
8  Variational sequences 

 We introduced in Chapter 4 the Euler-Lagrange mapping of the calcu-
lus of variations as an R -linear mapping, assigning to a Lagrangian ! , 
defined on the r-jet prolongation J rY  of a fibred manifold Y, its Euler-
Lagrange form E! . Local properties of this mapping are determined by 
the components of the Euler-Lagrange form, the Euler-Lagrange expres-
sions of the Lagrangian ! . In this chapter we construct an exact sequence 
of Abelian sheaves, the variational sequence, such that one of its sheaf 
morphisms coincides with the Euler-Lagrange mapping. Existence of the 
sequence provides a possibility to study basic global characteristics of the 
Euler-Lagrange mapping in terms of the cohomology groups of the corre-
sponding complex of global sections. Especially, for variational purposes 
the structure of the kernel and the image of the Euler-Lagrange mapping 
! " E!  is considered.  
 The variational sequence is defined by means of the exterior derivative 
operator, acting on differential forms on jet spaces. Recall that for any 
smooth, paracompact, Hausdorff manifold X the following facts have al-
ready been stated in Chapter 7:  
 (a)  The set of real-valued functions, defined on open subsets of X, 
with standard restrictions, is a sheaf; the sets of continuous, Ck -
differentiable, and smooth functions are also sheaves. 
 (b)  More generally, the set of differentiable k-forms on open subsets 
of X, with standard restrictions, is a sheaf.  
 (c)  The set of closed differentiable k-forms, defined on open subsets of 
X, with standard restrictions, is a sheaf.  
 (d)  An exact form !  on an open set  U!X  is a form such that there 
exists a form ! , defined on U, such that !=d" ; the exact forms consti-
tute a presheaf but not a sheaf: if   {U!}!!I  is an open covering of an open 
set  U!X , such that 

 
!|U"

=d#"  for each  !!I , then in general there is no !  
such that !=d" . 
 This chapter treats the foundations of the variational sequence theory. 
The approach, which we have followed, is due to the original paper 
Krupka [K19]. Main innovations consist in the use of variational projec-
tors (also called the interior Euler-Lagrange operators, see Anderson 
[A2], Krupka and Sedenková – Volná [KSe], Volná and Urban [VU]). The 
idea to apply sheaves comes from Takens [T].  
 A number of important topics have necessarily been omitted. For re-
cent research in the structure of the variational sequence, its relations with 
topology, symmetries and differential equations, and possible extensions 
to Grassmann fibrations and submanifold theory we refer to Bloch, 
Krupka, Urban, Voicu, Volna and Zenkov [Bl], Brajercik and Krupka 
[BK], Francaviglia, Palese and Winterroth [FPW], Grigore [Gr], Krupka 
[K16], [K17], Krbek and Musilova [KM], Pommaret [Po], Urban and 
Krupka [UK1], Vitolo [Vit] (see also the handbook Krupka and Saunders 
[KS], where further references can be found).  
  Note that the variational sequence theory does not follow the approach 
to the “formal calculus of variations” based on a variational bicomplex 
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theory on infinite jet prolongations of fibred manifolds, although some 
technical aspects of these two theories appear to be parallel (Anderson 
[A2], Anderson and Duchamp [AD], Dedecker and Tulczyjew [DT], Olver 
[O1], Saunders [S], Takens [T], Urban and Krupka [UK1], Vinogradov, 
Krasilschik and Lychagin [VKL] and others). The results, however, seem 
to be essentially different, and require a deeper comparison. It seems for 
instance that the infinite jet structure of the bicomplex theory is a serious 
obstacle for obtaining local and global characteristics of the “variational” 
morphisms within this theory; although a main motivation was to study 
these morphisms, no explicit (or at least effective) formulas say for the in-
verse problem of the calculus of variations and Helmholtz morphism have 
been derived yet.  
  As before, Y denotes in this chapter a smooth fibred manifold with n-
dimensional base X and projection ! , and n + m = dimY . J rY  is its r-jet 
prolongation and ! r :J rY"X , ! r ,s : J rY " J sY  are the canonical jet pro-
jections. For any open set  W!Y , !q

rW  is the module of q-forms on the 
set W r = (! r ,0 )"1(W ) , and !rW  is the exterior algebra of forms on W r . 
The horizontalization morphism of the exterior algebra !rW  into !r+1W  
is denoted by h. If !  is a ! -projectable vector field and J r!  its r-jet pro-
longation, then to simplify notation we sometimes denote the contraction 
iJ r!" , and the Lie derivative !J r" #  of a form ! , just by i!" , or !" # .  

8.1  The contact sequence 

 We saw in Section 7.10, Remark 6 that the exterior differential forms on 
a finite-dimensional smooth manifold X together with the exterior derivative 
morphism constitute a resolution of the constant sheaf R  over X, the 
De Rham resolution. In this section we provide analogous construction for 
differential forms on the r-jet prolongation J rY  of a fibred manifold Y over 
X. We use the fibred structure of Y to construct a slightly modified version of 
the De Rham resolution, in which the underlying topological space is the 
manifold Y itself instead of J rY .  
 Following our previous notation (Section 4, Section 6), consider a 
smooth fibred manifold Y with base X and projection ! . For any open set W 
in Y, denote by !0

rW  the Abelian group of real-valued functions of class Cr  
(0-forms), defined on the open set  W

r ! J rY ; one can also consider !0
rW  

with its algebraic structure of a commutative ring with unity. Next let q !1 , 
and denote by !q

rW  the Abelian group of q-forms of class Cr , defined on 
 W

r ! J rY . This way we get, for every non-negative integer q, a correspond-
ence W !"q

rW , assigning to an open set  W !Y  the Abelian group of q-
forms on W r . One can easily verify that this correspondence defines a sheaf 
structure on the family 

 
{!q

rW} , labelled by the open sets W. Indeed, to any 
two open sets W1  and W2  in Y such that  W2 !W1 , and any  ! !"q

rW1 , the 
restrictions 

  !q
rW1 ! "# " |W2

"!q
rW2  define an Abelian presheaf structure 

on 
 
{!q

rW} . Since this presheaf is obviously complete, it has the Abelian 
sheaf structure (Section 7.4); with this sheaf structure, the family 

 
{!q

rW}  
will be referred to as the sheaf of q-forms of order r over Y, and will be de-
noted by !q

r .  
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 The exterior derivative operator d defines, for each  W !Y , a sequence 
of Abelian groups  

(1)  

 

0!"! R!"! #0
rW d! "! #1

rW d! "! #2
rW d! "! … d! "! #n

rW
d! "! #n+1

r W d! "! … d! "! #M
r W " 0,

 

and an exact sequence of Abelian sheaves 

(2)  

 

0!"! R!"! #0
r d! "! #1

r d! "! #2
r d! "! … d! "! #n

r

d! "! #n+1
r d! "! … d! "! #M

r " 0.
 

We call this sequence the De Rham (sheaf) sequence over J rY .  
 We now construct a subsequence of the De Rham sequence. First recall 
the notion of a contact form, and introduce the notion of a strongly contact 
form, a (higher-order) analogy of a similar concept introduced in Section 2.  
 Let W be an open set in the fibred manifold Y. Recall that the horizon-
talisation h :!rW "!r+1W  is a morphism of exterior algebras, which as-
signs to a q-form  ! !"q

rW , q !1 , a ! r+1 -horizontal q-form  h! !"q
r+1W  by 

the formula  

(3)  
 
h!(Jx

r+1" )(#1,#2 ,…,#q ) = !(Jx
r" )(h#1,h#2 ,…,h#q ),  

where  Jx
r+1! !W r+1  is any point and !1 , !2 ,  … , !q  are any tangent vectors 

of J r+1Y  at this point. If f  is a function, then  

(4)  hf = (! r+1,r )* f .  

One can equivalently introduce h as a morphism, defined in a fibred chart 
(V ,! ) , ! = (xi , y" ) , by the equations  

(5)  
 
hf = f !! r+1,r , hdxi = dxi , hdyj1 j2… jk

" = yj1 j2… jki
" dxi ,  

where f is any function on V r  and 0 ! k ! r . A form  ! !"q
rW  such that  

(6)  h! = 0  

is said to be contact. Clearly, every q-form !  such that q ! n +1  is contact, 
and the 1-forms  

(7)  
 
! j1 j2… jl

" = dyj1 j2… jl
" # yj1 j2… jli

" dxi , 0 $ l $ r #1,  

defined on the open set  V
r ! J rY  are examples of contact 1-forms. The 1-

forms 
  
{dxi ,! j1 j2… jk

" ,dyl1l2…lr#1lr
" } , where the 1! i ! n , 1!" ! m , 1! k ! r "1, 

 1! j1 ! j2 !…! jk ! n , and  1! l1 ! l2 !…! lr ! n , constitute a basis of lin-
ear forms on the set V r , called the contact basis (Section 2.1, Theorem 1). 
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The exterior derivative df , or more precisely, (! r+1,r )*df , can be decom-
posed as (! r+1,r )*df = hdf + pdf , where pdf  is a contact 1-form, called the 
contact component of f. Any form  ! !"q

rW , of more precisely (! r+1,r )*" , 
has the canonical decomposition 

 
(! r+1,r )*" = h" + p1" + p2" +…+ pq" , 

where h!  is ! r+1 -horizontal and pk!  is k-contact; this condition can equiv-
alently be expressed by saying that the chart expression of pk!  is generated 
by the product of k exterior factors 

 
! j1 j2… jp

" , where 0 ! p ! r .  
 The 1-forms 

 
! j1 j2… jk

"  and 2-forms 
 
d! j1 j2… jr"1

#  locally generate the contact 
ideal !rW  of the exterior algebra !rW , which is closed under the exterior 
derivative operator d; its elements are called contact forms. The contact q-
forms are elements of the contact submodules 

 
!q

rW !"rW . We need these 
submodules for q ! n ; denote  

(8)  
 
!q

rW ="q
rW !!rW , q # n.   

 The 1-forms 
 
! j1 j2… jk

" , where 0 ! k ! r "1 , determined by a fibred atlas 
on Y, locally generate a (global) module of 1-forms, and an ideal !0

rW  of 
the exterior algebra !rW  (for definitions see Appendix 7). Clearly, the con-
tact ideal contains !0

rW  as a subset.  
 Since the contact ideal is closed under the exterior derivative, we have 
the sequence of Abelian groups  

(9)   0!"! #1
rW d! "! #2

rW d! "! … d! "! #n
rW .  

