
6  Examples:  Natural Lagrange structures  

 Examples presented in this chapter include typical variational func-
tionals that appear as variational principles in the theory of geometric and 
physical fields. We begin by the discussion of the well-known Hilbert var-
iational functional for the metric fields, first considered in Hilbert [H] in 
1915, whose Euler-Lagrange equations are the Einstein vacuum equations. 
We give a manifold interpretation of this functional and show that its se-
cond-order Lagrangian, the formal scalar curvature, possesses a global 
first order Lepage equivalent. The Lagrangian used by Hilbert is an exam-
ple of a differential invariant of a metric field (and its first and second de-
rivatives). It should be pointed out, however, that the variational consider-
ations as well as the resulting extremal equations do not depend on any as-
sumptions with regard to the signature of underlying metric fields.  
 Our approach to the subject closely follow the preprint Krupka and 
Lenc [KL]. The theory of jets and differential invariants incl. applications 
is explained in Krupka and Janyska [KJ] (see also a general treatment of 
Kolar, Michor, Slovak [KMJ]). Variational principles with similar invari-
ance properties were studied by Anderson [A1] in connection with the in-
verse variational problem. More general classes of natural bundles and 
natural Lagrangians that are differential invariants of any collection of 
tensor fields, or any geometric object fields, were introduced in Krupka 
and Trautman [KT] and Krupka [K3], [K10]. The claims in this chapter 
are not routine; the reader should provide a proof of them or consult the 
corresponding references.  
 For contemporary research in the theory of natural Lagrange structures 
we refer to Ferraris, Francaviglia, Palese and Winterroth [FFPW], Patak 
and Krupka [PK], Bloch, Krupka, Urban, Voicu, Volna, and Zenkov [Bl], 
Palese and Winterroth [PW] and the references therein. Extensive litera-
ture on the classical invariant theory, related with the subject, can be found 
in Kolar, Michor and Slovak [KMS] and Krupka and Janyska [KJ], how-
ever, this topic is outside the scope of this book. The variational function-
als for submanifolds, whose underlying structures differ from fibred mani-
folds, are not considered in this book (cf. Urban and Krupka [UK3]).  

6.1  The Hilbert variational functional 

 The modern geometric interpretation of variational principles in physics 
requires the knowledge of the structure of underlying fibred spaces as well 
as adequate (intrinsic and also coordinate) methods of the calculus of varia-
tions on these spaces. In this example we briefly consider the Hilbert varia-
tional functional for metric fields on a general n-dimensional manifold X, a 
well-known functional providing, for n = 4 , the variational principle for the 
Einstein vacuum equations in the general relativity theory (Hilbert [H]). 
Note that the Hilbert variational principle does not restrict the topology of 
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the underlying (spacetime) manifold X. If we require that the topology of 
spacetime should have its origin in matter and physical fields, then this prin-
ciple should be completed with some other one.  
 In this example we follow the preprint Krupka and Lenc [KL]; the topic 
certainly needs further investigations. Our assertions are formulated without 
proof, which can however be easily reconstructed by means of the general 
theory. Basic knowledge of the concepts of Riemannian (and pseudo-
Riemannian) geometry is supposed. 
 Let X be an n-dimensional smooth manifold, T2

0X  the vector bundle of 
tensors of type (0,2)  over X, and let ! :T2

0X" X  be the tensor bundle pro-
jection. T2

0X  contains the open set Met X  of symmetric, regular bilinear 
forms on the tangent spaces at the points of X. Then the restriction of the ten-
sor bundle projection !  defines a fibred manifold structure on the set 
Met X  over the manifold X; we call this fibred manifold the bundle of met-
rics over X. Its sections are metric fields on the manifold X. Integral varia-
tional functionals for the metric fields are defined by n-forms on the r-jet 
prolongations J rMet X  of the fibred manifold Met X .  
 Any chart (U,! ) , ! = (xi ) , on X induces a chart (V ,! ) , ! = (xi ,gij ) , 
on Met X , where V = ! "1(U )  and gij  are functions on V defined by the de-
composition 

 
g = gijdx

i!dx j  of the bilinear forms; the coordinate functions 
gij  entering the chart (V ,! )  satisfy 1! i ! j ! n . The associated fibred 
charts on the r-jet prolongations J rMet X are then defined in a standard 
way. In particular, if r = 2 , then the associated chart is denoted by (V 2 ,! 2 ) , 
! 2 = (xi ,gij ,gij ,k ,gij ,kl ) , where i ! j , k ! l , and gij ,k = dkgij , gij ,kl = dkdlgij ; 
dk  is the formal derivative operator. We denote 

