
5  Invariant variational structures 

 Let X be any manifold, W an open set in X, and let ! :W " X  be a 
smooth mapping. A differential form ! , defined on the set ! (W )  in X, is 
said to be invariant with respect to ! , if the transformed form ! *"  co-
incides with ! , that is, if ! *" = "  on the set  W !! (W ) ; in this case we 
also say that !  is an invariance transformation of ! . A vector field, 
whose local one-parameter group consists of invariance transformations of 
! , is called the generator of invariance transformations.  
 These definitions can naturally be extended to variational structures 
(Y ,!)  and to the integral variational functionals associated with them. Our 
objective in this section is to study invariance properties of the form !  
and other differential forms, associated with ! , the Lagrangian ! , and 
the Euler-Lagrange form E! . The class of transformations we consider are 
automorphisms of fibred manifolds and their jet prolongations. This part 
of the variational theory represents a notable extension of the classical co-
ordinate concepts and methods to topologically non-trivial fibred mani-
folds that cannot be covered by a single chart. The geometric coordinate-
free structure of the infinitesimal first variation formula leads in several 
consequences, such as the geometric invariance criteria of the Lagrangians 
and the Euler-Lagrange forms, a global theorem on the conservation law 
equations, and the relationship between extremals and conservation laws. 
Resuming we can say that these results as a whole represent an extension 
of the classical Noether’s theory to higher-order variational functionals on 
fibred manifolds (Noether [N]).   
 In this chapter we basically follow Trautman’s formulation of the in-
variance theory based on the geometric understanding of the topic (Tra-
utman [Tr1], [Tr2]). The concept of the jet prolongation of a vector field 
and its meaning for the geometric notion of a variation for invariance theo-
ry was discussed in Krupka [K6], [K1]. The fundamentals of the invari-
ance theory for differential equations and the calculus of variations in Eu-
clidean spaces developed along the classical lines can be found in Olver 
[O1]; however, in this work the Trautman’s approach using geometric 
characteristics of the underlying transformations such as the the Lie deriv-
atives, is not included. A complete treatment of the work of Noether on 
invariant variational principles is presented, also within the classical local 
framework, by Kosmann-Schwarzbach [K-S].  
 In this chapter we follow our previous notations. Throughout, Y is a 
fixed fibred manifold with base X and projection ! . We set dim X = n , 
dimY = n + m . J rY  denotes the r-jet prolongation of Y, and ! r ,s  and ! r  
are the canonical jet projections. For any set  W !Y  the set (! r ,0 )"1(W )  is 
denoted by W r . !q

rW denotes the module of q-forms defined on W r , 
!q,Y

r W  is the submodule of ! r ,0 -horizontal forms, and !rW  is the exte-
rior algebra of differential forms on W r . We use the horizontalization 
morphism of exterior algebras h :!rW "!r+1W . The r-jet prolongation 
of a morphism !  of the fibred manifold Y is denoted by J r! . Analo-
gously, the r-jet prolongation of a ! -projectable vector field is denoted by 
J r! . 
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5.1  Invariant differential forms 

 We present in this section some elementary remarks on the invariance of 
differential forms on smooth manifolds under diffeomorphisms. We prove 
two standard lemmas that are permanently used in the theory of invariant 
variational structures.  
 Let X be a smooth manifold, W an open set in X and ! :W " X  a dif-
feomorphism. Let !  be a p-form on X. We say that !  is invariant with re-
spect to ! , if its pull-back ! *"  coincides with ! ,  

(1)  ! *" = ".  

A diffeomorphism ! , satisfying condition (1), is called the invariance 
transformation of ! .  
 These definitions immediately transfer to vector fields. Let !  be a vec-
tor field on X, !"  its flow, and ! t

"  its local 1-parameter groups, defined by 
the condition ! t

" (x) =!" (t, x) , where the points (t, x)  belong to the domain 
of definition of !" . We say that !  is the generator of invariance transfor-
mations of ! , if its local 1-parameter groups are invariance transformations 
of ! , that is,  

(2)  (! t
" )*#(x) = #(x)  

for all points (t, x)  from the domain of !" .  

 Lemma 1  For every point (t, x)  from the domain of definition of the 
flow of the vector field ! ,  

(3)  d
dt
(! t

" )*#(x) = ((! t
" )*$" #)(x).  