If  ! !"q
rW  is a contact form and f is a function on W r , then the formula  

(10)   d( f !) = df ! ! + fd!  

shows that the form d( f !)  is again a contact form. Thus, the mapping 
!" d( f !)  is a morphism of Abelian groups; however, the exterior deriva-
tive in the sequence (9) is not a homomorphism of modules. Restricting the 
multiplication to constant functions f, that is, to real numbers, (9) can be 
considered as a sequence of real vector spaces.  
 Consider now the sets of q-forms !q

rW  such n +1! q ! dim J rY . De-
note q = n + k . If  ! !"n+k

r W , then h! = 0 , and also p1! = 0 , p2! = 0 ,  … , 
pk!1" = 0  identically (cf. Section 2.4, Theorem 8), thus !  is always contact, 

and its canonical decomposition has the form  

(11)   (!
r+1,r )*" = pk" + pk+1" +…+ pk+n".  

To introduce the notion of a strongly contact form, it is convenient to pro-
ceed in two steps.  
 First we slightly modify the definition given in Section 2.6 and intro-
duce the class of strongly contact forms as follows. We say that an (n +1) -
form  ! !"n+1

r W  is strongly contact, if for every point  Jx
r! !V r  there exist 

an integer s ! r , a fibred chart (V ,! ) , ! = (xi , y" ) , at  ! (x)!V  and a con-
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tact n-form  !!"n
sV  such that  

(12)  p1((!
s,r )*" # d$) = 0.  

Second, if  ! !"n+k
r W  where k ! 2 , we say that !  is strongly contact, if for 

every point  Jx
r! !V r  there exists s ! r , a fibred chart (V ,! ) , ! = (xi , y" ) , 

at  ! (x)!V  and a strongly contact (n + k !1) -form  !!"n+k
s V  such that  

(13)  pk ((!
s,r )*" # d$) = 0.  

 Lemma 1  Let  ! !"n+k
r W . The following conditions are equivalent:  

 (a) !  is strongly contact.  
 (b) There exists an integer s ! r  and an (n + k !1) -form  !!"n+k

s V  
such that  

(14)  (! s,r )*" = µ + d#, pkµ = 0, pk$1# = 0.  

 Proof  If !  is strongly contact, then (! s,r )*" # d$ = µ  for some form 
µ  on V s  such that pkµ = 0 . Then (! s,r )*" = µ + d#  proving (14). The 
converse is obvious.  

 Lemma 2  (a) Every form  ! !"n+k
r W  such that pk! = 0 , is strongly 

contact.  
 (b) Exterior derivative of a contact n-form is strongly contact. Exterior 
derivative of a strongly contact form is strongly contact.  
 (c) Let !  be a ! -vertical vector field,  ! !"n+k

r W  a strongly contact 
form. If k ! 2 , then the (n + k !1) -form i!"  is strongly contact.  
 Proof  (a) Obvious.  
 (b) We use the identity pk+1(d! " d!) = 0 .  
 (c) This follows from Lemma 9 and Section 2.5, Theorem 9. Indeed, 
for every ! -vertical vector field !  

(15)  

i!pk (("
s,r )*# $ d%)

= pk$1(i!("
s,r )*# $ i!d%)

= pk$1(i!("
s,r )*# $ &!%)

= pk$1(i!("
s,r )*# + di!%) = 0.

 

But pk!2i"# = i"pk!1# = 0  proving (c).  
 
 Remark 1  It follows from Lemma 1 that the canonical decomposition 
of a strongly contact form  ! !"n+k

r W  is  

(16)  
 

(! s,r )*" = pkd# + pk+1" + pk+2" +…+ pn+k"
= d# + pk+1(" $ d# )+ pk+2 (" $ d# )+…+ pn+k (" $ d# ),
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where the forms on the right-hand side are considered as canonically lifted to 
the set  V

s ! J sY .  

 Remark 2  One can formally extend the definition of a strongly contact 
form to the q-forms  ! !"q

rW  such that 1! q ! n . Indeed, we have for any 
contact form  !" !#q$1

r W , h(! " d #! ) = h! ; thus if h! = 0  then we have 
h(! " d #! ) = 0  for any  !" !#q$1

r W .  

 Remark 3  The definition of a strongly contact form, given above, has 
its natural origin in the theory of systems of partial differential equations for 
mappings of n independent variables, defined by differential forms of degree 
n + k > n : such differential equations can equivalently be described by sys-
tems of n-forms arising by contraction of (n + k) -forms with k vector fields. 
For an ad hoc construction in this context, similar to the concept of a strong-
ly contact form, see the differential systems with independence condition in 
Bryant, Chern, Gardner, Goldschmidt, Griffiths [Bry].  

 Remark 4  The definition of a strongly contact form is closely related to 
the concept of a Lepage form (Section 4.3).  

 Strongly contact (n + k) -forms on W r  constitute a subgroup !q
rW  of 

the Abelian group !q
rW ; they do not form a submodule of !q

rW . The Abe-
lian groups !q

rW  together with the exterior derivative d form a sequence  

(17)   !n
rW d" #" !n+1

r W d" #" … d" #" !M
r W "#" 0.  

The index M of the last non-zero term in this sequence is  

(18)  M = m n
n+r!1( ) + 2n !1.  

 If !  is a contact n-form, then !  is automatically a strongly contact 
form. Thus, sequences (9) and (17) can be glued together. We get a sequence  

(19)  

 

0!"! #1
rW d! "! #2

rW d! "! … d! "! #n
rW

d! "! #n+1
r W d! "! … d! "! #M

r W !"! 0.
 

 The families of Abelian groups 
 
{!q

rW} , where W runs through open 
subsets of the fibred manifold Y, induce Abelian sheaves, and the sequences 
(18) induce a sequence of Abelian sheaves. Indeed, consider for any integer 
q such that 1! q ! M  the family of Abelian groups 

 
!q

r = {!q
rW} . Any two 

open sets  W1,W2 !Y  such that  W2 !W1  define a morphism of Abelian 
groups 

  !q
rW1 ! "# " |W2

"!q
rW2 , the restriction of a form, defined on the 

open set  W1
r ! J rY , to the open set  W2

r !W1
r . Clearly, !q

r  with these re-
striction morphisms form an Abelian presheaf over Y. The restriction mor-
phisms obviously satisfy the axioms of an Abelian sheaf (Section 7.4). Thus, 
the presheaf !q

r  has the structure of an Abelian sheaf.  
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 If 1! q ! n  (resp. n +1! q ! M ) this sheaf is called the sheaf of contact 
(resp. strongly contact) q-forms of order r on Y.  

 Remark 5  The sheaf !q
r , defined over the fibred manifold Y, differs 

from the sheaf of q-forms over the r-jet prolongation J rY of Y; !q
r  can be 

characterized as the direct image of the sheaf of q-forms of order r over J rY  
by the jet projection ! r ,0 : J rY "Y . Our construction, for the forms of de-
gree q ! n , is the same as an analogous construction in Anderson and Du-
champ [AD].  

 The sequences (18) induce the sequence of Abelian sheaves  

(20)  

 

0!"! #1
r d! "! #2

r d! "! … d! "! #n
r d! "! #n+1

r

d! "! … d! "! #M
r !"! 0.

 

The following basic observation shows that the De Rham sequence can be 
factored through the sequence (20). 

 Lemma 3  The sequence of Abelian sheaves (20) is an exact subse-
quence of the De Rham sequence (2).  
 Proof  1. To prove exactness of the sequence (20) at the term !q

r , 
where 1! q ! n , it is sufficient to consider differential forms defined on the 
chart neighbourhood of a fibred chart (V ,! ) , ! = (xi , y" ) , on Y. However, 
for these differential forms the statement already follows from Section 2.7, 
Theorem 13.  
 2.  Exactness at the terms !q

r , where n +1! q ! M , follows from Sec-
tion 2.7, Theorem 14.  
 The sequence (19) will be referred to as the contact sequence, or the 
contact subsequence of the De Rham sequence,  
 We show that the sheaves !q

r  in the contact subsequence are all soft. To 
describe the structure of these sheaves !q

r  such that n +1! q ! M , note that 
any q-form !  on the r-jet prolongation J rY  identically satisfies  

(21)  
 
h! = 0, p1! = 0, p2! = 0, …, pq"n"1! = 0  

(Section 2.4, Theorem 8). We denote by !q
r
(c)W  the submodule of the mod-

ule of q-form !q
rW  defined by the condition  

(22)  pq!n" = 0.  

This condition states that the submodule !q
r
(c)W  consists of the forms 

whose order of contactness is ! q " n +1 . The family of the modules 
!q

r
(c)W  define the sheaf of modules 

(23)  
 
!q

r
(c)= {!q

r
(c)W}.  
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Clearly !q
r
(c)  is a soft sheaf.  

 Lemma 4  For every integer q such that 1! q ! M  the sheaf !q
r  is soft.  

 Proof  1. If 1! q ! n , then the sheaf !q
r  admits multiplication by func-

tions so it is fine; then, however, according to Section 7.1, Theorem 4, the 
sheaf !q

r  is soft.  
 2.  Consider the contact subsequence (20) and the short exact sequence 

(24)  0!"! #1
r d! "! #2

r d! "! d#2
r !"! 0,  

where d!2
r  denotes the image sheaf, d!2

r = Imd . Since the sheaves !1
r  and 

!2
r  are soft, the sheaf d!2

r  is also soft (Section 7.10, Corollary 1). Similar-
ly, assign to the sequence  

(25)  0!"! #1
r d! "! #2

r d! "! #3
r d! "! d#3

r !"! 0  

the short exact sequence  

(26)  0!"! Kerd!"! #3
r d! "! d#3

r !"! 0.  

Using exactness of (25) at !3
r , we have Ker d = d!2

r , so the sheaf Kerd  in 
(26) is soft. Consequently, the sheaf d!3

r  is also soft. Continuing this way, 
we assign to the sequence  

(27)   0!"! #1
r d! "! #2

r d! "! … d! "! #n
r d! "! d#n

r !"! 0  

the short exact sequence  

(28)  0!"! Kerd!"! #n
r d! "! d#n

r !"! 0  

and since Kerd = d!n"1
r  and this sheaf is soft, the sheaf d!n

r  is also soft.  
 Now consider the sheaf !n+1

r . Note that by definition, we have a sheaf 
morphism, expressed (by means of representatives of the germs) as  

(29)   !n
r "Y #n+1

r
(c) ! ($ ,µ)% µ + d$ "#n+2

r ,  

where !n
r "Y #n+1

r
(c)  is the fibre product of the sheaves !n

r  and !n+1
r

(c) . The 
sheaf !n+1

r  can be regarded as the image sheaf of this morphism; its kernel 
consists of the pairs  (! ,"d! )!#n

r $Y d#n
r . We get a short exact sequence  

(30)  0!"! #n
r $Y d#n

r !"! #n
r $X %n+1

r
(c)

d! "! #n+1
r !"! 0.  

