3 j4… jk
! !" j2i

+…+" j1 j2… jk#1
! !" jki

)

= P!
j1 j2… jk i" j1 j2… jk

! !" i #
1
k+1

d(Q!
j1 j2… jk i(" j2 j3… jk

! !" j1i

+" j1 j3 j4… jk
! !" j2i

+…+" j1 j2… jk#1
! !" jki

))

+ 1
k+1

dQ!
j1 j2… jk i! (" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i

+…+" j1 j2… jk#1
! !" jki

).

 

The exterior derivative  dQ!
j1 j2… jk i , when lifted to the set V r+2 , can be de-

composed as  

(33)  
 

(! r+2,r+1)*dQ"
j1 j2… jk i= hdQ"

j1 j2… jk i+ pdQ"
j1 j2… jk i

= dpQ"
j1 j2… jk idx p + pdQ"

j1 j2… jk i.
 

Substituting from (33) back to (32) we get 1-contact and a 2-contact sum-
mands. The 1-contact are equal to  

(34)  

  

hdQ!
j1 j2… jk i! (" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i
+…+" j1 j2… jk#1

! !" jki
)

= #dpQ!
j1 j2… jk i(" j2 j3… jk

! !dx p !" j1i
+" j1 j3 j4… jk

! !dx p !" j2i

+…+" j1 j2… jk#1
! !dx p !" jki

)
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= !dpQ"
j1 j2… jk i(# j2 j3… jk

" ! ($ j1
p# i !$ i

p# j1
)

+# j1 j3 j4… jk
" ! ($ j2

p# i !$ i
p# j2

)+…+# j1 j2… jk!1
" ! ($ jk

p# i !$ i
p# jk

))

= !(dpQ"
pj2 j3… jk i# j2 j3… jk

" + dpQ"
j1pj3 j4… jk i# j1 j3 j4… jk

"

+…+ dpQ"
j1 j2… jk!1p i# j1 j2… jk!1

" )# i + dpQ"
j1 j2… jk p(# j2 j3… jk

" !# j1

+# j1 j3 j4… jk
" !# j2

+…+# j1 j2… jk!1
" !# jk

)

= !kdp (Q"
pj2 j3… jk i!Q"

ij2 j3… jk p)# j2 j3… jk
" !# i .

 

Note that from the definition of the functions  Q!
pj2 j3… jk i  and from formula 

(24) we easily see that this form is ! r+2,r+1 -projectable. Thus, returning to 
(32), we have on V r+1  

(35)  

  

f!
j1 j2… jk i" j1 j2… jk

! !" i = P!
j1 j2… jk i" j1 j2… jk

! !" i

# k
k+1

dp (Q!
pj2 j3… jk i#Q!

ij2 j3… jk p)" j2 j3… jk
! !" i

# 1
k+1

d(Q!
j1 j2… jk i(" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i

+…+" j1 j2… jk#1
! !" jki

))

+ 1
k+1

pdQ!
j1 j2… jk i! (" j2 j3… jk

! !" j1i
+" j1 j3 j4… jk

! !" j2i

+…+" j1 j2… jk#1
! !" jki

).

 

This sum replaces  f!
J i" J

! !" i , where | J | = k , with the symmetrized term 
 P!

J i" J
! !" i , a term 

  
dp (Q!

pj2 j3… jk i"Q!
ij2 j3… jk p)# j2 j3… jk

! !# i  containing  ! J
" !! i  

with | J | = k !1 , a closed form, and a 2-contact term.  
 Using these expressions in (21), written as  

(36)  
 
(! r+1,r )*" = f0# 0 + f$

J i# J
$ !# i

0%|J |%r
& + d' + µ,  

we can redefine the coefficients and get  

(37)  
 
(! r+1,r )*" = f0# 0 + f$

J i# J
$ !# i

0%|J |%r&1
' + P$

J i# J
$ !# i

|J |%r
' + d( + µ.  

After r steps we get (29).  
 To prove (30), we differentiate (23) and compare the result with (25).  
 It remains to prove uniqueness of the decomposition (29). Supposing 
that (! r+1,r )*" = 0  we immediately obtain f0! 0 = 0  and µ = 0  hence  

(38)  
 

P!
J i" J

! !" i
0#|J |#r
$ + d% = 0.  
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Differentiating (38) and taking into account the 1-contact component of the 
resulting (n +1) -form,  

(39)  

 

p1(dP!
J i!" J

! !" i # P!
J i" Ji

! !" 0 )
0$|J |$r
%
= # (diP!

