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 Theorem 8  Let  ! !"n
rW  be a Lepage form. Let ! :U"W  a section, 

and  !!U  be a piece of X. The following conditions are equivalent: 
 (a) !  is an extremal on ! . 
 (b) For every ! -vertical vector field !  defined on a neighbourhood of 
! (U ) , such that   supp(!!" )!# , 

(5)  J r! * iJ r"d# = 0.  

 (c) The Euler-Lagrange form associated with the Lagrangian !" = h"  
vanishes along J r+1! , i.e., 

(6)  
 
E!"
! J r+1# = 0.  

 (d) For every fibred chart (V ,! ) , ! = (xi , y" ) , such that  ! (V )!U  
and  ! (" (V ))!V , !  satisfies the system of partial differential equations 

(7)  
  
E! (! " )! J

r+1# = 0, 1$! $ m.  

 Proof  1. We show that (a) implies (b). By Theorem 7, (d), for any piece 
!  of X and any ! -vertical vector field !  such that   supp(!!" )!# , 

(8)  J r! *"J r# $
%
& = J r! * iJ r# d$

%
& ,  

because the vector field J r!  vanishes along the boundary !" . Then 

(9)  J r! * iJ r" d#
$
% = J r+1! *(& r+1,r )* iJ r"d

$
% # = J r+1! * iJ r+1"p1 d#

$
% ,  

where p1d! = Eh!  is the Euler-Lagrange form.  
 If !  is contained in a coordinate neighbourhood, the support 
  supp(!!" )!#  lies in the same coordinate neighbourhood. Writing 
! = !" #!/ !y"  and 

  
p1d! = E" (! ! )#

" !# 0  then 
 
iJ r+1!p1d" = E# (! " )!

#$ 0  
and  

(10)  
  
J r! * iJ r"d# = (E$ (! # )! J

r+1! ) %("$ !! ) %& 0 .  

 Now supposing that J r! * iJ r"d# $ 0  for some ! -vertical vector field 
! , the first variation formula 

(11)  
  
J r! * iJ r" d#

$
% = (E& (! # )! J

r+1! ) '("& !! ) '( 0
$
%  

would give us a contradiction 

(12)  J 3! *"J r# $
%
& ' 0.  
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Thus, (a) implies (b).  
 2.  (c) is an immediate consequence of condition (b). Indeed, we can 
write for !  ! -vertical  

(13)  
 

J r! * iJ r"d# = ($ r+1,r ! J r+1! )* iJ r"d# = J r+1! *($ r+1,r )* iJ r"d#

= J r+1! * iJ r+1"($
r+1,r )*d# = J r+1! * iJ r+1"p1d# = J r+1! * iJ r+1"E%#

.
 

 3.  (d) is just a restatement of (b) for the components of the form E!"
.  

 4.  We apply Theorem 7, (d).  

 Equations (7) are called the Euler-Lagrange equations; these equations 
are indeed related to the chosen fibred chart (V ,! ) , ! = (xi , y" ) . However, 
since the Euler-Lagrange expressions are components of a (global) differen-
tial form, the Euler-Lagrange form, the solutions are independent of fibred 
charts.  
 If a Lagrangian  ! !"n,X

r W  is given and !  is a Lepage equivalent of !  
of order s = 2r !1  (4.5, Theorem 5), then the Euler-Lagrange equations are 
of order ! 2r .  

 Remark 12  For a fixed fibred chart (V ,! ) , ! = (xi , y" ) , the Euler-
Lagrange equations represent a system of partial differential equations of 
order r +1  for unknown functions (xi )!" # (xi ) , where 1! i ! n  and 
1!" ! m . This fact is due to the origin of the Lagrange function  !  that 
comes from a Lepage form, which is of order r. If we start with a given La-
grangian of order r, then the Euler-Lagrange equations are of order 2r . To 
get an extremal !  on a piece  !! X  we have to solve this system for every 
fibred chart (V! ,"! ) , ! = (x"

i , y"
# ) , from a collection of fibred charts, such 

that the sets ! (V" )  cover ! ; then the solutions (x!
i )"# !

$ (x!
i )  should be 

used to find a section !  such that ! "
# = y"

#!$"
%1  for all indices ! .  

 Remark 13  Properties of nonlinear equations (7) depend on the form 
! ; their global structure is can also be understood by means of condition 
(5). This condition says that a section !  is an extremal if and only if its r-jet 
prolongation is an integral mapping of an ideal of forms generated by the 
family of n-forms iJ 3!d" . Using fibre chart formulas one can find explicit 
expressions for local generators of the ideal.  

4.8  Trivial Lagrangians 

 Consider the Euler-Lagrange mapping, assigning to a Lagrangian its 
Euler-Lagrange form  

(1)   !n,X
r W ! " # E" "!n+1,Y

2r W  

(Section 4.5, (16)). The domain and the range of this mapping have the 
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structure of Abelian groups (and real vector spaces), and the Euler-Lagrange 
mapping is a homomorphism of these Abelian groups. The purpose of this 
section is to describe the kernel of the Euler-Lagrange mapping. Elements of 
the kernel are the Lagrangians  ! !"n,X

r W  such that  

(2)  E! = 0,  

are called (variationally) trivial, or null.  
 Trivial Lagrangians can locally be characterised as formal divergences 
or some closed forms.  

 Theorem 9  Let  ! !"n,X
r W  be a Lagrangian. The following conditions 

are equivalent:  
 (a) !  is variationally trivial.  
 (b) For any fibred chart (V ,! ) , ! = (xi , y" ) , there exist functions 
gi :V r ! R , such that on V r ,  ! = !" 0 , where 

(3)   ! = dig
i .  

 (c) For every fibred chart (V ,! ) , ! = (xi , y" ) , such that  V !W , there 
exists an (n !1) -form  µ!!n"1

r"1V  such that on V r  

(4)  ! = hdµ.  

 Proof  1. We show that (a) is equivalent with (b). Suppose that we have 
a variationally trivial Lagrangian  ! !"n

rW . Write for any fibred chart 
(V ,! ) , ! = (xi , y" ) ,  ! = !" 0 . Since by hypothesis the Euler-Lagrange ex-
pressions  E! (!)  vanish, consequently, by Section 3.2, Theorem 1,  ! = dig

i  
for some functions gi  on V r . The converse follows from the same Theorem.  
 2.  Equivalence of (a) and (c) follows from Section 3.3, Theorem 3.  

 In general, Theorem 9 does not ensure existence of a globally defined 
form µ  or dµ . However, for first order Lagrangians local triviality already 
induces global variationality.  

 Corollary 1  A first order Lagrange form  ! !"n,X
1 W  is variationally 

trivial if and only if there exists an n-form  !!"n
0W  such that  

(5)  ! = h"  

and  

(6)  d! = 0.  

 Proof  By Theorem 9, for any two points  y1, y2 !W  there exist two 
(n !1) -forms  µ1,µ2 !Y , defined on a neighbourhood of y1  and y2 , such 
that hdµ1 = !  and hdµ2 = ! , respectively. Then hd(µ1 ! µ2 ) = 0  on the in-
tersection of the corresponding neighbourhoods in W 1 . But the horizontali-
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zation h, considered on forms on J 0Y = Y , is injective. Consequently, condi-
tion hd(µ1 ! µ2 ) = 0  implies d(µ1 ! µ2 ) = 0 , so there exists an n-form 
 !!"n

0W  whose restriction agrees with dµ1  and dµ2 . Clearly, d! = 0 .  

4.9  Source forms and the Vainberg‐Tonti Lagrangians  

 A 1-contact (n +1) -form  ! !"n+1,Y
s W , where s is a non-negative inte-

ger. is called a source form (Takens [T]). From this definition it follows that 
!  has in a fibred chart (V ,! ) , ! = (xi , y" ) , an expression  

(1)   ! = !"#
" !# 0 ,  

where the components !"  depend on the jet coordinates xi , y! , yj1
! , yj1 j2

! , 
 … , 

 
yj1 j2… js
! . Clearly, every Euler-Lagrange form E!  is a source form, thus, 

the set of source forms contains the Euler-Lagrange forms as a subset.  
 We assign to any source form !  a family of Lagrangians as follows. Let 
!  be defined on W s , and let (V ,! ) , ! = (xi , y" ) , be a fibred chart on Y, 
such that  V !W , and the set ! (V )  is star-shaped. Denote by I the fibred 
homotopy operator on V s  (Section 2.7). Then I!  is a ! s -horizontal form, 
that is, a Lagrangian for Y, defined on V s . This Lagrangian, denoted  

(2)  !" = I" ,  

is called the Vainberg-Tonti Lagrangian, associated with the source form !  
(and the fibred chart (V ,! ) ) (cf. Vainberg [V], Tonti [To]). 
 Recall that I!  is defined by the fibred homotopy ! s :[0,1]"V

s #V s , 
where 

 
! s (t,(x

i , y" , yj1
" , yj1 j2

" ,…, yj1 j2… js
" )) = (xi ,ty" ,tyj1

" ,tyj1 j2
" ,…,tyj1 j2… js

" ) . Since 
! s  satisfies 

  
!*

s
" = ("# ! ! s )(t$

# + y#dt)!$ 0 , we have, integrating the coef-
ficient in this expression at dt ,  

(3)   !" = ! "# 0 ,  

where  

(4)  
  
! ! = y

" !" ! # s $dt0

1

% ,  

or, which is the same,  

(5) 
  
! ! (x

i , y" , yj1
" ,…, yj1 j2… js

" ) = y" !" (x
i ,ty# ,tyj1

# ,…,tyj1 j2… js
# )dt

0

1

$ .  