The sheaves !n
r "Y d!n

r  and !n
r "X #n+1

r
(c)  in this sequence are fibre prod-

ucts of soft sheaves !n
r , d!n

r , and !n+1
r

(c) , and are therefore soft; hence the 
sheaf !n+1

r  is also soft.  
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 Extending this construction to any of the sheaves !q
r  in the variational 

sequence (20), where q ! n +1 , we complete the proof. 

8.2  The variational sequence 

 Consider the De Rham sequence (2), and its contact subsequence (19), 
Section 8.1. Using Section 8.1, Lemma 3 we get a commutative diagram  

(1)  

 

0 0 0
! ! !

0 " #" $1
r d" #" $2

r d" #" $3
r d" #" …

! ! ! !

0 "#" RY "#" %0
r d" #" %1

r d" #" %2
r d" #" %3

r d" #" …

 

in which RY !"0
r  is the canonical inclusion and the vertical arrows repre-

sent canonical inclusions of subsheaves. Passing to the quotient sheaves and 
quotient sheaf morphism, this diagram induces a commutative diagram, writ-
ten in two parts as  

(2)  

 

0 0
! !

0 " #" $1
r d" #" $2

r d" #" …

! ! !

0 "#" RY "#" %0
r d" #" %1

r d" #" %2
r d" #" …

! ! !

%1
r /$1

r " #" %2
r /$2

r "#" …

! !
0 0

 

  

 

0
!

… "#" $M
r "#" 0
! !

… d" #" %M
r d" #" %M

r d" #" …
d" #" %N

r "#" 0
! !

… "#" %M
r /$M

r

!
0
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The quotient sequence of Abelian sheaves, defined by this diagram,  

(3)  0!"! RY !"! #0
r !"! #1

r /$1
r !"! #2

r /$2
r !"! #3

r /$3
r !"!  

is called the (r-th order) variational sequence over the fibred manifold Y. 
Since the De Rham sequence and its contact subsequence are exact, it can be 
easily verified that the quotient sequence is also exact (see also Section 7.7, 
Corollary 2). Thus, the variational sequence is a resolution of the constant 
sheaf RY  over Y. We call the Abelian group morphisms in the (3) the Euler-
Lagrange morphisms and denote them by Ej :! j

r /" j
r #$# ! j+1

r /" j+1
r , or 

just by E. The variational sequence is also denoted by  

(4)   0!"! RY !"! VarY
r .  

 Consider the complex of global sections  

(5)  0!"! #0
rY !"! (#1

r /$1
r )Y !"! (#2

r /$2
r )Y !"! (#3

r /$3
r )Y !"!  

associated with the variational sequence (4), its cohomology groups 
 H

k (VarY
rY ) , and the cohomology groups of the fibred manifold Y with coef-

ficients in the constant sheaf RY ; by the De Rham theorem, we identify the-
se cohomology groups with the De Rham cohomology gtoups; thus 
H kY = H k (Y ,RY )  (Section 7.10, Remark 6). We are now going to establish 
two theorems, representing central results of this chapter, namely the tools 
for the study of the global variational functionals, considered in Chapter 4 
and Chapter 5 of this book.  

 Theorem 1  The variational sequence  0! RY !VarY
r  is an acyclic 

resolution of the constant sheaf RY .  
 Proof  Since the sheaves !k

r  and !k
r  are soft (Section 8.1, Lemma 4), 

the quotient sheaves !k
r /"k

r  are also soft (Section 7.9, Corollary 1). Then, 
however, the sheaves !k

r /"k
r  are acyclic, so the resolution  0! RY !VarY

r  
is acyclic (Section 7.10, Lemma 18).  

 Theorem 2  The cohomology groups  H
k (VarY

rY )  of the complex of 
global sections and the De Rham cohomology groups H kY  of the manifold 
Y are isomorphic.  
 Proof  This follows from Section 7.10, Theorem 5 (see also Corol-
lary 13 and Remark 6).  

 Remark 6  The cohomology groups H k (Y ,RY )  have been constructed 
by means of the topology of the underlying fibred manifold Y. On the other 
hand, it follows from Theorem 2 that the same cohomology groups charac-
terize properties of the complex of global sections of the associated with the 
variational sequence. In this sense Theorem 2 clarifies the relationship be-
tween existence of global sections of the quotient Abelian groups and topo-
logical properties of Y.  
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8.3  Variational projectors  

 In this section we consider the columns of the diagram (3), Section 8.2, 
defining the variational sequence of order r over the fibred manifold Y. The 
main goal is to show that the classes of forms – elements of the quotient 
groups !k

r /"k
r , can be represented as global differential forms, defined on 

the s-jet prolongation J sY  for some s. Basic idea for constructing this repre-
sentation leans on the definition of the quotient space, which is defined up to 
a canonical isomorphism. We shall construct an Abelian group of forms !k

r  
and a group morphism  ! k

r :!k
r "#k

r  such that  Ker! k
r =!k

r ; then the quo-
tient sheaf !k

r /"k
r  becomes canonically isomorphic with the image 

  Im! k
r !!k

r , according to the diagram  

(1)  

  

!k
r

"
#k

r

! "
#k

r /!k
r $ %& Im! k

r

 

 Let k !1 , let W be an open set in Y, and let !  be a k-contact (n + k) -
form ! , defined on the open set W r+1  in J rY . In a fibred chart (V ,! ) , 
! = (xi , y" ) , on Y, !  has an expression  

(2)  
  
! = "#

j1 j2… jk !$ j1 j2… jk
# !$ 0

0%k%r
& ,  

where  !"
j1 j2… jk  are some (k !1) -contact (k !1) -forms. In this section we 

construct a decomposition of the canonical lift (! 2r+1,r+1)*"  of !  to W 2r+1 ; 
to this purpose se use the property  

(3)  
  
! j1 j2… jk

" !! 0 = #d(! j1 j2… jk#1
" !! jk

)  

of the contact 1-forms 
 
! j1 j2… jk

" . Although the decomposition we introduce 
will be constructed by means of fibred charts, it will be independent of the 
chosen chars.  
 First consider the decomposition of (n +1) -forms, defined on the set 
W r+1 ; the idea will be to identify in a form a summand, which is an exact 
form. The proof of the following theorem is based on the algebraic trace de-
composition theory explained in Appendix 9. 

 Theorem 3  Let !  be a 1-contact ! r+1,r -horizontal (n +1) -form on 
W r+1 , expressed in a fibred chart (V ,! ) , ! = (xi , y" ) , by  
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(4)  
 
! = A"

J# J
" !# 0

0$|J |$r
% .  

 (a) There exist a 1-contact !" -generated (n +1) -form I1!  on V 2r+1 , a 
1-contact n-form J1!  and a 2-contact (n +1) -form K1! , defined on V 2r+1 , 
such that  

(5)  (! 2r+1,r+1)*" = I1" # dJ1" + K1",  

where  

(6)  

  

I1! = A" + (#1)s d j1
dj2

…djs
A"

j1 j2… js

1$s$r
%&

'(
)
*+
," !, 0 ,

J1! = (#1)k d js#k+1
djs#k+2

…djs
A"
i1i2…is#k js#k+1 js#k+2… js, i1i2…is#k#1

" !, is#k
0$k$r#1
%

1$s$r
% ,

K1! = (#1)k+1 pd(djs#k+1
djs#k+2

…djs
A"
i1i2…is#k js#k+1 js#k+2… js )

0$k$s#1
%

1$s$r
%

!, i1i2…is#k#1
" !, is#k

.

 

 (b) Suppose that we have a decomposition  

(7)  (! 2r+1,r+1)*" ="0 # d"1 +"2  

such that !0  is 1-contact and !" -generated, !1  is 1-contact, and !2  is a 2-
contact form. Then  

(8)  !0 = I1!, d!1 = dJ1!, !2 = K1!.  

 Proof  (a) Write expression (4) as  

(9)  

 

! = A"
J# J

" !# 0
0$|J |$r
%

= A"#
" !# 0 + A"

J# J
" !# 0

1$|J |$r
% ,

 

and consider a summand  A!
J" J

! !" 0 , where | J | = s !1 . Then in the standard 
index notation  

(10)  

  

A!
J" J

! !" 0 = A!
i1i2…is" i1i2…is

! !" 0 = #A!
i1i2…isd(" i1i2…is#1

! !" is
)

= #d(A!
i1i2…is" i1i2…is#1

! !" is
)+ dA!

i1i2…is !" i1i2…is#1
! !" is

= hdA!
i1i2…is !" i1i2…is#1

! !" is
+ pdA!

i1i2…is !" i1i2…is#1
! !" is

# d(A!
i1i2…is" i1i2…is#1

! !" is
)
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= d(djs
A!
i1i2…is"1 js# i1i2…is"2

! !# is"1
)+ djs"1

djs
A!
i1i2…is"2 js"1 js# i1i2…is"2

! !# 0

" pd(djs
A!
i1i2…is"1 js )!# i1i2…is"2

! !# is"1

+ pdA!
i1i2…is !# i1i2…is"1

! !# is
" d(A!

i1i2…is# i1i2…is"1
! !# is

)

= djs"1
djs
A!
i1i2…is"2 js"1 js# i1i2…is"2

! !# 0

" pd(djs
A!
i1i2…is"1 js )!# i1i2…is"2

! !# is"1
+ pdA!

i1i2…is !# i1i2…is"1
! !# is

+ d(djs
A!
i1i2…is"1 js# i1i2…is"2

! !# is"1
" A!

i1i2…is# i1i2…is"1
! !# is

).

 

Further calculations yield 

(11)  

  

A!
i1i2…is" i1i2…is

! !" 0 = (#1)
s d j1

dj2
…djs

A!
j1 j2… js"! !" 0

# (#1)k pd(djs#k+1
djs#k+2

…djs
A!
i1i2…is#k js#k+1 js#k+2… js )!" i1i2…is#k#1

! !" is#k
0$k$s#1
%

# d (#1)k d js#k+1
djs#k+2

…djs
A!
i1i2…is#k js#k+1 js#k+2… js" i1i2…is#k#1

! !" is#k
0$k$s#1
%&

'(
)
*+
.

 

These formulas prove statement (a).  
 (b) To prove (b), suppose that !0 " d!1 +!2 = 0 , where !0  is 1-contact 
and !" -generated, !1  is 1-contact, and !2  is a 2-contact form; we want to 
show that this condition implies !0 = 0 , !2 = 0 ; indeed these conditions will 
also prove that d!1 = 0 . The forms !0  and !1  can be expressed in the form  

(12)  
  
!0 = A"#

" !# 0 , !1 = B"
i#" !# i + B"

j1 j2… jk i# j1 j2… jk
" !# i

1$k$2r
% .  

