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7.7  Sequences of Abelian groups, complexes 

 We summarize in this section elementary notions of the homological 
algebra of sequences of Abelian groups such as the complex, the connecting 
homorphism, and the long exact sequence.  
 A family   A* = {Ai ,di}i!Z , of Abelian groups and their morphisms 
di :Ai ! Ai+1 , indexed with the integers  i! Z , is called a sequence of Abe-
lian groups. The family of the group morphisms in this sequence is denoted 
by   {d

i}i!Z . We usually write A*  in the form  

(1)   … !"! Ai#1 di#1! "!! Ai di! "! Ai+1 di+1! "!! …  

Note that the asterisk in the symbol A*  of the sequence refers to the posi-
tion of indices in the sequence.  
 A sequence of Abelian groups may begin or end with an infinite string 
of trivial, one-element Abelian groups 0, and their trivial group morphisms. 
If Ai = 0  for all i < 0 , then the sequence A*  is said to be non-negative, and 
is written as   A* = {Ai ,di}i!N , with indexing set the non-negative integers, or  

(2)   0 !"! A0 d0! "! A1 d1! "! A2 d2! "! A2 d 3! "! …  

In this notation the mapping 0! A0  is the trivial group morphism. If there 
exist the smallest and greatest integer r and s) such that Ar ! 0  and As ! 0 , 
then the sequence A*  is said to be finite, and Ar  (resp. As ) is called its first 
(resp. last) element. In this case we write A*  as  

 (3)   0 !"! Ar dr! "! Ar+1 dr+1! "!! …
ds#1! "!! As ds! "! 0  

with trivial group morphisms 0! Ar  and As ! 0 .  
 To simplify notation, we sometimes omit the indexing set and write just 
 A* = {Ai ,di} , or  A* = {Ai ,d}  for the sequence (3) when no misunderstand-
ing may arise.  
 A sequence of Abelian groups  A* = {Ai ,di}  is said to be exact at the 
term Aq , if Kerdq = Imdq!1 . A*  is an exact sequence, if it is exact in every 
term. Exact sequence of the form  

(4)  0 !"! A f! "! B g! "! C !"! 0  

is called a short exact sequence.  
 The following are elementary properties of short exact sequences.  

 Lemma 9  (a) The sequence (4) is exact at C if and only if the group 
morphism g is surjective.  
 (b) The sequence (4) is exact at A if and only if the f is injective.  
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 (c) A sequence of Abelian groups  

(5)  0 !"! A #!"! B $! "! B / A !"! 0  

in which  A! B , ! :A" B  is inclusion and ! :B" B / A  is the quotient 
projection, is a short exact sequence.  
 (d) Suppose we have a diagram  

(6)  
0 !"! A0 f 0! "!! A1 f 1! "! A2 !"! 0

#$ 0 #$1

0 !"! B0 g0! "! B1 g1! "! B2 !"! 0

 

where the horizontal sequences are short exact sequences of Abelian groups, 
! 0  and !1  are morphisms of Abelian groups, and the first square com-
mutes,  

(7)   g
0 !! 0 =!1 ! g1.  

Then there exists a unique morphism of Abelian groups ! 2 :A2 " B2  such 
that the second square of the diagram  

(8)  
0 !"! A0 f 0! "!! A1 f 1! "! A2 !"! 0

#$ 0 #$1 #$ 2

0 !"! B0 g0! "! B1 g1! "! B2 !"! 0

 

commutes.  
 (e) Consider the exact sequence of Abelian groups (4) and the quotient 
projection ! :B" B / f (A) . There exists a unique group isomorphism 
! :C" B / f (A)  such that the diagram  

(9)  
0 !"! A f! "! B g! "! C !"! 0

#idA #idB #$
0 !"! A f! "! B %! "! B / f (A) !"! 0

 

commutes.  
 Proof  1. Assertions (a), (b), and (c) are immediate consequences of def-
initions.  
 2.  Consider the diagram (6). We first construct a morphism of Abelian 
groups ! 2 :A2 " B2  and then prove its uniqueness. Let  !!a ! A2  be a point. 
We set  

(10)  ! 2 ( ""a ) = g1!1( "a ),  
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where  !a ! A1  is any element such that f 1( !a ) = !!a . We shall show that this 
equation defines a point  !

2 ( ""a )! B2  independently of the choice of !a . Let 
 !a1, !a2 ! A1  be any two points such that f 1( !a1) = !!a  and f 1( !a2 ) = !!a . Then 
f 1( !a1 " !a2 ) = 0  hence !a1 " !a2 = f 0 (a)  for some  a! A1  (exactness of the first 

row). Then, however, g1(!1( "a1)) = g
1(!1( "a2 ))+ g

1(!1( f 0 (a))) = g1(!1( "a2 ))  
because g1(!1( f 0 (a))) = g1(g0 (! 0 (a))) = 0  (exactness of the second row). 
Therefore, formula (10) defines a mapping ! 2 :A2 " B2 , and the same for-
mula immediately implies that ! 2  satisfies the condition  !

2 ! f 1 = g1 !!1 . 
This means that the second square of the diagram (6) commutes.  
 To show that the mapping ! 2  is a group morphism, take  !!a1 , !!a2 ! A2  
and  !a1, !a2 ! A1  such that f 1( !a1) = !!a1  and f 1( !a2 ) = !!a2 . Then we have 
f 1( !a1 + !a2 ) = !!a1 + !!a2 , therefore  

(11)  ! 2 ( ""a1 + ""a2 ) = g
1(!1( "a1 + "a2 )) =!

2 ( ""a1 )+!
2 ( ""a2 )  

since both g1  and !1  are group morphisms. This proves existence of the 
group morphism ! 2 . Its uniqueness follows from the surjectivity of f 1.   
 3.  To prove (e) we combine (c) and (d).  

 A sequence of Abelian groups  A* = {Ai ,di}  is called a complex of Abe-
lian groups, or just a complex, if  

(12)   di+1 !di = 0  

for all i. The family of group morphisms  d* = {di}  is called the differential 
of the complex A* . Condition (12) is equivalent to saying that the kernel 
Kerdi+1  and the image Imdi  satisfy  Imd

i !Kerdi+1 . To simplify notation, 
we usually denote the Abelian group morphisms di  by the same letter, d; 
condition (12) then reads  d !d = 0 .  
 Let  A* = {Ai ,d}  be a complex. For every index i, the complex A*  de-
fines an Abelian group H iA* , the i-th cohomology group of A* , by 

(13)  H iA* = Kerdi+1 / Imdi .  

Elements of this group are called i-th cohomology classes of the complex 
A* . Note that the complex is exact in the i-th term if and only if the i-th co-
homology group H iA*  is trivial.  
 If A is an Abelian group, then any exact sequence Abelian groups of the 
form  

(14)   0!"! A #! "! B0 d! "! B1 d! "! B2 d! "! …  

is called a resolution of A. A resolution (14) defines a non-negative complex 
 B* = {Bi ,d}  as  

(15)   0!"! B0 d! "! B1 d! "! B2 d! "! B3 d! "! …  

such that  
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(16)  H 0B* = A, H iB* = 0, i !1.  

Using this complex the resolution can also be expressed in a shortened form  

(17)  0 !"! A #! "! B*  

 Let  A* = {Ai ,d}  and  B* = {Bi , !d }  be two complexes, and let  ! = {" i}  
be a family of Abelian group morphisms ! i :Ai " Bi . These complexes and 
group morphisms can be expressed by the diagram  

(18)  

 

… !"! Ai#1 d! "! Ai d! "! Ai+1 !"! …

$% i#1 $% i $% i+1

… !"! Bi#1 &d! "! Bi &d! "! Bi+1 !"! …

 

If all squares in this diagram commute, that is,  

(19)   !
i+1 !d = "d !! i ,  

then we say that !  is a morphism of the complex A*  into B* . Property 
(19) can also be expressed by writing ! :A*" B* . The composition of two 
morphisms !  and !  , defined in an obvious way, and is denoted by  ! !" .  
 As before, the asterisk in the following lemma denotes position of indi-
ces, labelling different elements of Abelian groups belonging to a complex.  

 Lemma 10  Let 
 
A* = {Aj

i ,dj
i}  and 

 
A*= {Ai

j ,! i
j}  be two families of 

non-negative complexes. Suppose that we have a commutative diagram  

(20)  

 

0 0 0 0
! ! ! !

0 "#" A00
d0
0

" #" A01
d0
1

" #" A02
d0
2

" #" A03 "#" …

!$ 00 !$ 01 !$ 02 !$ 03

0 "#" A10
d1
0

" #" A11
d1
1

" #" A12
d1
2

" #" A13 "#" …

!$10 !$11 !$12 !$13

0 "#" A20
d2
0

" #" A21
d2
1

" #" A22
d2
2

" #" A23 "#" …

!$ 20 !$ 21 !$ 22 !$ 23

0 "#" A30
d3
0

" #" A31
d3
1

" #" A32
d3
2

" #" A33 "#" …
! ! ! !

  

such that that all its rows (resp. columns) except possibly the first row (resp. 
column) are exact sequences of Abelian groups. Then for each q ! 0  the 
cohomology groups H qA 0*  and H qA*

0  are isomorphic.  
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 Proof  Let q = 0  and let 
 
[a]!H 0A*

0 = Ker! 0
0 . Then [a] = a , ! 0

0 (a) = 0  
hence ! 0

1d0
0 (a) = d1

0! 0
0 (a) = 0  and injectivity of ! 0

1  implies d0
0 (a) = 0 , that is, 

 a!Kerd0
0 = H 0A 0* . Thus, 

 
H 0A*

0!H 0A 0* . The opposite inclusion is ob-
tained in the same way.  
 Consider the case q !1 . Let 

 
[a]!H qA*

0 = Ker! q
0 / Im! q"1

0 , and let a be 
a representative of [a] . Then ! q

0 (a) = 0  hence ! q
1dq

0 (a) = dq"1
0 ! q

0 (a) = 0 , that 
is,  dq

0 (a)!Ker! q
1 = Im! q"1

1 , and for some  b1 ! Aq!1
1 ,  

(21)  dq
0 (a) = ! q"1

1 (b1).  