J i!" J
! # P!

J i" Ji
! )

0$|J |$r
% !" 0 = 0,

 

which is only possible when P!
J i= 0  because P!

J i  are symmetric in the su-
perscripts.  

 In the following lemma we consider vector fields on any fibred mani-
fold Y with base X and projection ! .  

 Lemma 5  Let !  be a vector field on X. There exists a ! -projectable 
vector field  

!!  on Y whose ! -projection is ! . 
 Proof  We can construct  

!!  by means of an atlas on Y, consisting of fi-
bred charts, and a subordinate partition of unity (cf. Theorem 1, Section 4.2).  

 Now we study properties of differential n-forms ! , defined on 
 W

r ! J rY , which play a key role in global variational geometry. To this 
purpose we write the decomposition formula (29) as  

(40)  
  
(! r+1,r )*" = f0# 0 + P$

i#$ !# i + P$
j1 j2… jk i# j1 j2… jk

$ !# i
k=1

r

% + d& + µ,  

where  

(41)  
 
P!

j1 j2… jr i= ! f0
!yj1 j2… jri

! .  

 Lemma 6  Let  ! !"n
rW . The following three conditions are equiva-

lent: 
 (a) p1d!  is a ! r+1,0 -horizontal (n +1) -form. 
 (b) For each ! r ,0 -vertical vector field !  on W r ,  

(42)  hi!d" = 0.  

 (c) The pull-back (! r+1,r )*"  has the chart expression (40), such that 
the coefficients satisfy  

(43)  
 

! f0
!yj1 j2… jk

! " diP!
j1 j2… jk i" P!

j1 j2… jk"1 jk= 0, k = 1,2,…,r.  

 (d) p1d!  belongs to the ideal on the exterior algebra on W r+1 , locally 
generated by the forms !" .  
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 Proof  1. Let !  be a vector field on W r ,  !!  a vector field on W r+1  such 
that  T!

r+1,r " !# = #"! r+1,r  (Lemma 5). Then  i !!("
s+1,s )*d# = (" s+1,s )* i!d# , 

and the forms on both sides can canonically be decomposed into their con-
tact components. We have  

(44)   i !!p1d" + i !!p2d" +…+ i !!pn+1d" = hi!d" + p1i!d" +…+ pni!d".  

Comparing the horizontal components on both sides we get 

(45)   hi !!p1d" = (# r+2,r+1)*hi!d".  

 Let p1d!  be ! r+1,0 -horizontal. Then if !  is ! r ,0 -vertical,  !!  is ! r+1,0 -
vertical, and we get  hi !!p1d" = (# r+2,r+1)*hi!d" = 0 , which implies, by injec-
tivity of the mapping (! r+2,r+1)* , that hi!d" = 0 .  
 Conversely, let hi!d" = 0  for each ! r ,0 -vertical vector field ! . Then by 
(45),  hi !!p1d" = i !!p1d" = 0  for all ! r+1,r -projectable, ! r+1,0 -vertical vector 
fields  !! . If in a fibred chart, 

(46)  
 

!! = ! j1 j2… jk
"

k=1

r

# !
!yj1 j2… jk

"  

and  

(47)  
  
p1d! = A"

j1 j2… jk# j1 j2… jk
"

k=0

r

$ !# 0 ,  

then we get  

(48)   A!
j1 j2… jk = 0, 1" k " r,  

proving ! r+1,0 -horizontality of p1d! . This proves that conditions (a) and (b) 
are equivalent. 
 2.  Express (! r+1,r )*"  in a fibred chart by (40). Then  

(49)  

  

p1d! = ! f0
!y"

# diP"
i$

%&
'
()
*" !* 0 +

+ ! f0
!yj1 j2… jk

" # diP"
j1 j2… jk i# P"

j1 j2… jk#1 jk
$
%&

'
()
* j1 j2… jk

"

k=1

r

+ !* 0

+ ! f0
!yj1 j2… jr+1

" # P"
j1 j2… jr jr+1

$
%&

'
()
* j1 j2… jr jr+1

" !* 0

 

Formula (49) proves equivalence of conditions (a) and (c).  
 3.  Conditions (a) and (d) are obviously equivalent.  
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 Any form  ! !"n
rW  such that the 1-contact form p1d!  is ! r+1,0 -

horizontal, is called a Lepage form. Lepage forms may equivalently be de-
fined by any of the equivalent conditions of Lemma 6.  