If k !1 , then  B!
j1 j2… jk i  can be decomposed as  

(13)  

 

B!
j1 j2… jk i= !B!

j1 j2… jk i

+ 1
k+1

(B!
j1 j2… jk i" B!

ij2 j3… jk j1)+ 1
k+1

(B!
j1 j2… jk i" B!

j1ij3 j4… jk j2 )

+…+ 1
k+1

(B!
j1 j2… jk i…B!

j1 j2… jk"1i jk ),

 

where  
!B!
j1 j2… jk i  is the symmetric component,  

(14)  
 
!B!
j1 j2… jk i= 1

k+1
(B!

j1 j2… jk i+ B!
ij2 j3… jk j1+ B!

j1ij3 j4… jk j2+…+ B!
j1 j2… jk"1i jk ).  

Now calculating p1d!1 , we have  

(15)  

  

p1d!1 = hdB"
i!#" !# i $ B"

i# i
" !# 0

+ hdB"
j1 j2… jk i!# j1 j2… jk

" !# i
1%k%2r
& $ B"

j1 j2… jk i# j1 j2… jki
" !# 0

1%k%2r
&  
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= !diB"
i#" !# 0 ! B"

i# i
" !# 0

! diB"
j1 j2… jk i# j1 j2… jk

" !# 0
1$k$2r
% ! B"

j1 j2… jk i# j1 j2… jki
" !# 0

1$k$2r
%

= !diB"
i#" !# 0 ! (B"

j1+ diB"
j1 i)# j1

" !# 0

! (diB"
j1 j2… jk i+ B"

j1 j2… jk!1 jk )# j1 j2… jk
" !# 0

2$k$2r
%

! B"
j1 j2… j2 r i# j1 j2… j2 ri

" !# 0 .

 

Equation !0 " d!1 +!2 = 0  implies !0 " p1d!1 = 0  hence  

(16)  

  

(A! " dj1
B!

j1)#! !# 0 " (diB!
j1 i+ B!

j1)# j1
! !# 0

" (diB!
j1 j2 i+ B!

j1 j2 )# j1 j2
! !# 0 " (diB!

j1 j2 i+ B!
j1 j2 )# j1 j2

! !# 0

"…" (diB!
j1 j2… j2 r"1 i+ B!

j1 j2… j2 r"2 j2 r"1)# j1 j2… j2 r"1
! !# 0

" (diB!
j1 j2… j2 r i+ B!

j1 j2… j2 r"1 j2 r )# j1 j2… j2 r
! !# 0

" B!
j1 j2… j2 r j2 r+1# j1 j2… j2 r j2 r+1

! !# 0 = 0,

 

therefore the components  B!
j1 j2… jk i  satisfy  

(17)  

 

!B!
j1 j2… j2 r j2 r+1= 0,
!B!
j1 j2… j2 r"1 j2 r= "diB!

j1 j2… j2 r i,
…

B!
j1= "diB!

j1 i,
B!

j1= "diB!
j1 i,

 

and A! = dj1
B!

j1 . Consequently  

(18)  

 

A! = dj1
B!

j1= "dj1
dj2
B!

j1 j2= "dj1
dj2
!B!
j1 j2= dj1

dj2
dj3
B!

j1 j2 j3

= dj1
dj2
dj3
!B!
j1 j2 j3=…= ("1)k"1dj1

dj2
…djk"1

djk
B!

j1 j2… jk"1 jk

= ("1)k"1dj1
dj2

…djk"1
djk
!B!
j1 j2… jk"1 jk

=…= ("1)2r"1dj1
dj2

…dj2 r"1
dj2 r

B!
j1 j2… j2 r"1 j2 r

= ("1)2r"1dj1
dj2

…dj2 r"1
dj2 r
!B!
j1 j2… j2 r"1 j2 r

= ("1)2r d j1
dj2

…dj2 r
d j2 r+1

B!
j1 j2… j2 r j2 r+1

= ("1)2r d j1
dj2

…dj2 r
d j2 r+1
!B!
j1 j2… j2 r j2 r+1

= 0,

 

proving that A! = 0  hence !0 = 0 .  
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 Substituting from this identity to equations (17),  

(19)  

 

!B!
j1 j2… j2 r j2 r+1= 0, diB!

j1 j2… j2 r i= " !B!
j1 j2… j2 r"1 j2 r,

diB!
j1 j2… j2 r"1 i= " !B!

j1 j2… j2 r"2 j2 r"1, …, diB!
j1 j2 i= " !B!

j1 j2,
diB!

j1 i= "B!
j1, dj1

B!
j1= 0.

 

Then by Section 3.1, Remark 2 and Section 3.2, Theorem 1, the functions 
 B!

j1,B!
j1 i,B!

j1 j2 i,…,B!
j1 j2… j2 r"1 i,B!

j1 j2… j2 r i  depend on the variable xi  only. Then 
formula (12) implies p2d!1 = 0 , hence, from equation !0 " d!1 +!2 = 0 , 
!2 = 0 . This proves (b).  

 Note that for any n-form !  on W r , the 1-contact component p1!  is an 
n-form on the set W r+1 , and since p1d! = p1dh! + p1dp1! = dh! + p1dp1! , 
the 1-contact (n +1) -form p1dp1!  is also defined on W r+1 . Therefore, the 
form I1p1dp1!  is defined and is an (n +1) -form on W 2r+1 .  

 Corollary 1  The form I1p1dp1!  vanishes identically,  

(20)  I1p1dp1! = 0.  

 Proof  We have the identity  

(21)  

 

(! 2r+1,r+1)* p1dp1"
= (! 2r+1,r+1)*(dp1" # p2dp1" # p3dp1" #…# pn+1dp1")
= d(! 2r+1,r+1)* p1" # p2 (!

2r ,r+1)*dp1"
 

because p3dp1! = 0 , p4dp1! = 0 ,  … , pn+1dp1! = 0 . Comparing this formula 
with decomposition (5) and using the uniqueness of the component I1p1dp1!  
(Theorem 3, (b)) we get identity (20).  

 Remark 7  If p2d!1  is !" -generated, then p2d!1 = 0  (see the proof of 
Theorem 3).  

 Remark 8  Part (b) of Theorem 3 can alternatively be proved by means 
of the properties of Lepage forms. Note that the uniqueness condition 
!0 " d!1 +!2 = 0  implies that !0 = p1d!1 ; this means, however, that !1  is a 
Lepage form whose Lagrangian h!1 = 0  is the zero Lagrangian. Using Sec-
tion 4.3, Theorem 3 we get !1 = d" + µ , where the form !  is 1-contact and 
the form µ  is of order of contactness ! 2 . Then, however, d!1 = dµ , which 
is a form of order or contactness ! 2 . Equation !0 " d!1 +!2 = 0  now im-
plies that !0 = 0  because !0  is 1-contact (and !dµ +"2  is of order of con-
tactness ! 2 ).  

 Next consider (n + k) -forms on W r+1  for arbitrary k !1 . The following 
result generalizes Theorem 3.  
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 Theorem 4  Let k !1 , let !  be a k-contact, ! r+1,r -horizontal (n + k) -
form on W r+1 , expressed in a fibred chart (V ,! ) , ! = (xi , y" ) , by  

(22)  
  
! = "#

j1 j2… jk !$ j1 j2… jk
# !$ 0

0%k%r
& .  

There exist k-contact !" -generated k -form Ik!  on V 2r+1 , a (k !1) -
contact (n + k !1) -form Jk!  and an (k +1) -contact (n + k) -form Kk! , de-
fined on V 2r+1 , such that  

(23)  (! 2r+1,r+1)*" = Ik" # dJk" + Kk".  

 (b) Suppose that we have a decomposition  

(24)  (! 2r+1,r+1)*" ="0 # d"1 +"2  

such that !0  is 1-contact and !" -generated, !1  is 1-contact, and !2  is a 2-
contact form. Then  

(25)  !0 = Ik!.  

 Proof  (a) Let k !1 , let W be an open set in Y, and let !  be a k-contact, 
(n + k) -form, defined on some open set W r+1 . In a fibred chart (V ,! ) , 
! = (xi , y" ) , on Y, !  has a unique decomposition  

(26)   ! =!0 +!1 +!2 +…+!r ,  

where !0  is the !" -generated component, !1  includes all ! j1
" -generated 

terms, which do not contain any factor !" , !2  includes all ! j1 j2
" -generated 

terms, which do not contain any factors !" , ! j1
" , etc.; finally, !r  consists of 

 
! j1 j2… jr

" -generated terms which do not include any factors !" , ! j1
" , ! j1 j2

" , 
 … , 

 
! j1 j2… jr"1

# .  
 !r  has an expression  

(27)  
  
!r = "#

j1 j2… jr !$ j1 j2… jr
# !$ 0  

for some (k !1) -contact (k !1) -forms  !"
j1 j2… jr , which do not include any 

factors !" , ! j1
" , ! j1 j2

" ,  … , 
 
! j1 j2… jr"1

# . Then by (3)  

(28)  

  

!r = "#$
j1 j2… jr !d(% j1 j2… jr"1

$ !% jr
)

= ("1)k d(#$
j1 j2… jr !% j1 j2… jr"1

$ !% jr
)" ("1)k d#$

j1 j2… jr !% j1 j2… jr"1
$ !% jr

= "("1)k pk"1d#$
j1 j2… jr !% j1 j2… jr"1

$ !% jr

+ ("1)k d(#$
j1 j2… jr !% j1 j2… jr"1

$ !% jr
)

" ("1)k pkd#$
j1 j2… jr !% j1 j2… jr"1

$ !% jr
.
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The term 
  
pk!1d"#

j1 j2… jr !$ j1 j2… jr!1
# !$ jr

 in this expression is k-contact (and 
therefore contains the factor   dx

1!dx2 !…!dxn ), and is generated by the 
forms 

 
! j1 j2… jr"1

# . Thus, from the definition of the (k !1) -component 
 pk!1d"#

j1 j2… jr  it follows that the form 
  
pk!1d"#

j1 j2… jr !$ j1 j2… jr!1
# !$ jr

 contains 
the exterior factors 

 
! l1l2…lr"1

# , 
 
! l1l2…lr

"  and 
 
! l1l2…lri1

"  only. Decomposition (26) 
now reads  

(29)  

  

(! 2r+1,r+1)*" ="0 +"1 +"2 +…+"r#2 + !"r#1

+ (#1)k d($%
j1 j2… jr !& j1 j2… jr#1

% !& jr
)

# (#1)k pkd$%
j1 j2… jr !& j1 j2… jr#1

% !& jr
,

 

where  !!r"1  can be written as  

(30)  
  

!!r"1 =!r"1 " ("1)
k pk"1d#$

j1 j2… jr !% j1 j2… jr"1
$ !% jr

= #$
j1 j2… jr"1 !% j1 j2… jr"1

$ !% 0 .
 