But ! q"1
2 dq"1

1 (b1) = dq
1! q"1

1 (b1) = dq
1dq

0 (a) = 0  and  dq!1
1 (b1)!Ker" q!1

2 = Im" q!2
2 . 

Thus, for some b2 = Aq!1
1  we have dq!1

1 (b1) = " q!2
2 (b2 ) .  

 Suppose that for some k, 1! k ! q " 2 , and Aq!k
k , there exists  bk ! Aq!k

k  
such that dq!1

k (bk ) = " q!k!1
k+1 (bk+1) . Then  

(22)  ! q"k"1
k+2 dq"k"1

k+1 (bk+1) = dq"k
k+1! q"k"1

k+1 (bk+1) = dq"k
k+1dq"k

k (bk ) = 0  

hence  dq!k!1
k+1 (bk+1)!Ker" q!k!1

k+2 = Im" q!k!2
k+2 . Thus for some  bk+2 ! Aq!k!2

k+1 ,  

(23)  dq!k!1
k+1 (bk+1) = " q!k!2

k+2 (bk+2 ).  

 The construction is described by the following part of diagram (20): 

(24)  

bk+2 Aq!k!2k+2

"# q!k!2
k+2

bk+1 Aq!k!1k+1 dq!k!1
k+1

$ %$$$ Aq!k!1k+2

"# q!k!1
k+1 "# q!k!1

k+2

bk Aq!kk dq!k
k

$ %$$ Aq!kk+1 dq!k
k+1

$ %$$ Aq!kk+2

"# q!k
k "# q!k

k+1

Aq!k+1k dq!k+1
k

$ %$$$ Aq!k+1k+1

 

 For k = q ! 2 , formula (23) gives d1
q!1(bq!1) = " 0

q (bq )  hence  

(25)  ! 0
q+1d0

q (bq ) = d1
q! 0

q (bq ) = d1
qd1

q"1(bq"1) = 0,  

and injectivity of ! 0
q+1  implies d0

q (bq ) = 0  hence  bq !Kerd0
q .  

 Thus, to a representative a of a class 
 
[a]!H qA*

0  we have constructed a 
sequence 

 
(b1,b2 ,…,bq )  such that  bi ! Aq!1

i  for each i,  bq !Kerd0
q , and  

(26)  dq
0 (a) = ! q"1

1 (b1), dq"k
k (bk ) = ! q"k"1

k+1 (bk+1).  

 Let !a  be another representative of the class [a] , and let 
 
( !b1, !b2 ,…, !bq )  
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be another sequence satisfying condition (26),  

(27)  dq
0 ( !a ) = " q#1

1 ( !b1), dq#k
k ( !bk ) = " q#k#1

k+1 ( !bk+1).  

We set !!a = a " !a , !!bi = bi " !bi . We wish to show that [ !!bq ] = 0  hence 

 !!bq ! Imd0
q"1 . By definition [ !!a ] = 0  hence  !!a ! Im" q#1

0  and !!a = " q#1
0 (c1)  for 

some  c1 ! Aq!1
0 . But by (26) and (27), ! q"1

1 ( ##b1 ) = dq
0 (! q"1

0 (c1)) = ! q"1
1 dq"1

0 (c1) , 
which implies  !!b1 " dq"1

0 (c1)!Ker# q"1
1 = Im# q"2

1 , hence for some  c2 ! Aq!2
1 ,  

(28)  !!b1 " dq"1
0 (c1) = # q"2

1 (c2 ).  

Now suppose that for some k !1  and some  ck ! Aq!k
k!1  there exists 

 ck+1 ! Aq!k!1
k!1  such that !!bk " dq"k

k"1(ck ) = # q"k"1
k (ck+1) . Using (26), (27) and (28),  

(29)  
! q"k"1
k+1 ( ##bk+1) = dq"k

k ( ##bk ) = dq"k
k (! q"k"1

k (ck+1)+ dq"k
k"1(ck ))

= dq"k
k ! q"k"1

k (ck+1) = ! q"k"1
k+1 dq"k"1

k (ck+1),
 

so that  !!bk+1 " dq"k"1
k (ck+1)!Ker# q"k"1

k+1 = Im# q"k"2
k+1 . Thus, for some  ck+2 ! Aq!k!2

k+1  

(30)  !!bk+1 " dq"k"1
k (ck+1) = # q"k"2

k+1 (ck+2 ).  

 The derivation of this formula includes the following part of diagram 
(20) of Lemma 10:  

(31)  

ck+2 Aq!k!2k+1

"# q!k!2
k+1

ck+1 Aq!k!1k dq!k
k

$ %$$ Aq!k!1k+1

"# q!k!1
k "# q!k!1

k+1

ck+1 Aq!kk!1 dq!k
k!1

$ %$$ Aq!kk dq!k
k

$ %$$ Aq!kk+1

"# q!k
k!1 "# q!k

k

Aq!k+1k!1 dq!k+1
k!1

$ %$$$ Aq!k!1k

 

 If k = q ! 2 , formula (30) gives for some  cq ! A0
q!1   

(32)  !!bq"1 " d1
k (cq"1) = # 0

q"1(cq ).  

Then by (26), (27), and (32) 

(33)  
! 0
q ( ""bq ) = d1

q#1( ""bq#1) = d1
q#1(! 0

q#1(cq )+ d1
q#2 (cq#1))

= d1
q#1! 0

q#1(cq ) = ! 0
qd0

q#1(cq ),
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that is, !!bq " d0
q"1(cq ) = 0  because ! 0

q  is injective. Therefore,  !!bq ! Imd0
q"1 .  

 Consequently, equation  

(34)  f q ([a]) = [bq ]  

defines a mapping f q :H qA*
0! H qA 0*  which is a morphism of Abelian 

groups. In the same way we define a morphism of Abelian groups 
fq :H

qA 0*! H qA*
0 , and it remains to verify that the morphism fq  is the in-

verse of f q .  
 Let  [b]!H

qA 0*  be a class, represented by an element b. There exists a 
sequence 

 
(a1,a2 ,…,aq ) , where  ai ! Ai

q!1 , such that  

(35)  ! 0
q (b) = d1

q"1(a1), ! k
q"k (ak ) = dk+1

q"k"1(ak+1),  

where  k = 1,2,…,q !1 . By definition,  

(36)  fq ([b]) = [aq ].  

Let [b] = [bq ] , where [bq ]  is determined by (34). Taking a1 = bq!1 , a2 = bq!2 , 
 … , aq!1 = b1 , aq = a  we get from (21) and (23) that (35) is satisfied. Conse-
quently, [aq ] = [a]  proving that fq  is the inverse of f q .  
 This completes the proof of Lemma 10.  

 Now we consider three complexes  A* = {Ai ,di} ,  B* = {Bi ,! i}  and 
 C* = {Ci ,!i}  and two morphisms of complexes ! :A*" B* ,  ! = {" i} , 
and ! :B*" C * ,  ! = {" i}  between them. The composition of these mor-
phisms yields a morphism of complexes  ! !" :A*# C * , defined by  

(37)   (! !")
q =# q !$ q .  

We show that under some exactness hypothesis these morphisms induce an 
exact sequence of Abelian groups, formed by cohomology groups of these 
complexes.  
 Note that the morphism !  induces the diagrams  

(38)  
0 !"! Imdi#1 !"! Kerdi !"! H iA* !"! 0

$% i $% i $% i

0 !"! Im& i#1 !"! Ker& i !"! H iB* !"! 0

 

where the first two vertical arrows are the restrictions of the morphism ! i  to 
the subgroups of Ai , the mappings Imdi!1" Kerdi  and Im! i"1# Ker! i  
are the canonical inclusions, and !i  is the unique morphism of Abelian 
groups for which the second square in the diagram (38) commutes (Lem-
ma 10, (e)).  
 The following statement is sometimes referred to as the zig-zag lemma. 
Its proof is based on the technique known as the diagram chasing.  
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 Lemma 11  Let  A* = {Ai ,di} ,  B* = {Bi ,! i}  and  C* = {Ci ,!i}  be 
three non-negative complexes, ! :A*" B* ,  ! = {" i} , and ! :B*" C * , 
 ! = {" i}  morphisms of complexes. Suppose that we have a commutative 
diagram  

(39)  

 

0 0 0
! ! !

0 "#" A0 d0" #" A1 d1" #" A2 d2" #" …
!$ 0 !$1 !$ 2

0 "#" B0 % 0" #"" B1 % 1" #" B2 % 2" #"" …
!& 0 !& 1 !& 2

0 "#" C0 '0" #"" C1 '1" #" C2 '2" #"" …
! ! !
0 0 0

 

with exavt columns. Then for every q ! 0  there exists a morphism of se-
quences of Abelian groups  ! = {!q} , !q:H qC*" H q+1A*  such that the se-
quence of Abelian groups 

(40)  
0 !"! H 0A* # 0

! "!! H 0B* $ 0
! "!! H 0C* %0! "! H 1A*

#1! "! H 1B* $ 1! "!! H 1C* %1! "! H 2A* # 2
! "!!

 

is exact.  
 Proof  1. First we construct the group morphisms !q:H qC*" H q+1A* . 
Consider the following commutative diagram  

(41)  

0 0 0 0
! ! ! !

Aq"1 dq"1# $## Aq dq# $# Aq+1 dq+1# $## Aq+2

!% q"1 !% q !% q+1 !% q+2

Bq"1 & q"1# $## Bq & q
# $## Bq+1 & q+1

# $## Bq+2

!' q"1 !' q !' q+1

Cq"1 (q"1
# $## Cq (q

# $## Cq+1

! ! !
0 0 0

 

Let  [c]!H
qC* = Ker!q / Im!q  be a class, represented by an element 

 c!Ker!q . Since ! q  is surjective, there exists an element  b! Bq  such that 
! q (b) = c . But ! q+1" q (b) = #q! q (b) = 0  so that  !

q (b)!Ker" q+1  and by 
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exactness of the third column, there exists an element  a! Aq+1  such that 
! q (b) =" q+1(a) . Since ! q+2dq+1(a) = " q+1! q+1(a) = " q+1" q (a) = 0 , and since 
! q+2  is injective, dq+1(a) = 0  and  a!Kerdq+1 . Thus, given  c!Ker!q , there 
exists  b! Bq  and  a!Kerdq+1  such that  

(42)  c =! q (b), " q (b) =# q+1(a).  