 Remark 5 (Existence of Lepage forms)  It is easily seen that the sys-
tem (43) has always a solution, and the solution is unique. Indeed,  

(50)  

 

P!
j1 j2… jk"1 jk= ! f0

!yj1 j2… jk
! " di1P!

j1 j2… jk i1

= ! f0
!yj1 j2… jk

! " di1
! f0

!yj1 j2… jki1
! " di2P!

j1 j2… jki1 i2
#
$%

&
'(

= ! f0
!yj1 j2… jk

! " di1
! f0

!yj1 j2… jki1
! + di1di2P!

j1 j2… jk"1i1 i2

= ! f0
!yj1 j2… jk

! " di1
! f0

!yj1 j2… jki1
! + di1di2

! f0
!yj1 j2… jk"1i1i2

! " di3P!
j1 j2… jk"1i1i2 i3

#
$%

&
'(

=…= ("1)l di1di2…dil
! f0

!yj1 j2… jki1i2…il
!

l=0

r+1"k

) ,

 

so the coefficients P!
j1 ,  P!

j1 j2… jk"1 jk  are completely determined by the func-
tion f0 . In particular, Lepage forms always exist over fibred coordinate 
neighbourhoods. One can also interpret this result in such a way that to any 
form  ! !"n

rW  and any fibred chart (V ,! ) , ! = (xi , y" ) , on W, one can al-
ways assign a Lepage form, belonging to the module !n

r+1V . Note that we 
have already considered conditions (43) in connection with the integrability 
condition for formal differential equations (cf. Section 3.2, Lemma 3).  

 Theorem 3  A form  ! !"n
rW  is a Lepage form if and only if for every 

fibred chart (V ,! ) , ! = (xi , y" ) , on Y such that  V !W , (! r+1,r )*"  has an 
expression 

(51)  (! r+1,r )*" =# + d$ + µ,  

where 

(52)  
  
! = f0" 0 + (#1)l

l=0

r#k

$ dp1dp2…dpl
! f0

!yj1 j2… jk p1p2…pli
%

&
'(

)
*+k=0

r

$ " j1 j2… jk
% !" i ,  

f0  is a function, defined by the chart expression h! = f0" 0 , !  is a 1-
contact form, and µ  is a contact form whose order of contactness is ! 2 . 

 Proof  Suppose we have a Lepage form !  expressed by (40) where 
conditions (43) are satisfied, and consider conditions (20). Then repeating 
(50) we get formula (52). The converse follows from (49) and (40).  
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 The n-form !  defined by (52), is sometimes called the principal com-
ponent of the Lepage form !  with respect to the fibred chart (V ,! ) . Note 
that !  depends only on the Lagrangian h! = "!  associated with ! ; the 
forms !  constructed this way are defined only locally, but their horizontal 
components define a global form.  

 Remark 6  Equations (43) include conditions ensuring that the order of 
the functions  P!

j1 j2… jk i  does not exceed the order of f0 . We obtained these 
conditions using polynomiality of the expression on the left-hand side in the 
jet variables 

 
yj1 j2… jk
! , k > r +1 . Similarly, when !  is expressed by (52), the 

order restrictions apply to f0  since the coefficients at 
  
! j1 j2… jk

" !! i  should be 
of order ! r +1 .  

4.4  Euler‐Lagrange forms 

 We defined in Section 4.3 a Lepage form  ! !"n
rW  by a condition on 

the exterior derivative  ! !"n
rW , derived from the fibred manifold structure 

on Y. Namely, we required that the 1-contact component p1d!  should be-
long to the ideal of forms, defined on W r+1 , generated in any fibred chart 
(V ,! ) , ! = (xi , y" ) , by the contact 1-forms !" . Now we study properties 
of the exterior derivative d! . We express a Lepage form !  as in formula 
(50), Section 4.3.  

