
 

 

 
 
 
 

Preface 

 
 
 
 
 The global variational geometry as introduced in this book is a branch 
of mathematics, devoted to extremal problems on the frontiers of differential 
geometry, global analysis, the calculus of variations, and mathematical phys-
ics. Its subject is, generally speaking, a geometric structure consisting of a 
smooth manifold endowed with a differential form.  
 More specifically, by a variational structure, or a Lagrange structure, 
we mean in this book a pair (Y ,!) , where Y is a smooth fibred manifold 
over an n-dimensional base manifold X and !  a differential n-form, defined 
on the r-jet prolongation J rY of Y. The forms ! , satisfying a horizontality 
condition, are called the Lagrangians. The variational functional, associated 
with (Y ,!) , is the real-valued function   !"(# )!$ % &"($ ) = ! J r$ *& "R , 
where !"(# )  is the set of sections of Y over a compact set  !! X , J r!  is 
the r-jet prolongation of a section ! , and J r! *"  is an n-form on X, the 
pull-back of !  by J r! .  
 Over the past few decades the subject has developed to a self contained 
theory of extremals of integral variational functionals for sections of fibred 
manifolds, invariance theory under transformations of underlying geometric 
structures, and differential equations related to them. The variational meth-
ods for the study of these functionals extended the corresponding notions of 
global analysis such as differentiation and integration theory on manifolds. 
Innovations appeared in the developments of topological methods needed for 
a deeper understanding of the global character of variational concepts such 
as equations for extremals and conservation laws. It has also become clear 
that the higher-order variational functionals could hardly be studied without 
innovations in the multi-linear algebra, namely, in the decomposition theory 
of tensors and differential forms by the trace operation.  
 The resulting theory differs in many aspects from the classical approach 
to variational problems: The underlying Euclidean spaces, are replaced by 
smooth manifolds and fibred spaces, the classical Lagrange functions and 
their variations are replaced by Lagrange differential forms and their Lie 
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derivatives, etc. Within the classical setting, a (first order) variational struc-
ture is a pair (Y ,!) , where Y = J1(Rn !Rm )  is the 1-jet prolongation of the 
product Rn !Rm  of Euclidean spaces, and in the canonical coordinates, 
  ! = Ldx1!dx2 !…!dxn , where L :Rn !Rm !Rnm " R  is a Lagrange 
function, depending on n independent variables, m dependent variables, and 
nm partial derivatives of dependent variables.  
 Basic geometric ideas allowing us to globalize the classical calculus of 
variations come from the concepts of E. Cartan [C] in the calculus of varia-
tions of simple integrals, and especially from the work of Lepage (see e.g. 
[Le]). Further developments after Cartan and Lepage have led to a deeper 
understanding of the structure and geometric nature of general variational 
procedures and their compatibility with manifold structures. Main contribu-
tors to the global theory are Dedecker [D1] (geometric approach to the cal-
culus of variations, regularity), Garcia [G] (Poincare-Cartan form, invariant 
geometric operations, connections), Goldschmidt and Sternberg [GS] (Car-
tan form, vector-valued Euler-Lagrange form, Hamilton theory, Hamilton-
Jacobi equation), Krupka [K13], [K1] (Lepage forms, higher-order varia-
tional functionals, infinitesimal first variation formula, Euler-Lagrange form, 
invariance), and Trautman  [Tr1],  [Tr2] (invariance of Lagrange systems, 
Noether’s theory).  
 This book covers the subjects that are considered as basic in the classi-
cal monographs on the (local) calculus of variations on Euclidean spaces: 
variational functionals and their variations, the (first) variation formula, ex-
tremals and the Euler-Lagrange equations, invariance and conservation laws. 
We study these topics within the framework of much broader underlying 
structures, smooth manifolds. This requires, in particular, a systematic use of 
analysis and topology of manifolds. In addition, new questions appear in this 
framework such as for instance global existence of the notions, constructed 
in charts. We also study global properties of the Euler-Lagrange mapping; to 
this purpose two chapters devoted to sheaves and the variational sequence 