 We can find the chart expression for the Euler-Lagrange form E!"
 of 

the Vainberg-Tonti Lagrangian !" ; recall that  

(6)  
  
E!"

= E# (! " )$
# !$ 0 ,  
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where 

(7)  
  
E! (! " ) = (#1)l

l=0

s

$ dp1dp2…dpl
!! "

!yp1p2…pl
! .  

To this purpose we derive two formulas for the formal derivative operator 
di . The formulas are completely parallel with the well-known classical 
Leibniz rules for partial derivatives of the product of functions.  

 Lemma 7  (a) For every function f on V p   

(8)  
 
di ( f ! ! p ) = di f ! ! p+1.  

 (b) For every function f on V s  and a collection of functions  g
p1p2…pk  on 

V s , symmetric in the superscripts,  

(9)  

 

dp1dp2…dpk ( f !g
p1p2…pk )

= i
k( )dp1dp2…dpi f !dpi+1dpi+2…dpk g

p1p2…pi pi+1pi+2…pk

i=0

k

" .
 

 Proof  (a) Formula (8) is an easy consequence of definitions.  
 (b) The proof is standard. We have  

(10)  

dp1 ( f !g
p1 ) = dp1 f !g

p1 + f !dp1g
p1

= 0
1( )dp1 f !gp1 + 1

1( ) f !dp1gp1 ,

dp1dp2 ( f !g
p1p2 ) = dp2 (dp1 f !g

p1p2 + f !dp1g
p1p2 )

= dp2dp1 f !g
p1p2 + dp1 f !dp2g

p1p2 + dp2 f !dp1g
p1p2 + f !dp1dp1g

p1p2

= 0
2( )dp2dp1 f !gp1p2 + 1

2( )dp1 f !dp2gp1p2 + 2
2( ) f !dp1dp1gp1p2 .

 

Then, supposing that  

(11)  

 

dp1dp2…dpk!1 ( f "g
p1p2…pk!1 )

= i
k!1( )dp1dp2…dpi f "dpi+1dpi+2…dpk!1g

p1p2…pi pi+1pi+2…pk!1

i=0

k!1

# ,
 

we have (8)  

(12)  

 

dp1dp2…dpk!1dpk ( f "g
p1p2…pk!1pk )

= f "dp1dp2…dpk!1dpk g
p1p2…pk!1pk

+ 0
k!1( ) + 1

k!1( )( )dp1 f "dp2dp3…dpk g
p1p2…pk!1pk

 



Global Variational Geometry 
 

126 

  

 

+ 1
k!1( ) + 2

k!1( )( )dp1dp2 f "dp3dp4 …dpk g
p1p2…pk!1pk

+…+ k!2
k!1( ) + k!1

k!1( )( )dp1dp2…dpk!1 "dpk g
p1p2…pk!1pk

+ k!1
k!1( )dpkdp1dp2…dpk!1 "g

p1p2…pk!1pk

 

and  

(13)  p
k!1( ) + p+1

k!1( ) = p+1
k( ),  

thus,  

(14)  

 

dp1dp2…dpk!1dpk ( f "g
p1p2…pk!1pk )

= 0
k( ) f "dp1dp2…dpk!1dpk g

p1p2…pk!1pk

+ 1
k( )dp1 f "dp2dp3…dpk g

p1p2…pk!1pk

+ 2
k( )dp1dp2 f "dp3dp4 …dpk g

p1p2…pk!1pk

+…+ k!1
k( )dp1dp2…dpk!1 "dpk g

p1p2…pk!1pk

+ k
k( )dpkdp1dp2…dpk!1 "g

p1p2…pk!1pk .

 

which is formula (8).  

 The Vainberg-Tonti Lagrangian  !" = ! "# 0  allows us to assign to any 
source form  ! = !"#

" !# 0  a variational functional and the corresponding 
Euler-Lagrange form of this functional, with the Euler-Lagrange expressions 
 E! (! " ) . We shall determine the functions  E! (! " )  and compare them with 
the components !"  of the source form.  

 Theorem 10  The Euler-Lagrange expressions of the Vainberg-Tonti 
Lagrangian !"  of a source form  ! = !"#

" !# 0  are  

(15)  
  
E! (! " ) = "! # yq1q2…qk

$ H! $
q1q2…qk(" )! %2s & t dt0

1

'
k=0

s

( ,  

where for every  k = 0,1,2,…,s   

 (16) 

 

H!"
q1q2…qk (# ) = !#!

!yq1q2…qk
" $ ($1)k !#"

!yq1q2…qk
!

$ ($1)l k
l( )dpk+1dpk+2…dpl

!#"
!yq1q2…qk pk+1pk+2…pl

!
l=k+1

s

% .
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 Proof  We find a formula for the difference  !" # E" (! ! ) . To simplify 
the formulas, we denote the homotopy ! s+l"i  simply by ! . Calculating the 
derivatives we have  

(17)  
  

!! !

!y"
= !" ! # $dt

0

1

% + y& !!&
!y"
! # $ t dt

0

1

% ,  

and, by Lemma 7, (8) and (9), for every l, 1! l ! s ,  

(18)  

  

dpl …dp2dp1
!! !

!yp1p2…pl
"

= dpl …dp2dp1 y# !!#
!yp1p2…pl

" ! $ % t dt
0

1

&'
()

*
+,

= i
l( )dp1dp2…dpi y

#

i=0

l

- %dpi+1dpi+2…dpl
!!#

!yp1p2…pi pi+1pi+2…pl
" ! $ % t dt

0

1

&

= i
l( )yp1p2…pi

# dpi+1dpi+2…dpl
!!#

!yp1p2…pi pi+1pi+2…pl
" ! $ % t dt

0

1

&
i=0

l

- .

 

Then by (17) and (18),  

(19)  

  

E! (! " ) = "! ! # $dt
0

1

% + y& !"&
!y!
! # $ t dt

0

1

%

+ ('1)l
l=1

s

( i
l( )yp1p2…pi

&

i=0

l

( dpi+1dpi+2…dpl
!"&

!yp1p2…pi pi+1pi+2…pl
! ! # $ t dt

0

1

% .
 

 On the other hand,  

(20)  

 

!" = d
dt
(!" ! # $ t)dt

0

1

%
= d(!" ! # )

dt
$ t dt

0

1

% + !" ! # $dt
0

1

%
= !!"

!yp1p2…pi
& ! # $ yp1p2…pi

& $ t dt
0

1

%
i=0

s

' + !" ! # $dt
0

1

% ,

 

hence  

(21)  

  

!" # E" (! ! ) =
!!"

!yp1p2…pi
$ ! % & yp1p2…pi

$ & t dt
0

1

'
i=0

s

( # y$ !!$
!y"
! % & t dt

0

1

'

# (#1)l
l=1

s

( i
l( )yp1p2…pi

$

i=0

l

( dpi+1dpi+2…dpl
!!$

!yp1p2…pi pi+1pi+2…pl
" ! % & t dt

0

1

'
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= !!"
!y#
! $ % y# % t dt

0

1

& ' y# !!#
!y"
! $ % t dt

0

1

&

' ('1)l
l=1

s

( 0
l( )y# % dp1dp2…dpl

!!#
!yp1p2…pl

" ! $ % t dt
0

1

&

+ !!"
!yp1p2…pi

# ! $ % yp1p2…pi
# % t dt

0

1

&
i=1

s

(

' ('1)l
l=1

s

( i
l( )yp1p2…pi

#

i=1

l

( dpi+1dpi+2…dpl
!!#

!yp1p2…pi pi+1pi+2…pl
" ! $ % t dt

0

1

& .

