
7  Elementary sheaf theory 

 The purpose of this chapter is to explain selected topics of the sheaf 
theory over paracompact, Hausdorff topological spaces. The choice of 
questions we consider are predetermined by the global variational theory 
over (topologically nontrivial) fibred manifolds, namely by the problem 
how to characterize differences between the local and global properties of 
the Euler-Lagrange mapping, between locally and globally trivial Lagran-
gians, and locally and globally variational source forms. To this purpose 
the central topic we follow is the abstract De Rham theorem and its con-
sequences. In the context of this book, the cohomology of abstract sheaves 
should be compared with the cohomology of the associated complexes of 
global sections, and the cohomology of underlying smooth manifolds.  
 This chapter requires basic knowledge of the point-set topology; to 
help the reader some parts of the topology of local homeomorphisms have 
been included. Our treatment, intended for larger audience of readers who 
are not specialists in algebraic topology and sheaf theory, includes all 
proofs and their technical details, and from this point of view is wider than 
similar advanced texts in specialized monograph literature.  
 The main reference covering the choice of material needed in this book 
is Wells [We]; for different aspects of the sheaf theory, esp. the cohomol-
ogy, we also refer to Bott and Tu [BT], Bredon [Br], Godement [Go], Lee 
[L] and Warner [W].  

7.1  Sheaf spaces 

 Recall that a continuous mapping ! :S" X  of a topological space S 
into a topological space X is called a local homeomorphism, if every point 
 s! S  has a neighbourhood V such that the set ! (V )  is open set in X and the 
restricted mapping  ! |V  is a homeomorphism of V onto ! (V ) .  
 By a sheaf space structure on a topological space S we mean a topologi-
cal space X together with a surjective local homeomorphism ! :S" X . The 
topological space S endowed with a sheaf space structure is called a sheaf 
space or an étalé space. X is the base space, and !  is the projection of the 
sheaf space S. For every point  x! X , the set Sx =!

"1(x)  is called the fibre 
over x. We denote a sheaf space by ! :S" X  or just by S when no misun-
derstanding may possibly arise.  
 A mapping ! :Y " S , where Y is a subset of X, is called a section of the 
topological spaceS over Y (or more precisely, a section of the projection ! ), 
if  ! (x)! Sx  for all points  x!Y . Obviously, !  is a section if and only if  

(1)   ! !" = idY .  
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If Y = X , !  is a global section. The set of sections (resp. continuous sec-
tions), defined on a set U is denoted by (SecS)U  (resp. (Sec(c) S)U , and also 
!(U,S) ). The union of the sets (SecS)U  (resp. (Sec(c) S)U ) through  U ! X  
is denoted by SecS  (resp. Sec(c) S ).  

 Lemma 1  (a) A local homeomorphism is an open mapping.  
 (b) The restriction of a local homeomorphism to a topological sub-
space is a local homeomorphism.  
 (c) The composition of two local homeomorphisms is a local homeo-
morphism.  
 Proof  (a) Let ! :S" X  be a local homeomorphism. Any open subset 
V of S is expressible as tue union  !V! , where V!  is an open set such that 

 
! |V"  is a homeomorphism. Then the set  ! (V ) = !! (V" )  must be open as the 
union of open sets.  
 (b) Let  T ! S  be a subspace and  V ! S  an open set such that  ! |V  is a 
homeomorphism. Then   V !T =V ! (! |V )

"1(! (T )) = (! |V )
"1(! (V )!! (T )) , 

and  ! (V !T ) =! (V )!! (T ) . Thus the image of the open set  ! (V !T )"T  
by  ! |T  is open in ! (T ) . Since   ! |T |V!T =! |V!T  is a continuous bijection and 
is an open mapping hence a homeomorphism,   ! |T |V!T  is a homeomorphism.  
 (c) The proof is immediate.  

 Lemma 2  Let S be a sheaf space with base X and projection ! .  
 (a) To every point  s! S  there exists a neighbourhood U of the point 
x =! (s)  in X and a continuous section ! :U" S  such that ! (x) = s .  
 (b) Let !  be a continuous section of S, defined on an open subset of X. 
Then to every point x from the domain of !  and every neighbourhood V of 
! (x)  such that  ! |V  is a homeomorphism, there exists a neighbourhood U of 
X such that  ! (U )!V  and  ! |U = (" |V )

#1 |U .  
 (c) If U and V are open sets in X and ! :U" S  and ! :V " S  are 
continuous sections, then the set    {x!U !V |! (x) = " (x)}  is open.  
 (d) Every continuous section of S, defined on an open set in X, is an 
open mapping.  
 Proof  (a) We choose a neighbourhood V of s such that  ! |V  is a home-
omorphism and set U =! (V ) ,  ! = (" |V )

#1 .  
 (b) By continuity of ! , we choose a neighbourhood U of x such that 
 ! (U )!V , and apply the mapping  ! = (" |V )

#1  to both sides of the identity 
  ! |V !" |U = idU . We get  ! |U = (" |V )

#1 . 
 (c) We may suppose that    {x!U !V |! (x) = " (x)} #Ø . Choose a point 
  x0 !U !V , and a neighbourhood W of the point ! (x) = " (x)  such that 
! (W )  is open and  ! |W  is a homeomorphism. By condition (b), x0  has a 
neighbourhood U0  such that  ! (U0 )!V  and 

  
! |U0!(" |V )

#1 |U0 . Analogously 
x0  has a neighbourhood of V0  such that  ! (V0 )!W  and 

  
! |V0!(" |W )

#1 |V0 . 
Thus 

  
! |U0!V0" (" |W )

#1 |U0!V0 = $ |U0!V0  proving (c).  
 (d) Let U be an open set in X, ! :U" S  a continuous section. It is suf-
ficient to show that the set  ! (U )! S  is open. To every point  x!U  we as-
sign a neighbourhood V! (x )  of the point ! (x)  such that ! (V" (x ) )  is open and 
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the mapping 
 
! |V" ( x )  is a homeomorphism, and a neighbourhood Ux  of the 

point x such that  Ux !U , 
 
! (Ux )!V! (x ) , and 

 
! |Ux

= ("! (x ) )
#1 |Ux

 (see Part (b) 
of this lemma). Then since 

 
(!" (x ) )

#1 :! (V" (x ) )$V" (x )! S  is a homeo-
morphism, ! (Ux )  is open in S, and we have  ! (U ) = ! (!Ux ) = !! (Ux ) , 
which is an open set.  

 Remark 1  Suppose that S is a Hausdorff space. Let ! :U" S  and 
! :V " S  be two continuous sections, defined on open sets U and V in X, 
such that   U !V !Ø  and ! (x0 ) = " (x0 )  at a point   x0 !U !V . Then ! = "  
on the connected component of  U !V  containing x0 . Indeed, since S is 
Hausdorff, the set    U0 = {x!U !V |! (x) = " (x)}  is closed. Since by Lem-
ma 2, (c) the set U0  is open, it must be equal to the connected component of 
the point x0 . This remark shows that if a sheaf space S is Hausdorff, it satis-
fies the principle of analytic continuation. On the other hand if the principle 
of analytic continuation is not valid, S cannot be Hausdorff.  

 Suppose that we have a set S, a topological space X and a mapping 
! :S" X . Then there exists at most one topology on S for which !  is a 
local homeomorphism. Indeed, if !1  and ! 2  are two such topologies,  s! S  
a point,  V !!1  and  W !! 2  open sets such that  ! |V  and  ! |W  are homeo-
morphisms, then  U =! (V )!! (W )  is a neighbourhood of the point 
x =! (s) , and ! "1(U )  is a neighbourhood of the point s both in !1  and ! 2 . 
This implies, in particular, that the identity mapping idS  is a homeo-
morphism.  
 Let S be a sheaf space with base X and projection ! . Beside its own 
topology, the set S may be endowed with the final topology, associated with 
the family of continuous sections, defined on open subsets of X.  

 Lemma 3  Let S be a sheaf space with base X and projection ! .  
 (a) The open sets  V ! S  such that  ! |V  is a homeomorphism form a 
basis of the topology of S.  
 (b) The topology of S coincides with the final topology, associated with 
the set Sec(c) S  of continuous sections of S.  
 (c) The topology induced on fibres of S is the discrete topology.  
 Proof  (a) This is an immediate consequence of the definition of a local 
homeomorphism.  
 (b) If a subset W of S is an open set in the topology of S, then for every 
continuous section !  of S, ! "1(W )  is an open subset of X hence by defini-
tion, W is open in the final topology. Conversely, let W be open in the final 
topology. For any section ! :U" S ,  ! (!