 Proof  Let (t, x0 )  be a point from the domain of !" . Choose tangent 
vectors 

  !1,!2 ,…,! p !Tx0X  and consider the value of the form (! t
" )*#(x0 )  

on these tangent vectors. This gives rise to a real-valued function 

 
t! ((" t

# )*$)(x0 )(#1,#2 ,…,# p ) . Differentiating this function at a point t0 , 
we have  

(4)  

 

d
dt
((! t

" )*#)(x0 )("1,"2 ,…," p )
$
%

&
' t0

= d
ds
((! t0+s

" )*#)(x0 )("1,"2 ,…," p )
$
%

&
' 0
.
 

But the flow satisfies the condition 
 
! t0+s

" =! s
" !! t0

"  so we have  
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(5)  

 

d
dt
((! t

" )*#)(x0 )("1,"2 ,…," p )
$
%

&
' t0

= d
ds
((! t0

" )*(! s
" )*#)(x0 )("1,"2 ,…," p )

$
%

&
' 0

= d
ds
((! s

" )*#)(! t0
" (x0 ))(T! t0

" ("1,T! t0
" ("2 ,…,T! t0

" (" p )
$
%

&
' 0

= )" #(! t0
" (x0 )(T! t0

" ("1,T! t0
" ("2 ,…,T! t0

" (" p )

= ((! s
" )*)" #)(x0 )("1,"2 ,…," p ).

 

This is formula (3).  

 Lemma 2 (Invariance lemma)  Let !  be a vector field on X, and let !  
be a p-form on X. The following two conditions are equivalent:  
 (a) !  generates invariance transformations of ! .  
 (b) The Lie derivative of !  by !  vanishes,  

(6)  !" # = 0.  

 Proof  1. If !  generates invariance transformations of ! , then we dif-
ferentiate both sides of equation (2) with respect to t at t = 0  and obtain 
formula (6).  
 2.  If condition (6) is satisfied, then by Lemma 1,  

(7)  d
dt
((! t

" )*#)(x) = 0  

on the domain of the flow !" . Thus, the curve t! ((" t
# )*$)(x)  is inde-

pendent of t, and since its domain is connected, its value is constant and 
must be equal to ((! 0

" )*#)(x) = #(x) . This proves condition (2).  

5.2  Invariant Lagrangians and conservation equations  

 Let W be an open set in Y, let !  be a Lagrangian of order r for Y, de-
fined on  W

r ! J rY . Consider an automorphism ! :W "Y  of Y, and its r-jet 
prolongation J r! :W r " J rY . We say that !  is an invariance transfor-
mation of !  if J r! *" = " . The generator of invariance transformations of 
!  is a ! -projectable vector field on Y whose local one-parameter group 
consists of invariance transformations of ! .  
 In the following lemma we use fibred charts (V ,! ) , ! = (xi , y" ) , and 
our standard multi-index notation. Recall that the contact 1-forms ! J

" , local-
ly generating the contact ideal, are the 1-forms, defined by the formula 
! J

" = dyJ
" # yJj

"dx j  (Section 2.1, Theorem 1).  
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 Lemma 3  Suppose we have a vector field !  on J rY . The following 
two conditions are equivalent:  
 (a) For every fibred chart (V ,! ) , ! = (xi , y" ) , on Y, every ! , and 
every multi-index J such that 0 ! | J | ! r "1 , the form !"# J

$  is a contact 
form.  
 (b) There exists a ! -projectable vector field !  such that ! = J r" .  
 Proof  Write ! J

" = dyJ
" # yJj

" dx j  and  

(1)  ! = " i !
!xi

+! I
# !
!yI

# .  

Then  

(2)  

 

!"# J
$ = i"d# J

$ + di"# J
$ = %i" (dyJj

$ !dx j )+ di" (dyJ
$ % yJl

$ dxl )

= %" Jj
$ dx j +& jdyJj

$ + d(" J
$ % yJl

$ & l )

= %" Jj
$ dx j +& jdyJj

$ + d" J
$ %& ldyJl

$ % yJl
$ d& l

= %" Jj
$ dx j + d" J

$ % yJl
$ d& l

= (%" Jj
$ + dj" J

$ % yJl
$ dj&

l )dx j + !" J
$

!yK
' #K

' ,

 

and our assertion follows from Section 1.7, Lemma 8.  

 Lemma 4  Let !  be a Lagrangian of order r for Y.  
 (a) A ! -projectable vector field !  on Y generates invariance trans-
formations of !  if and only if  

(3)  !J r"# = 0.  

 (b) Generators of invariance transformations of !  constitute a subal-
gebra of the algebra of vector fields on J rY .  