(1)  

  

! 0 = dx
1!dx2 !…!dxn ,

! k = ("1)
k"1dx1!dx2 !…!dxk"1!dxk+1!…!dxn ,

! ij = dgij " glj ,pdx
p ,

! ij ,k = dgij ,k " glj ,kpdx
p .

 

Then the forms dxi ,! ij ,! ij ,k ,dgij ,kl  constitute the contact basis on the set V 2 . 
We need some systems of functions on V 2 . The functions  

(2)  ! jk
i = 1

2
gim (gmk , j + gjm,k " gjk ,m ),   

where gim  are elements of the inverse matrix of the matrix gij , are called the 
formal Christoffel symbols; note that the derivative gpj ,k  can be reconstruct-
ed from ! jk

i  by the formula gpj ,k = gpi! jk
i + gji! pk

i . The expressions  

(3)  Rik = ! ik ,l
l + ! ik

l ! lm
m " ! il ,k

l " ! il
m! km

l , R = gikRik ,  

where ! ik , j
l  are the formal derivatives dj! ik

l , define the formal Ricci tensor 
with components Rik , and a function R : J 2 Met X! R , the formal scalar 
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curvature. Every metric field  U ! x! g(x)"Met X , defined on an open set 
in X, can be prolonged to the section  U ! x! J 2g(x)" J 2 Met X  of the se-
cond jet prolongation J 2 Met X . Composing the second jet prolongation 
J 2g  with the formal scalar curvature we get a real-valued function on U, 
 x! (R ! J 2g)(x) = R(Jx

rg) , the scalar curvature of the metric g, and a se-
cond-order Lagrangian  

(4)  ! = R | det gij | "# 0 .  

!  is called the Hilbert Lagrangian. The variational functional  

(5)  
 
!"(# )! g$%"(& ) = J 2g*%

"
' "R,  

where !  is any compact set in the domain of definition of the section ! , is 
the Hilbert variational functional for the metric fields on X.  
 We shall restate basic general theorems of the variational theory on fi-
bred manifolds for this special case. It should be pointed out, however, that 
all these statements could also be proved directly, without reference to the 
general theory. Our first statement rephrases the existence theorem for 
Lepage equivalents of a given Lagrangian; we claim in addition, that the (se-
cond-order) Hilbert Lagrangian possesses a first order Lepage equivalent. 
 Recall that ! 2,0  is the canonical jet projection of J 2 Met X  onto Met X , 
expressed as the mapping (xi ,gij ,gij ,k ,gij ,kl )! (xi ,gij ) , and denote   

(6)  
 
! = R | det gij |.  

 !  is the component of the Hilbert Lagrangian with respect to the chart on 
J 2 Met X , associated with the chart (U,! ) , ! = (xi ) .  

 Theorem 1 (Existence of Lepage equivalents)  There exists an n-form 
!H  on the first jet prolongation J1Met X  with the following properties:  
 (a) h!H = " .  
 (b) p1d!H  is ! 2,0 -horizontal.  

 To prove Theorem 1 we can use the principal Lepage equivalent of a 
second-order Lagrangian (Section 4.5, Example 2), which is now given by  

(7)  
  
!H = !" 0 +

!!
!gij ,k

# dl
!!
!gij ,kl

$
%&

'
()
" ij +

!!
!gij ,kl

" ij ,l

$
%&

'
()
!" k .  