"1(W ))!W "! (U )!W . If the 
section !  is continuous, then by the definition of the final topology, ! "1(W )  
is an open set; moreover, since !  is open in the topology of S (Lemma 2, 
(d)), the set ! (! "1(W ))  is open in the topology of S. But by Lemma 2, (a), 
the sets ! (! "1(W ))  cover W which implies that W is open in the topological 
space S.  
 (c) This assertion is evident.  
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 Let ! :S" X  and ! :T "Y  be two sheaf spaces. Recall that a map-
ping f :S! T  is said to be projectable, if  

(2)   ! ! f = f0 !"  

for some mapping f0 :X!Y . Obviously, the same can be expressed by 
saying that there exists f0  such that the diagram  

(3)  
S f! "! T

#$ # %
X f0! "! Y

  

commutes. If f0  exists, it follows from condition (2) that it is unique. If f is 
continuous, then the mapping f0  is also continuous since it is always ex-
pressible on open sets as  f0 = ! ! f !"  for some continuous sections !  of the 
topological space S.  
 A continuous projectable mapping f :S! T  is called a morphism of 
the sheaf space S into the sheaf space T, or just a sheaf space morphism. 

 Lemma 4  Let ! :S" X  and ! :T "Y  be sheaf spaces, f :S! T  a 
surjective mapping and f0 :X!Y  its projection. Then f is a local homeo-
morphism if and only if f0  is a local homeomorphism.  
 Proof  Let  x! X  be a point, !  a continuous section of S defined on a 
neighbourhood of x. Choose a neighbourhood W of the point f (! (x))  such 
that  ! |W  is a homeomorphism, a neighbourhood V of ! (x)  such that 
 f (V )!W , and a neighbourhood U of x such that  U !! (V )  and  ! |U  is a 
homeomorphism. Then   ! |W ! f |V !" |U = (! ! f !" )|U , and from condition (2), 
  (! ! f !" )|U = ( f0 !# !" )|U = f0 |U proving Lemma 4.  

 Denote by fx  the restriction of a mapping f :S! T  to the fibre Sx  
over a point  x! X . If X = Y , we have the following assertion. 

 Corollary 1  Let ! :S" X  and ! :T " X  be two sheaf spaces, and let 
f :S! T  be a projectable mapping whose projection is the identity map-

ping idX .  
 (a) f is a local homeomorphism.  
 (b) f is injective (resp. surjective) if and only if fx  is injective (resp. 
surjective) for each  x! X .  
 Proof  (a) This follows from Lemma 4.  
 (b) These assertions follow immediately from the definitions.  
 Let ! :S" X  and ! :T "Y  be two sheaf spaces. The Cartesian prod-
uct S !T  together with the mapping ! "# :S "T $ X "Y  defined by the 
formula (! "# )(s,t) = (! (s),# (t))  is a sheaf space, called the product of S 
and T. If X = Y , we define a subset of the Cartesian product S !T  by 
  S !X T = {(s,t)! S !T |" (t) = # (s)} , and a mapping ! "X # :S "X T $ X  by 
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(! "X # )(s,t) =! (s) = # (t) . If we consider the set S !X T  with the induced 
topology, the mapping ! "X #  defines on S !X T  the structure of a sheaf 
space, called the fibre product of the sheaf spaces S and T.  
 Let ! :S" X , !" : !S # X  and ! :T "Y , !" : !T #Y  be sheaf spaces. 
Let f :S! T  and !f : !S " !T  be two projectable mappings over the same 
projection f0 :X!Y . For every point (s, !s )  we define a mapping 
f !X "f :S ! "S # T ! "T  by ( f !X "f )(s, "s ) = ( f (s), "f ( "s )) . This gives rise 

to the following commutative diagram  

(4)  

S !X "S #$%$ S ! "S

& f !X "f & f ! "f

T !Y "T '$ %$ T ! "T

  

where the horizontal arrows denote the canonical inclusions. The mapping 
f !X "f  is called the fibre product of f and !f . It is easily seen that if f and 
!f  are continuous, then the fibre product f !X "f  is also continuous: in-

deed, for any open set U in T !Y "T  there exists an open set V in T ! "T  
such that U =! "1(V ) ; since  

(5)  
 

( f !X "f )#1(U ) = ( f !X "f )#1($ #1(V ))
= ($ ! ( f !X "f ))#1(V ) = (( f ! "f )!%)#1(V )

 

is an open set in S !X "S , the mapping f !X "f  must be continuous.  

 We give some examples of sheaf spaces; using these examples we also 
discuss properties of the topology of sheaf spaces.  

 Examples  1. Continuous global sections of a sheaf space need not nec-
essarily exist. Consider for example the real line R = R1  and the unit circle 
  S
1 = {(x, y)!R2 | x2 + y2 = 1} . The mapping ! :R" S1 , defined by the for-

mula ! (s) = (cos2" s,sin2" s)  is a surjective local homeomorphism. It is 
easily seen that !  has no continuous global section. Suppose the opposite. 
Then if !  is a continuous global section,  ! (S

1)!R  is a non-void compact 
and open set in R  hence coincides with R . However, this is a contradiction 
since R  is non-compact.  
 2.  Let   S

2 = {(x, y)!R3 | x2 + y2 + z2 = 1}  be the unit sphere in R3 , and 
consider an equivalence relation  !  on S2  “ (x, y,z) ! ( !x , !y , !z )  if either 
(x, y,z) = ( !x , !y , !z )  or  (x, y,z) ! !( "x , "y , "z ) ”. The quotient space  S2 / !  is 
called the real projective plane and is denoted by RP2 . The quotient projec-
tion ! :S2 " RP2  is a sheaf space. The set RP2  can be identified with the 
set of straight lines in R3  passing through the origin.  
 3.  A local homeomorphism admitting a global continuous section is not 
necessarily a homeomorphism: Define a subspace   S = {(x,r)!R2 | r = 0,1}  
of R2  and a mapping ! :S" R  by the condition ! (x,r) = x . Then the 
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mapping ! :R" S  defined by ! (x,0) = x  is a global continuous section of 
S but !  is not a homeomorphism.  
 4.  Consider the subspace   S = {(x,r)!R2 | r = !1,1}  of R2 , two points 
 a,b!R  such that a < b , and a partitions of S defined by the subsets 
 {(x,!1)} ,  {(x,1)}  if x ! a , x ! b , and  {(x,!1),(x,1)}  if a < x < b  (one- and 
two-element subsets). Let  !  be an equivalence relation on S defined by this 
partition, and denote  X = X / ! . The quotient mapping of S onto X is a sur-
jective local homeomorphism; the quotient space X is not Hausdorff. Fur-
ther, assigning to each of the sets  {(x,!1)} ,  {(x,1)} , {{x,!1},{x,!1}}  the 
point  x!R , we obtain a local homeomorphim of X onto the real line R .  
 5.  The topological subspace S of R3 , defined in a parametric form as 
  S = {(x, y,z)!R3 | x = cost, y = sin t, z = t, t !R}  (the helix), together with 
the restriction of the Cartesian projection ! :R3 " R2  to S is a local home-
omorphism of S onto the circle S1  (Example 1). This example shows that for 
a general local homeomorphism ! :S" X  the topology of S does not nec-
essarily coincide with the initial topology of the topology of X by the map-
ping ! .  
 6.  If ! :S" X  is a sheaf space and Y is an open subset of X, then the 
restriction 

 
! |

! "1(Y ):!
"1(Y )#Y  is a sheaf space.  

 7.  The Cartesian projection ! :X "Q# X , where X is a topological 
space and Q is a non-void set endowed with the discrete topology, is a sheaf 
space.  
 8.  Using the notation of Example 1 we obtain a surjective local home-
omorphism ! "!  of the real plane R2  onto the torus S1 ! S1 .  
 

7.2  Abelian sheaf spaces  

 An Abelian sheaf space structure on a topological space S consists of a 
sheaf space structure with base X and projection !  such that for every point 
 x! X  the fibre Sx  over x is an Abelian group and the subtraction mapping 
 S !X S! (s,t)" s # t " S  is continuous. A topological space S, endowed 
with an Abelian sheaf space structure is called an Abelian sheaf space. We 
usually denote an Abelian sheaf space ! :S" X , or simply by S. Some-
times, when no misunderstanding may arise, we call an Abelian sheaf space 
just a sheaf space.  
 A sheaf subspace of the Abelian sheaf space S is an open set  T ! S  
such that for every point  x! X , the intersection  T !Sx  is a subgroup of the 
Abelian group Sx .  
 The Abelian sheaf space structure on a topological space S induces the 
Abelian group structure on sections of S. The zero section is the mapping 
! :X" S , assigning to a point  x! X  the neutral element of the Abelian 
group Sx . Clearly, !  is a global continuous section of S: if  x0 ! X  is a point 
and !  is any continuous section over a neighbourhood U of x0 , then 
! (x) = " (x)#" (x)  on U, which implies that !  is expressible as the compo-
sition of two continuous mappings  U ! x! (" (x)," (x))" S #X S  and 
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 S !X S! (s,t)" s # t " S . The open set ! (X)  is called the zero sheaf sub-
space of S. For any two sections !  and ! , defined on the same set in X, one 
can naturally define the sum ! +"  and the opposite !"  of the section ! . 
Thus, the set of sections over an open subset of X has an Abelian group 
structure. If the sections !  and !  are continuous, then ! +"  and !"  are 
also continuous. 
 For any subspace Y of the base space X, the restriction of the projection 
!  to the set ! "1(Y )  is a sheaf subspace of the Abelian sheaf space S with 
base Y, called the restriction of S to Y.  