 

We change summation in the double sum, replacing the summation through 
the pairs (l,i)  with the summation through (i,l) . Summation through (l,i)  
can be expressed by the scheme  

(22)  

 

(1,1)
(2,1),(2,2)
(3,1),(3,2),(3,3)
…
(s,1),(s,2),(s, 3),…,(s !1,s),(s,s)

 

Then it is easily seen that the same summation, but represented by the pairs, 
(i,l) , is expressed by the scheme  

(23)  

 

(1,1),(1,2),(1,3),…,(1,s !1),(1,s)
(2,2),(2,3),…,(2,s !1),(2,s)
…
(s !1,s !1),(s !1,s)
(s,s)

 

Consider the double sum in (21) (the summation through now becomes  

(24)  

 

(!1)l
l=1

s

" i
l( )yp1p2…pi

#

i=1

l

" dpi+1dpi+2…dpl
!$#

!yp1p2…pi pi+1pi+2…pl
% ! & ' t dt

0

1

(

= (!1)l
i=1

s

" i
l( )yp1p2…pi

#

l=i

s

" dpi+1dpi+2…dpl
!$#

!yp1p2…pi pi+1pi+2…pl
% ! & ' t dt

0

1

(

= (!1)i
i=1

s

" yp1p2…pi
# !$#

!yp1p2…pl
% ! & ' t dt

0

1

(

+ (!1)l
i=1

s

" i
l( )yp1p2…pi

#

l=i+1

s

" dpi+1dpi+2…dpl
!$#

!yp1p2…pi pi+1pi+2…pl
% ! & ' t dt

0

1

( .
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Returning to (21) we get  

(25)  

  

!" # E" (! ! ) =
!!"
!y$
! % & y$ & t dt

0

1

' # y$ !!$
!y"
! % & t dt

0

1

'

# (#1)l
l=1

s

( y$ & dp1dp2…dpl
!!$

!yp1p2…pl
" ! % & t dt

0

1

'

+ !!"
!yp1p2…pi

$ ! % & yp1p2…pi
$ & t dt

0

1

'
i=1

s

(

# (#1)i
i=1

s

( yp1p2…pi
$ & !!$

!yp1p2…pl
" ! % & t dt

0

1

'

# (#1)l i
l( )yp1p2…pi

$ dpi+1dpi+2…dpl
!!$

!yp1p2…pi pi+1pi+2…pl
" ! % & t dt

0

1

'
l=i+1

s

(
i=1

s

(

= y$ !!"
!y$

# !!$
!y"

# (#1)l dp1dp2…dpl
!!$

!yp1p2…pl
"

l=1

s

()
*+

,
-.0

1

' ! % & tdt

+ yp1p2…pi
$ !!"

!yp1p2…pi
$ # (#1)i !!$

!yp1p2…pl
"

)
*+0
1

'
i=1

s

(

# (#1)l i
l( ) &dpi+1dpi+2…dpl

!!$
!yp1p2…pi pi+1pi+2…pl

"
l=i+1

s

( ,
-.
! % & tdt.

 

This formula proves Theorem 10.  

 The functions 
 
H!"

q1q2…qk (# )  (16) are called the Helmholtz expressions, 
associated with the source form ! .  
 It will be instructive to write up the Helmholtz expressions for lower-
order source forms.  

 Remark 14  The Helmholtz expressions for the source forms of order 
s = 3  with components !"  are  

(26)  

H!"
ijk (# ) = !#!

!yijk
" + !#"

!yijk
! ,

H!"
ij (# ) = !#!

!yij
" $ !#"

!yij
! + 3dk

!#"
!yijk

! ,

H!"
i (# ) = !#!

!yi
" + !#"

!yi
! $ 2dj

!#"
!yij

! + 3djdk
!#"
!yijk

! ,

H!" (# ) =
!#!
!y"

$ !#"
!y!

+ di
!#"
!yi

! $ did j
!#"
!yij

! + did jdk
!#"
!yijk

! .
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 Remark 15  Theorem 10 describes the difference between the given 
source form and the Euler-Lagrange form of the Vainberg-Tonti Lagrangian; 
we see, in particular, that responsibility for the difference lies on the proper-
ties of the source form, and is characterized by the Helmholtz expressions.  

 Lemma 8  Let  ! = !" 0  be a Lagrangian, and let !"  be its principal 
Lepage equivalent. Then the Vainberg-Tonti Lagrangian of the Euler-
Lagrange form   E! = E" (!)#

" !# 0 , 

(27)  !E!
= IE! ,  

satisfies  

(28)  !E!
= ! " hd(I#! + µ0 ).  

 Proof  Using the fibred homotopy operator I, we can express the princi-
pal Lepage equivalent !"  of !  as !" = Id!" + dI!" +!0 . Then the hori-
zontal component is  

(29)  
h!" = hId!" + hdI!" + h!0 = hIp1d!" + hd(I!" + µ0 )
= IE" + hd(I!" + µ0 )

 

for some (n !1) -form µ0  on X such that ! = dµ0 , where ! = h"!  and IE!  
is the Vainberg-Tonti Lagrangian.  

 Note that, in particular, formula (28) shows that the Vainberg-Tonti La-
grangian differs from the given Lagrangian !  by the term hd(I!" + µ0 )  
that belongs to the kernel of the Euler-Lagrange mapping. This demonstrates 
that the Euler-Lagrange forms of !  and the Vainberg-Tonti Lagrangian !E!

 
coincide.  

 Remark 16  (Euler-Lagrange source forms) Using homotopies and 
properties of formal divergence expressions (Chapter 3), we can give an el-
ementary proof of Lemma 8, based on direct calculations. Namely, we prove 
that the Vainberg-Tonti Lagrangian of a source form   ! = E" (!)#

" !# 0  
which is the Euler-Lagrange form of a Lagrangian  ! = !" 0 , is given by  

(30)  
  
y! E! (!)! " #dt

0

1

$ = ! + di%
i .  

 First note that for any family of functions gi  on V s , the formal diver-
gence dig

i  satisfies the integral homotopy formula  

(31)  
 
dig

i ! ! "dt
0

1

# = di gi ! ! "dt
0

1

# .  

Indeed, we have  



4  Variational structures 
 

131 

(32)  

 

di (g
i ! ! ) = !(g

i ! ! )
!xi

+ !(gi ! ! )
!yp1p2…pl

"
l=0

s

# yp1p2…plk
"

= !gi

!xi
+ !gi

!yp1p2…pl
"

l=0

s

# yp1p2…plk
"$

%&
'
()
! !,

 

and formula (31) arises by integration.  
 Consider the Euler-Lagrange expressions  E! (!)  of a Lagrangian of 
order r expressed as  ! = !" 0 ,  

(33)  

  

E! (!) =
!!
!y!

" ("1)l"1
l=1

r

# dp1dp2…dpl
!!

!yp1p2…pl
!

= !!
!y!

" dp1
!!
!yp1

! + dp1dp2
!!
!yp1p2

! "…+ ("1)r dp1dp2…dpr
!!

!yp1p2…pr
! ,

 

and set  

(34)  

  

!"
i1 = !!

!yi1
" # dp2

!!
!yi1p2

" + dp2dp3
!!
!yi1p2p3

"

#…+ (#1)r#1dp2dp3…dpr
!!

!yi1p2p3…pr
" ,

!"
i1i2 = !!

!yi1i2
" # dp3

!!
!yi1i2p3

" # dp3dp4
!!

!yi1i2p3p4
"

#…+ (#1)r#1dp3dp4 …dpr
!!

!yi1i2p3p4…pr
" ,

…

!"
i1i2…ik = !!

!yi1i2…ik
" # dpk+1

!!
!yi1i2…ik pk+1

" # dpk+1dpk+2
!!

!yi1i2…ik pk+1pk+2
"

#…+ (#1)r#1dpk+1dpk+2…dpr
!!

!yi1i2…ik pk+1pk+2…pr
" ,

…

!"
i1i2…ir#1 = !!

!yi1i2…ir#1
" # dpr

!!
!yi1i2…ir#1pr

" ,

!"
i1i2…ir = !!

!yi1i2…ir
" .

 

It is immediately seen that these functions, entering the Euler-Lagrange ex-
pression  E! (!)  (33), satisfy the recurrence formula  



Global Variational Geometry 
 

132 

(35)  
  
!"

i1i2…ik = !!
!yi1i2…ik

" # dpk+1!"
i1i2…ik pk+1 .  

Using properties of the homotopy ! ,  

(36)  
  

d! ! !
dt

= !!
!y"
! ! # y" + !!

!yp1p2…pl
" ! ! # yp1p2…plk

"

l=1

r

$ .  

Hence, denoting 
  
! 0 (x

i , y! , yj1
! , yj1 j2

! ,…, yj1 j2… jr
! ) = !(xi ,0,0,0,…,0) , we get 

for the Vainberg-Tonti Lagrangian  

(37)  

  

y! E! (!)! " #dt
0

1

$
= y! !!

!y!
! " #dt

0

1

$ % y! di&!
i ! " #dt

0

1

$

= d! ! "
dt

% !!
!yp1p2…pl

! ! " # yp1p2…plk
!

l=1

r

'(
)*

+
,-
dt

0

1

$ % y! di&!
i ! " #dt

0

1

$

= ! % ! 0 % yp1p2…pl
! !!

!yp1p2…pl
! ! "

0

1

$ #dt
l=1

r

' % y!di &!
i ! " #dt

0

1

$

 

  

  

= ! ! ! 0 ! yp1p2…pl
" !!

!yp1p2…pl
" ! #

0

1

$ %dt
l=1

r

&

+ yi
" '"

i ! # %dt
0

1

$ ! di y
" '"

i ! # %dt
0

1

$( )
( ! ! ! 0 + yi

" '"
i ! !!

!yi
"

)
*+

,
-.
! # %dt

0

1

$

! yp1p2…pl
" !!

!yp1p2…pl
" ! #

0

1

$ %dt
l=2

r

& .