 Proof  (a) This is a trivial consequence of definitions.  
 (b) Any two generators satisfy [J r!1, J

r!2 ] = J
r[!1,!2 ]  (Section 1.7, 

Lemma 11). Then, however,  

(4)  !J r ["1,"2 ]# = ![J r"1,J r"2 ]# = !J r"1!J r"2 # $ !J r"2 !J r"1# = 0.  

 We keep terminology used by Trautman [T1], [T2] and call equation 
(3), the Noether equation. This equation represents a relation between the 
Lagrangian !  and the generator !  of invariance transformation. Given ! , 
we can use the Noether equation to determine the generators ! . On the oth-
er hand, given a Lie algebra of ! -projectable vector fields ! , one can use 
the corresponding Noether equations to determine invariant Lagrangians ! .  
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  Theorem 1  Suppose that a Lagrangian !  is invariant with respect to 
a ! -projectable vector field ! . Then for any Lepage equivalent !  of !  

(5)  hiJr!d" + hdiJr!" = 0,  

or, which is the same,  

(6)  J r! * iJ r"d# + dJ r! * iJ r"# = 0  

for every section !  of Y.  
 Proof  From Section 4.6, Theorem 7,  

(7)  h!J r" # = !J r+1"h# = !J r+1"$ = hiJr"d# + hdiJr"#  

which implies (5).  

 Remark 1  According to Section 4.3, Theorem 3, condition (5) reduces 
locally to  

(8)  hiJr!d"# + hdiJr!"# = 0,  

where !"  is the principal Lepage equivalent of the Lagrangian form ! .  

 By a conserved current for a section  ! !"#($ )  we mean any (n !1) -
form  !!"n

rW  such that  

(9)  dJ s! *" = 0.  

We call formula (9) the conservation law equation; it is also called a conser-
vation law for the section ! .  
 The following assertion says that extremals of invariant Lagrangians 
satisfy, in addition to the Euler-Lagrange equations, also some other condi-
tions, expressed by the conservation law equations.  

  Theorem 2 (First theorem of Emmy Noether)  Let  ! !"n,X
r W  be a 

Lagrangian, !  a Lepage equivalent of !  defined on J sY , and let !  be an 
extremal. Then for every generator !  of invariance transformations of !   

(10)  dJ s! * iJ s"# = 0.  

 Proof  The proof is based on the first variation formula (Section 4.6, 
Theorem 7, (c)), and is trivial. Indeed, we have  

(11)  J r! *"J r#$ = J s! * iJ s#d% + dJ s! * iJ s#%,  

and since the left-hand side vanishes, by invariance, and the first summand 
on the right-hand side also vanishes, because !  is an extremal, we get for-
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mula (10) as required.  

 Note that (global) condition (10) can also be written in a different way, 
by means of locally defined principal Lepage equivalents !"  of the Lagran-
gian ! . From the structure theorem on Lepage forms we know that, locally, 
! ="# + d$ + µ , where !  is a contact form, and µ  is a contact form of or-
der of contactness ! 2 . Then dJ s! * iJ s"# = dJ s! *(iJ s"$% + iJ s"d& + iJ s"µ) . 
But the form iJ s!µ  is contact; moreover, iJ s!d" = !J s!" # diJ s!" , from which 
we deduce that 

(12)  J s! * iJ s"µ = 0, dJ s! * iJ s"d# = dJ s! *!J s"# $ dJ s! *diJ s"# = 0.  

Consequently, under the hypothesis of Theorem 1, condition  

(13)  dJ s! * iJ s"#$ = 0  

holds over coordinate neighbourhoods of fibred charts on Y.  
 One can also use invariance of variational functionals in a different way. 
Namely, the infinitesimal first variation formula shows that the property of a 
Lagrangian to be invariant reduces the number of the Euler-Lagrange equa-
tions.  

  Theorem 3  If !  is invariant, !  is a Lepage equivalent of ! , and !  a 
section satisfying the conservation law equation  

(14)  dJ r! * iJ r"# = 0,  

then for any fibred chart (V ,! ) , ! = (xi , y" ) , the associated Euler-
Lagrange expressions are linearly dependent along ! .  
 Proof  The infinitesimal first variation formula gives  

(15)  J r! * iJ r"d# = J r! * iJ r"p1d# = J r! * iJ r"Eh# = 0.  

Consequently, in the chart (V ,! ) , ! = (xi , y" ) , for the given vector field ! , 
the Euler-Lagrange expressions of the Lagrangian ! = h"  satisfy (15) and 
are linearly dependent along ! .  

 Example (Conservation law equations)  In the following example we 
consider the product fibred manifold Y = X !Rm . Denote by y!  the canoni-
cal coordinates on Rm , and by xi , y!  some coordinates on Y. Consider the 
translation vector fields  

(16)  !" =
!
!y"

.  