 If !c  is some other representative of the class [c] , then there exist 
 !b ! Bq ,  !a !Kerdq+1  and  d !Cq!1  such that  

(43)  !c =" q ( !b ), # q ( !b ) =$ q+1( !a ), !c = c % &q%1(d).  

We show that [a] = [ !a ] . We have d =! q"1(b0 )  for some  b0 ! B
q!1  (by sur-

jectivity of ! q"1 ). Thus, ! q" q#1(b0 ) = $q#1! q#1(b0 ) = $q#1(d) , and the third 
formula (41) gives ! q ( "b # b +$ q#1(b0 )) = 0 , that is, by exactness of the col-
umn,  !b " b +# q"1(b0 )! Im$ q . Thus, !b " b +# q"1(b0 ) =$

q (a0 )  for some 
 a0 ! A

q . But ! q ( "b # b +! q#1(b0 )) = !
q$ q (a0 ) =$

q+1dq (a0 )  by commutativity 
of the diagram (41). Applying (42) and (43) and the property ! q+1! q = 0  of 
the complex B*  one obtains ! q+1( "a )#! q+1(a) =! q+1dq (a0 ) . Finally, inject- 
ivity of ! q+1  yields !a " a = dq (a0 ) . This proves that [a] = [ !a ] .  
 Now since the class [a]  is defined independently of the choice of the 
representative c of the class [c] , we may define a mapping !q  of H qC *  
into H q+1A*  by the formula  

(44)  !q ([c]) = [a].  

 It is easily verified that this mapping is an Abelian group morphism. Let 
c1  be a representative of a class [c1]  in H qC * . There exists  b1 ! B

q  and 
 a1 !Kerd

q+1  such that c1 =!
q (b1) , !

q (b1) ="
q+1(a1) . Similarly, let c2  be a 

representative of a class [c2 ]  in H qC * . There exist elements  b2 ! B
q  and 

 a2 !Kerd
q+1  such that c2 =!

q (b2 ) , ! q (b2 ) ="
q+1(a2 ) . Then  

(45)  c1 + c2 =!
q (b1 + b2 ), " q (b1 + b2 ) =#

q+1(a1 + a2 ),  

proving that !q  is a group morphism.  
 2.  Now we prove exactness of the sequence of Abelian groups (40). We 
proceed in several steps.  
 (a) Exactness at H 0A* = Kerd 0  is obvious: Since H 0B* = Ker! 0  and 
the commutativity of the left upper square in the diagram (39) implies 
 !
0 (Kerd 0 )!Ker" 0 , exactness at H 0A*  follows from injectivity of ! 0 .  

 (b) We verify exactness at the term H 0B* . Let  b!H 0B* = Ker! 0  and 
 b!Ker!

0 . Then b =! 0 (a)  for some  a! A0 = H
0A* , and we want to show 

that  a!Kerd 0 . But !1d 0 (a) = " 0! 0 (a) = " 0 (b) = 0  hence d 0 (a) = 0  (injec-
tivity of !1 ). and  a!Kerd 0 = H 0A* . Thus Ker! 0 = Im" 0 .  
 (c) We prove exactness at H 0C * . Consider an element  c!H 0C *  
such that  c!Ker!0 , that is, !0c = 0 . We want to show that c =! 0 (b)  for 
some  b!H 0B* = Ker! 0 . By definition, !0c = [a] , where  a!Kerd1  is an 
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arbitrary point such that for some  !b ! B0 , c =! 0 ( "b )  and ! 0 ( "b ) =#1(a)  
(42). But [a] = 0  hence  a! Imd 0  and a = d 0 ( !a )  for some  !a ! A0 . Conse-
quently, ! 0 ( "b ) =#1d 0 ( "a ) = ! 0# 0 ( "a ) . We set b = !b "# 0 ( !a ) . Then  

(46)  ! 0 (b) = ! 0 ( "b )#! 0$ 0 ( "a ) = 0,  

that is,  b!Ker! 0 . Moreover,  

(47)  ! 0 (b) =! 0 ( "b )#! 0$ 0 ( "a ) =! 0 ( "b ) = c,  

thus  Ker!
0 ! Im" 0 .  

 Conversely, if  c! Im!
0 , then c =! 0 (b)  for some  b!H 0B* = Ker! 0 , 

and !0 (c) = [a] , where c =! 0 ( "b )  and ! 0 ( "b ) =#1(a)  for some  !b ! B0 , 
 a!Kerd1 (42). But ! 0 (b " #b ) = 0  hence b ! "b =# 0 ( "a ) , where  !a ! A0 . 
Now !1d 0 ( "a ) = # 0! 0 ( "a ) = # 0 (b $ "b ) = $# 0 ( "b ) = $!1(a)  that is, by injec-
tivity, d 0 ( !a ) = "a . Hence [a] = ![d 0 ( "a )] = 0  and we get  Im!

0 !Ker"0 .  
 Summarizing,  Im!

0 =Ker"0  as required.  
 (d) We check exactness at H qA* , where q > 0 . Let  [a]!H

qA*  and 
!q ([a]) = 0 . Since !q ([a]) = [!

q (a)] = 0 , we have  !
q (a)! Im" q#1 . Thus, 

there exists  b! Bq!1  such that ! q"1(b) =# q (a) . We set c =! q"1(b) . Then by 
definition, !([c]) = [a] , therefore 

 
Ker!q ! Im"q#1 .  

 Conversely, consider a class  [c]!H
q!1C * . Then !q"

q#1([c]) =!q ([a]) , 
where c =! q"1(b) , ! q"1(b) =# q (a)  for some  b! Bq!1 ,  a!Kerdq . But then 
!q"

q#1([c]) = [! q (a)] = [" q#1(b)] = 0  since H qB* = Ker! q / Im! q"1 .  
 (e) We prove exactness at H qB* , q > 0 . Let  [b]!H

qB*  be a class 
such that ! q ([b]) = [!

q (b)] = 0 . Then  !
q (b)! Im"q#1  hence there exists 

 c!Cq!1  such that ! q (b) = "q#1(c) . But c =! q"1( #b )  for some  !b ! Bq"1 ; 
applying !q"1  we have !q"1# q"1( $b ) =# q% q"1( $b ) , that is, ! q (b) =! q" q#1( $b )  
hence ! q (b "# q"1( $b )) = 0  and b !" q!1( #b ) =$ q (a)  for some  a! Aq . Now 
! q+1dq (a) = " q! q (a) = " q (b #$ q" q#1( %b )) = 0  because ! q (a) = 0 , ! q! q"1 = 0 . 
Hence dq (a) = 0  and  a!Kerdq . Now  

(48)  !q ([a]) = [!
q (a)] = [b "# q"1( $b )] = [b],  

so we get the inclusion 
 
Ker! q ! Im"q .  

 The inverse inclusion follows from the equality 
 
! q !"

q = 0  and from 
the diagram (38), which implies  

(49)  

0 !"! Imdq#1 !"! Kerdq !"! HqA* !"! 0

$% q $% q $% q

0 !"! Im& q#1 !"! Ker& q !"! HqB* !"! 0
$' q $' q $' q

0 !"! Im(q#1 !"! Ker& q !"! HqC* !"! 0

 

in which the group morphisms !q  and ! q  are unique, and the composition 
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law  (! !")
q =# q !$ q  (37) holds.  

 (f) We prove exactness at H qC * , where q > 0 . Let  [c]!H
qC *  be a 

class such that !q ([c]) = 0 . We want to show that there exists  [b]!H
qB*  

such that [c] =! q ([b]) . Let c be a representative of [c] . By (42) there exist 
an element  b! Bq  and  a!Kerdq+1  such that c =! q (b) , ! q (b) =" q+1(a) . 
From the condition !q ([c]) = 0  it follows that [a] = 0  hence  a! Imdq  and 
a = dq ( !a )  for some  !a ! Aq . Then ! q (b) =" q+1dq ( #a ) = ! q" q ( #a )  hence 
 b !"

q ( #a )!Ker$ q . Setting !b = b "# q ( !a )  we have ! q ( "b ) = 0 ,  !b !Ker" q . 
Moreover, ! q ( "b ) =! q (b #$ q ( "a )) =! q (b) = c , therefore  

(50)  ! q ([ "b ]) = [! q ( "b )] = [c].  

This implies that 
 
Ker!q! Im" q .  

 Conversely, let  [c]! Im! q . Then [c] =! q ([b]) = [!
q (b)]  for some ele-

ment  [b]!H
qB* . Thus !q ([c]) = [a] , where c =! q ( "b ) , ! q ( "b ) =# q+1(a)  

for some  !b ! Bq . But ! q (b " #b ) = 0  so that b ! "b =# q ( "a ) , where  !a ! Aq . 
Now  

(51)  ! q+1dq ( "a ) = # q! q ( "a ) = # q (b $ "b ) = $# q ( "b )  

hence ! q+1(a) = "! q+1dq ( #a ) , ! q+1(a + dq ( "a )) = 0 , and a + dq ( !a ) = 0 . Hence 
[a] = ![dq ( "a )] = 0 , therefore 

 
Im! q !Ker"

q . This completes the proof.  

 The exact sequence of Abelian groups (40) is referred to as the long ex-
act sequence, associated with the morphisms of complexes ! :A*" B*  and 
! :B*" C * . The family of Abelian group morphisms  ! = {!q} , where 
!q:H qC*" H q+1A* , is called the connecting morphism, associated to the 
morphisms !  and ! .  
 The following two corollaries follow from the long exact sequence (40).  

 Corollary 4  Suppose that in the commutative diagram of morphisms of 
Abelian groups  

(52)  

0 0 0
! ! !

0 "#" A0 "#" A1 "#" A2 "#" 0
! ! !