Substituting from (6), we get the principal Lepage equivalent of the Hilbert 
Lagrangian 

(8)  
 

!H = | det grs |g
ip (" ip

j " jk
k # " ik

j " jp
k )$ 0

+ | det grs |(g
jpgiq # gpqgij )(dgpq, j + " pq

k dgjk )!$ i .
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One can also prove Theorem 1 by searching for !H  in the form  

(9)  
  
!H = !" 0 + ( f

ijk" ij + f ijkl" ij ,l )!" k ,  

with an invariant condition f ijkl = f ijlk . The following is another expression 
for !H .  

 Theorem 2  The form !H  satisfying conditions (a) and (b) has an ex-
pression  

(10)  
  
!H = "!# 0 + "ij ,kdgij !# k + d$,  

where  

(11)  

 

! = | det grs | !g
ij (" ik

k " jr
r # " ij

k" kr
r ),

"ij ,k = 1
2
| det grs |(#g

kigsj"qs
q # gkjgsi"qs

q + gksgij"qs
q

+ gpigsj" ps
k + gpjgsi" ps

k # gijg ps" ps
k ),

$ = | det grs |(g
jl" jl

k # gkl"rl
r )% k .

 

 These explicit formulas show that the Lepage form !H  is of the first 
order. Since h!H = " , the Hilbert variational functional (1) is a first order 
functional  

(12)  
 
!"(# )! g$%H (& ) = J1g*'H

"
( "R.  

 Existence of the Lepage equivalent !H  has a few immediate conse-
quences. The most important one is the form of the first variation formula 
(Section 4.6). Recall this formula for any ! -projectable vector field !  on 
the fibred manifold Met X , expressed by  

(13)  ! = " i !
!xi

+!ij
!
!gij

.  

Then for every metric field g, defined on an open set in X, the Lie derivative 
!J1"#H  is along J1g  expressed as  

(14)  J1g*!J1"#H = J1g* iJ1"d#H + dJ1g* iJ1"#H .  

This is the basic (global) infinitesimal first variation formula for the Hilbert 
Lagrangian, allowing us to study its extremals and conservation law equa-
tions. The horizontal components hiJ1!d"H  and hdJ1g* iJ1!"H , correspond-
ing with formula (14) are  
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(15)  
 
hiJ1!d"H = !!

!gij
# dk

!!
!gij ,k

+ dkdl
!!
!gij ,kl

$
%&

'
()
(!ij # gij ,p*

p )+ 0 ,  

and 

(16)  hdiJ1!"H = diw
i #$ 0 ,  

where 

(17)  
 
wi = !! i + !!

!gkl ,i
+ dj

!!
!gkl ,ij

"
#$

%
&'
((kl ) gkl ,p!

p )+ !!
!gkl ,ij

((klj ) gkl , jp!
p ).  

Note that the horizontalization h in (15) and (16) characterizes the forms 
iJ1!d"H  and diJ1!"H  along the 1-jet prolongations J1g  of sections of the 
fibred manifold Met X . Expression (15) represents the Euler-Lagrange 
term, and (16) is the boundary term.  
 Since from the definition of the r-jet prolongation of a vector field the 
expression !klj " gkl , jp#

p  can be expresses as  

(18)  
dj (!kl " gkl ,p#

p ) = dj!kl " gkl ,pj#
p " gkl ,p

!# p

!x j

= !klj " gkl ,pj#
p

 

(see Section 1.7), we can also write formula (17) as  

(19)  

 

wi = !! i + !!
!gkl ,i

+ dj
!!
!gkl ,ij

"
#$

%
&'
((kl ) gkl ,p!

p )+ !!
!gkl ,ij

d j ((kl ) gkl ,p!
p )

= !! i + !!
!gkl ,i

((kl ) gkl ,p!
p )+ dj

!!
!gkl ,ij

((kl ) gkl ,p!
p )

"
#$

%
&'
.

 

 The Lapage equivalent !H  determines the Euler-Lagrange equations:  

 Theorem 3 (Euler-Lagrange expressions, Noether currents)  (a) The 
Euler-Lagrange term in the first variation formula (14) has an expression 

(20)  hiJ1!d"H = 1
2
gijR # Rij( )girg js (!rs # grs,p$

p ) | det grs |% 0 .  