 Theorem 4  If  ! !"n
rW  is a Lepage form, then the form (! r+1,r )"d#  

has an expression  

(1)  (! r+1,r )*d" = E + F,  

where E is a 1-contact, (! r+1,0 ) -horizontal (n +1) -form, and F is a form 
whose order of contactness is ! 2 . E is unique and has the chart expression 

(2)  
  
E = ! f0

!y!
" ("1)l"1

l=1

r+1

# dp1dp2…dpl
! f0

!yp1p2…pl
!

$
%&

'
()
*! !* 0 .  

 Proof  For any ! , E = p1d! , and  F = p2d! + p3d! +…+ pn+1d! . But 
for a Lepage form ! ,  

(3)  
 
E = p1d! = ! f0

!y"
# diP"

i$
%&

'
()
*" !* 0 ,  

where by Section 4.3, (50), 

(4)  
 
P!

i= ("1)l
l=0

s

# dp1dp2…dpl
! f0

!yp1p2…pli
! .  
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This proves formula (2).  

 Note that similarly as the form ! , E depends only on the Lagrangian 
!" = f0# 0 , associated with ! . The (n +1) -form E is called the Euler-
Lagrange form, associated with the Lepage form ! , or with the Lagrangian 
!" = f0# 0 . The components of E  

(5)  
 
E! ( f0 ) =

! f0
!y!

" ("1)l"1
l=1

r+1

# dp1dp2…dpl
! f0

!yp1p2…pl
!  

are called the Euler-Lagrange expressions of the function f0 , or of the La-
grangian !"  (in the given fibred chart).  
 
 

4.5  Lepage equivalents and the Euler‐Lagrange mapping  

 Our aim now will be to study Lepage forms with fixed horizontal com-
ponents – the Lagrangians. As before, denote by !n,X

r W  the submodule of 
the module !n

rW , formed by ! r -horizontal n-forms (Lagrangians of order r 
for Y). Clearly, the set !n,X

r W  contains the Lagrangians !" , associated with 
the n-forms  !!"n

r#1W , defined on W r!1 .  
 The following is an existence theorem of Lepage forms whose horizon-
tal component is given.  

 Theorem 5  To any Lagrangian  ! !"n,X
r W  there exists an integer 

s ! 2r "1  and a Lepage form  ! !"n
sW of order or contactness !1  such 

that  

(1)  h! = ".  

 Proof  We show that the theorem is true for s = 2r !1 . Choose an atlas 
 {(V! ,"! )}  on Y, consisting of fibred charts (V! ,"! ) , !" = (x"

i , y"
# ) , and a par-

tition of unity  {!"} , subordinate to the covering  {V!}  of the fibred manifold 
Y. The functions !"  define (global) Lagrangians  !"# !$n,X

r W . We have in 
the chart (V! ,"! )   

(2)   ! = ! "# 0," ,  

where   ! 0," = dx"
1!dx"

2 !…!dx"
n . Then we set for each !   

(3)  

   

!" = #"! "$ 0,"

+ (%1)l
l=0

r%1%k

& dp1dp2…dpl
!(#"! " )

!y(") j1 j2… jk p1p2…pli
'

(
)*

+
,-k=0

r%1

& $ j1 j2… jk ,"
' !$ 0," ,
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where 
 
! j1 j2… jk ,"

# = dyj1 j2… jk ,"
# $ yj1 j2… jkl ,"

# dx"
l . Thus, !"  is the principal Lepage 

equivalent of the Lagrangian  ! = ! "# 0," . Since the family  {!"}  is locally 
finite, the family  {!"}  is also locally finite, thus the sum ! = "#$  is de-
fined. Then we have p1d! = " p1d#$ , thus, !  is a Lepage form, because 
each of the forms !"  is Lepage. It remains to show that h! = " . We have 
 h! = "h#$ = "%$! $& 0,$ . To compute this expression choose a fibred chart 
(V ,! ) , ! = (xi , y" ) , such that the intersection  V !V!  is non-void for only 
finitely many indices ! . Using this chart, we have  ! = ! "# 0," = ! "# 0  on 
 V !V!  and, since  

(4)  ! 0," = det
!x"

i

!x j
#
$%

&
'(
)! 0 ,  

then  

(5)  
 
! ! det

!x!
i

!x j
"
#$

%
&'
= !.  