One can easily determine the r-jet prolongations of these vertical vector 
fields. We get  
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(17)  J r!" =
!
!y"

.  

Invariance conditions for a Lagrangian  ! = !" 0  are !J r"#
$ = iJ r"#

d$ = 0 , 
that is,  

(18)  
 

!!
!y!

= 0 .  

In classical variational calculus condition (18) is sometimes called the Routh 
condition. The principal Lepage equivalent is  

(19)  
   
!! = !" 0 + (#1)l

l=0

r#1#k

$ dp1dp2…dpl
!!

!yj1 j2… jk p1p2…pli
%

&
'(

)
*+k=0

r#1

$ " j1 j2… jk
% !" i ,  

and its contraction by J r!"  is  

(20)  
  
iJ r+1!"#$

= (%1)l
l=0

r%1

& dp1dp2…dpl
!!

!yp1p2…pli
' ( i .  

Therefore, the invariance condition J r+1! *E" (#)$ 0 + dJ
r+1! * iJ r+1%&#'

= 0  
reduces to  

(21)  
  
E! (")# (#1)l

l=0

r#1

$ didp1dp2…dpl
!!

!yp1p2…pli
! = 0.  

In particular, if !  satisfies the conservation law equation  

(22)  
  
(!1)l

l=0

r!1

" didp1dp2…dpl
!!

!yp1p2…pli
# = 0,  

it also solves the Euler-Lagrange equation  

(23)   E! (")! J
r+1# = 0.  

 In particular, if !  is invariant with respect to all translation vector fields 
!" , then the system of the Euler-Lagrange equations is equivalent with the 
system of the conservation law equations.  

 Remark 2  It should be pointed out that in general, the principal Lepage 
equivalent !" , considered as a form depending on the Lagrangian ! , does 
not satisfy the invariance condition !J r"#$ =#!

Jr"
$ .  

 Remark 3  The geometric structure of the first Noether’s theorem may 
be explained as follows. Let Y be any manifold, !  a differential form on Y. 
If !  is a vector field on Y. such that the Lie derivative !" #  vanishes, 
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!" # = 0 , then by the Cartan’s formula, !  and !  satisfy i!d" + di! " = 0 . 
Then for any mapping f :X!Y  satisfying the “Euler-Lagrange equation” 
f * i!d" = 0 , the identity f * i!d" + df * i! " = 0  yields the “conservation law 

equation” df * i! " = 0 .  

 Remark 4 (Invariance with respect to a Lie group action) The first 
theorem of Emmy Noether as explained in Theorem 2 is concerned with var-
iational integrals, invariant with respect to 1-parameter groups of automor-
phisms of underlying manifolds Y. Clearly, the same theorem applies to in-
variance with respect to group actions of (finite-dimensional) Lie groups G 
on Y. The corresponding conservation law equations dJ s! * iJ s"# = 0  (14) 
represent a system, in which the vector fields !  are fundamental vector 
fields, defined by the Lie algebra of G. Thus, we get the system of k equa-
tions on J sY , where k is the dimension of G.  

 Remark 5 (Second theorem of Emmy Noether) Some variational 
functionals admit broad classes of invariance transformations that cannot be 
characterized as Lie group actions. These transformations depend rather on 
arbitrary functions than on finite number of real parameters. Consequences 
of invariance of this kind are known as the second Noether’s theorem (cf. 
Olver [O1], where the systems possessing the second Noether’s theorem are 
characterized as abnormal). However, also this type of invariance can some-
times be understood as invariance with respect to a (finite-dimensional) Lie 
group; namely, this situation arises when the given Lagrangian is a differen-
tial invariant (Krupka and Trautman [KT] and Krupka [K10]; see also Chap-
ter 6 of this book).  

5.3  Invariant Euler‐Lagrange forms  

 Let ! :W "Y  be an automorphism of Y, and let !  be a source form on 
J sY . We say that !  is an invariance transformation of ! , if J s! *" = " . 
The generator of invariance transformations of !  is a ! -projectable vector 
field on Y whose local one-parameter group consists of invariance transfor-
mations of ! .  

 Lemma 5 (Noether-Bessel-Hagen equation)  Let !  be a source form 
of order s for Y.  
 (a) A ! -projectable vector field !  on Y is the generator of invariance 
transformations of !  if and only if  

(1)  !J r"# = 0.  