0 "#" B0 "#" B1 "#" B2 "#" 0
! ! !

0 "#" C 0 "#" C1 "#" C 2 "#" 0
! ! !
0 0 0

 

all columns are exact. Then if two rows are exact, the third row is also exact.  
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 Corollary 5  Let A* , B*  and C *  be three non-negative complexes, 
! :A*" B*  and ! :B*" C *  morphisms of complexes. Suppose that the 
diagram (39) commutes and all its columns are exact. Then if any two of the 
complexes A* , B* , and C *  are exact, the third is also exact.  
 Proof  This follows from the long exact sequence (40).  

7.8  Exact sequences of Abelian sheaves 

 The concepts we have introduced for sequences of Abelian groups apply 
to sequences of Abelian sheaves. First we briefly formulate the definitions, 
and describe basic properties of exact sequences. Then we study the canoni-
cal resolution of an Abelian sheaf, an exact sequence, relating properties of a 
sheaf with topological properties of its base space.  
 A family    S* = {S i , f i}i!Z  of Abelian sheaves  S i  over the same base, and 
their morphisms  f i :S i ! S i+1 , indexed with the integers  i! Z , is called a 
sequence of Abelian sheaves. The family of sheaf morphisms in this se-
quence is denoted by    {f i}i!Z . The sequence  S *  is called a non-negative, if 
 S i = 0  for all i < 0 . Then the sequence  S *  is usually written as 
   S* = {S i , f i}i!N , with indexing set the non-negative integers N , or just as  

(1)    0 !"! S0 f 0! "! S1 f 1! "! S2 f 2! "! …  

In this notation the mapping  0! S0  is the trivial sheaf morphism. If there 
exist the smallest and greatest integers r and s such that  S

r ! 0  and  S
s ! 0 , 

then the sequence  S *  is said to be finite, and  S r  (resp.  S s ) is called its first 
(resp. last) element. In this case we write  S *  as  

(2)    0 !"! S r f r! "! S r+1 f r+1! "!! …
f s#1! "!! S s !"! 0  

with trivial sheaf morphisms  0! S r  and  S s ! 0 . To further simplify nota-
tion, we sometimes omit the indexing set and write just   S* = {S i , f i} , or 
  S* = {S i , f }  instead of    S* = {S i , f i}i!N .  
 Let   S* = {S i , f i}  be a family of sheaves of Abelian groups over a topo-
logical space X,  x! X  a point. Denote by  Sx

p = (GermS p )x  the fibre of the 
sheaf space  GermS p  over x, and by  fx

p :Sx
p ! Sx

p+1  the restriction to the fibre 
of the morphism  f i :S i ! S i+1 . Restricting all the sheaf morphisms to the 
fibres  Sx

p  we get a sequence of Abelian groups  

(3)  
  0 !"! Sx

0 fx
0

! "! Sx
1 fx

1
! "! Sx

2 fx
2

! "! …  

This sequence is called the restriction of the sequence (1) to the point x.  
 The sequence  S *  (1) is said to be exact at the term  Sq  over x, if the 
restricted sequence (3) is exact as the sequence of Abelian groups, that is, if 
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 Ker fx
q = Im fx

q!1 .  S *  is said to be exact at the term  Sq  if it is exact at x for 
every  x! X . We say that  S *  is an exact sequence, if it is exact in every 
term  Sq .  
 A sequence of Abelian sheaves   S* = {S i , f i} , such that  

(4)    f q+1 ! f q = 0  

for all q is called a differential sequence. An exact sequence is a differential 
sequence.  
 Let  S  be an Abelian sheaf. An exact sequence of the form  

(5)    0 !"! S #! "! T 0 f 0! "! T 1 f 1! "! T 2 f 2! "! …  

is called a resolution of  S . The resolution defines a non-negative differential 
sequence   T * = {T i , f i} . To shorten notation we sometimes write the se-
quence (5) as  

(6)   0 !"! S f! "! T *  

the mappings being understood.  
 An exact sequence of the form  

(7)   0 !"! R f! "! S g! "! T !"! 0  

where  0! R  and  T ! 0  are trivial sheaf morphisms, is called a short exact 
sequence.  
 Let Y be a subspace of the topological space X. Denote by  SY  the re-
striction of the Abelian sheaf  S  to Y and by  fY

i  the restriction of the sheaf 
morphism  f i :S i ! S i+1  to Y. We obtain a sequence of sheaves  

(8)  
  
0 !"! SY

0 fY
0

! "! SY
1 fY

1
! "! SY

2 fY
2

! "! …  

called the restriction of the sequence   S* = {S i , f i}  to the subspace Y.  
 The following are elementary properties of exact sequences.  

 Lemma 12  (a) A sequence of Abelian sheaves   S* = {S i , f i}  is exact at 
 Sq  if and only if  Ker f q = Im f q!1 .  
 (b) If a sequence of Abelian sheaves   S* = {S i , f i}  over a topological 
space X is exact at the term  Sq , then its restriction to a subspace  Y ! X  is 
exact at  SY

q .  
 (c) A sequence of sheaves of the form (7) is exact at  T  if and only if the 
sheaf morphism  g  is surjective.  
 (d) A sequence of sheaves of the form (7) is exact at  R  if and only if 
the sheaf morphism  f  is injective.  
 (e) A sequence of Abelian sheaves  
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(9)   0 !"! R #!"! S $! "! S /#(R) !"! 0  

where   R!S  is a subsheaf,  ! :R " S  its inclusion,  S /!(R)  the quotient 
sheaf and  ! :S " S /#(R)  the quotient projection, is a short exact sequence.  
 (f) Suppose we have a diagram  

(10)  

 

0 !"! R0
f 0! "! R1

f 1! "! R2 !"! 0

#$0 #$1

0 !"! S0
g0! "! S1

g0! "! S2 !"! 0

 

such that the horizontal sequences are short exact sequences of sheaves, !0  
and !1  are sheaf morphisms and  

(11)    g
0 !! 0 =!1 ! f 0 .  

Then there exists a unique Abelian sheaf morphism  !2 :R
2 " S2  such that 

the second square of the diagram  

(12)  

 

0 !"! R0
f 0! "! R1

f 1! "! R2 !"! 0

#$ 0 #$1 #$ 2

0 !"! S0
g0! "! S1

g1! "! S2 !"! 0

 

commutes.  
 (g) Consider the exact sequence of Abelian sheaves (7), the quotient 
sheaf  S / f (R)  and the quotient projection  ! :S " S / f (R) . There exists a 
unique sheaf isomorphism  ! :T " S / f (R)  such that  

(13)  

 

0 !"! R f 0! "! S f 1! "! T !"! 0

# idR # idS #$

0 !"! R g0! "! S %! "! S / f (R) !"! 0

 

commutes.  
 Proof  1. We prove assertion (a). Suppose that  S*  is exact at  Sq . Then 
by definition  Ker fx

q = Im fx
q!1  for every x, where  fx

q  is the restriction of the 
sheaf space morphism   f

q :GermSq !GermSq+1 , associated with  f q , to x. 
Thus  

(14)  
  
Ker f q = Ker fx

q

x!X
! = Im fx

q!1

x!X
! = Im f q .  
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Then  Ker f
q = Sec(c) Ker f q = Sec(c) Im f q!1 = Im f q!1  as required. The con-

verse is obvious.  
 2.  Assertions (b), (c), (d) and (e) of Lemma 12 are immediate conse-
quences of definitions.  
 3.  To prove (f) we apply (b) and Lemma 9, (d).  
 4.  To prove (g) we apply (b) and Lemma 9, (e).  

 A sequence of Abelian sheaves (1) over a topological space X induces, 
for every open set U in X, the Abelian groups  S iU  of continuous sections 
and their morphisms  fU

i :S iU! S i+1U . We usually denote these morphisms 
by the same letters,  f i . The sequence of Abelian groups is then denoted by  

(15)    0 !"! S0U f 0! "! S1U f 1! "! S2U f 2! "! …  

and is said to be induced by the sequence of sheaves (1). In particular, if 
U = X , the sequence of Abelian groups  

(16)    0 !"! S0X f 0! "! S1X f 1! "! S2X f 2! "! …  

is referred to as the sequence of global sections, associated with the se-
quence of Abelian sheaves (1).  
 Exactness of the sequence (1) does not imply exactness of (15). This is 
demonstrated by the following example.  

7.9  Cohomology groups of a sheaf 

 In this section we construct a resolution of an Abelian sheaf, known as 
the canonical, or Godement resolution (Godement [G]). We also introduce 
canonical morphisms of the canonical resolutions, and study properties of 
the corresponding diagrams.  
 Consider the sheaf space  GermS , associated with  S  and the sheaf of 
(not necessarily continuous) sections of the sheaf space  GermS , denoted by  

(1)   C0S = SecGermS  

(cf. Section 7.4, Example 17). We have the canonical injective sheaf 
morphism  ! :Sec

(c) GermS "C0S . Since  Sec(c) GermS  is canonically iso-
morphic with the Abelian sheaf  S , setting  

(2)   D
1S = C0S / Im!  

we get an exact sequence of sheaves 

(3)   0!"! S #!"! C0S !"! D1S !"! 0.  
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The same construction can be repeated for the sheaf  D1S . Replacing  S  with 
 D1S , we have the Abelian sheaf of (discontinuous) sections of the sheaf 
space  GermD1S ,  C0D1S = SecGermD1S , the Abelian sheaf of continuous 
sections  Sec(c) GermD1S , canonically isomorphic with the sheaf  D1S , and 
the canonical sheaf morphism of continuous sections into discontinuous sec-
tions,  !

1 :Sec(c) GermD1S " SecGermD1S . Setting  D
1(D1S) = C0 (D1S) / Im!1  

we get an exact sequence  

(4)   0!"! D1S #1! "! C0D1S !"! D1D1S !"! 0.  

Combining these two constructions  

(5)  

 

0
!
S
!

0 "#" S "#" C0S "#" D1S "#" 0
!