 

The symbol ! , replacing the equality sign = , means that we have omitted a 
formal divergence expression, annihilating the Euler-Lagrange expressions 
of the Vainberg-Tonti Lagrangian.  
 In formula (37)  

(38)  

  

yi
! "!

i # !!
!yi

!
$
%&

'
()
! * +dt

0

1

, # yp1p2
! !!

!yp1p2
! ! *

0

1

, +dt

= #yi
! dp"!

ip ! * +dt
0

1

, # yp1p2
! !!

!yp1p2
! ! *

0

1

, +dt
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= !yi
"dp #"

ip ! $ %dt
0

1

& ! yp1p2
" !!

!yp1p2
" ! $

0

1

& %dt

= !dp yi
" #"

ip ! $ %dt
0

1

&( ) + yip" #"
ip ! $ %dt

0

1

& ! yp1p2
" !!

!yp1p2
" ! $

0

1

& %dt

' yp1p2
" #"

p1p2 ! !!
!yp1p2

"

(
)*

+
,-
! $ %dt

0

1

&

 

thus,  

(39)  

  

y! E! (!)! " #dt
0

1

$ % ! & ! 0 + yi
! '!

i & !!
!yi

!
(
)*

+
,-
! " #dt

0

1

$

& yp1p2
! !!

!yp1p2
! ! "

0

1

$ #dt & yp1p2…pl
! !!

!yp1p2…pl
! ! "

0

1

$ #dt
l=3

r

.

% ! & ! 0 + yp1p2
! '!

p1p2 & !!
!yp1p2

!

(
)*

+
,-
! " #dt

0

1

$

& yp1p2…pl
! !!

!yp1p2…pl
! ! "

0

1

$ #dt
l=3

r

. .

 

Repeating these decompositions we finally get the terms  

(40)  

  

yp1p2…pr!1
" #"

p1p2…pr!1 ! !!
!yp1p2…pr!1

"

$
%&

'
()
! * +dt

0

1

, ! yp1p2…pr
" !!

!yp1p2…pr
" ! *

0

1

, +dt

= !yp1p2…pr!1
" dpr #"

p1p2…pr ! * +dt
0

1

, ! yp1p2…pr
" !!

!yp1p2…pr
" ! *

0

1

, +dt

= !dpr yp1p2…pr!1
" #"

p1p2…pr ! * +dt
0

1

,( ) + yp1p2…pr
" #"

p1p2…pr ! * +dt
0

1

,
! yp1p2…pr

" !!
!yp1p2…pr

" ! *
0

1

, +dt

= !dpr yp1p2…pr!1
" #"

p1p2…pr ! * +dt
0

1

,( ).

 

Since  ! 0  is always, as a function of xi  only, of the formal divergence type, 
this proves that  

(41)  
  
y! E! (!)! " #dt

0

1

$ % !,  

proving formula (30).  
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4.10  The inverse problem of the calculus of variations 

 Our objective in this section is to study the image of the Euler-Lagrange 
mapping  !n,X

r W ! " # E" "!n+1,Y
r W , considered as a subset of the set of 

source forms  ! !"n+1,Y
s W  (Section 4.9). The problem is to find a criterion 

for a source form to belong to the subset of the Euler-Lagrange forms.  
 First we show that the image of the Euler-Lagrange mapping is closed 
under the Lie derivative with respect to projectable vector fields.  

 Theorem 11 (Invariance of the image)  Let  ! !"n,X
r W . Then for any 

! -projectable vector field !  on W the Lie derivative !J r"#  belongs to the 
module !n,X

r W  and  

(1)  !J 2 r"E# = E!
Jr"

# .  

 Proof  Since  ! !"n,X
r W , then  !J r"# !$n,X

r W . If !"  is a Lepage 
equivalent of ! , and !"

Jr#
$  is a Lepage equivalent of the Lagrangian !J r"# , 

both defined on the set W s , then, with the notation of Section 4.3, Theo-
rem 3, !" =#" + d$ + µ , !"

Jr#
$ =%"

Jr#
$ + d &' + &µ , and  

(2)  !J s" #$ = !J s"%$ + d !J s"& + !J s"µ.  

The form !J s" #$  has the horizontal component h!J s" #$ = !J s+1"h#$ = !J r"$ , 
and is a Lepage form, because p1d !J s" #$ = p1d !J s"%$ = p1 !J s"d%$  and the 
Lie derivative !J s"  preserves contact forms (Section 2.5, Theorem 9). Thus, 
the forms !"

Jr#
$  and !J s" #$  are both Lepage forms, and have the same La-

grangians. Consequently, their Euler-Lagrange forms agree, !J 2 r"E# = E!
Jr"

# .  

 Rephrasing formula (1) we see that the Lie derivative of an Euler-
Lagrange form by a vector field J 2r! , where !  is a ! -projectable vector 
field, permutes the set of Euler-Lagrange forms; the corresponding Lagran-
gians are also related by the Lie derivative operation.  
 Consider a source form  ! !"n+1,Y

s W . We say that !  is variational, if  

(3)  ! = E"  

for some Lagrangian  ! !"n,X
r W . !  is said to be locally variational, if there 

exists an atlas on Y, consisting of fibred charts, such that for each chart 
(V ,! ) , ! = (xi , y" ) , from this atlas, the restriction of !  to V s  is variational.  
 The inverse problem of the calculus of variations, or the variationality 
problem for source forms, consists in finding conditions under which there 
exists a Lagrangian ! , satisfying equation (3); if these conditions are satis-
fied, then the problem is to find all Lagrangians for the source form ! . The 
local inverse problem, or local variationality problem, for a source form !  
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consists in finding existence (integrability) conditions and solutions  !  of 
the system of partial differential equations  

(4)  
  
!" = !!

!y"
+ (#1)l

l=1

r

$ dp1dp2…dpl
!!

!yp1p2…pl
"  

with given functions 
 
!" = !" (x

i , y" , yj1
" , yj1 j2

" ,…, yj1 j2… js
" )  on the left-hand side 

(cf. Section 4.4, Theorem 4).  
 Let r be a fixed positive integer. We shall characterize the subspace of 
the vector space of source forms, which is in general larger than the image of 
the Euler-Lagrange mapping, namely, the subspace of locally variational 
forms (Krupka [K11]). Our next theorem states the relationship between the 
exterior derivative operator and the concept of variationality. It also indi-
cates the meaning of Lepage forms for the inverse problem.  

 Theorem 12 (Local variationality od source forms)  Let  ! !"n+1,Y
s W  

be a source form. The following two conditions are equivalent:  
 (a) !  is locally variational.  
 (b)  For every point  y!W  there exist an integer r, a fibre chart 
(V ,! ) , ! = (xi , y" ) , at y and a form  F !!n+1

r V  of order of contactness 2 
such that on V r   

(5)  d(! + F) = 0.  

 Proof  1. Suppose that !  is locally variational, and choose a fibred 
chart (V ,! ) , ! = (xi , y" ) , such that !  is variational on V; then ! = E"  for 
some Lagrangian  ! !"n,X

r V . Let !"  denote the principal Lepage equivalent 
of ! , and set F = p2d!" . Then d(! + F) = dd"# = 0 .  
 2.  Conversely, if for some fibred chart (V ,! ) , ! = (xi , y" ) , condition 
d(! + F) = 0  holds on V s , then ! + F = d"  for some ! . !  is obviously a 
Lepage form, hence ! = p1d" , so !  is a locally variational form whose La-
grangian is h! .  

 Remark 17  Theorem 12 indicates possible geometric interpretation of 
the exterior derivative d! . Namely, formula (5) says that the variationality 
condition means that the class of d!  modulo (n + 2) -forms whose order of 
contactness is greater than 1, vanishes if and only if !  is locally variational. 
Developing this point of view to q-forms of any degree q leads to an idea to 
characterize the Euler-Lagrange mapping as a morphism in a sutable sheaf 
sequence of classes of forms (a “variational sequence”).  

 Properties of the form F in Theorem 1 can be further specified. Namely, 
for a given Lagrangian !  of order r, F can be determined from the exterior 
derivative of the principal Lepage equivalent !"  (Section 4.5, (8)), and is 
! 2r"1,s"1 -horizontal.  
 The following lemma is needed in the proof of another theorem on the 
local inverse of the calculus of variations.  
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 Lemma 9  Let U be an open set in Rn  such that for each point 
 x0 = (x0

1 , x0
2 ,…, x0

n )  the segment    {(tx0
1 ,tx0

2 ,…,tx0
n )| t ! [0,1]}  belongs to U. Let 

f :U! R  be a function such that  

(6)  
 
F(tx0

1 ,tx0
2 ,…,tx0

n )dt
0

1

! = 0  

for all points   (x0
1 , x0

2 ,…, x0
n )!U . Then F = 0 .  

 
 Proof  If (6) is true, then for any  s! [0,1] ,   (sx0

1 ,sx0
2 ,…,sx0

n )!U , thus,  

(7)  
 
F(tsx0

1 ,tsx0
2 ,…,tsx0

n )dt
0

1

! = 0.  