 Remark 2  If a local homeomorphism admits an Abelian sheaf space 
structure, then it necessarily admits a continuous global section (the zero 
section). Conversely, local homeomorphisms, which do not admit a global 
continuous section, do not admit an Abelian sheaf space structure.  

 Examples  9. In this example we construct a sheaf space of Abelian 
groups, the skyscraper sheaf space, whose topology is not Hausdorff. De-
note by Z  the set of integers in the set of real numbers R . Let X be a 
Hausdorff space, x0  a point of X, and let S be a subset of the Cartesian 
product X !Z , defined as   S = (X \ {x0})!{0})! ({x0}!Z) . The subsets of 
S of the form  U !{x0} , where U is an open set in X and   {x0}!U , and 
  ((V \ {x0}!{0})!{(x0 ,z)} , where V is open in X,  x0 !V  and  z!Z , is a 
basis for a topology on S. In this topology the restriction of the first Carte-
sian projection is a local homeomorphism of S onto X. For any two different 
points  z1,z2 !Z , every neighbourhood of the point  (x0 ,z1)! S  (resp. 
 (x0 ,z2 )! S ) contains a neighbourhood   ((V1 \ {x0}!{0})!{(x0 ,z1)}  of the 
point  (x0 ,z1)! S  (resp.   ((V2 \ {x0}!{0})!{(x0 ,z2 )}  of  (x0 ,z2 )! S ), whose 
intersection is   ((V1!V2 ) \ {x0})!{0} . Assuming   (V1!V2 ) \ {x0}=Ø , we get 
a neighbourhood  V1!V2  of  {x0}  equal to  {x0} . Thus, if  {x0}  is not an iso-
lated point, S is not Hausdorff.  
 10. The restriction of the Cartesian projection ! :R3 " R2  to the helix 
(Section 7.1, Example 5) is a surjective local homeomorphism of S onto the 
unit circle S1 . This local homeomorphism cannot be endowed with a sheaf 
structure because it does not admit a continuous global section.  
 11.  Consider a topological space X and an Abelian group G with dis-
crete topology. The Cartesian product X !G , endowed with the product 
topology, and the first Cartesian projection is a sheaf space, called the con-
stant sheaf space over X with fibre G. We usually denote this sheaf by GX . 
If U is an open set in X and ! :U"GX  a continuous section, then the re-
striction of !  to any connected open subset V of U is constant, that is, of the 
form  V ! x!" (x) = (x,g)"GX  for some  g!G . Since the continuous im-
age of a connected subspace is connected, the second Cartesian projection 
  pr2!! (V )!G  consists of a single point. In particular, every continuous sec-
tion of a constant sheaf space is constant on connected components of the 
base, that is, locally constant.  
 12.  The trivial sheaf space of Abelian groups over a topological space 
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X is defined as X together with the identity homeomorphism idX :X! X , 
and trivial Abelian group structure on every fibre  {x}= idX

!1(x) . Thus, the 
trivial sheaf space is the sheaf space 0X .  
 13.  Let T be a sheaf space of Abelian groups with base X and projection 
! , and let R and S be two sheaf subspaces of T. For every point  x! X , 
Rx + Sx  is a subgroup of the Abelian group Tx . We set  

(6)  
  
R + S = (Rx + Sx )

x!X
! .  

R + S  is an open subset of T: if  t ! R + S , then t = r + s , where  r! R  and 
 s! S , and because R (resp. S) is a sheaf subspace of T, r (resp. s) has a 
neighbourhood U (resp. V) in R (resp. S) such that !  restricted to U (resp. V) 
is a homeomorphism. But both R and S are open in T. Thus U +V  is open in 
T , proving that R + S  is open in T. Therefore, R + S  is a sheaf subspace of 
T. We call this subspace the sum of R and S.  

 Let S and T be two Abelian sheaf spaces over a topological space X, !  
and !  the corresponding projections. A projectable continuous mapping 
f :S! T  over the identity mapping idX  is called a morphism of Abelian 

sheaf spaces, if for every point  x! X  the restriction 
 
fx = f |

! "1(x )  to the fibre 
over x is a morphism of Abelian groups. A morphism f :S! T  of Abelian 
sheaf spaces such that both f and f !1  are bijections, is called an isomorphism 
of Abelian sheaf spaces. The mapping idS  is the identity morphism of S. To 
simplify terminology, we sometimes call morphisms of Abelian sheaf spaces 
just morphisms of sheaf spaces, of sheaf space morphisms.  
 The composite  f ! g  of two morphisms of Abelian sheaf spaces is again 
a morphism of Abelian sheaf spaces.  
 Consider a sheaf space morphism f :S! T  and set  

(7)    Ker f = {s! S | f (s) = 0}, Im f = f (S).  

Obviously, these sets can be expressed as 

(8)  
   
Ker f = Ker

x!X
! fx, Im f = Im fx

x!X
! . 

 Lemma 5  Let S and T be two Abelian sheaf spaces over a topological 
space X with projections !  and ! , f :S! T  a sheaf space morphism.  
 (a) Ker f  is a sheaf subspace of S.  
 (b) Im f = f (S)  is a sheaf subspace of T.  
 Proof  (a) Since Ker f = f !1(0(X)) , where 0(X)  is the zero sheaf sub-
space of T, which is an open set in T, the set Ker f  is open in S. Since 
! (Ker f ) = X  and for each  x! X ,  Ker f !Sx  is a subgroup of Sx , Ker f  is 
a sheaf subspace of S.  
 (b) By Lemma 1, (b), the restriction of the projection !  to f (S)  is a 
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local homeomorphism. The image of 
 
! | f (S )  is given by  !( f (S)) =" )S) = X . 

For each point  x! X  the set  f (S)!Tx  is a subgroup of Tx . The commuta-
tive diagram  

(9)  
f (S)!X f (S) "#" T !X T

$ $
f (S) "#" T

 

in which the horizontal arrows are inclusions and the vertical arrows are sub-
tractions (in fibres), shows that the subtractions f (S)!X f (S)" f (S)  are 
continuous.  

 The sheaf subspace Ker f  (resp. Im f ) is called the kernel (resp. im-
age) of the morphism of Abelian sheaf spaces f :S! T .  
 Let ! :S" X  be a sheaf space, T a sheaf subspace of S. Consider an 
equivalence relation on S “ s1 ! s2  if ! (s1) =! (s2 )  and  s1 ! s2 !T ”. Let 
S /T  be the quotient space (endowed with the quotient topology), and let !  
denote the quotient projection; if [s]  is the class of an element  s! S , then 
!(s) = [s] . Define a mapping ! :S /T " X  by ! ([s]) =" (s) . Since !  is 
surjective, !  is a unique mapping such that  

(10)   ! ! " =# .  

Since the composite  ! ! " =#  is continuous, !  is also continuous.  
 Note that for every point  x! X  the fibre ! "1(x) = (S /T )x = Sx /Tx  has 
the structure of an Abelian group. We wish to show that the quotient S /T  
has the structure of a sheaf space over X with projection ! , and !  is a 
morphism of Abelian sheaf spaces.  
 It is easily seen that the quotient mapping is open. Let  V ! S  be an open 
set. To show that !(V )  is open in the quotient topology means to show that 
!V = "#1("(V ))  is open in the topology of S. But  !V =V + (" |T )

#1(" (V )) . 
Since through every point of T passes a continuous section, defined on an 
open subset of ! (V ) , the set !V  is expressible as a union of open sets aris-
ing as images of continuous sections (Lemma 2, (d)). Thus !  is open.  
 We show that !  is a local homeomorphism. Clearly, if  s! S  is a point 
and V is its neighbourhood such that  ! |V  is a bijection, then   ! |V = " |W !# |V , 
where W = !(V ) ; since  ! |V :V "W  is surjective, both  ! |W  and  ! |V  must 
be bijective. Hence   (! |V )

"1 !# |W !$ |V = idV . Thus   (! |V )
"1 = (# |V )

"1 ! ($ |W )
"1  

and   ! |V !(" |V )
#1 !$ |W = idW . But W is open since the quotient mapping !  is 

open and   (! |V )
"1 = (# |V )

"1 !$ |W , which is a continuous mapping. This 
proves that  ! |V  is a homeomorphism. Now it is easy to conclude that the 
mapping !  is a local homeomorphism: we take the sets W and V as above 
and write   ! |W =" |V !(# |V )

$1 .  
 It remains to check that the subtraction in S /T  is continuous. We have 
a commutative diagram  
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(11)  

S !X S
"# $# S

% & !X & % &

(S /T )!X (S /T )
'# $# S /T

 

in which !  denotes the mapping (s1,s2 )! s1 " s2  and !  is the mapping 
([s1],[s2 ])! [s1 " s2 ] ), and ! "X !  is the fibre product. But ! , !  and 
! "X !  are local homeomorphisms, so from Lemma 4 we conclude that !  
is also a local homeomorphism.  
 The Abelian sheaf space S /T  is called the quotient sheaf space of the 
sheaf space S by T. The morphism of Abelian sheaf spaces ! :S" S /T  is 
the quotient projection.  