0 "#" D1S "#" C1S "#" D1D1S "#" 0
!
0

 

Similarly we get, with obvious notation, the commutative diagram  

(6)  

 

0 !"! S !"! C0S
#

0 !"! D1S !"! C1S
# #
0 !"! D2S !"! C2S

# #
0 !"! D3S !"! C2S

 

etc. This diagram gives rise to the sheaf morphisms  c p :C pS !C p+1S , for 
every p ! 0 . We get a sequence of sheaves of Abelian groups  

(7)    0 !"! S #!"! C0S c0! "! C1S c1! "! C2S c2! "! …  

 Lemma 13  The sequence of sheaves of Abelian group (7) is a resolu-
tion of the sheaf  S .  
 Proof  We want to verify exactness. Since !  is injective, the sequence 
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is exact at  S . To check exactness at the term  C0S , we use the diagram (7), 
where the sheaf morphism  g :C

0S ! D1S  is the quotient morphism and 
 h :D1S !C1S  is an inclusion. Let  a! Im! . Evidently   a!Kerc0  since 
  c
0 = h !g  and   a!Ker g . Conversely, let   a!Kerc0 . Then  h(g(a)) = 0  and 

since  h  is injective,  g(a) = 0  and   a!Ker h  hence  a! Im! . Exactness at 
 CqS  can be proved in the same way.  

 The resolution (7) of the Abelian sheaf  S  is called the canonical resolu-
tion. Setting   C *S = {C iS,c i} , we can write the sequence (7) as  

(8)   0 !"! S #!"! C *S  

 The Abelian sheaves  C pS , where p ! 0 , in the sequence (8), have some 
specific properties, namely, they belong to the class of soft sheaves. A sheaf 
of Abelian groups  S  over a topological space X is said to be soft if any sec-
tion of the associated sheaf space  GermS , defined on a closed subset 
 Y ! X , can be prolonged to a global section of  S .  

 Lemma 14  The sheaves  C pS , where p ! 0 , are soft.  
 Proof  It is sufficient to show that the sheaf  C0S = SecGermS.  is soft; 
the same proof applies to  C pS , where p > 0 . Let  Y ! X  be a closed subset, 
  ! !C0S  any section of  GermS , defined on Y. By definition, ! (x) , where x 
is a point of Y, is the germ of a (not necessarily continuous) section   ! !SU , 
where U is a neighbourhood of x in X; thus ! (x) = [" ]x . Consider a family of 
(not necessarily continuous) sections   ! x !SUx  such that ! (x) = [" x ]x  for all 
points  x!Y , and set  

(9)  
   

!! (x) =
[" x ]x , x!Y
0, x!Y

#
$
%

&%
 

Then  !!  is a global section of the sheaf space  GermS . Here 0 is the germ of 
the zero section, defined on the open set  X \Y ! X .  

 Let  ! :S "T  be a morphism of Abelian sheaves over a topological 
space X. We shall construct a family of sheaf morphisms  !

p :C pS "C pT , 
p ! 0 , between the canonical resolutions  0! S !C *S  and  0!T !C *T  

of these sheaves, such that the diagram  

(10)  

 

0 !"! S #S! "! C0S !"! C1S !"! C2S !"!

$% $% 0 $%1 $% 2

0 !"! T #T! "! C0T !"! C1T !"! C2T !"!

 

commutes.  
 Let  S = GermS  and  T = GermT  be the associated sheaf spaces, !  and 
!  the corresponding sheaf space projections, and let  !! :S" T  be the asso-
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ciated sheaf space morphism. Recall that  !!  is defined as the mapping 
  S! [! ]x " !# ([! ]x ) = [#U (! )]x "T , where   ! !SU  is a representative of the 
germ [! ]x  (Section 7.5, (10)). We shall consider the Abelian sheaves  S  and 
 T  as the sheaves of continuous sections of the sheaf spaces S and T.  
 Then  C0S  and  C0T  are the corresponding Abelian sheaves of discontin-
uous sections. We set for any section ! :U" S   

(11)   !
0 (" ) = !! "" .  

This formula defines the first square in the diagram (10). If !  is a continu-
ous section of  C0S , we have   !

0 ("S (# )) = !! ""S (# )  

(12)  
  

(! 0"S (# ))(x) = !! ("S (# )(x)) = !! (# (x)) = !! ([# ]x )
= [!U (# )]x = ! "# (x) = "T (! "# )(x),

 

proving the commutativity.  
 Consider the next squares in the diagram (10)  

(13)  

 

0 !"! S !"! C0S !"! D1S !"! 0
#$ #$ 0 #$ 1

0 !"! T !"! C0T !"! D1T !"! 0
 

defining ! 1  (Lemma12, (f)). If we replace  S  (resp.  T ) with  DiS  (resp. 
 DiT ), where i !1 , we get the diagram  

(14)  

 

0 !"! DiS !"! C iS !"! Di+1S !"! 0
#$ i #$ i #$ i+1

0 !"! DiT !"! C iT !"! Di+1T !"! 0
 

We show that the i-th square also commutes. Combining (6) and (14) and 
using a suitable temporary notation we get the commutative diagrams  

(15)  

 

C i!1S a" #" DiS
$% i!1 $% i

C i!1T b" #" DiT

C i!1S g" #" C iS
$% i!1 $% i

C i!1T h" #" C iT

DiS b" #" C iS
$% i!1 $% i

DiT d" #" C iT

 

Combining these diagrams with (2) we obtain  

(16)   g = b !a, d !! i = ! i !b, ! i !a = c !! i"1, h = d !c,  

which implies  !
i ! g = ! i !b !a = d !! i !a = d !c !! i"1 = h !! i"1 . Since i !1 , 

this proves commutativity of all squares in the diagram (10).  
 The family of sheaf morphisms   {! ,!

0 ,!1,! 2 ,…}  is called the canonical 
morphism of the canonical resolutions  0! S !C *S  and  0!T !C *T , 
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associated with the Abelian sheaf morphism  ! :S "T .  
 Elementary properties of the canonical resolutions are formulated in the 
following lemma.  

 Lemma 15  (a) The canonical resolution of a trivial Abelian sheaf 0X  
over a topological space X consists of the trivial sheaves  C

p0X = 0X .  
 (b) The canonical resolution associated with the identity sheaf 
morphism  idS  is the identity morphism 

   {idS , idC0S , idC1S , idC2S ,…} .  
 (c) If the Abelian sheaf morphism  ! :S "T  is injective (resp. surjec-
tive), then each  !

p :S p "T p  is injective (resp. surjective).  
 (d) Let  R ,  S , and  T  be three Abelian sheaves with base X,  µ :R ! S , 
 ! :S "T  two Abelian sheaf morphisms, and  ! = " !µ . Then the diagram  

(17)  

 

0 !"! R !"! C0R !"! C1R !"! C2R !"!

# µ # µ0 # µ1 # µ2

0 !"! S !"! C0S !"! C1S !"! C2S !"!

#$ #$ 0 #$1 #$ 2

0 !"! T !"! C0T !"! C1T !"! C2T !"!

 

satisfies, for every p ! 0 ,  

(18)   !
p = " p !µ p .  

 (e) Suppose that the first column of the diagram  

(19)  

 

0 0 0 0
! ! ! !

0 "#" S "#" C0S "#" C1S "#" C2S "#"
! ! ! !

0 "#" S "#" C0S "#" C1S "#" C2S "#"
! ! ! !

0 "#" T "#" C0T "#" C1T "#" C2T "#"
! ! ! !

0 "#" S2 "#" C0S2 "#" C1S2 "#" C2S2 "#"
! ! ! !

 

consists of the resolution  

(20)   0 !"! S #! "! S0 f 0! "! S1 f 1! "! S2 f 2! "!  

of the sheaf  S , the rows are formed by the canonical resolutions, and the 
columns are the canonical morphisms of the canonical resolutions. Then this 
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diagram commutes, and all its columns are exact.  
 Proof  (a) This follows from formulas (2) – (4).  
 (b) We set in (10)  S = T ,  ! = idS . Then  !

0 :C0S "C0S  satisfies  

(21)   !
0 = idC0S  

and (13) implies  

(22)   !
1 = idD1S .  

hence  !
1 = idC1S  and by induction  !

i = idCiS  for all i !1 .  
 (c) This follows from (11).  
 (d) Denote by  !µ  ( !! , resp.  !! ) the sheaf space morphism associated 
with µ  (! , resp. ! ). Since  ! = " !µ , we have  !! = !" " !µ  (Section 7.7, 
Lemma 9, (b)). Thus, using (11) we get for every section  ! :U"GermS  , 
 !0 (" ) = !! "" = !# " !µ "" = !# "µ0 (" ) = #0 (µ0 (" ))  proving (d) for p = 0 . Re-
peating this procedure we get  !

i = " i !µ i  for all i !1 .  
 (e) Commutativity is ensured by diagram (10). We want to prove ex-
actness of the p-th column of the diagram (19). Consider the second column  

(23)   0 !"! C0S # 0! "! C0S0 f 00! "! C0S1 f 10! "! C0S2 f 20! "!  

Exactness at the term  C0S  follows from the injectivity of ! 0  (see (c)). Now 
let  ! :U"GermC0S0  be a section such that   f

00 (! ) = !f 0 "! = 0 . Then if 
! (x) = [" x ]x  for some continuous section  ! x :Ux "GermC0S0 , we have 
  
!f 0 ([! x ]x ) = 0  and    [! x ]x !Ker !f 0 = Im !" x . Therefore, !  is a section of Im! , 
proving exactness at  C0S0 . Continuing in the same way we get exactness of 
the first column. Exactness in the next columns can be proved by induction.  

 Corollary 6  Suppose that we have a commutative diagram 

(24)  

 

0 !"! R !"! S !"! T !"! 0
# # #

0 !"! $R !"! $S !"! $T !"! 0
 

with exact rows. Then for every i ! 0  the diagram  

(25)  

 

0 !"! C iR !"! C iS !"! C iT !"! 0
# # #

0 !"! C i $R !"! C i $S !"! C i $T !"! 0
 

commutes, and has exact rows.  
 Proof  To prove commutativity of the diagram (25) we use commuta-
tivity of the square  
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(26)  

 

R h! "! S
# µ #$

%R k! "! %S

 

in (24) and formulas (2) – (4). Exactness of the rows follows from Lem-
ma 15, (e).  