theory are included. It is however obvious that these themes do not reflect 
the foundations of the global variational theory completely. Further compre-
hensive expositions including applications, based on modern geometric 
methods in the calculus of variations on manifolds, can be found in the mon-
ographs Giachetta, Mangiarotti and Sardanashvily [GMS1], [GMS2], 
De Leon and Rodrigues [LR], Mangiarotti and Modugno [MM], and Mei 
Fengxiang and Wu Huibin [MW]. For orientation in recent research in these 
fields we refer to Krupka and Saunders [KS].  
 The text of the book requires a solid background in topology, multi-
linear algebra, and differential and integral calculus on manifolds; to this 
purpose we recommend the monograph Lee [L]. Essentials of the classical 
and modern calculus of variations can be found e.g. in Gelfand and Fomin 
[GF], Jost and Li-Jost [JL], and in the handbook Krupka and Saunders [KS], 
where differential forms are considered. For the theory of jets, natural bun-
dles and applications we refer to original works of Ehresmann [E] and to the 
books Kolar, Michor and Slovak [KMS], Krupka and Janyska [KJ], and 
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Saunders [S]. We also need an elementary sheaf theory; our exposition ex-
tends a chapter of the book Wells [We]. For reference, some theorems and 
formulas are collected in the Appendix. We should especially mention the 
section devoted to the trace decomposition theory on real vector spaces, 
which is needed for the decomposition of differential forms on jet manifolds 
(Krupka [K15]); although the trace decomposition is an elementary topic, it 
is difficult to find an adequate reference in classical and contemporary alge-
braic literature.  
 Chapter 1 covers fundamentals of fibred manifolds and their jet pro-
longations. The usual topics related to the jet structure, such as the horizon-
talization morphism, jet prolongations of sections and morphism of fibred 
manifolds, and prolongations of vector fields are introduced. It should be 
pointed out that the vector fields and their jet prolongations represent a geo-
metric, coordinate-free construction, replacing in the global variational theo-
ry the classical “variations of functions”, and “induced variations” of their 
derivatives.  
 Chapter 2 studies differential forms on the jet prolongations of fibred 
manifolds. The contact forms are introduced, generating a differential ideal 
of the exterior algebra, and the corresponding decompositions of forms are 
studied. It is also shown that the trace operation, acting on the components 
of forms, leads to a decomposition related to the exterior derivative of forms. 
The meaning of the structure theorems for the global variational theory, ex-
plained in the subsequent chapters, consists in their variational interpreta-
tion; in different situations the decompositions lead to the Lagrangian forms, 
the source forms, the Helmholtz forms, etc.  
 Chapter 3 is devoted to the formal divergence equations on jet mani-
folds, a specific topic that needs independent exposition. It is proved that the 
integrability of these equations is equivalent with the vanishing of the Euler-
Lagrange operator.  
 The objective of Chapters 4 – 6 is to study the behaviour of the varia-
tional functional   !"(# )!$ % &"($ ) = ! J r$ *& "R  with respect to the var-
iable ! . But in general, the domain of definition !"(# )  has no natural alge-
braic and topological structures; this fact prevents an immediate application 
of the methods of the differentiation theory in topological vector spaces, 
based on the concept of the derivative of a mapping. However, even when 
no topology on !"(# )  has been introduced, the geometric, or variational 
method to investigate the functional !"  can still be used: we can always 
vary (deform) each section  ! !"#($ )  within the set !"(# ) , and study the 
induced variations (deformations) of the value !"(# ) .  
 The key notions in Chapter 4 are the variational derivative, Lepage 
form, the first variation formula, Euler-Lagrange form, trivial Lagrangian, 
source form, Vainberg-Tonti Lagrangian, and the inverse problem of the 
calculus of variations and the Helmholtz expressions.  
 The exposition begins with the description of variations of sections of 
the fibred manifold Y, considered as vector fields, and the induced variations 
of the variational functional  ! J