 (b) The boundary term is given by the expression  

(21)  
 

wi = !! i + | det grs |(g
jlg pi " gpjgli )# pj

k ($kl " gkl ,m!
m )

+ | det grs |(g
kjgil " gijgkl )($klj " gkl , jm!

m ).
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 The (n +1) -form defined by expression (20), characterizing extermals 
of the Hilbert variational functionals, is the Euler-Lagrange form  

(22)  
 
E(!) = p1d"H = | det grs |Eijg

irg js# rs !# 0 ,  

where Eij  is the formal Einstein tensor,  

(23)  Eij =
1
2
gijR ! Rij ,  

The corresponding Euler-Lagrange equations are the Einstein equations  

(24)  
 
Eij ! J

2g = 0.  

The (n !1) -form iJ1!"H  in (16) is the Noether current associated with the 
vector field ! .  
 A specific property of the Hilbert Lagrangian consists in its invariance 
under all diffeomorphisms of the fibred manifold Met X , induced by dif-
feomorphisms of the underlying manifold X. Recall briefly the correspond-
ing definitions (Krupka [K3]). Suppose we are given a diffeomorphism 
! :U"U , where U and U  are open subsets of X. First we wish to show 
that !  lifts to a diffeomorphism !Met  of the set ! "1(U )  into ! "1(U ) , and 
find equations of !Met . If U and U  are domains of definition of two charts, 
(U,! ) , ! = (xi ) , and (U,! ) , ! = (x" ) , then for any point  x!U , a metric 
g  at the point  ! (x)!U  is expressed as  

(25)   g = g!" #dy
! ($ (x))!dy" ($ (x)),  

where g!"  are real numbers. Then setting 

(26)  

  

T2
0! "g = g#$ (! *dy

# )(x)! (! *dy$ )(x)
= g#$d(y

# !! )(x)! (y$ !! )(x)

= g#$
!(y#!%&1)
!xi

'
()

*
+,% (x )

!(y$!%&1)
!x j

'
()

*
+,% (x )

dxi (x)!dx j (x),

 

we get a metric g = T2
0! "g  at the point x. Thus, replacing !  with ! "1 , we 

get a diffeomorphism Met! :" #1(U )$" #1(U ) , defined in components as 
the correspondence  

(27)  
xi ! xi"#$1(#(x)),

gij ! g%& = gij
!(xi" $1# $1)

!x%
'
()

*
+,# (" (x ))

!(x j" $1# $1)
!x&

'
()

*
+,# (" (x ))

.
 

 This construction can be adapted to the local 1-parameter group ! t  of a 
vector field !  on X. To this purpose we may choose, for all sufficiently 
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small t, (U,! ) = (U,! ) . Express !  as  

(28)  ! = ! i !
!xi

.  

Then the mapping Met!  (27) is replaced with the mapping expressed as  

(29)  
(t, xi )! xi" t#

$1(#(x)) = xi" t (x),

(t,gij )! grs = gij
!(xi" t

$1#$1)
!xr

%
&'

(
)*# (" t (x ))

!(x j" t
$1# $1)

!xs
%
&'

(
)*# (" t (x ))

,
 

representing the canonical lift Met! t  of the flow ! t  to the fibred manifold 
Met X . The corresponding lift of the vector field !  to the fibred manifold 
Met X , denoted Met! , is obtained by differentiating of the functions (29) at 
t = 0 . Differentiating the mapping (t, xi )! xi" t (x)  yields the component 
! i  of ! . Since ! t

"1 =!" t  and ! 0 = id , the second row in (29) yields the 
expression  

(30)  

gij
!
!xr

d(xi!" t#
"1)

dt
$
%&

'
() 0

$
%&

'
()# (x )

* s
j + gij* r

i !
!xs

d(x j!" t#
"1)

dt
$
%&

'
() 0

$
%&

'
()# (x )

= "gis
!+ i

!xr 0
$
%&

'
()# (x )

" grj
!+ j

!xs 0
$
%&

'
()# (x )

.
 

Thus, since the vector field Met!  is determined by its flow, we have  

(31)  Met! = ! i !
!xi

" gis
!! i

!xr
+ gri

!! i

!xs
#
$%

&
'(
!
!grs

.  