7.3  Sections of Abelian sheaf spaces 

 Suppose that we have an Abelian sheaf space S with base X and projec-
tion ! . Consider the correspondence U! Sec(c)U , denoted by Sec(c) , as-
signing to every non-empty open set U in X the Abelian group Sec(c)U  of 
continuous sections over U. We extend this correspondence to the whole 
topology of X by assigning to the empty set  Ø  the trivial one-point Abelian 
group 0. To any open sets U, V in X such that  U !V  we assign a group 
morphism sVU : (Sec

(c) S)V ! (Sec(c) S)U  defined by  

(1)    sVU !! = ! |U  

(the restriction of the continuous section !  to the set U). We get a family 
 {(Sec

(c) S)U} , labelled by the set U, and a family  {sVU} , labelled by the sets 
U and V. sVU  are called restriction mappings, or restrictions of the Abelian 
sheaf space S.  
 We say that two continuous sections   ! ," ! (Sec(c) S)U  coincide locally, 
if there exists an open covering   {U!}!!I  of U such that sUU!

(" ) = sUU!
(# )  for 

each !  from the indexing set I. A family   {! "}"!I  of continuous sections 
 ! " ! (Sec(c) S)U"  is said to be compatible, if 

 
sU! ,U!!U"

(# ! ) = sU" ,U!!U"
(# " )  for all 

indices  !," ! I . We say that the family of sections   {! "}"!I  locally generates 
a section  ! ! (Sec

(c) S)U , where  U = !U! , if sUU!
(" ) = " !  for all  !! I ; we 

also say that !  is locally generated by the family   {! "}"!I . A family of con-
tinuous sections, locally generating a continuous section, is compatible.  
 The following are basic properties of the restriction mappings sVU  and 
the Abelian groups (Sec(c) S)U .  

 Lemma 6  The correspondence Sec(c) S  has the following properties:  
 (1)  (Sec

(c) S)Ø= 0.  
 (2) sUU = idU  for every open set U in X.  
 (3)  sWU = sVU ! sWV  for all open sets U, V, W such that  U !V !W .  
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 (4) If two continuous sections !  and !  coincide locally, then ! = " .  
 (5) Every compatible family of continuous sections of S locally gener-
ates a continuous section of S.  
 Proof  (1) holds by definition, and assertions (2) and (3) are immediate. 
We prove condition (4). Let   {U!}!!I  be a family of open sets in X,  U = !U! , 
 ! 1,! 2 ! (Sec

(c) S)U  two sections such that the restrictions satisfy 
 
! 1 |U"

= ! 2 |U"
 

for all ! . Let  x!U . Then by hypothesis there exists an index !  such that 
 x!U! ; consequently, 

 
! 1(x) = ! 1|U"

(x) = ! 2|U"
(x) = ! 2 (x) , and since the 

point x is arbitrary, we have ! 1= ! 2  proving (4). Now we prove condition 
(5). Let   {! "}"!I  be a family such that  ! " ! (Sec(c) S)U"  and 

  
! " |U"!U#

= ! # |U"!U#
 

for all indices  !," ! I . Let  x!U  be a point. Then there exists an index !  
such that  x!U! ; we choose !  and set ! (x) = ! " (x) . If also  x!U! , then 

  
! " |U"!U#

(x) = ! # |U"!U#
(x)  hence ! (x) = ! " (x) , so the value ! (x)  is defined 

independently of the choice of the index ! . It follows from the definition 
that ! , defined in this way, is continuous on U!  for every !  hence on U, 
thus,  ! ! (Sec

(c) S)U  proving (5).  

 The correspondence Sec(c) S , assigning to an open set  U ! X  the Abe-
lian group (Sec(c) S)U , is called the sheaf of continuous sections of the Abe-
lian sheaf space S, or just the Abelian sheaf, associated with S.  
 Let ! :S" X  and ! :T " X  be two Abelian sheaf spaces over the 
same base space X, f :S! T  a sheaf space morphism. Consider the associ-
ated Abelian sheaves Sec(c) S  and Sec(c)T , and denote by  {sVU}  and  {tVU}  
the corresponding families of restrictions in these sheaves. If !  is a continu-
ous section of S,  ! ! (Sec

(c) S)U , then   f !! ! (Sec
(c)T )U . Setting  

(2)    fU (! ) = f !! ,  

we obtain an Abelian group morphism  fU : (Sec
(c) S)U! (Sec(c)T )U . Obvi-

ously, for every pair of open sets  U,V ! X  such that  U !V , the diagram  

(3)  

 

(Sec(c) S)V fV! "! S

# sVU # tVU
(Sec(c) S)U fU! "! S /T

 

commutes. The family   f = {fU} , labelled by U, is called the Abelian sheaf 
morphism of the sheaf Sec(c) S  into the sheaf Sec(c)T , associated with the 
Abelian sheaf space morphism f :S! T . We usually denote the associated 
Abelian sheaf morphism by  f :Sec(c) S! Sec(c)T .  
 Now we study the sheaves associated with a sheaf subspace of an Abe-
lian sheaf space, and the sheaves associated with the kernel and the image of 
an Abelian sheaf space morphism. Recall that the kernel Ker f  and the im-
age Im f  of a sheaf space morphism f :S! T  is a sheaf subspace of S and 
T, respectively. 
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 Lemma 7  (a) S is a sheaf subspace of an Abelian sheaf space T if and 
only if the Abelian group (Sec(c) S)U  is a subgroup of (Sec(c)T )U  for every 
open set U in X.  
 (b) Let ! :S" X  and ! :T " X  be two Abelian sheaf spaces, 
f :S! T  an Abelian sheaf space morphism, and let  ! ! (Sec

(c) S)U . Then 
 ! ! (Sec

(c) Ker f )U  if and only if  fU (! ) = 0 .  
 (c) Let ! :S" X  and ! :T " X  be two Abelian sheaf spaces, let 
f :S! T  be a sheaf space morphism, and let  ! ! (Sec

(c)T )U  be a continu-
ous section. Then  ! ! (Sec

(c) Im f )U  if and only if it is locally generated by a 
family of continuous sections    {fU!

(" ! )}!!I , where  ! " ! (Sec(c) S)U" , and the 
family   {U!}!!I  is an open covering of U.  
 Proof  (a) If S is a sheaf subspace of T, then S is open in the sheaf space 
T, and  Sx = S!Tx "Tx  is a subgroup for every  x! X . If  ! ! (Sec

(c) S)U , 
then !  is continuous in T because S is open. Thus,  ! ! (Sec

(c)T )U , and 
(Sec(c) S)U  must be a subgroup of (Sec(c)T )U . Conversely, let  x! X , 
 s1,s2 ! Sx , and let  ! 1,! 2 ! (Sec

(c) S)Ux  be continuous sections defined on a 
neighbourhood Ux  of x such that ! 1(x) = s1 , ! 2 (x) = s2  (Lemma 2, (a)). The 
union of the sets Ux  coincides with U which implies that U is open. Moreo-
ver since  ! 1 + ! 2 ! (Sec

(c) S)U  then  s1 + s2 = ! 1(x)+ ! 2 (x) = (! 1 + ! 2 )(x)! Sx .  
 (b) This is a trivial consequence of (2).  
 (c) Let  ! ! (Sec

(c) Im f )U , and let  x! X . Then ! (x) = f (" x (x))  for 
some continuous section ! x , defined on a neighbourhood Ux  of x such that 
 Ux !U  (Lemma 2, (b)). We may assume, shrinking Ux  if necessary, that 
both !  and ! x  are homeomorphisms on Ux . Then 

  sUUx
(! ) = f !" x = fUx

(" x ) , 
so the family    {fUx

(! x )}x!U  locally generates ! . The converse is obvious.  

 Remark 3  Lemma 7, (c) does not assure that for a continuous section 
 ! ! (Sec

(c) Im f )U , there always exists a continuous section  ! ! (Sec
(c) S)U  

such that  ! = fU (" ) .  

 In accordance with Lemma 7, (a) given a sheaf subspace S of an Abeli-
an sheaf T, we define a subsheaf of the sheaf Sec(c)T  as the correspondence 
U! (Sec(c) S)U , and write  Sec

(c) S!Sec(c)T . If f :S! T  is a sheaf space 
morphism, then the kernel (resp. the image) of the sheaf morphism 
 f :Sec(c) S! Sec(c)T  is defined to be the Abelian sheaf, associated with the 
sheaf space Ker f  (resp. Im f ); that is, we set  

(4)   Ker f = Sec
(c) Ker f , Im f = Sec(c) Im f .  