Consequently,  

(6)  
 
h! = "#$! $% 0,$ = "#$! $ det

!x$
i

!x j
&
'(

)
*+
,% 0 = ("#$ )!% 0 = !% 0  

because !"# = 1 .  

 Let  ! !"n,X
r W  be a Lagrangian. A Lepage form  ! !"n

sW  such that 
h! = "  (possibly up to a canonical jet projection) is called a Lepage equiva-
lent of ! .  
 If !  is expressed in a fibred chart (V ,! ) , ! = (xi , y" ) , as  

(7)   ! = !" 0 ,  

then the form  

(8)  
   
!! = !" 0 + (#1)l

l=0

r#1#k

$ dp1dp2…dpl
!!

!yj1 j2… jk p1p2…pli
%

&
'(

)
*+k=0

r#1

$ " j1 j2… jk
% !" i  

is called the principal Lepage equivalent of !  for the fibred chart (V ,! ) . 
This form is in general defined on the set  V

2r!1!W 2r!1 .  

 Remark 7  The Lepage equivalent constructed in the proof of Theo-
rem 5 is ! 2r"1,r"1 -horizontal, and its order of contactness is !1 .  

 Remark 8 Theorem 5 says that the class of variational functionals, as-
sociated with the variational structures (W ,!) , introduced in Section 4.1, 
remains the same when we restrict ourselves to Lepage forms ! . Thus, from 
now on, we may suppose without loss of generality that the variational func-
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tionals  

(9)  
  
!"(# |W )!$ % &"($ ) = J r$ *&

"
' "R  

are defined by Lepage forms.  

 We give two basic examples of Lepage equivalents of Lagrangians.  

 Example 1 (Lepage forms of order 1)  If  ! = !" 0  is a Lagrangian of 
order 1, then its principal Lepage equivalent is given by 

(10)  
  
!" = !# 0 +

!!
!yi

$ #
$ !# i .  

The form (10) is called, due to Garcia [G], the Poincare-Cartan form. Its 
invariance with respect to transformations of fibred charts can be proved by 
a direct calculation (see Example 2).  

 Example 2 (Lepage forms of order 2)  The principal Lepage equiva-
lent of a second-order Lagrangian  ! = !" 0  is given by  

(11)  
  
!! = !" 0 +

!!
!yi

# $ dj
!!
!yij

#

%
&'

(
)*
"# !" i +

!!
!yij

# " j
# !" i  

(Krupka [K13]). We show that in this case  !!  is invariant with respect to 
all transformations of fibred coordinates. It is sufficient to show that  !!  can 
be introduced in a unique way by invariant conditions. We define a form !  
on W 3  by the following three conditions: 
 (a) !  is a Lepage form, that is p1d!  is ! 3,0 -horizontal.  
 (b) The horizontal component of !  coincides with the given Lagrangi-
an ! ; this condition reads h! = " . 
 To state the third condition, we assign to any fibred chart (V ,! ) , 
! = (xi , y" ) , the contact forms 

 
! j

" !! i . One can easily derive the transfor-
mation properties of these forms. For any other fibred chart (V ,! ) , 
! = (x i , y" ) , the local volume elements satisfy on the intersection  V !V   

(12)  ! 0 = det
!x p

!x p
"
#$

%
&'
! 0 .  

Using this formula, we get 

(13)  ! i = i! /!xi! 0 =
!x l

!xi
det !x

p

!x q
"
#$

%
&'
( i! /!x l! 0 =

!x l

!xi
det !x

p

!x q
"
#$

%
&'
(! l .  

On the other hand we know that  
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(14)  ! j
" =

!yj
"

!y # !
# +
!yj

"

!yj
# ! j

# =
!yj

"

!y # !
# + !y

"

!y #
!x l

!x j
! l

#  

(Section 2.1, Theorem 1, Section 1.4, Example 5). These formulas imply  

(15)  

 

! j
" !! i = det

!x p

!x q
#
$%

&
'(
!yj

"

!y )
!x l

!xi
!) !! l

+ det !x
p

!x q
#
$%

&
'(
!y"

!y )
!x l

!xi
!x k

!x j
! k

) !! l .
 