 The Hilbert Lagrangian is easily seen to be diffeomorphism-invariant 
or, which is the same, a differential invariant (cf. Krupka and Janyska [KJ], 
Kolar, Michor and Slovak [KMS]). This property can also be expressed in 
terms of Lie derivatives.  

 Theorem 4  For every vector field !  , defined on an open set in X,  

(32)  !J 2 Met" # = 0.  

 Combining Theorem 4 and the first variation formula (14), where 
! =Met"  we obtain the identity  

(33)  J1g* iJ1Met!d"H + dJ1g* iJ1Met!"H = 0  

holding for all !  and all ! . The meaning of this condition requires further 
analysis.  
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6.2 Natural Lagrange structures 

 The class of natural Lagrange structures represents a far-going general-
isation of the Hilbert variational principle, discussed in the previous exam-
ple. The Lagrangians for these Lagrange structures are defined on natural 
bundles by an invariance condition with respect to diffeomorphisms of the 
underlying manifold, analogous to property !J 2 Met" # = 0 , of the Hilbert La-
grangian !  (see Section 6.1, (32)). Conditions of this kind can be rephrased 
by saying that the Lagrangians should be differential invariants (Krupka and 
Janyska [KJ]); a specific feature of such a Lagrangian consists in its property 
to define a variational principle not only for one specific fibred manifold but 
rather for the category of locally isomorphic fibred manifolds. For the natu-
ral bundles and their generalisations – gauge natural bundles we refer to Ko-
lar, Michor and Slovak [KMS].  
 Our brief exposition follows the general theory explained in Chapter 4 
and two papers on natural Lagrange structures Krupka [K3] and [K10]. The 
relationship between natural Lagrangians and the inverse problem of the cal-
culus of variations was studied by Anderson [A1].  
 By the r-th differential group of the Euclidean space Rn  we mean the 
group Ln

r  of invertible r-jets with source and target at the origin  0!Rn . An 
element of the group Ln

r  is an r-jet J0
r! , whose representative is a dif-

feomorphisms ! :U"V , where U and V are neighbourhoods of the origin 
and ! (0) = 0 . The group operation   Ln

r ! Ln
r ! (J0r" , J0r# )$ J0

r (" !# )" Lnr  is 
defined by the composition of jets. The canonical (global) coordinates 

 
aj1 j2… jk
i  on Ln

r  are defined by the condition 
 
aj1 j2… jk
i (J0

r! ) = Dj1
Dj2

…Djk
! i (0) , 

where 1! k ! r ,  1! j1 ! j2 !…! jk ! n , and ! i  are components of the dif-
feomorphism ! . Since the group operation is polynomial, the differential 
group is a Lie group. Clearly, Ln

1  can be canonically identified with the gen-
eral linear group GLn (R) .  
 Let X be a smooth manifold of dimension n. By an r-frame at a point 
 x! X  we mean an invertible r-jet J0

r!  with source  0!Rn  and target x. The 
set of r-frames, denoted  !

rX , has a natural smooth structure and is en-
dowed with the canonical jet projection  !

r :!rX" X : Every chart (U,! ) , 
! = (xi ) , on X induces a chart ((! r )"1(U ),# r ) , 

 
! r = (xi ," j1 j2… jk

i ) , on  !
rX  by 

 
! j1 j2… jk
i (J0

r! ) = Dj1
Dj2

…Djk
! i (0) , where 1! k ! r ,  1! j1 ! j2 !…! jk ! n , 

and ! i  are the components of !  in the chart (U,! ) . The mapping 
   !

rX ! Ln
r ! (J0r" , J0r# )$ J0

r (" !# )"!rX  defines on  !
rX  the structure of a 

(right) principal fibre bundle with structure group Ln
r .  !

rX  is called the 
bundle of r-frames over X. If r = 1, then  !

1X  can be canonically identified 
with the bundle of linear frames  !X .  
 As an example one can easily derive the equations, describing the struc-
ture of the principal Ln

2 -bundle of 2-frames. The group multiplication in the 
differential group Ln

2  is given by  
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(1)  
 

aj
i (A !B) = ak

i (A)aj
k (B),

aj1 j2
i (A !B) = ak1k2

i (A)aj1
k1 (B)aj2

k2 (B)+ ak
i (A)aj1 j2

k (B),
 

where A = J0
2! , B = J0

2! . The right action of Ln
2  on  !