 (b) Generators of invariance transformations of !  constitute a subal-
gebra of the algebra of vector fields on J rY .  
 Proof  The same as the proof of Lemma 4, Section 5.2.  
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 Equation (1) is a geometric version of what is known in the classical 
calculus of variations as the Noether-Bessel-Hagen equation.  
 Let !  be a Lagrangian of order r for Y, let !  be any automorphism of 
Y, and let E!  be the Euler-Lagrange form of ! . Using the identity  

(2)  J 2r! *E" = EJr!*"  

(Section 4.5, Theorem 6), we easily obtain the following statement.  

 Lemma 6  (a) Every invariance transformation of !  is an invariance 
transformation of the Euler-Lagrange form E! . 
 (b) For every invariance transformation !  of E! , the Lagrangian 
! " J r# *!  is variationally trivial.  
 Proof  (a) This follows from (2): if J r! *" = 0 , then J 2r! *E" = 0 .  
 (b) This is again an immediate consequence of (2): if J 2r! *E" = 0  
then EJr!*" = 0 .  

 We can generalize the Noether’s theorem to invariance transformations 
of the Euler-Lagrange form. However, since the proof is based on the theo-
rem on the kernel of the Euler-Lagrange mapping, the assertion we obtain is 
of local character. We denote by !"  the principal Lepage equivalent of ! .  

  Theorem 4  Let !  be a Lagrangian of order r, let !  be an extremal, 
and let !  be a generator of invariance transformations of the Euler-
Lagrange form E! . Then for every point  y0 !Y  there exists a fibred chart 
(V ,! )  at y0  and an (n !1) -form ! , defined on V r!1 , such that on ! (V )  

(3)  dJ 2r! *(iJ s"#$ +%) = 0.  

 Proof  Under the hypothesis of Theorem 4, from Section 4.10, Theo-
rem 1, from formula !J 2 r"E# = E!

Jr"
#  we obtain E!

Jr"
# = 0 . Thus, the La-

grangian !J r"#  belongs to the kernel of the Euler-Lagrange mapping, so it 
must be of the form !J r"# = hd$  over sufficiently small open sets V in Y 
such that (V ,! )  is a fibred chart (Section 4.8, Theorem 9). Then, however, 
from the infinitesimal first variation formula over V, expression  

(4)  J r! *"J r#$ = J 2r%1! * iJ s#d&$ + dJ
2r%1! * iJ s#&$ ,  

reduces to  

(5)  J r! *hd" = dJ s! * iJ s#$% .  

Since J r! *hd" = J r! *d" = dJ r! *" , this proves formula (3).  

 Remark 6  If r = 1, then the principal Lepage equivalent !"  is globally 
well defined. Moreover, it follows from the properties of the Euler-Lagrange 
mapping that the form !  may be taken as a globally defined form on Y. 
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5.4  Symmetries of extremals and Jacobi vector fields  

 Let !  be a Lagrangian of order r for a fibred manifold Y, and let !  be 
an extremal of ! ; thus, we suppose that !  satisfies the Euler-Lagrange 
equation  

(1)   E! ! J
2r" = 0.  

Consider an automorphism ! :W "Y  of Y with projection ! 0 , and its r-jet 
prolongation J r! :W r " J rY . We say that !  is a symmetry of ! , if the 
section !"! 0

#1  is also a solution of the Euler-Lagrange equations, that is,  

(2)   E! ! J
2r ("#" 0

$1) = 0.  

We say that a ! -projectable vector field !  is the generator of symmetries 
of ! , or generates symmetries of ! , if its local one-parameter group con-
sists of symmetries of ! .  
 We need a lemma on pushforward vector fields. Consider a vector field 
!  and a diffeomorphism ! :W " X , defined on an open set  W ! X . By the 
pushforward vector field of !  with respect to !  we mean the vector field 
! (" )  defined on W by  

(3)  ! (" ) (x) = T
"#1(x )" $!(" #1(x)).  

 Lemma 7  Let X be a manifold, W an open set in X, !  a vector field on 
X, ! :W " X  a diffeomorphism, and !  a p-form. Then  

(4)  i!" *# =" * i
! (" )

#.  

 Proof  We have, with standard notation,  

(5)  

 

(i!" *#)(x)(!1,!2 ,…,! p ) =" *#(x)(!(x),!1,!2 ,…,! p )
= #(" (x))(Tx" $!(x),Tx" $!1,Tx" $!2 ,…,Tx" $! p )

= #(" (x))(! (" ) (" (x)),Tx" $!1,Tx" $!2 ,…,Tx" $! p )
= i

! (" ) (" (x ))#(" (x))(Tx" $!1,Tx" $!2 ,…,Tx" $! p )

=" *(i
! (" )

#)(x)(!1,!2 ,…,! p ).