Then, however,  

(31)  

  

!!r"1 = #$
j1 j2… jr"1 !d(% j1 j2… jr"2

$ !% jr"1
)

= "("1)k pk"1d#$
j1 j2… jr"1 !% j1 j2… jr"2

$ !% jr"1

+ ("1)k d(#$
j1 j2… jr"1 !% j1 j2… jr"2

$ !% jr"1
)

" ("1)k pkd#$
j1 j2… jr"1 !% j1 j2… jr"2

$ !% jr"1
.

 

The term 
  
pk!1d"#

j1 j2… jr!1 !$ j1 j2… jr!2
# !$ jr!1

 in this expression is k-contact, con-
tains the factor ! 0 , and is generated by the forms 

 
! j1 j2… jr"1

# . From the defini-
tion of the (k !1) -component  pk!1d"#

j1 j2… jr  it follows that this term contains 
the exterior factors 

 
! l1l2…lr"2

# , 
 
! l1l2…lr"1

# , 
 
! l1l2…lr

" , 
 
! l1l2…lri1i2

"  only. The decomposi-
tion (26) (or (29)) now reads 

 (32) 

  

(! 2r+1,r+1)*" ="0 +"2 +"3 +…+"r#3 + !"r#2

+ (#1)k d($%
j1 j2… jr#1 !& j1 j2… jr#2

% !& jr#1
)

# (#1)k pkd$%
j1 j2… jr#1 !& j1 j2… jr#2

% !& jr#1

+ (#1)k (d($%
j1 j2… jr !& j1 j2… jr#1

% !& jr
)

# pkd$%
j1 j2… jr !& j1 j2… jr#1

% !& jr
),

 

where  

(33)  
  

!!r"2 =!r"2 " ("1)
k pk"1d#$

j1 j2… jr"1 !% j1 j2… jr"2
$ !% jr"1

= #$
j1 j2… j2 !% j1 j2… jr"2

$ !% 0 .
 



Global Variational Geometry 
 
260 

Continuing in the same way we get after r !1 steps  

(34)  

  

(! 2r+1,r+1)*" ="0 + !"1 + (#1)
k d($%

j1 j2 !& j1
% !& j2

)

# (#1)k pkd$%
j1 j2 !& j1 j2

% !& j2

+…+ (#1)k d($%
j1 j2… jr#1 !& j1 j2… jr#2

% !& jr#1
)

# (#1)k pkd$%
j1 j2… jr#1 !& j1 j2… jr#2

% !& jr#1

+ (#1)k d($%
j1 j2… jr !& j1 j2… jr#1

% !& jr
)

# (#1)k pkd$%
j1 j2… jr !& j1 j2… jr#1

% !& jr
,

 

where  

(35)  
  

!!1 =!1 " ("1)
k pk"1d#$

j1 j2 !% j1
$ !% j2

= #$
j1 !% j1

$ !% 0 .
 

The form  !!1  contains ! j1
" , ! j1 j2

" ,  … , 
 
! j1 j2… jr

" , 
 
! j1 j2… jri1

" ,  … , 
 
! j1 j2… jri1i2…ir"1

#  but 
no factor !" . Then  

(36)  

  

!!1 = "#$
j1 !d(%$ !% j1

)

= ("1)k d(#$
j1 !%$ !% j1

)" ("1)k d#$
j1 !%$ !% j1

= "("1)k pk"1d#$
j1 !%$ !% j1

+ ("1)k d(#$
j1 !%$ !% j1

)" ("1)k pkd#$
j1 !%$ !% j1

,

 

and  

(37)  

  

(! 2r+1,r+1)*"
="0 # (#1)

k pk#1d$%
j1 !&% !& j1

# (#1)k#1d($%
j1 !&% !& j1

+$%
j1 j2 !& j1

% !& j2

+…+$%
j1 j2… jr#1 !& j1 j2… jr#2

% !& jr#1
+$%

j1 j2… jr !& j1 j2… jr#1
% !& jr

)

# (#1)k (pkd$%
j1 !&% !& j1

+ pkd$%
j1 j2 !& j1 j2

% !& j2

+…+ pkd$%
j1 j2… jr#1 !& j1 j2… jr#2

% !& jr#1

+ pkd$%
j1 j2… jr !& j1 j2… jr#1

% !& jr
).

 

Summarizing  

(38)  (! 2r+1,r+1)*" = Ik" # dJk" + Kk",  

where  
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(39)  

  

Ik! =!0 " ("1)
k pk"1d#$

j1 !%$ !% j1
,

Jk! = ("1)k"1(#$
j1 !%$ !% j1

+#$
j1 j2 !% j1

$ !% j2

+…+#$
j1 j2… jr"1 !% j1 j2… jr"2

$ !% jr"1
+#$

j1 j2… jr !% j1 j2… jr"1
$ !% jr

),

Kk! = ("1)k"1 pk+1(d#$
j1 !%$ !% j1

+ d#$
j1 j2 !% j1 j2

$ !% j2

+…+ d#$
j1 j2… jr"1 !% j1 j2… jr"2

$ !% jr"1
+ d#$

j1 j2… jr !% j1 j2… jr"1
$ !% jr

).

 

 (b) To prove uniqueness of the component Ik! , we adapt to the de-
composition (38) a classical integration approach. It is sufficient to consider 
the case when  

(40)  Ik! " dJk! + Kk! = 0,  

and to prove that Ik! = 0 . Choose ! -vertical vector fields !1 , !2 ,  … , !k  
on Y and consider the pull-back of this n-form by the r-jet prolongation of a 
section !  of Y, 

 
J 2r+1! * i"k

…i"2i"1 Ik# . Clearly, the pull-back J 2r+1! *  annihi-
lates contact n-forms. Since the Lie derivative of a contact form by a ! -
vertical vector field is a contact form (Section 2.5, Theorem 9, (d)), hence  

(41)  

 

J 2r+1! * i"k
…i"2i"1 Ik#

= J 2r+1! * i"k
…i"2i"1dJk# + J 2r+1! * i"k

…i"2i"1Kk#

= J 2r+1! * i"k
…i"2i"2 ($"1

Jk# % di"1Jk#)+ J
2r+1! * i"k

…i"2i"1Kk#

= %J 2r+1! * i"k
…i"3i"2di"1Jk#

 

because the forms 
 
i!k

…i!2i!2 "!1
Jk#  and 

 
i!k

…i!2i!1Kk"  are contact. Repeat-
ing this step,  

(42)  

 

J 2r+1! * i"k
…i"2i"1 Ik#

= $J 2r+1! * i"k
…i"4 i"3 %"2

i"1Jk# + J 2r+1! * i"k
…i"4 i"3di"2i"1Jk#

= J 2r+1! * i"k
…i"4 i"3di"2i"1Jk#

=…= ($1)p J 2r+1! * i"k
…i"p+2

i"p+1
di"p

i"p$1
…i"2i"1Jk#

=…= ($1)k J 2r+1! *di"k
i"k$1

…i"2i"1Jk#

= ($1)k dJ 2r+1! * i"k
i"k$1

…i"2i"1Jk#.

 

Thus, integrating over an arbitrary piece  !! X  with boundary !" ,  

(43)  

 

J 2r+1! * i"k
…i"2i"1 Ik#$% = (&1)k dJ 2r+1! * i"k

i"k&1
…i"2i"1Jk#$%

= (&1)k J 2r+1! * i"k
i"k&1

…i"2i"1Jk#'$% .
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This identity holds for all ! -vertical vector fields !1 , !2 ,  … , !k , but on 
the other hand, the right-hand side depends on their values along the bounda-
ry !"  only. Replace the vector field !1  with f!1 , where f is a function, 
defined on a neighbourhood of ! , vanishing along !" . Then we get  

(44)  
 
J 2r+1! * i"k

…i"2i f"1 Ik#$% = (&1)k fJ 2r+1! * i"k
…i"2i"1 Ik#$% = 0.  

Since the function f is arbitrary in the interior of the pieace ! , this is only 
possible when the integrand satisfies 

 
J 2r+1! * i"k

…i"2i"1 Ik# = 0 . Finally, the 
section !  is also arbitrary; since through every point of the domain of defi-
nition of the form 

 
i!k

…i!2i!1 Ik"  passes the (2r +1)  -jet prolongation J 2r+1!  
of ! , therefore  

(45)  Ik! = 0.  

 This proves that the form Ik!  in formula (38) is defined uniquely by the 
assumptions of Theorem 4.  

 Corollary 1 extends to arbitrary forms as follows.  

 Corollary 2  For any integer k !1  and any (n + k !1) -form !  on W r  
the form Ik pkdpk!  vanishes,  

(46)  Ik pkdpk! = 0  

 Proof  Using the canonical decomposition of the form dp1!  we get the 
identity  

(47)  

 

(! 2r+1,r+1)* pkdpk"
= (! 2r+1,r+1)*(dpk" # pk+1dpk" # pk+2dpk" #…# pk+ndpk")
= d(! 2r+1,r+1)* pk" # pk+1(!

2r ,r+1)*dpk"
 

because the components satisfy the conditions pk+1dpk! = 0 , pk+2dpk! = 0 , 
 … , pk+ndpk! = 0 . Comparing this formula with decomposition (23) and 
using the uniqueness of the component I1p1dp1!  (Theorem 4, (b)) we get 
identity (46).  

 Our next aim is to determine an explicit formula for the component Ik!  
of a form!  by a geometric construction; the result will be proved on a suc-
cessive application of Theorem 3.  

 Theorem 5  (a) Let !  be a 2-contact, ! r+1,r -horizontal (n + 2) -form on 
the set W r+1 . Then for any ! -vertical vector fields !1  and !2  

(48)  i!2i!1 I2" = 1
2
(i!2 I1i!1" # i!1 I1i!2").  
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 (b) Let k ! 2  and let !  be a k-contact, ! r+1,r -horizontal (n + k) -form 
defined on W r+1 . Then for any ! -vertical vector fields !1 , !2 .  … , !k  
 

(49)  

 

i!k
…i!2i!1 Ik" = 1

k
(i!k

i!k#1
…i!2 Ik#1i!1" # i!k

i!k#1
…i!3i!1 Ik#1i!2"

# i!k
i!k#1

…i!4 i!2i!1 Ik#1i!3" #…# i!k#1
…i!2i!1 Ik#1i!k

").
 

 Proof  (a) From the decompositions  

(50)  (! 2r+1,r+1)* i"1# =
i"1 I2# $ i"1dJ2# + i"1K2#

I1i"1# $ dJ1i"1# + K1i"1#

%
&
'

('
 

it follows that  

(51)  
i!2i!1 I2" # 1

2
(i!2 I1i!1" # i!1 I1i!2") = i!2i!1dJ2" # i!2i!1K2"

+
1
2
(#i!2dJ1i!1" + i!2K1i!1" # i!1dJ2i!1" + i!1K1i!2").