2X  is expressed by 
the formulas  

(2)  
 

! j
i (! !A) = ! k

i (! )aj
k (A),

! j1 j2
i (! !A) = ! k1k2

i (! )aj1
k1 (A)aj2

k2 (A)+! k
i (! )aj1 j2

k (A).
 

 We need some categories:  
 (a)  ! n  – the category of diffeomorphisms of smooth, n-dimensional 
manifolds,  
 (b)  !" n (G)  – the category of homomorphisms of principal fibre bun-
dles with structure group G, whose projections are morphisms of  ! n ,  
 (c)  !" n (G)  – the category of homomorphisms of fibre bundles, asso-
ciated with principal fibre bundles from  !" n (G) .  
 Let  ! :! n " "# n (G)  be a lifting, that is, a covariant functor, assigning 
to an object X of the category  ! n  an object !X  of  !" n (G)  and to a 
morphism f :U!V  of  ! n  a morphism ! f :!U"!V  of  !" n (G) . Let Q 
be a manifold, endowed with a left action of the Lie group G. For any mani-
fold X belonging to  ! n , Q defines a fibre bundle !QX  with type fibre Q, 
associated with !X . f :U!V  also defines a morphism !Q f :!QU"!QV  
of the category  !" n (G) . The correspondence X!"QX , f !"Q f  is a 
covariant functor from  ! n  to  !" n (G) , called the Q-lifting associated with 
the lifting ! . This lifting is denoted by !Q .  
 In many applications Q is a space of tensors on the vector space Rn . 
Then Q is endowed with the tensor action  GLn (R)!Q! (g, p)" g # p"Q . 
In this case the Q-lifting !Q  assigns to a smooth n-dimensional manifold X 
the tensor bundle !QX  of tensors of type Q over X and to a morphism 
f :U!V  of  ! n  the corresponding morphism !Q f :!QU"!QV  of the cat-

egory  !" n (GLn (R)) .  
 In the calculus of variations we need the jet prolongations of these fibre 
bundles. Denote by Tn

rQ  the set of r-jets with source  0!Rn  and target in Q. 
Tn

rQ  is endowed with the a action of the differential group Ln
r+1 ,  

(3)    Ln
r+1 !Tn

rQ! (J0r+1" , J0r# )$ J0
r ((D" %# )!" &1)"TnrQ  

(Krupka [K3]). Calculating this mapping in a chart we easily find that for-
mally, this jet formula represents transformation properties of the deriva-
tives of a tensor field of type Q. The following interpretation is important for 
applications; namely, it possesses a tool how to construct natural Lagrangi-
ans for collections of tensor fields of a given type Q.  

 Lemma 1  Let X be a smooth n-dimensional manifold.  
 (a) Formula (3) defines the structure of a fibre bundle with type fibre 
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Tn
rQ , associated with the principal Ln

r+1 -bundle  !
r+1X .  

 (b) The correspondence X! J r"QX , f ! J r fQX  is a covariant func-
tor from the category  ! n  to the category  !" n (Ln

r+1) .  

 The lifting J r!Q  is called the r-jet prolongation of the lifting !Q .  
 The notion of the r-jet prolongation can naturally be extended to any 
manifolds Q endowed with a left action of the general linear group GLn (R) .  
 These notions represent the underlying general concepts of the theory of 
natural variational structures. Namely, let X be an n-dimensional manifold 
(an object of the category  ! n ), Q a manifold endowed with a left action of 
the general linear group Ln

1 = GLn (R) , !QX  the fibre bundle with base X 
and type fibre Q, associated with the bundle of frames  !X  (an object of the 
category  !" n (Ln

1 ) ), and let J r!QX  be the r-jet prolongation of !QX  (an 
object of the category  !" n (Ln

r+1) ). Let J r!Q"  be the lift of a vector field ! , 
defined on X, to the bundle J r!QX  (an object of  !" n (Ln

r+1) ). We say that a 
Lagrangian ! , defined on J r!QX  is natural, if for all vector fields ! , 
 

(4)  !J r"Q# $ = 0  

 Now let (Y ,!)  be a variational structure of order r, let X be the base of 
the fibred manifold Y, and suppose without loss of generality that the form 
!  is a Lagrangian. We shall say that that the variational structure (Y ,!)  is 
natural, if there exists a left Ln

1 -manifold Q such that Y = !QX . Thus, 
roughly, a natural Lagrange structure consists of a natural bundle Y = !QX  
and a natural Lagrangian on this natural bundle.  