 

This is exactly formula (4).  

 The following theorem says that invariance transformations of the Eu-
ler-Lagrange form E!  permute extremals of the variational structure (!,Y )  
and give us examples of symmetries.  
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 Theorem 5  An invariance transformation of the Euler-Lagrange form 
E!  is a symmetry of every extremal ! .  
 Proof  1. Let ! :W "Y  be any automorphism of Y with projection 
! 0 :" (W )# X . Let !  be any ! -projectable vector field with projection 
!0 . We show that the pushforward vector field  

(5)   !
(" ) = T" #! !" $1  

is ! -projectable, with projection  !0
("0 ) = T" 0 #!0 !" 0

$1 . Indeed, for every 
 y!! (W )   

(6)  

Ty! "# ($ ) (y) = Ty! "T
$%1(y)$ "#($ %1(y)) = T

$%1(y) (!$ ) "#($
%1(y))

= T
! ($%1(y))$ 0 "T$%1(y)! "#($ %1(y)) = T

$0
%1! (y)$ 0 "#0 (!$

%1(y))

= T
$0

%1! (y)$ 0 "#0 ($ 0
%1! (y)) = # ($0 ) (! (y)),

 

proving that ! (" )  is projectable and its projection is !0
("0 ) .  

 Let !t  denote the local 1-parameter group of ! , and let !0,t  be its pro-
jection. Then since  

(7)  
d
dt
!"t!

#1(y)$
%

&
' 0

= T
!#1(y)! ( d

dt
"t!

#1(y)$
%

&
' 0

= T
!#1(y)! ()(! #1(y)) = ) (! ) (y),

 

!"t!
#1  is the 1-parameter group of ! (" ) . The 1-parameter group of the pro-

jection !0
("0 )  is defined by !"#t"

$1 ="!#t"
$1 ="#0,t!"

$1 ="#0,t" 0
$1!  and is 

equal to !"0,t! 0
#1 .  

 Since ! (" )  is projectable, its s-jet prolongation J s! (" )  is defined. Since 
we know the 1-parameter groups of ! (" ) , then J s! (" )  at a point Jx

s!  is giv-
en by differentiation of the curve t! J

"0#0,t"0
$1( x )

s ("#t"
$1)% (" 0#0,t

$1" 0
$1)  at t = 0 ,  

(8)  J s! (" ) (Jx
s# ) = d

dt
J

"0$0,t"0
%1( x )

s ("$t"
%1)# (" 0$0,t

%1" 0
%1)&

'
(
) 0
.  

It can be easily seen that the vector field  J s! (" )  can be determined by  

(9)   J
s! (" ) = TJ s" # J s! ! J s" $1.  

 We determine the right-hand side at a point  Jx
s! ! J s" (W s ) . Using 

standard differentiations we have  

(10)  TJs!"1(Jx
r# )J

s! $ J s%(J s! "1(Jx
r# )) = d

dt
J s! (J s&t (J

s! "1(Jx
r# )))'

(
)
* 0
.  

The curve t! J s" (J s#t (J
s" $1(Jx

r% )))  can be expressed from the definition 
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of s-jet prolongation of a fibred automorphism (see Section 1.4). We have  

(11)  

J s! (J s"t (J
s! #1(Jx

r$ ))) = J s! (J s"t (J!0
#1( x )

s ! #1$! 0 )))

= J s! (J
"0,t!0

#1( x )

s "t!
#1$! 0"0,t

#1 )))

= J
!0"0,t!0

#1( x )

s (!"t!
#1)$ (! 0"0,t

#1! 0
#1).

 

Differentiating this curve we get the vector field J s! (" )  (9).  
 2.  Let W be the domain of ! . We have by definition for every point 
 Jx

s! !W r , J s! (Jx
s" ) = J!0 (x )

s !"! 0
#1 . Then  (J

s! ! J s" )(x) = (J s!"! 0
#1 !! 0 )(x) , 

and we can write on the domain ! 0 (" (W ))  of the section !"! 0
#1  

(12)   J
s! ! J s" !! 0

#1 = J s!"! 0
#1.  