Differentiating with respect to s  

(8)  !F
!xk

!
"

#
$ tsx0

tsx0
k dt

0

1

% = 0,  

so at s = 1  

(9)  !F
!xk

!
"

#
$ tx0

x0
kt dt

0

1

% = 0.  

On the other hand,  

(10)  

 

d
dt
(tF(tx0

1 ,tx0
2 ,…,tx0

n ))

= F(tx0
1 ,tx0

2 ,…,tx0
n )+ t d

dt
F(tx0

1 ,tx0
2 ,…,tx0

n )

= F(tx0
1 ,tx0

2 ,…,tx0
n )+ !F

!xk
!
"

#
$ tx0

x0
kt.

 

Integrating we have  

(11)  

 

F(x0
1 , x0

2 ,…, x0
n )

= F(tx0
1 ,tx0

2 ,…,tx0
n )dt

0

1

! + !F
!xk

"
#

$
% tx0

x0
kt dt

0

1

!
= 0.

 

 Consider now the local inverse problem of the calculus of variations. 
We wish to find integrability conditions for the system of partial differential 
equations (4) and describe all solutions  !  of this system in an explicit form. 
To characterize locally variational forms, we need the Helmholtz expressions 

 
H! "

q1q2…qk(# )  (Section 4.9, (16) and Remark 14)). Recall that  
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(12)  

 

H!"
q1q2…qk (# ) = !#!

!yq1q2…qk
" $ ($1)k !#"

!yq1q2…qk
!

$ ($1)l k
l( )dpk+1dpk+2…dpl

!#"
!yq1q2…qk pk+1pk+2…pl

!
l=k+1

s

% ,
 

where  k = 0,1,2,…,s , and s is the order or ! .  

 Theorem 13  Let V be an open star-shaped set in the Euclidean space 
Rm , and let !" :V

s # R  be differentiable functions. The following two con-
ditions are equivalent:  
 (a) Equation  

(13)  
  
!" = !!

!y"
+ (#1)l

l=1

s

$ dp1dp2…dpl
!!

!yp1p2…pl
"  

has a solution  ! :V
s ! R .  

 (b) For all  k = 0,1,2,…,s , the function !"  satisfy  

(14)  
 
H!"

q1q2…qk (# ) = 0  

 Proof  1. Suppose that the system (13) has a solution  ! , defined on the 
set V r . Then !  is the Euler-Lagrange form   E! (!)"

! !" 0  of the Lagrangi-
an  ! = !" 0 ; we may suppose without loss of generality that the Helmholtz 
expressions (12) are of order s = 2r . Since the Lagrangian !  and the Vain-
berg-Tonti Lagrangian have the same Euler-Lagrange form (Section 4.9, 
Lemma 8), the Helmholtz expressions satisfy  

(15)  
 

(yq1q2…qk
! H"!

q1q2…qk (# ))! $ %dt
k=0

2r

&0
1

' = 0  

(Section 4.9, Theorem 10) hence, from Lemma 9,  

(16)  
 

yq1q2…qk
! H"!

q1q2…qk (# )
k=0

2r

$ = 0.  

 Since by hypothesis !  is variational, that is, ! = E"  for some Lagrangi-
an ! , then for any ! -projectable vector field ! , !J 2 r"# = !J 2 r"E$ = E!

J2 r"
$  

(Theorem 11) hence the form !J 2 r"#  is also variational. Thus, the Helmholtz 
expressions satisfy for all projectable vector fields ! , 

(17)  
 

yq1q2…qk
! H"!

q1q2…qk (#J 2 r$% )
k=0

2r

& = 0  

We shall show that this condition implies  H!"
q1q2…qk (# ) = 0 .  
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 Consider condition (17) for different choices of the vector field ! . It is 
sufficient to consider ! -vertical vector fields, whose components do not 
depend on y! , that is,  

(18)  ! = !" !
!y"

,  

where !" = !" (xk ) . Then the components of the r-jet prolongation J r!  are  

(19)  
 
! j1 j2… jk

" = !k!"

!x j1 !x j2…!x jk
.   

Writing  ! = !"#
" !# 0  and using properties of the vector field ! , the Lie 

derivative !J 2 r"# , standing in (17), is given by  

(20)  
  
!J 2 r"# = !J 2 s"#$ %&

$ !& 0 =
!#$

!yj1 j2… jk
' " j1 j2… jk

'

k=0

2r

( %&$ !& 0 .  

We denote  

(21)  
 
!" = #J 2 r$" , !"% = !"%

!yj1 j2… jk
& $ j1 j2… jk

&

k=0

2r

' .  

 Choose the vector field !  in the form  

(22)  ! = !
!y"

,  

where !  is any fixed integer. In components,  

(23)  !" =
1, " = # ,
0, " $ # .

%
&
'

('
 

Then the r-jet prolongation J r!  has the components 
 
! j1 j2… jr

" = 0 , and the 
expression 

(24)  J r! = !
!y"

.  

The Lie derivative (20) yields  

(25)  
 
!" = !"#
!y$

%$&# !& 0 =
!"#
!y'

&# !& 0 .  

Thus, for the vector field (22),  
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(26)  !"# = !"#
!y$

.  

The Helmholtz expression  H! "
q1q2…qk( #$ )  for the source form !"  can be writ-

ten as  

(27)  

 

H!"
q1q2…qk ( #$ ) = !

!yq1q2…qk
"

!$!
!y%

& (&1)k !
!yq1q2…qk

!
!$"
!y%

& (&1)l k
l( )dpk+1dpk+2…dpl

!
!yq1q2…qk pk+1pk+2…pl

!
l=k+1

2r

' !$"
!y%

=
!H!"

q1q2…qk ($ )
!y%

,

 

because the differential operators !/ !y!  and dk  commute. Condition (17) 
now implies  

(28)  

 

yq1q2…qk
! H"!

q1q2…qk (#J 2 r$% )
k=0

2r

& = yq1q2…qk
! !H"!

q1q2…qk (% )
!y'k=0

2r

&

=
!(yq1q2…qk

! H"!
q1q2…qk (% ))

!y'k=0

2r

& ( H" ' (% )

= (H" ' (% ) = 0.

 

Consequently, (17) reduces to  

(29)  
 

yq1q2…qk
! H"!

q1q2…qk (# )
k=1

2r

$ = 0.  

Then by Theorem 11 

(30)  
 

yq1q2…qk
! H"!

q1q2…qk (#J 2 r$% )
k=1

2r

& = 0.  

 Now consider equation (17) for the vector field  

(31)  ! = xi !
!y"

,  

where i and !  are fixed integers. In components,  

(32)  !" =
xi , " = # ,
0, " $ # .

%
&
'

('
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Then the r-jet prolongation J r!  has the components  

(33)  

 

! j
" = dj!

" =
1, " = # , j = i,
0, " = # , j $ i,
0, " $ # ,

%

&
'

(
'

! j1 j2… jk
" = 0, k ) 2,  

hence  

(34)  J r! = xi !
!y"

+ !
!yi

" .  

The Lie derivative (20) yields  

(35)  
 
!" = !"#

!y$
%$ + !"#

!yj
$ % jk

$&
'(

)
*+
,# !, 0 =

!"#
!y-

xi + !"#
!yi

-
&
'(

)
*+
,# !, 0 .  

Consequently, using the vector field (31),  

(36)  !"# = !"#
!y$

xi + !"#
!yi

$ .  

The Helmholtz expressions for !"#  become  

(37)  

 

H!"
q1q2…qk ( #$ )

= !
!yq1q2…qk

"
!$!
!y%

xi + !$!
!yi

%
&
'(

)
*+
, (,1)k !

!yq1q2…qk
!

!$"
!y%

xi + !$"
!yi

%
&
'(

)
*+

, (,1)l k
l( )dpk+1dpk+2…dpl

!
!yq1q2…qk pk+1pk+2…pl

!
l=k+1

2r

- !$"
!y%

xi + !$"
!yi

%
&
'(

)
*+

= !
!y%

xi !$!
!yq1q2…qk

" , (,1)k !$"
!yq1q2…qk

!

&
'(

)
*+

&
'(

, (,1)l k
l( )dpk+1dpk+2…dpl

l=k+1

2r

- xi !$"
!yq1q2…qk pk+1pk+2…pl

!

&
'(

)
*+
)
*+

+ !
!yq1q2…qk

"
!$!
!yi

% , (,1)k !
!yq1q2…qk

!
!$"
!yi

%

, (,1)l k
l( )dpk+1dpk+2…dpl

!
!yq1q2…qk pk+1pk+2…pl

!
l=k+1

2r

- !$"
!yi

% .

 

In this expression  
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(38)  

 

dpk+1dpk+2…dpl xi !!"
!yq1q2…qk pk+1pk+2…pl

#

$
%&

'
()

= dpk+2dpk+3…dpl
!!"

!yq1q2…qkipk+2pk+3…pl
#

+ dpk+2dpk+3…dpl xidpk+1
!!"

!yq1q2…qk pk+1pk+2…pl
#

$
%&

'
()
.