In particular, the forms 
 
! i

" !! j +! j
" !! i  locally generate a submodule of 

the module !n
3 (W 3) . For the purpose of this example we denote this sub-

module by !n,1
3 (W 3) . Now we require  

 (c)  !!!n,1
3 (W 3) .  

 Conditions (a), (b) and (c) uniquely define an n-form on W 3 , and this n-
form is obviously the form  !!  (11). Consequently, the principal Lepage 
equivalent  !!  of a 2nd order Lagrangian !  is globally well-defined. We 
usually write !"  instead of  !! .  

 Choosing for any Lagrangian  ! !"n,X
r W  a Lepage equivalent !  of ! , 

we can construct the Euler-Lagrange form E associated to !  (Section 4.4, 
(2)); this (n +1) -form depends on !  only. We denote this form by E!  and 
call it the Euler-Lagrange form, associated with ! . Clearly, E!  may be de-
fined by (local) principal Lepage equivalents  !! . Denoting by !n+1,Y

2r"1W  the 
module of ! 2r"1,0 -horizontal (n +1) -forms on W 2r!1 , we get the mapping  

(16)   !n,X
r W ! " # E" "!n+1,Y

r W  

called the Euler-Lagrange mapping.  

 Remark 9  We can summarize basic motivations and properties of the 
Lepage forms by means of their relationship to the Euler-Lagrange forms. 
Denote by Lepn

r W  the vector subspace of the real vector space !n
rW , 

whose elements are Lepage forms. Taking into account properties of the ex-
terior derivative of a Lepage form we see that the Euler-Lagrange mapping 
makes the following diagram commutative:  

 (17) 
Lepn

r W h! "! #n,X
r+1W

$ d $ E

#n+1
r+1W p1! "! #n,Y

2(r+1)W

 

Basic motivation for the notion of a Lepage form is the construction of this 
diagram. Its commutativity demonstrates the relationship of the Euler-
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Lagrange mapping and the exterior derivative of differential forms, just in 
the spirit of the work of Lepage [Le]. (17) shows that the Euler-Lagrange 
form has its origin in the exterior derivative operator.  

 The following theorem describes the behaviour of the Euler-Lagrange 
mapping under automorphisms of the underlying fibred manifold; it says that 
transformed Lagrangians have transformed Euler-Lagrange forms. 

 Theorem 6  For each Lagrangian  ! !"n,X
r W  and each automorphism 

!  of Y  

(18)  J 2r! *E" = EJ 2 r!*" .  

 Proof  To prove (18), we apply Theorem 4 of Section 4.4 to Lepage 
equivalents. Let  !" !#n

sW  be any Lepage equivalent of ! . Then  

(19)  (! s+1,s )*d" = E# + F# .  

It is easily seen that the pull-back J s! *"  is a Lepage form whose Lagran-
gian is hJ s! *" = J s+1! *h" = J s+1! *# . Then from standard commutativity 
of the pull-back and the exterior derivative we have  

(20)  (! s+1,s )*dJ s" *# = (! s+1,s )* J s" *d# = J s+1" *(! s+1,s )*d#,  

from which we conclude that J s+1! *E" + J
s+1! *F" = EJs!*" + FJs!*" . Theo-

rem 6 now follows from the uniqueness of the 1-contact component of these 
forms.  

4.6  The first variation formula  

 Suppose that we have a variational structure (W ,!) , where W is an 
open set in a fibred manifold Y with n-dimensional base X, and !  is a 
Lepage form on the set  W

r ! J rY . Recall that for any piece !  of X, and any 
open set  W !Y , the Lepage form !  defines the variational functional 
  !W (" |U )!# $ %&(# )"R  by  

(1)  !"(# ) = J r# *!
"
$  

(Section 4.1, (2)). The first variation of !"  by a ! -projectable vector field 
!  is the variational functional   !"(# |U )!$ % (&J r' ()"($ )"R , where  

(2)  (!J r" #)$(% ) = J r% *!J r" #
$
&  

(Section 4.2, (14)). As before, denote by !"  the horizontal component of an 
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n-form ! , that is the Lagrangian, associated with ! . For Lepage forms, the 
following theorem on the structure of the integrand in the first variation (2) 
is just a restatement of definitions.  