Consider the Euler-Lagrange form E! , the n-form iJ s!E"  that appears in the 
first variation formula and its values along the section J s!"! 0

#1 . We have  

(13)  (J s!"! 0
#1)* iJ s$E% = (! 0

#1)*(J s" )*(J s! )* iJ s$E%  

on the domain ! 0 (" (W ))  of the section !"! 0
#1 . We can easily find an ex-

pression for the form (J s! )* iJ s"E#  on W r . Choose any tangent vectors 
 !1,!2 ,…,!n  at the point  Jx

s! !W r . Then  

(14)  
 

((J s! )* iJ s"E# )(Jx
s$ )(%1,%2 ,…%n )

= E# (J
s! (Jx

s$ ))(J s"(J s! (Jx
s$ )),TJ s! &%1,TJ

s! &%2 ,…,TJ s! &%n ).
 

Writing J s!(J s" (Jx
s# )) = TJ s" $TJ s" %1 $ J s!(J s" (Jx

s# )) , we get from (9)  

(15)  TJs! (Jxs" )J
s! #1 $ J s%(J s! (Jx

s" )) = J s% (!#1 ) (Jx
s" )  

and  

(16)  

 

((J s! )* iJ s"E# )(Jx
s$ )(%1,%2 ,…%n )

= E# (J
s! (Jx

s$ ))(TJ s! & J s" (!'1 ) (Jx
s$ ),TJ s! &%1,…,TJ s! &%n )

= (J s! )*E# (Jx
s$ )(J s" (!'1 ) (Jx

s$ ),%1,%2 ,…,%n )
= i

J s"(!
'1 ) (Jx

s$ )
(J s! )*E# (Jx

s$ )(%1,%2 ,…,%n )

= (i
J s"(!

'1 )
(J s! )*E# (Jx

s$ ))(%1,%2 ,…,%n ),

 

or, which is the same,  

(17)  J s! * iJ s"E# = iJ s"(!$1 )
J s! *E# .  
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 3.  Now we can show that if !  is an extremal and !  is an invariance 
transformation of E! , then for any !  

(18)  (J s!"! 0
#1)* iJ s$E% = 0.  

Since by hypothesis, (J s! )*E" = E" , (17) implies J s! * iJ s"E# = iJ s"(!$1 )
E# , 

thus, along J s! ,  

(19)  J s! * J s" * iJ s#E$ = 0.  

But the left-hand side is, from (12)  

(20)  

 

J s! * J s" * iJ s#E$ = (J
s" ! J s! )* iJ s#E$

= (J s"!" 0
%1 !" 0 )* iJ s#E$

=" 0
&J s"!" 0

%1 * iJ s#E$ ,

 

proving (18) as well as Theorem 5.  

  The following theorem describes properties of individual extremals.  

  Theorem 6  Let !  be a Lagrangian of order r, let s be the order of the 
Euler-Lagrange form E! , and let !  be an extremal. Then a ! -projectable 
vector field !  generates symmetries of !  if and only if  

(20)  
 
E!

Jr"
# ! J

s$ = 0.  

 Proof  1. Suppose we have an extremal !  and a vector field !  generat-
ing symmetries of ! ; we prove that condition (20) is satisfied. We proceed 
in several steps.  
 Denote by ! t  and ! 0,t  the 1-parameter group of !  and its projection, 
respectively. Using formulas (13) and (17) and invariance of the Euler-
Lagrange mapping (Section 4.5, Theorem 6) we get  

(21)  
(J s! t"! 0,t

#1 )* iJ s$E% = (! 0,t
#1 )*(J s" )* iJ s$(!# t ) (J

s! t
&E% )

= (! 0,t
#1 )* J s" * iJ s$(!# t )EJs! t

&%
.

 

Since the left-hand side vanishes by hypothesis, the right-hand side yields  
 

(22)  J s! * iJ s"(#t )EJr# t
$%
= 0.  

 We want to differentiate the form iJ s!("# t )EJs" t
$%  with respect to t at t = 0  

and then consider the resulting form along the prolongation J s!  of the ex-
tremal ! . To perform differentiation, note that the derivative of iJ s!("# t )EJs" t

$%  
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at t = 0  is the Lie derivative of the form iJ s!E"  by the vector field J s! . In-
deed, for every point Jx

r!  belonging to the domain of J s! t  for sufficiently 
small t, and any tangent vectors  !1,!2 ,…,!n  at Jx

r! ,  

(23)  
 

(J s! t
"iJ s#E$ )(Jx

r% )(&1,&2 ,…,&n )

= E$ (J
s! t (Jx

r% ))(J s#(J s! t (Jx
r% )),TJ s! t '&1,…,TJ s! t '&n ).