 

7.4  Abelian presheaves 

 We can use properties (1), (2) and (3) of the sets of sections of an Abe-
lian sheaf space (Section 7.3, Lemma 6) to introduce the concept of an Abe-
lian presheaf. Diagram (3) will then be used to define Abelian presheaf 
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morphisms. Properties (4) and (5) will be required to define complete pre-
sheaves, that is, (abstract) sheaves.  
 Let X be a topological space,  S  a correspondence assigning to an open 
set  U ! X  an Abelian group  SU  and to every pair of open sets U, V such 
that  V !U  an Abelian group morphism  sVU :SV ! SU .  S  is said to be an 
Abelian presheaf, or just a presheaf, if the following conditions are satisfied:  
 (1)   SØ = 0 .  
 (2) sUU = idU  for every open set  U ! X .  
 (3)  sWU = sVU ! sWV  for all open sets  U,V,W ! X  such that  U !V !W . 
 The topological space X is called the base of the Abelian presheaf  S . 
Elements of the Abelian groups  SU  are called sections of  S  over U, and the 
Abelian group morphisms sVU  are restriction morphisms, or just restrictions 
of  S . If   ! !SV  and  U !V , then the section sVU (! )  is called the restriction 
of the section !  to U.  
 Let  S  be an Abelian presheaf with base X and restrictions  {sVU} . Let U 
be an open subset of X. We say that two sections   ! ," !SU  coincide locally, 
if there exists an open covering   {U!}!!I  of U such that for every  !! I  

(1)  sUU!
(" ) = sUU!

(# ).  

A family   {! "}"!I  of sections of  S , where   ! " !SU" , is said to be compatible, 
if the condition 

(2)  
 
sU! ,U!!U"

(# ! ) = sU" ,U!!U"
(# " )  

holds for all  !," ! I . We say that a family   {! "}"!I  locally generates a section 
  ! !SU , where  U = !U! , if  

(3)  sUU!
(" ) = " !  

for all  !! I . A family of sections, locally generating a section, is always 
compatible.  
 A complete Abelian presheaf, or an Abelian sheaf, is a presheaf  S  satis-
fying, in addition to conditions (1), (2) and (3) from the definition of an Abe-
lian presheaf, the following two conditions:  
 (4) Any two sections of  S  which coincide locally, coincide.  
 (5) Every compatible family of sections of  S  locally generates a sec-
tion of  S .  
 If an Abelian presheaf  S  is complete, then any section, locally generat-
ed by a compatible family of sections, is unique. Indeed, if ! 1 , ! 2  are two 
sections locally generated by a compatible family   {! "}"!I , then according to 
(5), sUU!

(" 1) = " ! = sUU!
(" 2 ) , and property (4) implies ! 1 = ! 2 .  

 Let  S  (resp.  T ) be an Abelian presheaf over X,  {sUV}  (resp.  {tUV} ) the 
family of restrictions of  S  (resp.  T ). Let   f = {fU}  be a family of Abelian 
group morphisms  fU :SU!TU .  f  is said to be a morphism of Abelian 
presheaves, or simply a presheaf morphism, if for every pair of open sets U 
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and V in X such that  U !V , the diagram  

(4)  

 

SV fV! "! TV
# sVU # tVU
SU fU! "! TU

 

commutes. We also denote this presheaf morphism by  f :S !T .  
 A subpresheaf  S  of an Abelian presheaf  T  is a presheaf such that  SU  
is a subgroup of  TU  for every open set U in X. If !U  are the corresponding 
inclusions, then the presheaf morphism  ! :S "T , is called the inclusion of 
the subpresheaf  S  into  T .  
 The composition of presheaf morphisms is defined in an obvious way. If 
 g :R ! S  and  f :S !T  are two presheaf morphism, where   g = {gU}  and 
  f = {fU} , then we define   g ! f :R !T  to be the family    {gU ! fU} .  
 If  S  is an Abelian presheaf, then the family   idS = {idSU}  is a presheaf 
morphism, called the identity morphism of  idS . If  f :S !T  and  g :T ! S  
(resp.  h :T ! S ) are two Abelian presheaf morphisms and   g ! f = idS  (resp. 
  f !h = idT ), we call  g  (resp.  h ) a left inverse (resp. right inverse) for  f . If  f  
has a left inverse  g  and a right inverse  h , then   h = (g ! f )!h = g ! (f !h) = g  
hence the presheaf morphism  h = g  is unique. It is called the inverse of  f  
and is denoted  f !1 .  f  is called a presheaf isomorphism, if it has the inverse.  
 A Abelian presheaf morphism   f = {fU}  is called injective (resp. surjec-
tive), if the group morphisms  fU  are injective (resp. surjective).  
 Let  f :S !T  be an Abelian presheaf morphism,   f = {fU} . We define a 
presheaf  Ker f  (resp.  Im f ) as the correspondence, assigning to every open 
set  U ! X  the Abelian group   Ker fU !SU  (resp.   Im fU !TU ), and to every 
two open sets  U,V ! X , where  U !V , the restriction   sVU |Ker fV :Ker fV ! SU  
(resp.   tVU |Im fV

: Im fV !TU ).  Ker f  (resp.  Im f ) is a subpresheaf of  S  (resp. 
T ) called the kernel (resp. image) of  f .  

 Remark 4  If the family   {U!}!!I  consists of two disjoint sets U1 , U2 , 
then condition (2) 

 
sU1,Ø(! " ) = sU2 ,Ø(! # )  reduces to the identity 0 = 0 . Thus, 

property (5), used for the definition of a complete presheaf, implies that 
there should always exist an extension of ! 1  and ! 2  to  U1!U2 . This obser-
vation can sometimes be used to easily check that a presheaf is not complete: 
it is sufficient to verify that in the considered Abelian presheaf such an ex-
tension does not exist. 

 Examples  14. By definition the sheaf of continuous sections of an Abe-
lian sheaf space, introduced in Section 7.3, is a sheaf. 
 15.  Let  S  and  T  be Abelian sheaves with base X and let  f :S !T  be 
an Abelian presheaf morphism. It is easily seen that  Ker f  is a complete 
presheaf of  S . Indeed,  Ker f satisfies condition (4) from the definition of a 
sheaf. To investigate condition (5), denote by  {sVU}  (resp.  {tVU} ) the family 
of restrictions of  S  (resp.  T ). Let   {U!}!!I  be a family of open sets in X, 
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 U = !U! . Let   {! "}"!I  be a family of sections such that   ! " ! (Ker f )U"  and 

 
sU! ,U!!U"

(# ! ) = sU" ,U!!U"
(# " )  for all  !," ! I . Then by condition (5), there exists 

  ! !SU  such that sUU!
(" ) = " ! . Using this condition and the commutative 

diagram (4), we get  tUU!
(fU (" )) = fU!

(sUU!
(" )) = fU!

(" ! ) = 0 . Since  T  is com-
plete, condition (5) implies  fU (! ) = 0 .  
 16.  The trivial sheaf over a topological space X is a complete presheaf, 
assigning to each open set  U ! X  the Abelian group idU , with the re-
strictions sUV (idU ) = idV . The trivial sheaf over X is denoted by 0X .  
 17.  Assume that we have an Abelian sheaf space S with base X and pro-
jection ! . Consider the correspondence SecS , assigning to an open set 
 U ! X  the Abelian group (SecS)U  of all, not necessarily continuous, sec-
tions of the local homeomorphism ! , defined on U. To any open sets 
 U,V ! X  such that  U !V  we assign the restriction mapping sVU  in a stand-
ard way; we get Abelian group morphisms sVU : (SecS)V ! (SecS)U . In this 
way we get an Abelian sheaf SecS , called the sheaf of (discontinuous) sec-
tions, associated with the sheaf space S.  
 18.  Let X be a topological space. Assign to every open set  U ! X  the 
Abelian group CX ,RU  of continuous real-valued functions, defined on U, 
and to any open sets  U,V ! X  such that  U !V , the restriction mapping de-
fined as   CX ,RV ! f ! sVU ( f ) = f |U"CX ,RU . This correspondence obviously 
satisfies the axioms (1) – (5) of a complete Abelian presheaf (Abelian sheaf). 
Indeed, axioms (1), (2) and (3) are satisfied trivially. To formally verify (4), 
suppose we have two continuous functions  f ,g!CX ,RU  such that  

(5)  
 
sUU!

( f ) = f |U!
= sUU!