 Theorem 7  Let  ! !"n
rW  be a Lepage form, !  a ! -projectable vector 

field on W.  
 (a) The Lie derivative !J r" #  can be expressed as  

(3)  !J r" # = iJ r"d# + diJr"#.  

 (b) If !  is ! -vertical, then  

(4)  !J r+1"#$ = iJ r+1"E#$
+ hdiJr"$.  

 (c) For any section !  of Y with values in W, 

(5)  J r! *"J r# $ = J r+1! * iJ r+1#E%$
+ dJ r! * iJ r#$  

 (d) For every piece !  of X and every section !  of Y defined on ! , 

(6)  J r! *"J r# $
%
& = J r+1! * iJ r+1#E'

%
& + J r+1! * iJ r+1#$

"%
& .  

 Proof  (a) This is a standard Lie derivative formula.  
 (b) If !  ! -vertical, then since h!J r" # = !J r"h# , we have from (3) 
h!J r" # = iJ r"p1d# + hdiJr"# , but p1d! = E"!

 because !  is a Lepage form.  
 (c) Formula (4) can be proved by a straightforward calculation:  

(7)   

J r! *"J r# $ = J r! * iJ r#d$ + J r! *diJr#$

= J r+1! *hiJr#d$ + J r! *diJr#$

= J r+1! * iJ r+1#p1d$ + J r+1! * iJ r#p2d$ + J r! *diJr#$

= J r+1! * iJ r+1#E%$
+ J r! *diJr#$.

 

 (d) Integrating (5) and using the Stokes’ theorem on integration of 
closed (n !1) -forms on pieces of n-dimensional manifolds we get (6).  

 Any of the formulas (3), (4) and (5) is called, in the context of the varia-
tional theory on fibred manifolds, the infinitesimal first variation formula; 
(6) is the integral first variation formula.  

 Remark 10  Note that the infinitesimal first variation formulas in Theo-
rem 7 have no analogue in the classical formulation of the calculus of varia-
tions. These formulas are based on the concept of a (global) Lepage form as 
well as on the use of (invariant) geometric operations such as the Lie deriva-
tive, exterior derivative and contraction of a form by a vector field, describ-
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ing the variation procedure.  

 Remark 11  Theorem 7 can be used to obtain the corresponding formu-
las for higher variational derivatives (see Section 4.2). 

4.7  Extremals 

 Let  U ! X  be an open set, ! :U"W  a section, and let ! :U" TY  be 
a vector field along the section ! ; in our standard notation, !  is an element 
of the set  !"(# |U ) . The support of the vector field !  is defined to be the set 
  supp! = cl{x!U |!(x) " 0}  ( cl  means closure). We know that each differ-
entiable vector field !  along !  can be differentiably prolonged to a ! -
projectable vector field  !!  defined on a neighbourhood of the set ! (U )  in W 
(Section 4.2, Theorem 1).  !!  satisfies 

(1)   
!!"" = !.  

This property of vector fields along sections will be used in the definition of 
extremal sections, which can be introduced as follows.  
 Consider a Lepage form  ! !"n

rW , and fix a piece !  of X. We shall 
say that a section   ! !"#($ |U )  is an extremal of the variational functional 
  !"(# |U )!$ % &"($ )"R  on ! , if for all ! -projectable vector fields ! , 
such that   supp(!!" )!# ,  

(2)  J r
!
" # *$J r% & = 0.  

Condition (2) can also be expressed as (!J r" #)$(% ) = 0 . !  is called an ex-
tremal of the Lagrange structure (W ,!) , or simply an extremal, if it is an 
extremal of the variational functional !"  for every !  in the domain of def-
inition of ! .  
 In this sense the extremals can also be defined as those sections !  for 
which the values !"(# )  of the variational functional !"  are not sensitive to 
small compact deformations of ! .  
 In the following necessary and sufficient conditions for a section to be 
an extremal, we use the Euler-Lagrange form E!"

, associated with the La-
grangian !" = h" , written in a fibred chart as  

(3)  
  
E!"

= E# (!)$
# !$ 0 ,  

where the components  E! (!)  are the Euler-Lagrange expressions (Sec-
tion 4.4). Explicitly, if  h! = !" 0 , then  

(4)  
  
E! (!) =

!!
!y!

" ("1)l"1
l=1

r+1

# dp1dp2…dpl
!!

!yp1p2…pl
! .  