 Examples  1. The variational structure (Met X,!) , where !  is the Hil-
bert Lagrangian (Section 6.1). 
 2.  The Lagrangian for a covector field and a metric field in the general 
relativity theory, representing interaction of the electromagnetic and gravita-
tional fields in the general relativity theory. The corresponding natural La-
grange structure is the pair (Y ,!) , where the fibred manifold Y is the fibre 
product  Met X!T *X  over a manifold X; its sections are the pairs of tensor 
fields (g,A) , locally expressible as  

(5)  
 
g = gijdx

i!dx j , A = Aidx
i .  

The Lagrangian is of the form ! = !H + "! , where !H  is the Hilbert Lagran-
gian and the term !" , describing the interaction of the gravitational and 
electromagnetic field is defined by the interaction Lagrangian 

(6)  !" = gijgkl (Ai,k # Ak ,i )(Aj ,l # Al , j ) | det grs |$ 0 .  

In this formula Ai,k = dkAi  are formal derivatives. The Euler-Lagrange equa-
tions consists of two systems, the Maxwell equations, and the Einstein equa-
tions whose left-hand side is the Einstein tensor Eij  (23) and the right-hand 
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side is the variational energy-momentum tensor of the electromagnetic field 
(cf. Bloch, Krupka, Urban, Voicu, Volna, Zenkov [Bl]).  
 3.  An example of a gauge-natural variational structure is provided by 
the Hilbert-Young-Mills Lagrangian (see e.g. Patak and Krupka [PK]).  

6.3  Connections 

 We give in this section an example of a first order natural Lagrange 
structure  (!X,!!) , whose underlying fibred manifold is not a tensor bundle.  
 Consider the vector space  Q = Rn! (Rn )*!(Rn )*  of tensors of type 
(1,2)  on the vector space Rn , with the canonical coordinates ! jk

i . We shall 
refer to ! jk

i  as the formal Christoffel symbols. Q is endowed with a non-
linear left action of the differential group Ln

2 , defined in charts by  

(1)  ! jk
i = ap

i (bj
qbk

r!qr
p + bjk

p ),  

where aj
i ,ajk

i  are the canonical coordinates on Ln
2 , and bj

i , bjk
i  are functions 

on Ln
2  defined by the formulas ap

i bj
p = ! j

i , apq
i bj

p + ap
i aq

sbjs
p = 0 . Note that this 

action is defined by the transformation equations for the components of a 
connection. For any n-dimensional manifold X, the left action (1) defines in 
a standard way a fibre bundle over X with type fibre Q, associated with the 
principal Ln

2 -bundle of 2-frames  !
2X , denoted 

 
!X = "Q

2 X . We call this 
fibre bundle the connection bundle. Its sections are connection fields, or 
connections on the underlying manifold X. One can also assign to any dif-
feomorphism !  of n-dimensional manifolds its lifting  !

2! , an isomor-
phism of the corresponding bundles of 2-frames, and the associated lifting 

 
!Q
2 ! , an isomorphism of the corresponding fibre bundles with type-fibre 

 !! = Tn
1Q . Then the correspondence  X! !X ,  ! " !!  is a Q-lifting, 

associated with the 2-frame lifting  !
2  from the category  ! n  to  !" n (Ln

2 ) .  
 The notion of the connection bundle was introduced in this way for the 
symmetric tensor product   Q = Rn! ((Rn )*!(Rn )*)  in the paper Krupka 
[K9], with the aim to study differential invariants of symmetric linear con-
nections. The formal Christoffel symbols entering formula (1) are in general 
not symmetric.  
 Now the q-lifting  X! !X ,  ! " !!  induces in a standard way its r-
jet prolongation liftings  X! J r!X ,  ! " J r!!  from  ! n  to  !" n (Ln