(g) = g |U!
 

for some open covering   {U!}!!I  of U. Clearly, then for every point  x!U , 
f (x) = g(x) , so f and g coincide on U. To verify axiom (5), consider a com-

patible family of continuous functions   { f!}!!I , where f!  is defined on U! . 
Setting f (x) = f! (x)  whenever  x!U! , we get a continuous function f, de-
fined on  U = !U! . Thus, the presheaf CX ,R , defined in this way, is complete. 
This complete Abelian presheaf is referred to as the sheaf of continuous 
functions on the topological space X.  
  19.  Let X be a smooth manifold. Assign to every open set  U ! X  the 
Abelian group CX ,R

r U  of real-valued functions of class Cr , defined on U, 
where  r = 0,1,2,…,! , and to any open sets  U,V ! X  such that  U !V , the 
restriction mapping   CX ,R

r V ! f ! sVU ( f ) = f |U"CX ,R
r U . This correspond-

ence obviously satisfies the axioms (1) – (5) of a complete presheaf; we get a 
complete Abelian presheaf called the sheaf of functions of class Cr  on X.  
 20.  Let E be a smooth vector bundle over a manifold X with projection 
! . For any  r = 0,1,2,…,! , assign to every open set  U ! X  the Abelian 
group !U

r (" )  of Cr -sections of E, defined on U, and to any open sets 
 U,V ! X , where  U !V , the restrictions   !V (" )!# $ sVU (# ) = # |U"!U (" ) . 
This correspondence obviously satisfies the axioms (1) – (5) of a complete 
Abelian presheaf, the sheaf of sections of class Cr  of the vector bundle E.  
 21.  We show in this example that the image of a complete Abelian 
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presheaf by an Abelian presheaf morphism into a complete presheaf is not 
necessarily a complete subpresheaf. Consider the Abelian sheaf CX ,R

! ="X
0  

of smooth functions (0-forms) and the sheaf  T =!X
1  of smooth 1-forms over 

the smooth manifold  X = R2 \ {(0,0)} . The exterior derivative d :!X
0 "!X

1  
defines, for every open set  U ! X , a morphism of Abelian groups 
d :!X

0U"!X
1U , and a presheaf morphism d :!X

0 "!X
1 . We show that the 

image presheaf  Imd!!X
1  does not satisfy condition (5) of a complete 

presheaf, so consequently, it is not complete. Consider in the canonical co-
ordinates x, y in R2 , the 1-form 

(6)  ! = xdy " ydx
x2 + y2

.  

Let   {U!}!!I  be a covering of X by open balls. Then by the Volterra-Poincare 
lemma, ! = d"#  on U! , where  !" !#X

0U" , but there is no function  ! !"X
0  

satisfying ! = d"  (see e.g. Schwartz [Sc]). Thus !  is locally expressible as 
the exterior derivative, but there is no global function !  such that ! = d" .  

7.5  Sheaf spaces associated with Abelian presheaves 

 We introduce in this section a correspondence, assigning to an Abelian 
presheaf an Abelian sheaf space, and to an Abelian presheaf morphism an 
Abelian sheaf space morphism, and study basic properties of this corre-
spondence.  
 Let  S  be an Abelian presheaf with base X,  {sVU}  the family of its re-
striction mappings. For any point  x! X , consider the set of all pairs (U,! ) , 
where U is a neighbourhood of x and !  a section of  S , belonging to the 
Abelian group  SU . There is an equivalence relation on this set “ ! ! " , if 
there exists a neighbourhood W of x such that the restrictions of !  and !  to 
W coincide”. Indeed, the binary relation  !  is obviously symmetric and re-
flexive. To show that it is transitive, consider three sections   ! 1 !SU1 , 
  ! 2 !SU2 , and   ! 3 !SU3 , such that  ! 1 ! ! 2  and  ! 2 ! ! 3 . Then by definition 
there exist two neighbourhoods V and W of the point x such that 
 V !U1"U2 ,  W !U2 "U3  and sU1V (! 1) = sU2V (! 2 )  and sU2W (! 2 ) = sU2W (! 3) . 
Then on  V !W  

(1)  
  

sU1,V!W (! 1) = sV ,V!W ! sU1,V (! 1) = sV ,V!W ! sU2 ,V (! 2 ) = sU2 ,V!W (! 2 )
= sW ,V!W ! sU2W (! 2 ) = sW ,V!W ! sU3W (! 3) = sU3 ,V!W (! 3).

 

The equivalence class of a section !  is called the germ of !  at the point x 
and is denoted by [! ]x . Denote by  Sx  the quotient set and consider the set  

(2)  
   
GermS = Sx

x!X
!  
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Define a mapping  ! :GermS " X  by the equation  

(3)  ! ([" ]x ) = x.  

 We need a topology on the set  germS  and an Abelian group structure 
on each of the sets  Sx  defining on  GermS  the structure of a sheaf space of 
Abelian groups with base X and projection ! . Let U be an open set in X, 
  ! !SU  a section. We define a mapping   !! :U"GermS  by  

(4)   !! (x) = [! ]x .  

The set  germS  will be considered with the final topology, associated with 
the family   { !! } , where !  runs through the set of sections of the presheaf  S ; 
this is the strongest topology on the set  GermS  in which all the mappings 
 !! are continuous.  
 Note that if   ! !SU  is a section then the set  !! (U )  is open in  GermS . 
Clearly, if   ! !SV  is another section, we have  

(5)      
!! "1 !# (U ) = {x!V | !! (x) = !# (x)} = {x!U !V | !! (x) = !# (x)},  

which is an open subset of  U !V  formed by all points x such that ! = "  on 
a neighbourhood of x. Now we apply the definition of the final topology to 
observe that  !! (U )  is open.  
 It is easy to see that the mapping  ! :GermS " X  defined by (4) is a 
local homeomorphism. If   y!GermS  is any germ at  x! X  and   ! !SU  any 
representative of y, then  W = !! (U )  is a neighbourhood of y and  

(6)    ! |W ! "" = idU , "" !! |W = idW .  

 Every fibre  Sx  of !  has the structure of an Abelian group defined by  

(7)  [! ]x + [" ]x = [sUW (! )+ sVW (" )]x ,  

where   ! !SU ,   ! !SV , and  W =U !V . Clearly, this definition is correct, 
because the germ on the right-hand side is independent of the choice of the 
representatives !  and ! . Indeed, with obvious notation  

(8)  
[s !U !W ( !" )+ s !U !W ( !# )]x = [s !W !!W (s !U !V ( !" )+ s !U !V ( !# ))]x

= [s !U !!W ( !" )+ s !U !!W ( !# )]x ,
[sUW (" )+ sVW (# )]x = [sU !!W (" )+ sV !!W (# )]x ,

 

where  !W = !U ! !V . Since one may choose the set !!W  in such a way that 
sU !!W (" ) = s !U !!W (" )  and sV !!W (" ) = s !V !!W ( !" ) , we have  

(9)  [sUW (! )+ sVW (" )]x = [s #U ##W ( #! )+ s #V ##W ( #" )]x .  

 It remains to check that the mapping (p,q)! (p " q)  of the fibre prod-



Global Variational Geometry 
 
202 

uct  GermS !X GermS  into  GermS  is continuous. Let (p0 ,q0 )  be an arbi-
trary point of the set  GermS !X GermS , where p0 = [! ]x , q0 = [! ]x . We 
may assume without loss of generality that   ! ," !SW , where W is a neigh-
bourhood of x. Then p0 ! q0 = [" !# ]x . If ! = " #$ , then  !!(W )  is a neigh-
bourhood of the point p0 ! q0 . The set    !! (W )+

!" (W )!GermS #GermS  is 
open, and the set    ( !! (W )+

!" (W ))! (GermS #S GermS)  is open in the set 
 GermS !S GermS . Since the image of    ( !! (W )+

!" (W ))! (GermS #S GermS)  
under the mapping (p,q)! (p " q)  coincides with  !!(W ) , this mapping is 
continuous at (p0 ,q0 ) . This completes the construction of the Abelian sheaf 
space  GermS  from a given presheaf  S . 
 We call  GermS  the Abelian sheaf space, associated with the Abelian 
presheaf  S . The continuous section   !! :U"GermS  is said to be associated 
with the section   ! !SU .  
 Let  S  (resp.  T ) be an Abelian presheaf over a topological space X, 
 {sUV}  (resp.  {tUV} ) the family of restrictions of  S  (resp.  T ). Let   f = {fU}  be 
a presheaf morphism of the presheaf  S  into  T . Denote by  ! :GermS " X  
and  ! :GermT " X  the corresponding sheaf spaces. We define a mapping 
 f :GermS !GermT  by the equation  

(10)   f ([! ]x ) = [fU (! )]x ,  

where   [! ]x !GermS  and   ! !SU  is any representative of the germ [! ]x . It 
can be readily verified that the germ  [fU (! )]x  is defined independently of the 
choice of the representative ! . Indeed, let   ! !SV  be such that [! ]x = [" ]x . 
Then sUW (! ) = sVW (" )  for some neighbourhood W of the point x. Applying 
the definition of the presheaf morphism, we obtain  

(11)    tUW ! fU (! ) = fW ! sUW (! ) = fW ! sVW (" ) = tVW ! fV (" ),  

hence  [fU (! )]x = [fV (" )]x .  
 We assert that the mapping f, defined by (10), is a sheaf space 
morphism. f obviously satisfies  ! ! f =" . Note that if   ! !SU , then  fU (! )  is 
a section of  T ; in particular, the mapping   x! f ([" ]x ) = f ! "" (x) = [fU (" )]x  
of U into the set  germT  is continuous (with respect to the final topology on 
 germT ). This means, however, that  f ! "!  is continuous, and using the prop-
erties of the topology of the set  GermS , we conclude that the mapping f is 
continuous. Finally, the restriction fx  of f to each fibre  (GermS)x  is an Abe-
lian group morphism. Summarizing, we see that all conditions for f to be an 
Abelian sheaf space morphism hold. f is said to be associated with the Abe-
lian presheaf morphism  f .  
 Consider a sheaf space of Abelian groups S with base X and projection 
! , the associated sheaf of Abelian groups Sec(c) S , and the sheaf space 
germSec(c) S , associated with the sheaf Sec(c) S . Let !" :GermSec(c) S# X  
be sheaf space projection. Let  s! S  be a point and V a neighbourhood if s 
such that  ! |V  is a homeomorphism. Put x =! (s) ,  ! s = (" |V )

#1 , and  
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(12)  !S (s) = [" s (x)].  