 Corollary 7  For any isomorphism of Abelian sheaves  f :R ! S  the 
sheaf morphisms  f p :C pR !C pS  are isomorphisms.  
 Proof  This follows from Lemma 15, (b) and(d).  

 Let  S  be an Abelian sheaf over a topological space X. Consider the ca-
nonical resolution of  S   

(27)   0 !"! S #!"! C0S c0! "! C1S c1! "! C2S c2! "!  

Taking global sections of every term we obtain a complex of Abelian groups 

(28)  

  

0 !"! SX #!"! (C0S)X c0! "! (C1S)X

c1! "! (C2S)X c2! "! …
 

where the induced Abelian group morphisms in this diagram are denoted by 
the same letters as in the sequence (27). Denote by  (C *S)X  the non-
negative complex  

(29)    0 !"! C0S c0! "! C1S c1! "! C2S c2! "! …  

Then (28) can also be written as  

(30)  
 
0 !"! SX #!"! (C *S)X .  

We set for every p ! 0   

(31)   H
p (X,S) = H p ((C *S)X).  

The Abelian group  H
p (X,S) = H p ((C *S)X).  is called the p-th cohomology 

group of the topological space X with coefficients in the sheaf  S .  

 Lemma 16  Let  S  be an Abelian sheaf over a topological space X. The 
complex of Abelian groups (28) is exact at the terms  SX  and  (C

0S)X .  
 Proof  Let   ! !SX  and let !(" ) = 0 . Then by definition !(" (x)) = 0  for 
all  x! X . Since the canonical resolution (27) is exact at  S  we have 
! (x) = 0  for every x hence ! = 0 . Thus, the complex (28) is exact at  SX .  
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 We prove exactness at  (C
0S)X . Only inclusion   Kerc

0 ! Im!  needs 
proof. Let   ! ! (C

0S)X  and let  c
0 (! ) = 0 . Then  c

0 (! )(x) = 0  for every point 
 x! X . But (27) is exact at the term  C0S  hence to each  x! X  there exists a 
unique germ   sx !Sx  such that !(sx ) = " (x) = 0 , and we have a mapping 
  X ! x!" (x) = sx "S  satisfying  ! !" = # . We want to show that this map-
ping is continuous. Let  x0 ! X  be a point. There exists a neighbourhood V 
(resp. W, resp. U) of the point ! (x0 )  (resp. !(" (x0 )) , resp. x0 ) such that 
 ! |V :V "W  (resp.  ! |U :U"W ) is a homeomorphism. Then the composi-
tion   (! |V )

"1 !# |U :U$V  satisfies, for each  x!U ,  

(32)    !((! |V )
"1 !# |U (x)) = # (x) = !($ (x)).  

Since     ! (x),(" |V )
#1 !$ |U (x)!Sx  and the restriction of !  to the fibre  Sx  is 

injective, we have   ! (x) = (" |V )
#1 !$ |U (x) , which shows that the mapping !  

is continuous at x0 . Consequently   Kerc
0 ! Im! . 

 Corollary 8  For any Abelian sheaf  S  with base X,  H
0 (X,S) = SX .  

 Let  S  and  T  be Abelian sheaves over a topological space X,  ! :S "T  
a morphism of Abelian sheaves, and let   {! ,!

0 ,!1,! 2 ,…}  be the canonical 
morphism of the canonical resolutions of these sheaves. This morphism in-
duces a comutative diagram of Abelian groups of global sections  

(33)  

 

0 !"! SX #S! "! (C0S)X !"! (C1S)X !"! (C2S)X !"!

$% $% 0 $%1 $% 2

0 !"! TX #T! "! (C0T )X !"! (C1T )X !"! (C2T )X !"!

 

and a commutative diagram of non-negative complexes of global sections  

(34)  

  

0 !"! (C0S)X !"! (C1S)X !"! (C2S)X !"! …

#$ 0 #$1 #$ 2

0 !"! (C0T )X !"! (C1T )X !"! (C2T )X !"! …

 

with obvious notation for the morphisms. Applying standard definitions we 
obtain, passing to the quotiens, the induced group morphisms of cohomology 
groups  !q :H

q (X,S)" H q (X,T ) , q ! 0 .  
 If  µ :T ! P  is some other Abelian sheaf morphism and the family 
  {µ,µ

0 ,µ1,µ2 ,…}  is the morphism of the corresponding canonical resolu-
tions,  µq :H

q (X,T )! H q (X,P) , we have for every q ! 0 , an Abelian group 
morphism 

  (µ !! )q :H
q (X,S)" H q (X,P) . Using Lemma 12, (f) and Lem-

ma 15, (d)  

(35)   µ
q !! q = (µ !! )q .  
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 Corollary 9  If  ! :S "T  is an isomorphism of Abelian sheaves, then 

 !q :H
q (X,S)" H q (X,T )  is an Abelian group isomorphism for every q ! 0 .  

7.10  Sheaves over paracompact Hausdorff spaces 

 All sheaves considered in this section are Abelian sheaves over topolog-
ical spaces whose topology is Hausdorff and paracompact.  
 Recall that an Abelian sheaf  S  with base X can be considered as the 
sheaf of continuous sections of the corresponding Abelian sheaf space 
 S = GermS , defined on open subsets of X. Every morphism  f : S !T  of 
Abelian sheaves can be considered as a morphism of Abelian sheaf spaces 
f :S! T .  

 A soft sheaf is by definition a sheaf  S  with base X such that every con-
tinuous section of  S , defined on a closed subset of X can be prolonged to a 
global section. The proof of the following theorem on short exact sequences 
of soft sheaves is based on the Zorn’s lemma.  

 Theorem 3  Let X be a paracompact Hausdorff space, and let  

(1)   0 !"! R f! "! S g! "! T !"! 0  

be a short exact sequence of sheaves over X. If  R  is a soft sheaf, then the 
sequence of Abelian groups of global sections  

(2)   0 !"! RX fX! "! SX gX! "! TX !"! 0  

is exact.  
 Proof  1. We prove exactness at  RX . If   ! !RX  and  fX (! ) = 0 , then 
 f ( !! (x)) = 0 , then for every point  x! X  we get, by injectivity of f,  !! (x) = 0 . 
Thus the germ  !! (x)  can be represented at every point by the zero section 
hence ! = 0 .  
 2.  We prove exactness of the sequence (2) at  SX . Let   ! !Ker gX . Then 
 Ker gX (! ) = 0  hence  g ! "! (x) = 0  for all  x! X . Since the sequence (1) is 
exact at  S , to every point  x! X  there exists an element   ! (x)!R  such that 
f (! (x)) = " (x)  and, since the morphism f is injective, this point is unique. 

Since  ! ! f = " , where !  (resp. ! ) is the projection of S (resp. T), we 
have  ! !" =# ! f !" =# !$ = idX  showing that !  is a global section of  R . 
To show that !  is continuous, observe that  f !! = "  is continuous; then the 
continuity of !  follows from the property of f to be a local homeomorphism.  
 3.  We show that the mapping  gX  is surjective. Let   ! !TX  be a global 
section of  T . Since the sequence of Abelian sheaves (1) is exact at  T , to 
each point  x! X  there exists a neighbourhood Ux  and a continuous section 
  !x !SUx  such that   gUx

(!x ) = " |Ux
. Thus, in a different notation, there exists 

an open covering   {U!}!!I of X, such that for each  !! I  there exists   !" !SU"  
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with the property  

(3)    gU!
("! ) = # |U!

.  

 Since X is paracompact and Hausdorff, there exists a locally finite open 
covering   {V!}!!I  of X such that  ClV! !U!  (Cl  denotes the closure). The sets 
K! = ClV!  are closed, and form a closed covering   {K!}!!I  of X. Thus, to eve-
ry  !! I  we have assigned a pair (K! ,"! ) , where   !" !SU" . Consider the non-
empty set  !  of pairs (K ,! ) , where  K = !K!  is the union of some sets be-
longing to the family   {K!}!!I , and !  is a section of  S  defined on the open 
set  U = !U! .  !  becomes a partially ordered set, defined by the order rela-
tion “ (K ,! ) " ( #K , #! )  if  K ! !K  and  !" |U = " ”.  
 We show that any linearly ordered family of subsets of the set  !  has an 
upper bound. Let   {(K! ,"! )}!!L  be a linearly ordered family of subsets of 
 ! ,  K! !U! . Denote  K = !K! ; then   K !U = !U! . The family   {!"}"!L is 
a compatible family of sections of the sheaf  S . But every compatible family 
of sections of  S  locally generates a section of  S  (Section 7.4, condition 
(5)), thus, there exists a section   ! !SU  such that 

 
! |U"

= !  for each  ! ! L . 
Then the pair (K ,! )  is the upper bound of the linearly ordered family 
  {(K! ,"! )}!!L .  
 This shows that the set  !  satisfies the assumptions of the Zorn’s lem-
ma, therefore, it has a maximal element (K0 ,!0 ) . It remains to show that 
K0 = X . Suppose the opposite; then there exists a point  x! X  such that 
 x! K0 , and since  K = !K! = X , there must exist an index  !! I  such that 
 K! !K0 . On  K! !K0 ,  g ! (!0 " !# ) = $ 0 "$ # = 0 . But the sequence (2) is 
exact at  SX  hence f (! ) = "0 # "$  for some    ! !R(K" !K0 ) . Since  R  is soft, 
!  can be prolonged to a section !  over X; then 

  
! = ! |K"!K0

. We define a 
section !  over  K! !K0  by the conditions  

(4)  
 
! |K0 = !0 , ! |K"

= !" + f (# ).  

Clearly, the !  is defined correctly since on  K! !K0   

(5)  
  
!0 |K"!K0

= (!" + f (# ))|K"!K0
= (!" + !0 $ !" )|K"!K0

.  