r! *" . It turns out in this geometric setting 
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that the induced variations are naturally characterized by the Lie derivative 
of ! . An immediate consequence of this observation is that one can study 
the functional !"  by means of the differential calculus of forms and vector 
fields on the underlying jet manifold.  
 Next we introduce the fundamental concept of the global variational 
theory on fibred manifolds, a Lepage form. We prove that to any variational 
structure (Y ,!)  there always exists an n-form !"  with the following two 
properties: first, the form !"  defines the same integral variational functional 
as the form ! , that is, the identity J r! *" = J r! *#"  holds for all sections 
!  of the fibred manifold Y, and second, the exterior derivative d!"  defines 
equations for the extremals, thus, !  is an extremal if and only if d!"  van-
ishes along J r! . Any form !"  is called a Lepage equivalent of the form ! .  
 As a basic consequence of the existence of Lepage equivalents we de-
rive a geometric, coordinate-free analogue of the classical (integral) first var-
iation formula – the infinitesimal first variation formula, which is essentially 
the Lie derivative formula for the form !"  with respect to the vector fields 
defining the induced variations. The infinitesimal first variation formula be-
comes a main tool for further investigation of extremals and symmetries of 
the functional. It should also be noted that the geometric structure of the 
formula admits immediate extensions to second and higher variations.  
 We may say that these two properties defining !"  explain the meaning 
of the first and second Lepage congruences, considered by Lepage and De-
decker in their study of the classical variational calculus for submanifolds 
(cf. Dedecker [D1]).  
 The exterior derivative d!"  splits in two terms, one of them, character-
izing extremals, is a (globally well-defined) differential form, the Euler-
Lagrange form; its components in a fibred chart are the well-known Euler-
Lagrange expressions. The corresponding system of partial differential 
equations, Euler-Lagrange equations, are then related to each fibred chart. 
Solving these equations requires their analysis in any concrete case from the 
local and global viewpoints.  
 Next we study in Chapter 4 the structure of the Euler-Lagrange map-
ping, assigning to a Lagrangian its Euler-Lagrange form. Since the Euler-
Lagrange mapping is a morphism of Abelian groups of differential forms on 
the underlying jet spaces, its basic characteristics include descriptions of its 
kernel and its image. We describe these spaces by their local properties.  
 The kernel consists of variationally trivial Lagrangians – the Lagrangi-
ans whose Euler-Lagrange forms vanish identically. These Lagrangians are 
characterized in terms of the exterior derivative operator d; their local struc-
ture corresponds with the classical divergence expressions. The global struc-
ture depends on the topology of the underlying fibred manifold Y, and is 
studied in Chapter 8. 
 The problem of how to characterize the image of the Euler-Lagrange 
mapping is known as the inverse problem of the calculus of variations. Its 
simple coordinate version for systems of partial differential equations con-
sists in searching for conditions when the given equations coincide with the 
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Euler-Lagrange equations of some Lagrangian. On a fibred manifold, the 
inverse problem is formulated for a source form, defined on J rY ; it is re-
quired that the components of the source form coincide with the Euler-
Lagrange expressions of a Lagrangian. We find the obstructions for varia-
tionality of source forms by means of the Lagrangians of Vainberg-Tonti 
type, constructed by a fibred homotopy operator, and used for the first time 
by Vainberg  [87]. The resulting theorem gives the necessary and sufficient 
local variationality conditions in terms of the Helmholtz expression (cf. An-
derson and Duchamp [AD] and Krupka [K8], [K11]).  
 Chapter 5 is devoted to variational structures whose Lagrangians, or 
Euler-Lagrange forms, admit some invariance transformations. The invari-
ance transformations are defined naturally as the transformations preserving 
a given differential form; this immediately leads to criteria for a vector field 
to be a generator of these transformations. Then we prove a generalization 
of the Noether’s theorem for a given variational structure (Y ,!) , relating the 
generators of invariance transformations of !  with the existence of conser-
vation laws for the solutions of the system of Euler-Lagrange equations. The 
theory extends the well-known classical results on invariance and conserva-
tion laws originally formulated for multiple-integral variational problems in 
Euclidean spaces (Noether [N]). 