 

Note that for any function f , the formal derivative satisfies  

(39)  dp
! f
!yi

! =
!dp f
!yi

! " ! f
!y!

# p
i .  

Applying this rule we find  

(40)  

 

dpk+1dpk+2…dpl
!
!yi

!
!"#

!yq1q2…qk pk+1pk+2…pl
$

=…= !
!yi

! dpk+3dpk+4 …dpldpk+2dpk+1
!"#

!yq1q2…qk pk+1pk+2…pl
$

% (l % k) !
!y!

dpk+2dpk+3…dpl
!"#

!yq1q2…qkipk+2pk+3…pl
$ .

 

Returning to (37)  

(41)  

 

H!"
q1q2…qk ( #$ ) = !

!y%
xi !$!
!yq1q2…qk

" & (&1)k !$"
!yq1q2…qk

!

'
()

*
+,

'
()

& (&1)l k
l( )

l=k+1

2r

- (l & k)dpk+2dpk+3…dpl
!$"

!yq1q2…qkipk+2pk+3…pl
!

'
()

+xidpk+1dpk+2…dpl
!$"

!yq1q2…qk pk+1pk+2…pl
!

*
+,
*
+,

+ !
!yi

%
!$!

!yq1q2…qk
" & (&1)k !$"

!yq1q2…qk
!

'
()

*
+,

& (&1)l k
l( )

l=k+1

2r

- !
!yi

% dpk+1dpk+2dpk+3…dpl
!$"

!yq1q2…qk pk+1pk+2…pl
!

'
()

& (l & k) !
!y%

dpk+2dpk+3…dpl
!$"

!yq1q2…qkipk+2pk+3…pl
!

*
+,
.
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Therefore  

(42)  
 
H!"

q1q2…qk ( #$ ) = xi
!H!"

q1q2…qk ($ )
!y%

+
!H!"

q1q2…qk ($ )
!yi

% .  

Now (17) is expressed as  

(43)  

 

yq1q2…qk
! xi

!H"!
q1q2…qk (# )
!y$

+
!H"!

q1q2…qk (# )
!yi

$

%
&'

(
)*k=1

2r

+

= yq1q2…qk
! xi

!H"!
q1q2…qk (# )
!y$k=1

2r

+ + yq1q2…qk
! !H"!

q1q2…qk (# )
!yi

$
k=1

2r

+

= xi !
!y$

yq1q2…qk
! H"!

q1q2…qk (# )
k=1

2r

+

+ !
!yi

$ (yq1q2…qk
! H"!

q1q2…qk (# ))
k=1

2r

+ , H" $
i (# ) = ,H" $

i (# ) = 0.

 

 The proof can be completed by induction. To this purpose one should 
assume that H!" = 0 , H!"

q1 = 0 , H!"
q1q2 = 0 ,  … ,  H!"

q1q2…qp = 0  for some p 
(induction hypothesis). Then conditions (29) and (30) are replaced with  

(44)  
 

yq1q2…qk
! H"!

q1q2…qk (# )
k= p+1

2r

$ = 0  

and 

(45)  
 

yq1q2…qk
! H"!

q1q2…qk (#J 2 r$% )
k= p+1

2r

& = 0,  

where the vector fields !  are of the form  

(46)  
 

!" =
xk1xk2…x

kp , " = # ,
0, " $ # .

%
&
'

('
 

 2.  We prove that (b) implies (a). Suppose that a system of functions !"  
satisfies conditions (14) and denote by  ! = !"#

" !# 0  the corresponding 
source form. Then the Euler-Lagrange expressions of the Vainberg-Tonti 
Lagrangian  !" = ! "# 0 ,  

(47)  
  
E! (! " ) = "! # (yq1q2…qk

$ H!$
q1q2…qk (" ))! % &dt'

k=0

s

( ,  

reduce to !"  (Section 4.9, Theorem 10). Thus  !" = ! "# 0 .  
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 Remark 18  One can easily prove condition H!" (# ) = 0  (48) in Theo-
rem 13 by means of the integrability criterion for formal divergence equa-
tions (Section 3.2, Theorem 1). Consider the inverse problem equation  

(49)  

  

!" = !!
!y"

# dp1
!!
!yp1

" + dp1dp2
!!
!yp1p2

"

#…+ (#1)r#1dp1dp2…dpr#1
!!

!yp1p2…pr#1
" + (#1)r dp1dp2…dpr

!!
!yp1p2…pr

"

 

and suppose it has a solution  ! . Denoting  

(50)  

  

!"
p1 = !!

!yp1
" + dp2

!!
!yp1p2

" #…+ (#1)r#1dp2dp3…dpr#1
!!

!yp1p2…pr#1
"

+ (#1)r dp2dp3…dpr
!!

!yp1p2…pr
" ,

 

we get the formal divergence equation  

(51)  
 
!" # !!

!y"
= #dp1$"

p1 .  

Since by hypothesis there exists a solution, the integrability condition for 
this equation is satisfied, that is,  

(52)  
 
E! "# $ !!

!y#
%
&'

(
)*
= 0.  

Explicitly, since the derivative di  and the partial derivative !/ !y!  commute,  

(53)  

  

E! "# $ !!
!y#

%
&'

(
)*
= !"#
!y!

$ dp1
!"#
!yp1

! + dp1dp2
!"#
!yp1p2

!

$…+ ($1)r$1dp1dp2…dpr$1
!"#

!yp1p2…pr$1
!

+ ($1)r dp1dp2…dpr
!"#

!yp1p2…pr
! $ !"!

!y#
= 0.

 

Comparing this formula with (12) we see we get exactly H! "(# ) = 0 .  

 We end this section with two remarks on the inverse problem for sys-
tems of differential equations.  

 Remark 19 (Variationality of differential equations)  The concept of 
local variationality can be applied to the systems of partial differential equa-
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tions. Fixing the functions !" , we sometimes say, without aspiration to rig-
our, that the system of partial differential equations  

(54)  
 
!" (x

i , y# , yj1
# , yj1 j2

# ,…, yj1 j2… js
# ) = 0  

is variational, it its left-hand sides coincide with the Euler-Lagrange equa-
tions of some Lagrangian. It is clear, however, that this concept of is not 
well defined; indeed, setting !"# = $%

# "#  with any functions !"
#  such that 

det!"
# $ 0 , we get two equivalent systems !" = 0  and !"# = 0 , but it may 

happen that the first one is variational and the second one is not. If (5) is not 
variational and there exists !"

#  such that the equivalent system !"
# $# = 0  is 

variational, we say that !"
#  are variational integrators for the system (5). It 

should be noted, however, that this terminology is also used in a different 
context of differential equations, expressed in a contravariant form.  

 Remark 20 (Sonin, Helmholtz, Douglas)  The inverse problem of the 
calculus of variations was first considered in 1886 for one second-order or-
dinary differential equation by Sonin (see Sonin [So]; for this reference the 
author is indebted to V.D. Skarzhinski). He proved that every second order 
equation has a Lagrangian. It should be pointed out that in this paper the var-
iational multiplier, in contemporary terminology, was used as a natural fac-
tor ensuring covariance of the considered equation. The variationality of 
systems of second-order ordinary differential equations, expressed in the co-
variant form, was studied by Helmholtz in 1887 and subsequently by many 
followers (Helmholtz [He]; see also Havas [H], where further references can 
be found). The systems of second-order ordinary differential equations, 
solved with respect to the second derivatives, were considered by Douglas in 
1940 with the techniques of variational multipliers (see Douglas [Do], and 
e.g. Anderson and Thompson [AT], Bucataru [Bu], Crampin [Cr], Sarlet, 
Crampin and Martinez [SCM]). 

4.11  Local variationality of second‐order source forms 

 In this section we shall primarily be concerned with the second-order 
source forms and second-order systems of partial differential equations. The 
aim is to present a solution of the inverse problem of the calculus of varia-
tions for this class of source forms entirely by means of the theory of Lepage 
forms (Section 4.10, Theorem 12), and elementary integration theory of ex-
terior differential systems. 
 Suppose we are given a second-order source form !  on  W

2 ! J 2Y , 
expressed in a fibred chart (V ,! ) , ! = (xi , y" ) , as 

(1)   ! = !"#
" !# 0 .  

Consider the system of partial differential equations  
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(2)  
 

!!
!y!

" dp
!!
!yp

! + dpdq
!!
!ypq

! = #!  

for an unknown Lagrangian  !  of order 2. Clearly the left-hand sides of the-
se equations are exactly the Euler-Lagrange expressions  E! (!)  of the La-
grangian  ! . The problem we consider is twofold: (a) to find the variation-
ality (integrability) conditions for ! , ensuring existence of a solution  ! , 
and (b) to find all solutions provided the integrability conditions are satis-
fied.  
 The following theorem, following from the theory of the Vainberg-
Tonti Lagrangians, states that a second order variational source form always 
admits a first order Lagrangian; it seems that this extension of the well-
known statement of the calculus of variations of simple integrals to the gen-
eral multiple-integral problems in new. Note that the result restricts the class 
of locally variational forms to the source forms, depending on the second 
derivative variables linearly.  