 

Using the properties of the Lie derivative operator (see Appendix 5), we can 
write 

(52)  

i!2i!1dJ2" +
1
2
(#i!2dJ1i!1" # i!1dJ2i!1")

= i!2 $!1
J2" # i!2di!1J2"

+
1
2
(#$!2

J1i!1" + di!2 J1i!1" # $!1
J2i!1" + di!1J2i!1")

= i!2 $!1
J2" # $!2

i!1J2" # di!2i!1J2"

+
1
2
(#$!2

J1i!1" + di!2 J1i!1" # $!1
J2i!1" + di!1J2i!1"),

 

thus 

(53)  

i!2i!1 I2" # 1
2
(i!2 I1i!1" # i!1 I1i!2")

= i!2 $!1
J2" # $!2

i!1J2" # di!2i!1J2"

+
1
2
(#$!2

J1i!1" + di!2 J1i!1" # $!1
J2i!1" + di!1J2i!1")

# i!2i!1K2" +
1
2
(i!2K1i!1" + i!1K1i!2").

 

Now integrating  
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(54)  
J 2r+1! *

"# i$2i$1 I2% & 1
2
(i$2 I1i$1% & i$1 I1i$2%( )

= J 2r+1! * &i$2i$1J2% +
1
2
(i$2 J1i$1% + i$1J2i$1%)( )'"# .

 

To conclude that this condition implies  

(55)  i!2i!1 I2" # 1
2
(i!2 I1i!1" # i!1 I1i!2" = 0  

we proceed as in the proof of Theorem 4.  
 (b) To complete the proof we apply elementary induction.  

 According to Theorem 5, formula (24) defines a mapping Ik  from the 
Abelian group of k-contact (n + k) -forms on W r+1  to ! 2r+1,0 -horizontal 
(n + k) -forms on W r+1 . Ik  is clearly a morphism of Abelian groups.  

 Theorem 6  (a) Condition Ik! = 0  is satisfied if and only if !  is a 
strongly contact form.  
 (b) The mapping Ik  satisfies  

(56)   Ik ! Ik = Ik  

 Proof  (a) This follows from Theorem 4, (b).  
 (b) To prove (b), write (! 2r+1,r+1)*" = Ik" # dJk" + Kk" . Then  

(57)  
(! 2(2r+1+,2r+2 )*(! 2r+1,r+1)*"

= Ik (!
2r+1,r+1)*" # dJk (!

2r+1,r+1)*" + Kk (!
2r+1,r+1)*"

 

and from the properties of the pull-back operation  

(58)  

(! 2(2r+1+,2r+2 )*(! 2r+1,r+1)*"
= (! 2(2r+1+,2r+2 )*(Ik" # dJk" + Kk")
= (! 2(2r+1+,2r+2 )* Ik" # d(! 2(2r+1+,2r+2 )* Jk" + (! 2(2r+1+,2r+2 )*Kk"
= Ik Ik" # dJk Ik" + KkIk"
# d(! 2(2r+1+,2r+2 )* Jk" + (! 2(2r+1+,2r+2 )*Kk".

 

Comparing (57) with (58) and using the uniqueness of these decompositions 
(Theorem 4 (b)) we get formula (56).  

 Remark 9  Property (a) characterizes the kernel of the mapping Ik . Its 
image consists of the k-contact, !" -generated (n + k) -forms !  on W 2r+1  
for which the equation  

(59)  ! = Ik"  
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has a solution ! . The corresponding integrability conditions, which should 
be satisfied by ! , are determined by the structure of the mapping Ik , and 
can be studied by means of the formal divergence equations (Chapter 3).  

 Remark 10  The uniqueness of the component Ik!  in the decomposi-
tion (24) means that the pull-back of the vector space of k-contact (n + k) -
forms on W r+1  is isomorphic with the direct sum of two subspaces of the 
vector space of k-contact (n + k) -forms on W 2r+1 , one of which is the sub-
space of strongly contact forms.   

 We conclude this section by extending the decomposition (24), defined 
for k-contact (n + k) -forms on W r+1 , to any forms  ! !"n+k

r W . Substituting 
in formula (21) ! = pk"  we get  

(60)  

 

(! 2r+1,r )*"
= (! 2r+1,r+1)* pk" + (! 2r+1,r+1)*(pk+1" + pk+2" +…+ pk+n")
= (! 2r+1,r+1)*(Ik pk" # dJk pk" + Kk pk")
+ (! 2r+1,r+1)*(pk+1" + pk+2" +…+ pk+n")
= (! 2r+1,r+1)* Ik pk" # d(! 2r+1,r+1)* Jk pk"
+ (! 2r+1,r+1)*Kk pk" + (! 2r+1,r+1)*(pk+1" + pk+2" +…+ pk+n").

 

Therefore, setting  

(61)  

  

! k! = (" 2r+1,r+1)* Ik pk!,
" k! = (" 2r+1,r+1)* Jk pk!,
# k! = (" 2r+1,r+1)*Kk pk! + (" 2r+1,r+1)*(pk+1! + pk+2! +…+ pk+n!)

 

we get the decomposition  

(62)   (!
2r+1,r )*" = ! k" # d" k" + # k".  

According to Theorem 4, this formula defines a mapping  !" ! k!  of the 
Abelian group of !n+k

r W  of (n + k) -forms, defined on W r , into the Abelian 
group !n+k

2r+1W  of (n + k) -forms on W 2r+1 .  
 The following lemma summarizes elementary properties of the mapping 
  !n+k

r W ! "# ! k" "!n+k
2r+1W . As before, to simplify notation, we omit obvi-

ous pull-back operations on differential forms with respect to the canonical 
jet projections ! r ,s : J rY " J sY .  

 Theorem 7  (a) The mapping  !" ! k!  of the Abelian group !n+k
r W  

into !n+k
2r+1W  is a morphism of Abelian groups.  

 (b) The kernel of the mapping  !  is the Abelian group of strongly con-
tact forms !n+k

r W , and its image is isomorphic with the quotient group 
!n+k

r W /"n+k
r W .  
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 (c) For every  ! !"n+k
r W  the mapping  !  satisfies  

(63)   ! k! k! = ! k!.  

 Proof  (a) Obvious.  
 (b) If  ! k! = 0 , then by Lemma 3, !  is strongly contact, thus !  be-
longs to the Abelian group !n+k

r W .  
 (c) Applying the pull-back operation to both sides of formula (62) and 
using the properties  ! k" k! = 0  and  ! k" k! = 0  of the mappings  ! k ,  ! k  
and  ! k ,  

(64)  
 

(! 2(2r+1)+1,2r+1)*(! 2r+1,r )*"
= ! k (!

2r+1,r )*" # d" k (!
2r+1,r )*" + # k (!

2r+1,r )*",
 

and  

(65)  

 

(! 2(2r+1)+1,2r+1)*(! 2r+1,r )*"
= (! 2(2r+1)+1,2r+1)*(! k" # d" k" + # k")
= (! 2(2r+1)+1,2r+1)*! k" # d(! 2(2r+1)+1,2r+1)*" k"
+ (! 2(2r+1)+1,2r+1)*# k"
= ! k! k" # d" k! k" + # k! k"
# d(! 2(2r+1)+1,2r+1)*" k" + (! 2(2r+1)+1,2r+1)*# k"
= ! k! k" # d(! 2(2r+1)+1,2r+1)*" k" + (! 2(2r+1)+1,2r+1)*# k".

 

Comparing these formulas and using the uniqueness of the decompositions 
we get assertion (c).  

 We call the Abelian group morphism   !n+k
r W ! "# ! k" "!n+k

2r+1W  the 
k-th variational projector. To simplify notation we sometimes write just  !  
instead of  ! k .  
 

8.4  The Euler‐Lagrange morphisms  

 Consider the variational sequence (3), Section 8.2 

(1)  0!"! RY !"! #0
r !"! #1

r /$1
r !"! #2

r /$2
r !"! #3

r /$3
r !"!  

Note that by definition of the horizontalization morphism h :! p
rW "! p

r+1W  
the equivalence relation on the Abelian group ! p

rW  associated with the 
subgroup of contact forms 

 
! p

rW !" p
rW  coincides with the equivalence re-

lation defined by h. Similarly, Part Theorem 7, Section 8.3 shows that for 
each k !1  the equivalence relation on the Abelian group !n+k

r W , associated 
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with the subgroup  !n+k
r W !"n+k

r W  of strongly contact forms, coincides 
with the equivalence relation induced by the variational projectors  ! k . Thus 
the diagram, defining the variational sequence, can be expressed as  

(2)  

 

0 0 0
! ! !

0 " #" $1
r d" #" $2

r d" #" …
d" #" $n

r

! ! ! !

0 "#" RY "#" %0
r d" #" %1

r d" #" %2
r d" #" …

d" #" %n
r

! !h !h !h

h1
r " #" h2

r " #" … " #" hn
r

! ! !
0 0 0

 

  

  

0 0 0
! ! !

" #" $n+1
r " #" $n+2

r " #" … " #" $M
r " #" 0

! ! ! !

" #" %n+1
r d" #" %n+2

r d" #" …
d" #" %M

r d" #" %M+1
r d" #"

!h !h !h !

" #" !n+1
r " #" !n+2

r " #" … " #" !M
r

! ! !
0 0 0

 

 The corresponding representation of the variational sequence (1) is  

(3)  

  

0!"! RY !"! #0
r E0! "!! h1

r E1! "! h2
r E2! "!!…

En$1! "!! hn
r

En! "!! !1
r En+1! "!! !2

r En+2! "!! …
 

The Abelian group morphisms Ek  in this sequence will be called the Euler-
Lagrange morphisms. Our task in this section will be to determine the struc-
ture of the morphisms Ek . The formulas we derive establish explicit corre-
spondence between the morphisms Ek  and basic concepts of the calculus of 
variations on fibred manifolds such as the Euler-Lagrange mapping and the 
Helmholtz mappings, etc. The following two theorems give us a way to cal-
culate the chart expressions of these morphisms Ek .  

 Theorem 8  The Euler-Lagrange morphisms in the variational sequence 
(3) can be expressed as  
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(4)  
 
Ekh! =

hd!, ! !"k
rW , 0 # k # n $1,

I1dh!, ! !"n
rW , k = n,

%
&
'

('
 

and  

(5)    En+k! k! = Ik+1dpk!, ! !"n+k
r W , k #1.  

 Proof If  ! !"n
rW , then  Enh! = !1d! = I1p1d! = I1p1dh! + I1p1dp1! . 

Thus, by Section 8.3, Corollary 1,  

(6)  Enh! = I1dh!.  

If  ! !"n+k
r W , where k !1 , then  

(7)  
 

En+k! k! = ! k+1d! = Ik+1pk+1d!
= Ik+1pk+1dpk! + Ik+1pk+1dpk+1!