Consequently, the pair  (K! !K0 ," )  belongs to the set  ! . But this pair satis-
fies  (K0 ,!0 ) " (K# !K0 ,! ) , which contradicts maximality of the pair 
(K0 ,!0 )  unless K0 = X .  

 Corollary 10  If the Abelian sheaves  R  and  S  in the short exact se-
quence (1) are soft, then also the Abelian sheaf  T  is soft.  
 Proof  Let K be a closed set in the base X, and consider the restriction of 
the exact sequence (1) to K. The restricted sequence is also exact. Then by 
Theorem 3, the corresponding sequence of Abelian group (2) over K is ex-
act. Choose a section   ! !TK . There exists   ! !SK  such that  gK (! ) = " . If 
 
!!  is an extension of !  to X, then   gX (

!! ) = g " !!  is the extension of !  to X.  
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 Corollary 11  Let X be a paracompact Hausdorff space and let  

(6)  
  
0 !"! S0

f0! "! S1
f1! "! S2

f2! "! …  

be an exact sequence of Abelian sheaves over X. If each of the sheaves  S0 , 
 S1 ,  S2 ,  …  is soft, then the induced sequence of Abelian groups  

(7)  
  
0 !"! S0X !"! S1X !"! S2X !"! …  

is exact.  
 Proof  The sequence (6) is exact if and only if for each  i = 1,2,3,…  the 
sequence  

(8)  
 
0 !"! Ker fi !"! Si

fi! "! Ker fi+1 !"! 0  

is exact. Since by hypothesis  Ker f1 = S0  and  S1  are soft sheaves, the sheaf 
 Ker f2  is also soft (Corollary 10). Since the sheaf  S1  is soft, the sheaf  Ker f3  
must also be soft, according to Corollary 10, etc. Therefore, for all i, the se-
quence of global sections  

(9)  
 
0 !"! (Ker fi )X !"! SiX

fi! "! (Ker fi+1)X !"! 0  

is exact, by Theorem 3. Now it is immediate that the sequence (7) must be 
exact.  

 Corollary 12  If  S  is a soft sheaf over a paracompact Hausdorff space 
X, then  H

q (X,S) = 0  for all q !1 .  
 Proof  Consider the canonical resolution of  S ,  

(10)   0 !"! S #!"! C0S c0! "! C1S c1! "! C2S c2! "!  

(Section 7.6, (7)). Since all the sheaves  C iS  are soft (Section 7.8, Lem-
ma 14), the associated sequence of global sections  

(11)    0!"! (C9S)X c0! "! (C1S)X c1! "! (C2S)X c2! "! …  

is exact (Corollary 11). Now Corollary 12 follows from the definition of a 
cohomology group.  

 Examples  22. Let G be an Abelian group, X connected Hausdorff 
space, and S = X !G  the constant sheaf space (Section 7.2, Example 11). 
We show that the constant sheaf Sec(c) S  is not soft. Let x and y be two dif-
ferent points of the base X. Consider the closed subset   Y = {x}!{y}  of X 
and the section !  of S defined on Y by ! (x) = g , ! (y) = h , where g and h 
are two distinct point of G. If U is a neighbourhood of x and V is a neigh-
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bourhood of y such that   U !V =Ø , then we have a section   !! :U !V " S , 
equal to g on U and h on V. The restriction of  !!  to Y is equal to ! ; in par-
ticular,  !!  is continuous. But since X is connected,  !!  cannot be prolonged to 
a global continuous section of S.  
 23.  If X is a normal space, then every continuous, real-valued function 
defined on a closed subspace of X, can be prolonged to a globally defined 
continuous function (Tietze theorem). Consequently, the sheaf CX ,R  is soft 
(cf. Section 7.4, Example 18).  
 24.  We shall show that the sheaf of modules  S  over a soft sheaf of 
commutative rings with unity  R  is soft. Let X be the base of  R  (and  S ), K a 
closed subset of X, and let  ! !Sec

(c) S  be a continuous section, defined on 
K. Then by definition !  can be prolonged to a continuous section, also de-
noted by ! , defined on a neighbourhood U of K. Define a continuous sec-
tion   ! !Sec

(c) (K ! (X \U )))  by  

(12)  
 
!(x) =

1, x!K ,
0 x! X \U.

"
#
$

%$
 

Since  R  is soft, there exists a section   !! !Sec
(c) X  prolonging !  to X. We 

define  !! (x) = !"(x) #! (x) ;  !!  is the desired prolongation of ! .  
 25.  The sum of two soft subsheaves of a sheaf is a soft subsheaf (cf. 
Section 7.2, Example 13).  

 Let  S  be an Abelian sheaf over a topological space X,  ! :S " S  a sheaf 
morphism. We define the support of !  to be a closed subspace of X  

(13)    supp! = cl{x! X |!(x) " 0}.  

 Let   {U!}!!I  be a locally finite open covering of the paracompact 
Hausdorff space X,  S  an Abelian sheaf with base X. By a sheaf partition of 
unity for  S , subordinate to   {U!}!!I  we mean any family   {!"}"!I  of sheaf 
morphisms  !" :S # S  over X with the following two properties:  
 (1)  supp!" !U"  for every  !! I .  
 (2) For every point  x! X   

(14)  
 

!" (s)
"!I
# = s.  

 Note that the sum on the left-hand side of formula (14) is well-defined, 
because for every fixed point s the summation is taking place through only a 
finitely many indices !  from the indexing set I.  
 An Abelian sheaf  S  is said to be fine, if to every locally finite open 
coverning   {U!}!!I  of X there exists a sheaf partition of unity   {!"}"!I  subor-
dinate to   {U!}!!I .  

 Theorem 4  Every fine Abelian sheaf over a paracompact Hausdorff 
space is soft.  
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 Proof  Let  S  be an Abelian sheaf over a paracompact Hausdorff space 
X,  S = GermS , and let !  be the projection of S. Let Y be a closed subspace 
of X, !  a continuous section, defined on Y. To every point  x!Y  there ex-
ists a neighbourhood Ux  of x and a continuous section ! x :Ux " S  such that 
! (x) = ! x . Shrinking ! x  to  Ux !Y  we get a continuous section of the re-
striction of S to  Ux !Y . Shrinking Ux  if necessary we may assume without 
loss of generality that 

  
! x |Ux!Y

= ! |Ux!Y
. The sets Ux  together with the set 

X \Y  cover X. Since X is paracompact, there exists a locally finite refine-
ment   {V!}!!I  of this covering. If for some  !! I ,   V! !Y "Ø , then there exists 
a continuous section ! " :V" # S  such that 

  
! " |V"!Y = ! |V"!Y ; if   V! !Y =Ø , we 

set ! " = 0 . In this way we assign to each of the sets V!  a continuous section 
! " :V" # S .  
 Let   {!"}"!I  be a partition of unity subordinate to the covering   {V!}!!I . 
Set for all  !! I  

(15)  
 
!" (x) =

#" ($ " (x)), x!V" ,
0, x! X \V" ,

%
&
'

('
 

where 0 denotes the neutral element of the Abelian group Sx . We get a 
mapping !" :X# S  satisfying the condition  ! !"# = idX . This mapping is 
obviously continuous on the set V! , and also on a neighbourhood X \ supp!"  
of the closed set X \V! . We set ! = "!# . Then !  is a global continuous sec-
tion of the sheaf space S. Then for every point  x! X ,  

(16)  
 
! (x) = "#

V#!x
$ (% # (x)) = "#

#
$ % (x) = "#

#
$&'(

)
*+
% (x) = % (x).  

Therefore,  ! |Y = " .  

 Examples  26. The Abelian sheaf CX ,R  of continuous real-valued func-
tions on a paracompact Hausdorff space X is fine. Indeed, any locally finite 
open covering   {U!}!!I  of X, and any subordinate partition of unity   {!"}"!I , 
define a sheaf partition of unity as the family of sheaf morphisms f ! "# f . 
The Abelian sheaf CX ,R  can also be considered as a sheaf of commutative 
rings with unity. 
 27.  Let  S  be a sheaf of CX ,R -modules over a paracompact Hausdorff 
space X, let S be the associated sheaf space, with projection ! :S" X . Eve-
ry continuous function f :X! R  defines an Abelian sheaf morphism of the 
sheaf space S by  

(17)  fS (s) = f (! (s)) " s.  

If   {U!}!!I  is an open covering of X, and   {!"}"!I  a partition of unity on X, 
subordinate to   {U!}!!I , then formula (17) applies to the functions from the 
family of functions   {!"}"!I ; the corresponding family of sheaf morphisms 
  {!",S}"!I  is then a sheaf partition of unity on S. Consequently, the Abelian 
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sheaf  S  is fine.  
 28.  The Abelian sheaves CX ,R

r  of r times continuously differentiable 
functions on a smooth manifold X, where  r = 0,1,2,…,! , are fine (cf. Ex-
ample 26), and can also be considered as sheaves of commutative rings with 
unity. 
 29.  Every sheaf of modules over a fine sheaf of commutative rings with 
unity is fine.  

 Let us consider a short exact sequence of Abelian sheaves over a para-
compact Hausdorff manifold X 

(18)   0 !"! R f! "! S g! "! T !"! 0 ,  

and the related commutative diagram of the canonical resolutions  

(19)  

 

0 0 0 0
! ! ! !

0 "#" R "#" C0R "#" C1R "#" C2R "#"

! f ! ! !
0 "#" S "#" C0S "#" C1S "#" C2S "#"

! g ! ! !
0 "#" T "#" C0T "#" C1T "#" C2T "#"

! ! ! !
0 0 0 0

 

This diagram induces the commutative diagram of global sections  

(20)  

 

0 0 0 0
! ! ! !

0 "#" RX "#" (C0R)X "#" (C1R)X "#" (C2R)X "#"

! f ! ! !
0 "#" SX "#" (C0S)X "#" (C1S)X "#" (C2S)X "#"

! g ! ! !
0 "#" TX "#" (C0T )X "#" (C1T )X "#" (C2T )X "#"

! ! ! !
0 0 0 0

 

All the sheaves  C iR ,  C iS , and  C iT  in (19) are soft (Section 7.9, Lem-
ma 14). Applying Corollary 11, we see that the columns are exact. There-
fore, by Lemma 11, we get the long exact sequence  
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(21)  

 

0 ! "! H 0 (X,R) f! "! H 0 (X,S) g! "! H 0 (X,T ) #0! "!