This defines a mapping !S :S"GermSec(c) S  such that  !" !#S =" .  

 Lemma 8  (a) Let  S  and  T  be two Abelian presheaves with base X, 
 f :S !T  an Abelian presheaf morphism, and let  f :GermS !GermT  be 
the sheaf space morphism associated with  f . Then for every point  x! X   

(13)   (GermKer f )x = Ker fx , (GermIm f )x = Im fx .  

 (b) Let  f :GermR !GermS  (resp.  g :GermS !GermT ) be the Abe-
lian sheaf space morphism associated with an Abelian presheaf morphism 
 f :R ! S  (resp.  g :S !T ), and  h :GermR !GermT  the Abelian sheaf 
space morphism associated with the Abelian presheaf morphism   h = g ! f . 
Then  h = g ! f .  
 (c) The mapping !S :S"GermSec(c) S  is an Abelian sheaf space iso-
morphism.  
 Proof  (a) Let  [! ]x !GermKer f . Then  ! ! (Ker f )U , where U is a 
neighbourhood of x. Thus the representative !  satisfies  fU (! ) = 0  hence by 
(10), f ([! ]x ) = 0  and  [! ]x !Ker f . Conversely, assume that  [! ]x !Ker f . 
Then by (10)  f ([! ]x ) = [fV (! )]x = 0 . In particular,  fV (! )  is equivalent with 
the zero section,  tVU (fV (! )) = fV (sVU (! )) = 0  for a neighbourhood U of x such 
that  U !V . Thus [! ]x = [sVU (! )]x , where   sVU (! )!Ker fU .  
 Let   [! ]x !GermIm f . Then for some neighbourhood V of x,  ! = fV (" ) , 
where   ! !SU . Thus by (10),  f ([! ]x ) = [fU (! )]x = [" ]x  which means that 
 [! ]x ! Im fx . Conversely, let  [! ]x ! Im fx . Then there exists [! ]x  such that 
fx ([! ]x ) = [" ]x . Assume that   ! !SV ,   ! !TV . Then on a neighbourhood U 

of x,  fU (sVU (! )) = tVU (" )  which implies  [! ]x = [tVU (! )]x = [fUsVU (" )]x , which 
is an element of the set GermIm fx .  
 (b) The proof is straightforward.  
 (c) We shall show that !S  is an Abelian sheaf space isomorphism. Let 
 [! ]x !GermSec

(c) S  be a germ represented by a section  ! ! (Sec
(c) S)U . 

Write ! S ([" ]x ) = " (x) . Clearly, the point  ! (x)! S  is defined independently 
of the choice of the representative ! . We have ! S ([" ]x ) = (#V )

$1(x) , where 
V is a neighbourhood of the point  ! (x)! S  such that the restriction  ! |U  is a 
homeomorphism. Since  !S !" S ([# ]x ) = !S (($V )

%1(x)) = [($V )
%1]x = [# ]x  and 

(14)   ! S !"S (s) = ! S ([# ]x ) = # S (x) = s,  

! S  is the inverse of !S .  
 We shall verify that !S  is continuous. Let  s! S  be a point, x =! (s) , V 
a neighbourhood of the point  !S (s)!GermSec(c) S . The point !S (s)  has a 
neighbourhood  !! s (U ) , where ! s :U" S  is a section, defined on a neigh-
bourhood U of x, and 

 
!! s (y) = [! s ]y . Since  !! s  is continuous, we may suppose 

that   !! s (U )!V . But the set ! s (U )  is a neighbourhood of the point s, and 
  !S (" s (U )) = !" s (U )!V , hence !S  is continuous at s.  
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 Now we shall show that for every point  x! X  and any two points 
 s1,s2 ! Sx , !S (s1 + s2 ) = !S (s1)+!S (s2 ) . Let V1  (resp. V2 ) be a neighbour-
hood of s1  (resp. s2 ) such that 

 
! |V1  (resp. 

 
! |V2 ) is a homeomorphism. One 

may suppose that ! (V1) =! (V2 ) =U . Then  ! s1
,! s2

,! s1+s2
! (Sec(c) S)U  and 

by definition [! s1
]x + [! s2

]x = [! s1
+ ! s2

]x , that is, !S (s1)+!S (s2 ) = !S (s1 + s2 ) . 
This proves that the mapping !S  is an Abelian sheaf space morphism.  
 The mapping !S  is obviously injective and surjective hence bijective. 
The inverse mapping (!S )

"1 :GermSec(c) S# S  is continuous by the proper-
ties of the final topology, since for every section  ! !Sec

(c) S  the composite 
 (!S )

"1 ! "# = #  is continuous. Summarizing, this proves that !S  is an Abelian 
sheaf space isomorphism.  

 We call the Abelian sheaf space isomorphism !S :S"GermSec(c) S  the 
canonical isomorphism.  
 

7.6  Sheaves associated with Abelian presheaves 

 The concepts of an Abelian sheaf associated with an Abelian sheaf 
space and the Abelian sheaf space associated with an Abelian presheaf al-
low to assign to any Abelian presheaf  S  the sheaf  Sec(c) GermS , which is 
said to be associated with  S . We study properties of this correspondence. 
 Let  S  be an Abelian presheaf over a topological space X,  {sVU}  the 
family of its restrictions. For every open set  U ! X  define a morphism of 
Abelian groups  !U :SU" (Sec(c) GermS)U  by  

(1)   !U (" ) = !" ,  

where  !!  is a section of the sheaf  germS , associated with !  (Section 6.5, 
(4)). The Abelian presheaf morphism   !S = {!U}  of  S  into  Sec(c) GermS  is 
said to be canonical.  
 Since for every open sets  U,V ! X  such that  U !V , and every point 
 x!U ,   !U (sVU (" ))(x) = [sVU (" )]x = [" ]x = !" (x) =!V (" )|U (x) ,  !S  commutes 
with the restrictions,  

(2)    !U ! sVU (" ) =!U (" )|U .  

 Note that any section !  of the sheaf  Sec(c) GermS  is locally generated 
by a family of sections, generated by sections of  S . To prove it, consider a 
continuous section   ! ! (Sec

(c) GermS)U  and any point  x!U . By definition 
! (x)  is the germ of a section   ! x !SUx , where Ux  is a neighbourhood of the 
point x in U. That is,  ! (x) = [" x ]x = !" x (x) . The projection  ! :GermS " X  
of the sheaf space  germS  is a local homeomorphism and  ! !" = idU . On 
the other hand, 

 
! ! "" x = idUx

, and since the inverse mapping is unique,   

(3)  
  
! |Ux

= !" x =#Ux
(" x ).  
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Obviously,  U = !Ux  and for any two points  x, y!U , 
  
! |Ux

= !" x  hence  

(4)  
   
! |Ux!Uy

= !" x |Ux!Uy
= !" y |Ux!Uy

.  

Thus [! x ]z = [! y ]z  for every   z!Ux !Uy . Therefore, every point   z!Ux !Uy  
has a neighbourhood Wz  such that  

(5)  sUxWz
(! x ) = sUyWz

(! y ).  

 In view of (3) we say that the continuous section   ! ! (Sec
(c) GermS)U  

is locally generated by the family of sections   {! x}x!U  of  S .  
 Our aim now will be to find conditions ensuring that the canonical 
morphism  !S :S " Sec(c) GermS  is a presheaf isomorphism.  

 Theorem 1  Let  S  be an Abelian presheaf. The following conditions 
are equivalent:  
 (1)  S  is complete.  
 (2) The canonical presheaf morphism  !S :S " Sec(c) GermS  is a pre-
sheaf isomorphism.  
 Proof  1. Suppose that   !S = {!U}  is a presheaf isomorphism. Let  {sUV}  
be the restrictions of the presheaf  S ,  {tUV}  the restrictions of the sheaf 
 Sec(c) GermS . Let   {U!}!!I  be a family of open sets in X,   U = !U! , and ! , 
!  two sections from  SU  such that 

 
sUU!

(" ) = sUU!
(# ) . Then by the definition 

of the presheaf morphism, 
 
!U"
! sUU"

(# ) = tUU"
!!U (# ) = tUU"

!!U ($ ) . Hence 
!U (" ) =!U (# )  and, since !U  is a group isomorphism, ! = " . This means 
that the presheaf  S  satisfies condition (4) of the definition of a complete 
presheaf. Now suppose that a family   {! "}"!I , where   ! " !SU" , satisfies the 
condition 

 
sU! ,U!!U"

(# ! ) = sU! ,U!!U"
(# " )  for all  !," ! I . Then  

(7)  
  

!U"!U#
! sU" ,U"!U#

($ " ) = tU" ,U"!U#
($ " )!!U"

($ " )
= tU# ,U"!U#

($ # )!!U#
($ # ),

 

so there must exist a section   ! ! (Sec
(c) GermS)U , where   U = !U! , such 

that tUU!
(" ) =#U!