 

Substituting  

(24)  
J s!(J s" t (Jx

r# ))
= TJ s" t $TJ

s" t
%1 $ J s!(J s" t (Jx

r# ))
= TJ s" t $ J

s! ("% t ) (Jx
r# )

 

from (15), we have  

(25)  

 

(J s! t
"iJ s#E$ )(Jx

r% )(&1,&2 ,…,&n )

= J s! t
"E$ (Jx

r% )(J s# (!' t ) (Jx
r% )),&1,&2 ,…,&n ).

= iJ s#(!' t ) (Jxr% )EJr! t
"$
(Jx

r% )(&1,&2 ,…,&n )
 

hence  

(26)  J s! t
"iJ s#E$ = iJ s#(!% t )EJr! t

"$
.  

This formula proves that the derivative with respect to t at t = 0  of the right-
hand side is exactly the Lie derivative of the form iJ s!E"  with respect to the 
vector field J r! .  
 Then, however, since  

(27)  d
dt
J s! t

"iJ s#E$ = J
s! t
"%& iJ s#E$ =

d
dt
iJ s#(!' t )EJr! t

"$
 

(Lemma 1), so we have along the extremal ! , from (22),  

(28)  

J r! * J s" t
#$% iJ s&E' = J

r! * d
dt
J s" t

#iJ s&E'

= J r! * d
dt
iJ s&("( t )EJr" t

#'

= 0.

 

 On the other hand, using the Cartan’s formula for the Lie derivative of a 
differential form (see Appendix 5, (9)), we have  
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(29)  

!J s" iJ s#E$ = iJ s"diJ s#E$ + diJ s"iJ s#E$

= iJ s"(!J s#E$ % iJ s#dE$ )% diJ s#iJ s"E$

= iJ s" !J s#E$ % iJ s"iJ s#dE$ % !J s# iJ s"E$ + iJ s#diJ s"E$

= iJ s" !J s#E$ % iJ s"iJ s#dE$ % !J s# iJ s"E$ + iJ s# (E!
Jr"

$ % iJ s"dE$ )

= iJ s" !J s#E$ % !J s# iJ s"E$ + iJ s#E!
Jr"

$ ,

 

and from the Lie bracket formula  

(30)  i[J s! ,J s"]E# = $J s! iJ s"E# % iJ s" $J s!E#  

we get  

(31)  !J s" iJ s#E$ = %i[J s# ,J s"]E$ + iJ s#E!Jr" $ .  

 Now since !  is an extremal and !  generates symmetries of ! , we 
have J s! * i[J s" ,J s#]E$ = 0  and from equation (28), J s! *"J s# iJ s$E% = 0 , thus, 
J s! * iJ s"E#

Jr$
% = 0  as required.  

 2. Conversely, suppose that we have an extremal !  and a vector field 
!  such that condition 

 
E!

Jr"
# ! J

s$ = 0  (20) holds. We want to show that !  
generates symmetries of ! , that is,  

(32)  ! 0,t
" J s (! t#! 0,t

$1 )* iJ s%E& = 0,   

where ! t  is the local 1-parameter group of !  and !  is any ! -projectable 
vector field.  
 According to Section 4.10, Theorem 11, condition (20) implies  

(33)  J s! * iJ s"E#
Jr$

% = J
s! * iJ s" #J s$E% = 0  

for all ! -projectable vector fields ! . Thus, at any point Jx
r!   

(34)  iJ s! (Jxr" ) #J s$E% (Jx
r" ) = 0  

therefore, !J s"E# (Jx
r$ ) = 0  because the Euler-Lagrange form is 1-contact. 

Thus by Section 5.1, Lemma 2,  

(35)  (J s! t )*E" (Jx
s# ) = E" (Jx

s# ).  

 Contracting the left-hand side by J s!(Jx
r" )  and using Lemma 7,  

(36)  J r! * iJ s" (J
s# t )*E$ = J

r! *(J s# t )* iJ s"(#% t )E$  
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= (J s! t ! J
r" )* iJ s#(!$ t )E% = (J

s! t"! 0,t
$1 !! 0,t )* iJ s#(!$ t )E%

= (! 0,t )*(J
s! t"! 0,t

$1 )* iJ s#(!$ t )E% =! 0,t
& J s (! t"! 0,t

$1 )* iJ s#E% .
 

Since the contraction of the right hand side vanishes, because !  is an ex-
tremal, we have ! 0,t

" J s (! t#! 0,t
$1 )* iJ s%E& = 0 , proving (32).  

 
 Remark 7  Properties of the systems of partial differential equations, 
described in this section, namely their invariance properties, strongly rely on 
the variational origin of these systems. The structure of these equations, esp. 
their invariance properties, indicates possibilities of applying specific meth-
ods of solving these equations. Clearly, these specific topics need further 
research.  
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