H 1(X,R) ! "! H 1(X,S) ! "! H 1(X,T ) #1! "! H 2 (X,R)

 

where the family  (!
0 ,!1,!2 ,…)  is the connected morphism.  

 The long exact sequence can be applied to commutative diagrams of 
short exact sequences.  

 Lemma 17  Let X be a paracompact Hausdorff space. Suppose that the 
commutative diagram of Abelian sheaves over X 

(22)  

 

0 !"! R f! "! S g! "! T !"! 0
# h # k # j

0 !"! R f! "! S g! "! T !"! 0

 

whose rows are exact. Then the diagram  

(23)  

 

0 !"! H 0 (X,R) f! "! H 0 (X,S) g! "! H 0 (X,T ) #0! "!

$ $ $

0 !"! H 0 (X,R ) f! "! H 0 (X,S ) g! "! H 0 (X,T ) #0! "!

H 1(X,R) ! "! H 1(X,S) ! "! H 1(X,T ) #1! "! H 2 (X,R)

$ $ $ $

H 1(X,R ) ! "! H 1(X,S ) ! "! H 1(X,T ) #1! "! H 2 (X,R )

 

where the first (resp. the second) row is the long exact sequence associated 
with the first (resp. the second) row in (24), commutes.  
 Proof  It is enough to prove commutativity of the squares in (23) con-
taining the group morphisms !i . Commutativity of the other squares is an 
immediate consequence of the diagrams (22) and Section 7.9, (10).  
 Consider the square  

(24)  

 

H 0 (X,T ) !0" #" H 1(X,R)

$ $

H 0 (X,T ) !0" #" H 1(X,R )

 

For the purpose of this proof denote by  !R :R " C 0R  and  cR
i :CiR ! Ci+1R  
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the corresponding sheaf morphisms in the canonical resolution of the sheaf 
 R ,   0! R !C0R !C1R !C2R !… , and introduce analogous notation for 
the sheaves  S  and  T . Let   c!H

0 (X,T ) = Ker cT
0 . There exist an element 

  b! (C
0S)X  and   a!Ker cR

1  such that  c! g
0 (b) ,  cS

0 (b) = f 1(a) , and by defi-
nition  

(25)  
 

!0 (c) = [a],
h1 !0 (c) = h1([a]) = [h1(a)].

 

We set  

(26)   b = k0 (b), a = h1(a).  

Then we get by immediate calculations  g
0 ( !b ) = g 0k 0 (b) = j 0g0 (b) = j 0 (c) , 

 f
1(a ) = f 1(h1(a)) = k1f 1(a) , and  c !S

0 (b ) = c !S
0 k 0 (b) = k 0cS

0 (b) = k1f 1(a) . Hence 
b  and a  satisfy  

(27)   j
0 (c) = g (b ), cS

0 (b ) = f 1(a ).  

Consequently,  

(28)   !
0 j 0 (c) = "a = h1 !0 (c)  

proving commutativity of (24).  
 Commutativity of the square  

(29)  

 

H q (X,T ) !q" #" H q+1(X,R)

$ $

H q (X,T ) !q" #" H q+1(X,R )

 

can be proved in the same way. Let   [c]!H
q (X,T ) = Ker cT

q / ImcT
q!1 . There 

exist elements  b! (C
qS)X  and   a!Ker cR

q+1  such that  

(30)   c = gq (b), cS
q (b) = f q+1(a),  

and by definition  

(31)  
 

!q ([c]) = [a],
hq+1 !q ([c]) = hq+1([a]) = [hq+1(a)].

 

We denote  

(32)   b = k k (b), a = hq+1(a).  

Then  
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(33)  

 

g q (b ) = g qk q (b) = j qgq (b) = j q (c),
f q+1(a ) = f q+1hq+1(a) = k q+1f q+1(a),
cS
q (b ) = cS

qk q (b) = k q+1cS
q (b) = k q+1f q+1(a),

 

so that  

(34)   cS
q (b ) = f q+1(a ).  

Now using the definition of !q  we get  

(35)  
 

!q j q ([c]) = !q ([ j q (c)]) = [ "a ]
= [hq+1(a)] = hq+1 !q ([c]),

 

which proves commutativity of the square (29).  

 An Abelian sheaf  S  over a topological space X is said to be acyclic, if 
 H

q (X,S) = 0  for all q !1 . A resolution of  S   

(36)  
  0 !"! S !"! S0 !"! S1 !"! S2 !"! …  

is said to be acyclic, if each of the sheaves  S i , where i !1 , is acyclic.  

 Lemma 18  Let  S  be an Abelian sheaf over a paracompact Hausdorff 
space X.  
 (a) If  S  is soft, it is acyclic.  
 (b) The canonical resolution of  S  is acyclic.  
 Proof  (a) This follows from Corollary 12.  
 (b) We want to show that each of the sheaves  C pS , where p ! 0 , is 
acyclic. But we have already shown that these sheaves are soft (Section 7.9, 
Lemma 14)); since by hypothesis the base X of  S  is paracompact and 
Hausdorff, they are acyclic by part (a) of this lemma. 

 Denote by  T *X  the complex   0!T 0X!T 1X!T 2X!… , and let 
 H

q (T *X)  be the q-th cohomology group of this complex.  

 Theorem 5 (Abstract De Rham theorem)  Let  S  be an Abelian sheaf 
over a paracompact Hausdorff manifold X, let  

(37)  
  0 !"! S !"! T 0 !"! T 1 !"! T 2 !"! …  

be a resolution of  S . If this resolution is acyclic, then for every q ! 0  the 
cohomology groups  H

q (X,S)  and  H
q (T *X)  are isomorphic.  

 Proof  Let us consider the following commutative diagram of Abelian 
sheaves  
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(38)  

  

0 0 0 0
! ! ! !

0 "#" S "#" C0S "#" C1S "#" C2S "#" …

! ! ! !
0 "#" T 0 "#" C0T 0 "#" C1T 0 "#" C2T 0 "#" …

! ! ! !
0 "#" T 1 "#" C0T 1 "#" C1T 1 "#" C2T 1 "#" …

! ! ! !
0 "#" T 2 "#" C0T 1 "#" C1T 1 "#" C2T 1 "#" …

! ! ! !

 

with exact rows and columns, and the associated diagram of global sections 

(39)  

 

0 0 0 0
! ! ! !

0 "#" SX "#" (C0S)X "#" (C1S)X "#" (C2S)X "#"

! ! ! !
0 "#" T 0X "#" (C0T 0 )X "#" (C1T 0 )X "#" (C2T 0 )X "#"

! ! ! !
0 "#" T 1X "#" (C0T 1)X "#" (C1T 1)X "#" (C2T 1)X "#"

! ! ! !
0 "#" T 2X "#" (C0T 1)X "#" (C1T 1)X "#" (C2T 1)X "#"

! ! ! !

 

By Section 7.9, Corollary 6 and Corollary 7, every column in this diagram 
except possibly the first one, is exact. We shall show that each row, except 
possibly the first row, is exact.  
 Consider the k-the row 

(40)  
 
0 !"! T kX !"! (C0T k )X !"! (C1T k )X !"! (C2T k )X !"!  

This sequence is exact at the first and the second terms (Section 7.9, Lem-
ma 16). Since the sheaf  T k  is acyclic, we have for each q !1 ,  

(41)   H
q (X,T k ) = 0,  

which means that the sequence (40) is exact everywhere. In particular, the 
diagram (40) is exact everywhere except possibly the first column and the 
first row. Now we apply (Section 7.7, Lemma 10).  



7  Elementary sheaf theory 
 

 

241 

 Corollary 13. For any two acyclic resolutions of an Abelian sheaf  S  
over a paracompact Hausdorff space X, expressed by the diagram  

(42)  

  

R0 !"! R1 !"! R2 !"! …
!

0 !"! S
"

T 0 !"! T 1 !"! T 2 !"! …

 

the cohomology groups of the complexes of global sections  H
q (R *X)  and 

 H
q (T *X) are isomorphic.  

 Proof  Indeed, according to Theorem 5,  H
q (R *X)  and  H

q (T *X)  are 
isomorphic with the cohomology group  H

q (X,S) .  

 Examples  30. Any sheaf  S  of Cr -sections of a smooth vector bundle 
over a smooth paracompact Hausdorff manifold X admits multiplication by 
functions of class Cr  and is therefore fine. Consequently,  S  is soft (Theo-
rem 4) and acyclic (Lemma 18).  

 Remark 6  Consider an n-dimensional smooth manifold X, the constant 
sheaf R  and the sheaves of p-forms ! p  of class C!  on X. The exterior de-
rivative of differential forms d :! p "! p+1  defines a differential sequence  

(43)  0 !"! R !"! #0 d! "! #1 d! "! #2 !"!  

where the mapping R!"0  is the canonical inclusion. It follows from the 
Volterra-Poincaré lemma that this sequence is exaxt, therefore, it is a resolu-
tion of the constant sheaf R . Since the sheaves ! p  are fine they are soft 
(Example 29, Example 30) and acyclic (Lemma 18). Thus, the resolution 
(43) is acyclic; in particular, according to the abstract De Rham theorem, the 
cohomology groups H q (!*X)  of the complex of global sections  

(44)   0!"! #0X d! "! #1X d! "! #2X d! "! …  

coincide with the cohomology groups H q (X,R) . The sequence (43) is 
called the De Rham sequence (of sheaves); (44) is the De Rham sequence of 
differential forms on X, and the groups H q (!*X) , usually denoted just by 
H qX , are the De Rham cohomology groups of X. Note that according to 
Corollary 13, for any acyclic resolution of the constant sheaf R  on X,  

(45)   0!"! R!"! S * , 

the cohomology groups  H
q (S *X)  coincide (that is, are isomorphic) with 

the De Rham cohomology groups H qX ,  

(46)   H
q (S *X) = H qX.  
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