 

hence, by Corollary 2, (46)  

(8)   En+k! k! = Ik+1dpk!.  

 Theorem 9  Let (V ,! ) , ! = (xi , y" ) , be a fibred chart on Y.  
 (a) If  f !!0

rV , then  

(9)  E0 f = di f !dx
i .  

 (b) Let 1! k ! n "1  and let 
  h! !! j

rV  be a class. Then if h!  is ex-
pressed by 

(10)  
  
h! = !i1i2…ik

dxi1 !dxi2 !…!dxik ,  

then the image Ekh!  is given by  

(11)  
  
Ekh! = di0!i1i2…ik

!dxi0 !dxi1 !dxi2 !…!dxik .  

 Proof  We prove assertion (b). According to the trace decomposition 
theorem (Section 2.2, Theorem 3), a form  ! !"k

rV  has an expression  

(12)  
 
! = " J

# !$#
J

0%|J |%r&1
' + d(" J

# !(#
J )

|I |=r&1
' + !0 ,  

where !0  is the traceless component of !  and !"
J , !"

J  are some forms. 
Since the morphism h annihilates the contact forms ! J

"  and d! I
" , !0  has 

an expression 
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(13)  

  

!0 = Ai1i2…ik
dxi1 !dxi2 !…!dxik

+ A"1
J1

i2i3…ik
dyJ1

"1 !dxi2 !dxi3 !…!dxik

+ A"1
J1

" 2
J2

i3i4…ik
dyJ1

"1 !dyJ2
" 2 !dxi3 !dxi4 !…!dxik

+…+ A"1
J1

" 2
J2…" k#1

Jk#1
ik
dyJ1

"1 !dyJ2
" 2 !…!dyJ j#1

" j#1 !dxik

+ A"1
J1

" 2
J2…" k

Jk dyJ1
"1 !dyJ2

" 2 !…!dyJk
" k ,

 

where the coefficients 
 
A!1
J1

! 2
J2…! s

Js
is+1is+2…ik

 are traceless. Thus, any class h!  is 
expressed as the k-form 

(14)  
  
h! = !i1i2…ik

dxi1 !dxi2 !…!dxik ,   

where  

(15)  

 

!i1i2…ik
= (Ai1i2…ik

+ A"1
J1

i2i3…ik
yJ1i1
"1 + A"1

J1
" 2
J2

i3i4…ik
yJ1i1
"1 yJ2i2

" 2

+…+ A"1
J1

" 2
J2…" k#1

Jk#1
ik
yJ1i1
"1 yJ2i2

" 2 …yJk#1ik#1
" k#1 + A"1

J1
" 2
J2…" k

Jk yJ1i1
"1 yJ2 j2

" 2 …yJkik
" k )

Alt(i1i2…ik ).
 

The class hd!  of d!  is then given by  

(16)  
  
hd! = di0!i1i2…ik

!dxi0 !dxi1 !dxi2 !…!dxik .  

Clearly, hd!  is defined on V r+1 .  

 Remark 11  If k = n !1 , then since   !
li1i2…in"1# l = dx

i1 !dxi2 !…!dxin"1 , 
the class 

  
h! = !i1i2…in"1

dxi1 !dxi2 !…!dxin"1  (10) can be written as 
h! = ! l" l . Then the image En!1h"  is expressed as  

(17)  

  

En!1h" = di0"i1i2…in!1
!dxi0 !dxi1 !dxi2 !…!dxin!1

= di0"i1i2…in!1
# i0i1i2…in!1 !$ 0 = di"

i %$ 0

= hdh",
 

where di!
i  is the formal divergence of the family ! l . Thus, the Euler-

Lagrange morphism En!1  can also be expressed in short as En!1 = hd .  

 Now we study the Euler-Lagrange morphisms En+k  for k ! 0 . We de-
rive explicit formulas for k = 0,1 ; in subsequent sections, these formulas 
will be compared with basic variational concepts, which appeared already in 
the previous sections devoted to the calculus of variations. 
 In order to study the morphism En , we find the chart expression of the 
class h!  of a form  ! !"n

rV . According to the trace decomposition theorem 
(Section 2.2, Theorem 3), !  has an expression  
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(18)  
 
! = " J

# !$#
J

0%|J |%r&1
' + d" I

# !(#
I

|I |=r&1
' + !0 ,  

where !0  is the traceless component of ! . Clearly h! = h!0 . But !0  has an 
expression  

(19)  

  

!0 = Ai1i2…in
dxi1 !dxi2 !…!dxin

+ A"1
J1

i2i3…in
dyJ1

"1 !dxi2 !dxi3 !…!dxin

+ A"1
J1

" 2
J2

i3i4…in
dyJ1

"1 !dyJ2
" 2 !dxi3 !dxi4 !…!dxin

+…+ A"1
J1

" 2
J2…" n#1

Jn#1
in
dyJ1

"1 !dyJ2
" 2 !…!dyJn#1

" n#1 !dxin

+ A"1
J1

" 2
J2…" n

Jn dyJ1
"1 !dyJ2

" 2 !…!dyJn
" n ,

 

where the summation indices satisfy  | J1 | = | J2 | =…= | Jn+1 | = r , and the 
coefficients 

 
A!1
J1

! 2
J2…! s

Js
is+1is+2…in

 are traceless. Thus, any class h!  can be ex-
pressed as the n-form 

(20)  
  
h! = !i1i2…in

dxi1 !dxi2 !…!dxin ,   

where  

(21)  

 

!i1i2…in
= Ai1i2…in

+ A"1
J1

i2i3…in
yJ1i1
"1 + A"1

J1
" 2
J2

i3i4…in
yJ1i1
"1 yJ2i2

" 2

+…+ A"1
J1

" 2
J2…" n#1

Jn#1
in
yJ1i1
"1 yJ2i2

" 2 …yJn#1in#1
" n#1 + A"1

J1
" 2
J2…" n

Jn yJ1i1
"1 yJ2 j2

" 2 …yJnin
" n

Alt(i1i2…in ).
 

Thus h!  can also be characterized as  

(22)   h! = !" 0 ,  

where 
  
! = ! i1i2…in"i1i2…in

(Section 4.1, (12)).  

 Remark 12  In variational terminology, the class ! = h"  is the Lagran-
gian, associated with the n-form ! , that is, an element of the module !n,X

r+1V  
of ! r+1 -horizontal forms, defined on  V

r+1! J r+1Y . The function  ! , charac-
terizing the class h!  locally, is the Lagrange function, associated with h!  
(and with the given fibred chart, cf. Section 4.1).  

 We can now prove the following theorem.  

 Theorem 10  If the class h!  of an n-form  ! !"n
rV  is expressed as  

(23)   h! = !" 0 ,  

then  
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(24)  
   
Enh! = !!

!y"
+ (#1)s d j1

dj2
…djs

!!
!yj1 j2… js

"
1$s$r
%&

'(
)
*+
," !, 0 .  

 Proof  The class Enh!  is defined to be  Enh! = !1d! = I1dh!  (Theo-
rem 8, (4)). Since  

(25)  
  
dh! = d!!" 0 =

!!
!yJ

# " J
# !" 0

0$|J |$r+1
% ,  

we have  

(26)  
   
I1dh! = !!

!y"
+ (#1)s d j1

dj2
…djs

!!
!yj1 j2… js

"
1$s$r
%&

'(
)
*+
," !, 0  

(Section 8.3, Theorem 3). 

 Now we find the chart expression of the class  !1!  of a form  ! !"n+1
r V . 

Writing p1!  as  

(27)  
  
p1! = A"

j1 j2… js# j1 j2… js
" !# 0

0$s$r
% ,  

we get, according to Section 8.3, Theorem 3,  

(28)    !1! = I1p1! = "#$
# !$ 0 ,  

where  

(29)  
 
!" = A" + (#1)s d j1

dj2
…djs

A"
j1 j2… js

1$s$r
% .  

 Remark 13  According to formula (28) the class  ! = !1"  of a form 
 ! !"n+1

r V  is an element of the Abelian group !n+1,Y
2r+1 V  of ! 2r+1,0 -horizontal 

forms, defined on the set  V
2r+1! J 2r+1Y ; in the variational theory, elements 

of the Abelian groups !n+1,Y
2r+1 V  are the source forms on the fibred manifold Y 

(cf. Section 4.9). 

 Theorem 11  If the class  !1!  of an (n +1) -form  ! !"n+1
r V  is ex-

pressed as  

(30)    !1! = "#$
# !$ 0 ,  

then  

(31)  
   
En+1!1! = 1

2
H" #

j1 j2… jk($ )% j1 j2… jk
# !%" !% 0

0&k&r
' ,  
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where  

(32)  

 

H!"
j1 j2… jk (# ) = !#!

!yj1 j2… jk
" $ ($1)k !#"

!yj1 j2… jk
!

$ ($1)l k
l( )dpk+1dpk+2…dpl

!#"
!yj1 j2… jk pk+1pk+2…pl

!
l=k+1

s

% .
 

 Proof  The image  En+1!1!  is defined by the equation  En+1!1! = !2d! . 
However, if  !1!  is defined on V s , then  !1!1! = (" 2s+1,s )*!1!  (Section 
8.3, Theorem 7), thus, the image can also be calculated from the equation  

(33)  
 

En+1!1!1! = En+1("
2s+1,s )*!1! = (" 2s+1,s )*En+1!1!

= (" 2s+1,s )*!2d!.
 

We apply this formula to the representation (30) of the class of ! . Setting 
 !1! = "  we have  

(34)   En+1!1! = !2d! = I2p2d! = I2d! .  

This expression can be easily determined by means of the mapping I2 , de-
fined by the condition  

(35)  i!2i!1 I2d" =
1
2
(i!2 I1i!1d" # i!1 I1i!2d" ),  

where !1  and !2  are any ! -vertical vector fields (Section 8.3, Theorem 5).  
 From this expression we conclude that  

(36)  
  
I2d! =

1
2

H" #
j1 j2… jk(! )$ j1 j2… jk

# !$" !$ 0
0%k%r
& ,  

where the components  H! "
j1 j2… jk(# )  are given by (32).  

 Consider the variational sequence (3). Theorem 10 shows that the 
morphism En  in this Abelian sheaf sequence is exactly the Euler-Lagrange 
mapping of the calculus of variations (cf. Section 4.5). The mappings En!1  
and En+1  also admit a direct variational interpretation (Remark 11, Theo-
rem 11). In the subsequent sections we consider the part of the variational 
sequence  VarY

r  including En ,  

(37)    …!"! hn#1
r En#1! "!! hn

r En! "!! !1
r En+1! "!! !2

r !"!…  

and the corresponding part of the associated complex of global sections 
 VarY

rY  (Section 8.2, (5)),  



8  Variational sequences 
 

273 

(38)    …!"! hn#1
r Y En#1! "!! hn

rY En! "!! !1
rY En+1! "!! !2

r Y !"!…  

Since by Section 8.2, Theorem 2, the cohomology groups  H
k (VarY

rY )  of (38) 
and the cohomology groups H k (Y ,RY )  are isomorphic, this fact allows us to 
complete the properties of the kernel and the image of the Euler-Lagrange 
mapping by their global characteristics. The results bind together properties 
of the variationally trivial Lagrangians, and variational source forms with 
the topology of the underlying fibred manifold Y in terms of its (De Rham) 
cohomology groups.  