r+2 ) . 
In this example we need the case r = 1 . If X is a fixed n-dimensional mani-
fold with some local coordinates (xi )  are some local coordinates on X, then 
the associated fibred coordinates on  !X  are (xi ,! jk

i ) , and the associated 
coordinates on  J

1!X  are (xi ,! jk
i ,! jk ,l

i ) , where the coordinate functions ! jk ,l
i  

are defined by the formal derivative operator as ! jk ,l
i = dl! jk

i .  
 Using these coordinates we set 

(2)  Rik = ! ik ,s
s " ! is,k

s + ! ik
s ! sm

m " ! is
m! km

s  
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and  

(3)  
 
!! = | detRij | "# 0 .  

The system of functions Rik  is called the formal Ricci tensor, and  !!  is a 
global horizontal n-form, defined on the fibred manifold  J

1!X . Formula (3) 
concludes the construction of a natural Lagrange structure  (!X,!!) .  
 We show that the principal Lepage equivalent of the of the Lagrangian 
 !!  is given by  

(4)  
  
!! = | detRij | " 0 +

1
2
(R jk# i

l $ R jl# i
k )" jk

i !" l( ),  
where  

(5)  

  

! 0 = dx
1!dx2 !…!dxn ,

! l = dx
1!dx2 !…!dxl"1!dxl+1!…!dxn ,

! jk
i = d# jk

i " # jk ,s
i dxs .

 

 Denote for further calculations ! = detRrs  and C = |! |.  We shall con-
sider the open set in the fibred manifold  J

1!X  defined by the condition 
! " 0 . Differentiating we have  

(6)  

!C
!! jk

i = 1
2 |" |

sgn" !"
!Rpq

!Rpq

!! jk
i = 1

2 |" |
sgn" #" #Rpq !Rpq

!! jk
i

= |" |
2

Rpq #($ i
s$ p

j$ q
k! sm

m +$ i
m$ s

j$m
k! pq

s % !qm
s $ i

m$ p
j$ s

k % ! ps
m$ i

s$ q
j$m

k )

= |" |
2
(R jk! im

m +$ i
kRpq! pq

j % R jq!qi
k % Rpj! pi

k ),

 

and  

(7)  

!C
!! jk ,l

i = |" |
2

Rpq !Rpq

!! jk ,l
i = |" |

2
Rpq (# i

s# p
j# q

k# s
l $# i

s# p
j# s

k# q
l )

= |" |
2
(R jk# i

l $ R jl# i
k ).

 

Hence the principal Lepage equivalent is  

(8)  
  
!! = C" 0 +

!C
!# jk ,l

i " jk
i !" l = | $ | " 0 +

1
2
(R jk% i

l & R jl% i
k )" jk

i !" l( )  

as required.  
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 Formula (4) can be used for explicit description of the properties of the 
variational functional  

(9)  
  
!"(# X )!!$ J1! *%!

"
& = J1! *'!

"
& "R,  

for connections !  on an n-dimensional manifold X; in this formula ! X  is 
the projection of the fibred manifold  !X  onto X. In particular, we can de-
termine the Euler-Lagrange form  p1d!!  for extremal connections and the 
corresponding Noether’s currents. We do not analyse the resulting formulas 
here.  

 Remark  A fundamental notion of the differential geometry of connec-
tions on a manifold X is the curvature tensor. From the point of view of the 
variational geometry, this notion can be represented by the formal curvature 
tensor  

(10)  Rikj
l = ! ik , j

l " ! ij ,k
l + ! ik

l ! jm
m " ! ij

m! km
l ,  

defined on the 1-jet prolongation  J
1!X  of the bundle of connections  !X . 

Note that the formal Ricci tensor (2) represents the trace of the formal curva-
ture tensor (10) in the indices l and j; one can also consider a different varia-
tional functional for connection fields whose Lagrangian is based on the 
trace of Rikj

l  in the indices l and i, ! = | detRskj
s |" 0 .  
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