($ ! )  for all indices  !! I . If   ! !SU  is such that ! ="U (# ) , 
we have 

 
tUU!
!"U (# ) ="U!

! sUU!
(# ) ="U!

(# ! ) , hence sUU!
(" ) = " ! . Thus, con-

dition (5) is also satisfied. This means, however, that  S  must be complete.  
 2.  Conversely, suppose that the presheaf  S  is complete. We wish to 
show that there exists a presheaf morphism  f :Sec(c) GermS ! S ,   f = {fU} , 
such that 

  
!S ! f = idSec(c ) germS  and   f !!S = idS , that is,  

(7)  
  
!U ! fU = id(Sec(c ) germS )U , fU !!U = idSU  

for all open sets  U ! X . Obviously, these equations have a solution  fU  if 
and only if the mapping !U  is bijective. Since we have already shown that 
!U  is injective, it is sufficient to prove that it is surjective.  
 Let   ! ! (Sec

(c) GermS)U  be a section, and let  x!U  be a point. Apply-
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ing the definition of a presheaf (condition (3), Section 7.4) of to equation (3),  

(8)  
  
sUx!Uy ,Wz

! sUx ,Ux!Uy
(! x ) = sUx!Uy ,Wz

! sUx ,Ux!Uy
(! y ).  

Covering 
 
Ux !Uy  by the sets Wz  we get from condition (4) of the definition 

of a presheaf  

(9)  
 
sUx ,Ux!Uy

(! x ) = sUx ,Ux!Uy
(! y ).  

Condition (5) now implies that there exists a section   ! !SU  such that  

(10)  sUUx
(! ) = ! x  

for all  x!U . Therefore, the sections !  and ! x  belong to the same germ at 
every point of the set Ux . This means that 

  
!! |Ux

) = !! x  and  

(11)  
  
! |Ux

= !" x = !" |Ux
.  

Since the presheaf of sections of the sheaf space  germS  is a sheaf (Lem-
ma 6), we get  ! = !"  proving that the mapping !U  is surjective.  
 Consequently, the mapping  fU  exists, and is given by the formula 
 fU = (!U )

"1 . It remains to show that   tVU ! fV = fU ! sVU  for any two open sets 
 U,V ! X  such that  U !V , where tVU  are restrictions of the presheaf 
 Sec(c) GermS . Let   ! ! (Sec

(c) GermS)U  be a section; then  ! = !" =#V (" )  
for some section   ! !SV . We have  

(12)    sVU ! fV ( "! ) = sVU ! fV !"V (! ) = sVU (! ),  

and  

(13)    fU ! tVU ( "! ) = fU ! tVU !"V (! ) = fU !"U ! sVU (! ) = sVU (! ),  

proving the desired identity   tVU ! fV = fU ! sVU . Now the proof is complete.  

 Theorem 2  Let  S  (resp.  T ) be an Abelian presheaf with restrictions 
 {sUV}  (resp.  {tUV} ), let  f :S !T  be an Abelian presheaf morphism. There 
exists a unique Abelian presheaf morphism  g :Sec

(c) GermS ! Sec(c) GermT  
such that the diagram  

(14)  

 

S f! "! T
#$S #$T

Sec(c) GermS g! "! Sec(c) GermT

 

commutes.  
 Proof   f  generates a sheaf space morphism  f :GermS !GermT  by 
the formula  f ([! ]x ) = [fU (! )]x , where U is a neighbourhood of x and   ! !SU  
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is a representative of the germ [! ]x . f defines a sheaf morphism 
 g :Sec

(c) GermS ! Sec(c) GermT ,   g = {gU}  by  

(15)    gU (! ) = f !! ,  

where   ! ! (Sec
(c) GermS)U . Note that condition (10), Section 7.5 can be 

expressed in the form  f (!S ,U (" )(x)) =!T ,U (fU (" ))(x))  or, equivalently, 
  f !!S ,U (" ) =!T ,U ! fU (" ) , which implies  

(16)    gU (!S ,U (" )) = f !!S ,U (" ) =!T ,U ! fU (" ).  

This proves existence and uniqueness of  g .  

 To describe the morphism  g :Sec
(c) GermS ! Sec(c) GermT  explicitly, 

choose a continuous section   ! ! (Sec
(c) GermS)U . We have already seen 

that there exists a family   {! x}x!U  of sections   ! x !TUx , where Ux  is a 
neighbourhood of x in U, such that  

(17)    ! |Ux
="S ,Ux

(# x ).  

If   z!Ux !Uy , then sUxWz
(! x ) = sUxWz

(! y )  on some neighbourhood Wz  of the 
point z in 

 
Ux !Uy . Obviously, on Ux  

(18)    gU (! )|Ux
="T ,Ux

(fUx
(# x )),  

because for every  y!Ux  

(19)  
  

gU (! )|Ux
(y) = f (! (y)) = f ("S ,Ux

(# x )(y)) = f ([# x ]y )
= [fUx

(# x )]y ="T ,Ux
(fUx
(# x ))(y).

 

Thus, if !  is locally generated by the family   {! x}x!U , then  gU (! )  is locally 
generated by the family    {fUx

(! x )}x!U .  
 Note that if in diagram (14),  T  is a complete Abelian presheaf, then by 
Theorem 1,  !T  is an Abelian presheaf isomorphism, so we have, with obvi-
ous conventions,  

(20)    f =!T
"1 !g !!S .  

If  S  is a complete presheaf, then  

(21)    g =!T ! f !!S
"1.  

 Corollary 2  If  S  is a subpresheaf of an Abelian presheaf  T , then the 
sheaf  Sec(c) GermS  is a subsheaf of  Sec(c) GermT .  

 Corollary 3  (a) Every complete Abelian presheaf is isomorphic with an 
Abelian sheaf, associated with an Abelian sheaf space.  
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 (b) Every presheaf morphism of complete Abelian presheaves is ex-
pressible as a sheaf morphism, associated with a sheaf space morphism.  
 Proof  (a) This follows from Theorem 1.  
 (b)  If both  S  and  T  in Theorem 2 are complete presheaves, then for-
mulas (20) and (21) establish a one-to-one correspondence between presheaf 
morphisms  f  of complete presheaves and sheaf morphisms  g  associated 
with sheaf space morphisms.  

 Let  f :S !T  be an Abelian presheaf morphism, and suppose that the 
Abelian presheaf  T  is complete. Let  f :GermS !GermT be the associated 
morphism of sheaf spaces. Note that we have defined the image  Im f  as a 
subpresheaf of  T . On the other hand, we have also defined the image of the 
sheaf  Sec(c) GermS  by the sheaf morphism induced by f, which is equal to 
the subsheaf Sec(c) Im f  of the Abelian sheaf  Sec(c) GermT . Obviously, 
  Im f !!T

"1(Sec(c) Im f ) , and  !T
"1(Sec(c) Im f )  is a complete subpresheaf of 

 T . To distinguish between Im f  and  !T
"1(Sec(c) Im f ) , we sometimes call 

 !T
"1(Sec(c) Im f )  the complete image of  S  by the presheaf morphism  f , or 

the complete subpresheaf, generated by  S .  
 If  S  is a subpresheaf of the presheaf  T , then the canonical inclusion 
 !S :S "T  defines the image  Im!S  and the complete image  !T

"1(Sec(c) Im#S ) . 
If the presheaf  S  is complete, then the following three subpresheaves  S , 
 Im!S  and  !T

"1(Sec(c) Im#S )  coincide.  

 Examples  22. Let X be a topological space, G a group. We set for each 
non-void open set  U ! X ,  GU = G , and   GØ = 0  (the neutral element of G). 
For any two open sets  U,V ! X  such that  U !V , we set  sUV :GU!GV  to 
be the restriction of the identity mapping idG . Then the family   G = {GU}  is 
a presheaf over X, called the constant presheaf.  G  is not complete, because 
it does not satisfy condition (5), Section 7.4 of the definition of a complete 
presheaf. Indeed, if U and V are disjoint open sets in X, and   g!GU = G , 
  h!GV = G  are two different points, then there is no element in G equal to 
both g and h (cf. Section 7.4, Remark 4). It is easily seen that the sheaf 
space, associated with the presheaf  G ,  GermG , coincides with the constant 
sheaf space GX  (Section 7.2, Example 11).  

 Remark 5  One can define sheaves with different algebraic structure on 
the fibres than the Abelian group structure. Let ! :S" X  be a local home-
omorphism of topological spaces. Assume that for every point  x! X  the 
fibre Sx  is a commutative ring with unity such that the subtraction 
 S !X S! (s1,s2 )" s1 # s2 " S  and multiplication  S !X S! (s1,s2 )" s1 # s2 " S  
are continuous. Then S is called the sheaf space of commutative rings with 
unity. If ! :T " X  is another local homeomorphism, such that the fibres Tx  
are modules over Sx  and the mappings  T !X T ! (t1,t2 )" t1 # t2 "T  and 
 S !X T ! (s,t)" s # t " S  are continuous, then T is called a sheaf space of S-
modules.  
 