 Remark 14  In general, to determine the De Rham cohomology groups 
of a smooth manifold or a smooth fibred manifold is a hard problem; for 
basic theory of the De Rham cohomology we refer to Lee [L] and Warner 
[W]; in simple cases one can apply the Künneth theorem (Bott and Tu [BT]).  

 The following are well-known standard examples of manifolds and their 
cohomology groups:  
 (a) Euclidean spaces Rn : H kRn = 0  for all k !1 .  
 (b) Spheres Sn :  

(38)  H kSn =
R, k = 0,n
0, 0 < k < n

!
"
#

$#
 

 (c) Punctured Euclidean spaces (complements of one-point sets  {x}  in 
Rn ), complements of closed balls  B!R

n :  

(39)   H
k (Rn \ {x}) = H k (Rn \ B) = H kSn!1.  

 (d) Tori  T k = S1 ! S1 !…! S1  (k factors S1 ): 

(40)  H kT n = R k
n( ).  

 (e) Möbius band:  

(41)  H kM = H kS1.  

 (f) H 0X !Y ) = R  
 
 (h) Cartesian products (Künneth theorem), k ! 0  : 

(42)  
 
H k (X !Y ) = !

r+s=k
H rX"H sY  

 (h) Disjoint unions ( M1 , M 2  disjoint): 

(43)   H
k (M1!M 2 ) = H

kM1"H
kM 2 .  
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8.5  Variationally trivial Lagrangians  

 Let W  be an open set in Y. Recall that a Lagrangian  ! ! hn
rW  is called 

variationally trivial, if its Euler-Lagrange form vanishes,  

(1)  En! = 0.  

This condition can be considered as an equation for the unknown n-form ! . 
Our main objective in this section is to summarize previous local results on 
the solutions of this equation and to complete these results by a theorem on 
global solutions.  
 The mapping En  is the Euler-Lagrange morphism in the complex of 
global sections  

(2)    …!"! hn#1
r W En#1! "!! hn

rW En! "!! !1
rW En+1! "!! !2

rW !"!…  

and equation (1) has the meaning of the integrability condition for the corre-
sponding equation for an unknown (n !1) -form ! , 

(3)  ! = En"1#.  

Thus, since En!1"  is defined to be hd! , equation (3) can also be written as  

(4)  ! = hd".  

 Integrability condition (1), representing exactness of the sheaf variation-
al sequence, ensures existence of local solutions, defined on chart neigh-
bourhoods in the set W. According to Theorem 9, Section 4.8, the following 
conditions are equivalent:  
 (a) !  is variationally trivial.  
 (b) For any fibred chart (V ,! ) , ! = (xi , y" ) , such that  V !W , there 
exist functions gi :V r ! R , such that on V r , !  is expressible as  ! = !" 0 , 
where 

(5)   ! = dig
i .  

 (c) For every fibred chart (V ,! ) , ! = (xi , y" ) , such that  V !W , there 
exists an (n !1) -form  µ!!n"1

r"1V  such that on V r  

(6)  ! = hdµ.  

A question still remains open, namely, under what conditions there exists a 
solution µ , defined globally over W or, in other words, when a given La-
grangian, locally expressible as “divergence”, can be expressed as a “diver-
gence” globally.  
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 The following theorem is an immediate consequence of the properties of 
the complex of global sections (38), Section 8.4).  

 Theorem 12  Let Y be a fibred manifold over an n-dimensional mani-
fold X, such that H nY = 0 . Let  ! ! hn

rY  be a Lagrangian. Then the follow-
ing conditions are equivalent:  
 (a) !  is variationally trivial.  
 (b) There exists an (n !1) -form  µ!!n"1

r"1Y  such that on J rY  

(7)  ! = hdµ.  

 Proof  1. We show that (a) implies (b). In view of Section 4.8, Theo-
rem 9, only existence of µ , defined globally on J rY , needs proof. But by 
Section 8.2, Theorem 2 the cohomology groups  H

k (VarY
rY )  are isomorphic 

with the De Rham cohomology groups H k (Y ,RY ) ; thus, condition H nY = 0  
implies  H

n (VarY
rY ) = 0  proving existence of µ .  

 2.  The converse is obvious. 

 On analogy with the De Rham sequence, a variationally trivial Lagran-
gian can also be called variationally closed. A variationally closed Lagran-
gian  ! ! hn

rW  is called variationally exact, if ! = hdµ  for some  µ! hn!1
r W . 

Theorem 12 then says that if H nY = 0 , then every variationally closed La-
grangian is variationally exact.  
 In the following examples we refer to the cohomology groups given in 
Section 8.4, Remark 13.  

 Examples (Obstructions for variational triviality)  1. If the fibred 
manifold Y is the Cartesian product Rn !Rm , endowed with the first canoni-
cal projection, then every variationally trivial Lagrangian on Y is variationa-
lly exact.  
 2.  Let Y = S3 , and consider S3  as a fibred manifold over S2  (the Hopf 
fibration). Then H 3S3 = R ! 0 , therefore, a variationally trivial Lagrangian 
on J rS3  need not be closed.  
 3.  If Y = Rn !Q , then the Künneth theorem yields H n (Rn !Q) = H nQ . 
Thus, if H nQ = 0 , then variational triviality always implies variational ex-
actness. If for example Q is an n-sphere Sn , punctured Euclidean space 
 R

n+1 \ {0} , or the k-torus T k , then variational triviality does not imply varia-
tional exactness.  

8.6  Global inverse problem of the calculus of variations  

 Let W  be an open set in Y. Recall that a source form   ! !!1
rW  is said to 

be variational, if there exists a Lagrangian  ! ! hn
rW  such that its Euler-

Lagrange form En!  coincides with ! ,  

(1)  ! = En".  



Global Variational Geometry 
 
276 

!  is said to be locally variational, if there exists an atlas on Y, consisting of 
fibred charts, such that for each chart (V ,! ) , ! = (xi , y" ) , from this atlas, 
the restriction of !  to V s  is variational.  
 The mapping En  in formula (1) is the Euler-Lagrange morphism in the 
complex of global sections  

(2)    …!"! hn#1
r W En#1! "!! hn

rW En! "!! !1
rW En+1! "!! !2

rW !"!…  

which determines the integrability condition for equation (1) 

(3)  En+1! = 0.  

The problem to determine conditions ensuring existence of the Lagrangian 
! , and to determine !  as a function of the source form ! , is the inverse 
problem of the calculus of variations.  
 If the source form !  is expressed in the form  

(4)   ! = !"#
" !# 0 ,  

then equation (1) is expressed as a system of partial differential equations  

(5)  
  
!" = !!

!y"
+ (#1)s d j1

dj2
…djs

!!
!yj1 j2… js

"
1$s$r
% , 1$" $ m,  

for an unknown function 
  
! = !(xi , y! , yj1

! , yj1 j2
! ,…, yj1 j2… jr

! ) . Integrability con-
dition (3) is then of the form  

(6)  
  
En+1! = 1

2
H" #

j1 j2… jk(! )$ j1 j2… jk
# !$" !$ 0

0%k%r
& = 0,  

where  H! "
j1 j2… jk(# )  are the Helmholtz expressions (Section 8.4, Theo-

rem 11); thus if s is the order of the functions !" , the integrability condition 
reads  

(7)  

 

!!"
!yj1 j2… jk

# $ ($1)k !!#
!yj1 j2… jk

"

$ ($1)l k
l( )dpk+1dpk+2…dpl

!!#
!yj1 j2… jk pk+1pk+2…pl

"
l=k+1

s

% = 0,

1&" ,# & m, 0 & k & s, 1& j1, j2 ,…, jk & n.

 

Integrability condition (7) ensures existence of local solutions !  of equation 
(1), or, which is the same, solutions  !  of the system (5); solutions are given 
explicitly by the Vainberg-Tonti Lagrangians  

(8)   !" = ! "# 0 ,  
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where  

(9)  

  

! ! (x
i , y" , yj1

" , yj1 j2
" ,…, yj1 j2… js

" )

= y" !" (x
i ,ty# ,tyj1

# ,tyj1 j2
# ,…,tyj1 j2… js

# )dt
0

1

$
 

(Section 4.9, (3), Section 4.10, Theorem 12 and Theorem 13, Section 8.4, 
Theorem 11).  
 In this section we complete these results by a theorem ensuring exist-
ence of global solutions of equation (1), where the open set  W !Y  coin-
cides with the fibred manifold Y.  
 The following result completes properties of the source forms by estab-
lishing a topological condition ensuring that local variationality implies 
(global) variationality.  

 Theorem 13  Let Y be a fibred manifold with n-dimensional base X, 
such that H n+1Y = 0 . Let   ! !!1

rW  be a source form. Then the following 
conditions are equivalent:  
 (a) !  is locally variational.  
 (b) !  is variational.  
 Proof  This assertion is an immediate consequence of the existence of 
an isomorphism between the cohomology groups  H

k (VarY
rY )  and the 

De Rham cohomology groups H k (Y ,RY )  (Section 8.2, Theorem 2); thus, 
condition H n+1Y = 0  implies  H

n+1(VarY
rY ) = 0  as required.  

 Remark 14  The meaning of Theorem 13 can be rephrased as follows. 
First, it states that in order to ensure that a given source form !  is locally 
variational, one should verify that its components satisfy the Helmholtz con-
ditions (7); and second, if in addition the (n +1) -st cohomology group 
H n+1Y  of the underlying fibred manifold vanishes, then !  is automatically 
variational.  

 Examples (Obstructions for global variationality)  4. If Y = R !M , 
where M is the Möbius band, then H 2Y = 0  hence local variationality al-
ways implies variationality.  
 5.  If Y = S1 !M , where S1  is the circle and M is the Möbius band, then 
 H

2Y = H 2 (S1 !M ) = H 1S1!H 1M = R!R = R2 . Thus in general, local var-
iationality does not imply variationality.  
 6.  If the 3-sphere S3  is considered as a fibred manifold over S2  (Hopf 
fibration), then since H 3S3 = R ! 0 , local variationality does not necessarily 
imply global variationality. 
 7.  If k ! l  then the k-torus T k  can be fibred over the l-torus T l  by 
means of the Cartesian projection. Since H l+1T k ! 0 , we have obstructions 
agains global variationality.  
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