 Theorem 14  If a second-order source form ! , defined on  W
2 ! J 2Y , 

is locally variational, then for every point  y!W  there exists a fibred chart 
(V ,! ) , ! = (xi , y" ) , at y and a first order Lagrangian  !0 = ! 0" 0 , defined 
on V 1 , such that  

(3)   E! (! 0 ) = "! .  

 Proof  If !  is variational, then by hypothesis the form  !"#
" !# i  has a 

second-order Lagrangian  ! = !" 0  (the Vainberg-Tonti Lagrangian). The 
Euler-Lagrange form associated with !  is then given by  

(4)    E! = E" (!)#
" !# 0 ,  

where 

(5)  
  
!" = E" (!) =

!!
!y"

# di
!!
!yi

" + did j
!!
!yij

" .  

One can find an explicit formula for the Euler-Lagrange expression (5); this 
expression does not depend on yijk

!  and yijkl
! . Introducing (for this proof) the 

cut formal derivative of a function f = f (xi , y! , yj
! , yjk

! )  as the function  

(6)  
 
!dj f =

! f
!x j

+ ! f
!y"

yj
" + ! f

!yi
" yij

"  

(see Section 3.1), we easily find  
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(7)  

 

E! (!) =
!!
!y!

" #di
!!
!yi

! + #di #dj
!!
!yij

! + 2 #di
!2!
!yij

! !ykl
$ yklj

$

+ !2!
!yj

$ !ykl
! " !2!

!yj
! !ykl

$

%
&'

(
)*
yklj
$ + !3!

!yij
! !ykl

$ !ypq
+ ypqi

+ yklj
$

+ !2!
!yij

! !ykl
$ yklij

$ .

 

However, this function does not depend on yklj
!  and yklij

! . Hence  !  must 
satisfy, among others,  

(8)  
 

!2!
!yij

! !ykl
" = 0 Sym(klij).  

But this condition implies  

(9)  
 

!2!
!yij

! !ykl
! + !2!

!yil
! !yjk

! + !2!
!yik

! !yjl
! = 0,  

then, for any two fixed indices i, j,  

(10)  
 

!2!
!yij

! !yii
! = 0, !2!

!yij
! !yii

! = 0, !2!
!yij

! !yij
! + 2 !2!

!yii
! !yjj

! = 0,  

hence, differentiating,  

(11)  
 

!3!
!yij

! !yij
! !yij

! = 0, !3!
!yij

! !yii
! !yjj

! = 0.  

In particular,  !  must be a polynomial function of yjj
! , quadratic in each of 

the variables yjj
! . We can write  

(12)  
 
! = ! 0 + ! p

p!1
" ,  

where 
 
! 0 = ! 0 (x

k , y! , yj
! )  is a function independent of yij

!  and 
 
! p  is a 

homogeneous polynomial of degree p,  

(13)  
  
! p = P!1

i1 j1
! 2
i2 j2…! p

ip jp yi1 j1
!1 yi2 j2

! 2 …yip jp
! p .  

Substituting from this formula into (7),  
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(14)  

 

E! (!) =
!! 0

!y!
" #di

!! 0

!yi
!

+
!! p

!y!
" #di

!! p

!yi
! + #di #dj

!! p

!yij
! + 2 #di

!2! p

!yij
! !ykl

$ yklj
$%

&'p(1
)

+
!2! p

!yj
$ !ykl

! "
!2! p

!yj
! !ykl

$

%
&'

*
+,
yklj
$ +

!3! p

!yij
! !ykl

$ !ypq
- ypqi

- yklj
$ +

!2! p

!yij
! !ykl

$ yklij
$ *
+,
.

 

But the left-hand side does not depend on yijk
!  and yijkl

! , so setting yijk
! = 0  

and yijkl
! = 0  we get  

(15)  
 
E! (!) = E! (! 0 ) =

!! 0

!y!
" #di

!! 0

!yi
! .  

Replacing the cut formal derivative !di  with di , this formula shows that the 
Euler-Lagrange expressions  E! (! 0 )  of the first order Lagrangian 
 !0 = ! 0" 0  coincide with the components !"  of the source form ! . This 
proves Theorem 14.  

 Corollary 1  Suppose that a second-order source form  ! = !"#
" !# i  is 

variational. Then the components !"  depend linearly on the second deriva-
tive variables yij

! , that is  

(16)  !" = A" + B"#
ij yij

# ,  

where the functions A!  and B!"
ij  do not depend on the variables yij

! .  

 Now we wish to find a criterion for a second-order source form !  (1) to 
be locally variational. As a main tool in the proof we use the concept of a 
Lepage form and the basic theorem on locally variational source forms (Sec-
tion 4.10, Theorem 12).  

 Theorem 15 (Local variationality of source forms)  Let  ! !"n+1,Y
2 W  

be a source form. The following two conditions are equivalent:  
 (a) !  is locally variational.  
 (b)  For every point  y!W  there exist an integer r and a fibred chart 
(V ,! ) , ! = (xi , y" ) , at y, such that  ! = !"#

" !# 0 , and the components !"  
satisfy  

(17)  

!!"
!yij

# $ !!#
!yij

" = 0, !!"
!yj

# + !!#
!yj

" $ di
!!"
!yij

# + !!#
!yij

"

%
&'

(
)*
= 0,

!!"
!y#

$ !!#
!y"

$ 1
2
dj

!!"
!yj

# $ !!#
!yj

"

%
&'

(
)*
= 0.
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 (c)  For every point  y!W  there exist an integer r, a fibred chart 
(V ,! ) , ! = (xi , y" ) , at y and a form  F !!n+1

r V  of order of contactness ! 2  
such that on V r   

(18)  d(! + F) = 0.  

 Proof  1. If (a) holds, then (b) is obtained by a direct calculation. In-
deed, suppose that  !" = E" (!)  are the Euler-Lagrange expressions of a first 
order Lagrangian  ! = !" 0 ; then  

(19)  
 
E! (!) =

!!
!y!

" !2!
!xi !yi

! " !2!
!y# !yi

! yi
# " !2!
!yi

# !yj
! yij

# .   

Differentiating we have  

(20)  

 

!!"
!ypq

# = $ 1
2

!2!
!yp

% !yq
" + !2!

!yq
% !yp

"

&
'(

)
*+
,

!!"
!yq

# = !2!
!y" !yq

# $ ds
!2!
!yq

# !ys
" $ !2!

!y# !yq
" ,

!!"
!y#

= !2!
!y# !y"

$ ds
!2!
!y# !ys

" ,

 

from which we get  

(21)  

 

!!"
!ypq

# $ !!#
!ypq

" = $ 1
2

!2!
!yp

# !yq
" + !2!

!yq
# !yp

"

%
&'

(
)*

+ 1
2

!2!
!yp

" !yq
# +

!2!
!yq

" !yp
#

%
&'

(
)*
= 0,

 

and  

(22)  

 

!!"
!yq

# + !!#
!yq

" $ 2dp
!!#
!yqp

"

= !2!
!y" !yq

# $ ds
!2!
!yq

# !ys
" $ !2!

!y# !yq
" + !2!

!y# !yq
"

$ ds
!2!
!yq

" !ys
# $

!2!
!y" !yq

# + dp
!2!
!yp

" !yq
# +

!2!
!yq

" !yp
#

%
&'

(
)*
= 0,

 

and  
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(23)  

 

!!"
!y#

$ !!#
!y"

+ dp
!!#
!yp

" $ dpdq
!!#
!ypq

"

= !2!
!y# !y"

$ ds
!2!
!y# !ys

" $ !2!
!y# !y"

+ ds
!2!
!y" !ys

#

+ dq
!2!
!y# !yq

" $ dqds
!2!
!yq

" !ys
# $ dq

!2!
!y" !yq

#

+ 1
2
dpdq

!2!
!yp

" !yq
# +

!2!
!yq

" !yp
#

%
&'

(
)*
= 0.

 

 2.  Suppose that the components  !" = E" (!)  of the Euler-Lagrange 
expressions of  ! = !" 0  satisfy condition (b). Setting  

(24)  
 
F = ! 1

4
!"#
!yi

$ ! !"$
!yi

#
%
&'

(
)*
+$ + !"#

!yij
$ + j

$%
&'

(
)*
!+# !+ i ,  

we get by a straightforward calculation, using the canonical decomposition 
of forms into their horizontal and contact components and the identities 
 d!

" = #! l
" !dxl , 

 
d! j

" = #! jl
" !dxl , and  dx

l !! i = " i
l! 0 ,  

(25)  

 

dF = ! 1
4
d !"#
!yi

$ ! !"$
!yi

#
%
&'

(
)*
!+$ !+# !+ i

! 1
4
!"#
!yi

$ ! !"$
!yi

#
%
&'

(
)*
d+$ !+# !+ i

! d !"#
!yij

$ !+ j
$ !+# !+ i !

!"#
!yij

$ d+ j
$ !+# !+ i

+ 1
4
!"#
!yi

$ ! !"$
!yi

#
%
&'

(
)*
+$ + !"#

!yij
$ + j

$%
&'

(
)*
!d+# !+ i

= ! 1
4
di
!"#
!yi

$ ! !"$
!yi

#
%
&'

(
)*
+$ !+# !+ 0

+ 1
2
!"$
!yi

# ! !"#
!yi

$
%
&'

(
)*
! dj

!"#
!yij

$

%
&'

(
)*
+ i

$ !+# !+ 0

! !"#
!yij

$ + ij
$ !+# !+ 0 !

!"#
!yij

$ + j
$ !+ i

# !+ 0

! 1
4
pd !"#

!yi
$ ! !"$

!yi
#

%
&'

(
)*
!+$ !+# !+ i ! pd

!"#
!yij

$ !+ j
$ !+# !+ i .
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Consequently, since  

(26)  
 
d! = !!"

!y#
$# + !!"

!yi
# $ i

# + !!"
!yij

# $ ij
#%

&'
(
)*
!$" !$ 0 ,  

the exterior derivative d(! + F)  is expressed as  

(27)  

 

d(! + F) = 1
4
!!"
!y#

$ !!#
!y"

$ 1
2
di
!!"
!yi

# $ !!#
!yi

"
%
&'

(
)*

%
&'

(
)*
+# !+" !+ 0

+ 1
2
!!"
!yi

# + !!#
!yi

"
%
&'

(
)*
$ dj

!!"
!yij

#

%
&'

(
)*
+ i

# !+" !+ 0

$ 1
2
!!"
!yij

# $ !!#
!yij

"

%
&'

(
)*
+ j

# !+ i
" !+ 0

$ 1
4
pd !!"

!yi
# $ !!#

!yi
"

%
&'

(
)*
!+# !+" !+ i $ pd

!!"
!yij

# !+ j
# !+" !+ i .

 

Thus, by hypothesis (b),  

(28)  

 

d(! + F) = " 1
4
pd !!#

!yi
$ " !!$

!yi
#

%
&'

(
)*
!+$ !+# !+ i

" pd !!#
!yij

$ !+ j
$ !+# !+ i .

 

 2.  Suppose that the functions !"  satisfy condition (b). Substituting 
from (17) to d!  we have  

(29)  

 

d! = 1
4
dj

!!"
!yj

# $ !!#
!yj

"

%
&'

(
)*
+# + 1

2
dj

!!"
!yij

# + !!#
!yij

"

%
&'

(
)*
+ i

#%
&'

+ 1
2
!!"
!yi

# $ !!#
!yi

"
%
&'

(
)*
+ i

# + 1
2
!!"
!yij

# + !!#
!yij

"

%
&'

(
)*
+ ij

# (
)*
!+" !+ 0

= 1
4
dj

!!"
!yj

# $ !!#
!yj

"

%
&'

(
)*
+# + 1

2
dj

!!"
!yij

# + !!#
!yij

"

%
&'

(
)*
+ !!"
!yi

# $ !!#
!yi

"

%
&'

(
)*
+ i

#%
&'

+ 1
2
!!"
!yij

# + !!#
!yij

"

%
&'

(
)*
+ ij

# (
)*
!+" !+ 0 .

 

On the other hand, we can recognize in formula (29) some terms in the form 
of an exterior derivative. Observe that  
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(30)  

 

p2d
!!"
!yij

# + !!#
!yij

"

$
%&

'
()
* i

# !*" !* j

$
%&

'
()
= dj

!!"
!yij

# + !!#
!yij

"

$
%&

'
()
* i

# !*" !* 0

+ !!"
!yij

# + !!#
!yij

"

$
%&

'
()
d* i

# !*" !* j +
!!"
!yij

# + !!#
!yij

"

$
%&

'
()
* i

# !d*" !* j

= dj
!!"
!yij

# + !!#
!yij

"

$
%&

'
()
* i

# !*" !* 0

= dj
!!"
!yij

# + !!#
!yij

"

$
%&

'
()
* i

# + !!"
!yij

# + !!#
!yij

"

$
%&

'
()
* ij

#$
%&

'
()
!*" !* 0 ,

 

and  

(31)  

 

p2d
!!"
!yi

# $ !!#
!yi

"
%
&'

(
)*
+# !+" !+ i

%
&'

(
)*

= di
!!"
!yi

# $ !!#
!yi

"
%
&'

(
)*
+# + 2 !!"

!yi
# $ !!#

!yi
"

%
&'

(
)*
+ i

#%
&'

(
)*
!+" !+ 0 .

 

Thus, d!  is expressible as  

(32)  

 

d! = 1
4
p2d

!!"
!yi

# $ !!#
!yi

"
%
&'

(
)*
+# !+" !+ i

%
&'

(
)*

+ 1
2
p2d

!!"
!yij

# + !!#
!yij

"

%
&'

(
)*
+ i

# !+" !+ j

%
&'

(
)*
.
 

Setting  

(33)  
 
F = ! 1

2
1
2
!"#
!yi

$ ! !"$
!yi

#
%
&'

(
)*
+$ ! !"#

!yij
$ + !"$

!yij
#

%
&'

(
)*
+ i

$%
&'

(
)*
!+# !+ j  

and ! = " + F  we get assertion (c).  
 3.  To show that condition (c) implies (a) we can repeat the proof of 
Theorem 12 for source forms of order 2. Suppose that for some fibred chart 
(V ,! ) , ! = (xi , y" ) , on the fibred manifold Y condition d(! + F) = 0  holds 
on V 2 . Integrating we get ! + F = d"  for some n-form ! . But since 
! = p1d" , the form !  is a Lepage form, therefore, so !  must be a locally 
variational form whose Lagrangian is h! .  

 Remark 21  In the proof of Theorem 15 we have assigned to a second-
order source form  ! = !"#

" !# 0  the form ! = " + F , defined by the re-
quirement d! = 0 . The solution 
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(34)  

 

! = "#$
# !$ 0

% 1
2
1
2
!"#
!yi

& % !"&
!yi

#
'
()

*
+,
$& % !"#

!yij
& + !"&

!yij
#

'
()

*
+,
$ i

&'
()

*
+,
!$# !$ j

 

extends the source form by a form of order of contactness ! 2 . This con-
struction, involving the exterior derivative operator, is closely related to the 
variationality of the form ! , and can be considered as a motivation for pos-
sible generalizations of the geometric theory of Lepage differential n-forms 
to (n +1) -forms and differential forms of higher degree (cf. Krupka, 
Krupková and Saunders [KKS2]). This notable construction also indicates 
the possibility to interpret a source forms an interpretation as a class of 
forms modulo contact forms; this idea has been developed by the theory of 
variational sequences (Krupka [K19]).  

 Theorem 16 (First order Lepage forms)  Let  ! !"n
1V  be an n-form. 

The following two conditions are equivalent:  
 (a)  ! !"n

1V  is a Lepage form.  
 (b) There exists a first order Lagrangian  ! !"n,X

1 V , an n-form !  of 
order of contactness ! 2  and a contact (n !1) -form ! , such that  

(35)  ! ="# +$ + d% .   

 Proof  1. Let (V ,! ) , ! = (xi , y" ) , be a fibred chart on Y, and let !  be a 
first order Lepage form, defined on the set V 1 . Then the form ! = p1d"  is a 
second-order Euler-Lagrange form, defined on V 2 , associated to the second-
order Lagrangian h!  – the horizontal component of ! . On the other hand, 
it follows from Theorem 14 that !  has a first order Lagrangian ! ; denoting 
by !"  the principal Lepage equivalent of ! , we have ! = p1d"#  hence  

(36)  p1d! = p1d"# .  

Consequently, p1d(! "#$ ) = 0  and by the theorem on the kernel of the Eu-
ler-Lagrange mapping (Section 4.8, Theorem 9, (c)), there exists an (n !1) -
form µ , defined on V 1 , such that h(! "#$ ) = hdµ  hence  

(37)  ! "#$ =% + dµ  

for some contact form !  such that p1d! = 0 . Therefore, !  satisfies two 
conditions  

(38)  h! = 0, p1d! = 0.  

The first one implies that  ! ="# !$# + d"# !%#  for some forms !"  and 
!"  (Section 2.3, Theorem 7, (b). We can also write   

(39)   ! ="# ! ($# + d%# )+ d("
# !%# )  
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for some forms !"  and !" . Setting !" = #" + d$" , the second condition 
(38) implies  

(40)   p1d! = "# l
$ !dxl !h%$ "#$ !hd%$ = 0.  

We want to show that this condition implies h!" = 0 . Indeed, for any ! 2,0 -
vertical vector field  

(41)  ! = !i
" !
!yi

" +!ij
" !
!yij

"  

condition (41) yields  !l
"dxl !h#" = 0 . Writing h!" = A"

i# i , this condition 
implies  !l

"A"
i dxl !# i = !l

"A"
l# 0 = 0  hence A!

l = 0 . Thus h!" = 0 . Substi-
tuting from this result to (40) and (38) we see that assertion (a) implies (b).  
 2.  The converse is obvious.  
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