 It should be noted that the invariance theorems for variational structures 
as stated in this book become comparatively simple (compare with Olver 
[O1], where a complete classical approach is given). The reason can be 
found in the fundamental concepts of the theory of variational structures – 
differential forms, for which invariance theorems are formulated. To explain 
the basic ideas, consider a manifold Y of dimension p endowed with a differ-
ential n-form ! . Then for any vector field !  on Y, the Lie derivative !" #  
can be expressed by the Cartan’s formula !" # = i"d# + di" # , where i!  is the 
contraction of !  by the vector field by !  and d is the exterior derivative. 
Then for any mapping f :X!Y , where X is a manifold of dimension n, the 
Lie derivative satisfies f *!" # = f * i"d# + df * i" # . Thus, if !  is invariant 
with respect to ! , that is, !" # = 0 , we have f * i!d" + df * i! " = 0 . If in ad-
dition f satisfies the equation f * i!d" = 0 , then f necessarily satisfies the 
conservation law equation df * i! " = 0  (Noether’s theorem). Similar conser-
vation law theorems for variational structures on jet manifolds are proved 
along the same lines.  
 In Chapter 6 we consider a few examples of natural variational struc-
tures as introduced in Krupka [K10] (for natural variational principles on 
Riemannian manifolds see Anderson [A1]). Main purpose is to establish 
basic (global) structures and find the corresponding Lepage forms. The Hil-
bert variational functional for the metric fields on a manifold (Hilbert [H]) 
and a variational functional for connections are briefly discussed. The ap-
proach should be compared with the standard formulation of the variational 
principles of the general relativity and other field theories. Clearly, these 
examples as well as many others whose role are variational principles of 
physics need a more complex and more detailed study.  
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 As mentioned above, the theory of variational structures gives rise to the 
Euler-Lagrange mapping, which assigns to an n-form ! , a Lagrangian, an 
(n +1) -form E! , the Euler-Lagrange form associated with ! . Its definition 
results from the properties of the exterior derivative operator d, an appropri-
ate canonical decomposition of underlying spaces of forms, and from the 
concept of a Lepage form (cf. Krupka [K1]). On this basis we easily come to 
the basic observation that the Euler-Lagrange mapping can be included in a 
differential sequence of Abelian sheaves as one of its arrows. We proceed to 
introduce the sequence and the associated complex of global sections, and to 
study on this basis global properties of the Euler-Lagrange mapping.  
 To this purpose we first explain in Chapter 7 elements of the sheaf the-
ory (see e.g. Wells  [We]). Attension is paid to those theorems, which are 
needed for the variational structures; complete proofs of these theorems are 
included. In particular, the formulation and proof of the abstract De Rham 
theorem is given.  
 The variational geometry is devoted to geometric, coordinate-
independent properties of !" . In particular, the geometric problems include 
the study of critical points (or extremals) of the variational functionals; their 
maxima and minima, where a topology on !"(# )  is needed, are not consid-
ered. Many other typical geometric problems are connected with various 
kinds of symmetries of the variational functionals and the corresponding 
equations for the extremals. The problem of restricting a given functional 
defined, say, on a Euclidean space, to a submanifold (the constraint subman-
ifold) is obviously included in this framework.  
 It should be pointed out that the geometric variational theory completely 
covers the problems, related with the variational principles in physical field 
theory and geometric mechanics, where concrete underlying geometric 
structures and variational functionals are considered.  
 Chapter 8 is devoted to the variational sequence of order r for a fibred 
manifold Y. Its construction has no a priori relations with the theory of var-
iational structures. The sequence is established on the observation that the 
De Rham sequence of differential forms on the r-jet prolongation J rY has a 
remarkable subsequence, defined by the contact forms; the variational se-
quence is then defined to be the quotient sheaf sequence of the De Rham 
sheaf sequence (see Krupka [K19]).  
 With the obvious definition of the quotient groups, we denote the varia-
tional sequence as  0! RY !"0

r !"1
r /#1

r !"2
r /#2

r !"3
r /#3

r !… . Its 
properties relevant to the calculus of variations can be divided into two parts:  
 (a)  Local properties, represented by theorems on the structure of the 
classes of forms in the quotient sequence and morphisms between these quo-
tient groups:  
 -  the classes [!]  of n-forms  ! !"n

r , where n is the dimension of the 
base of the base X of the fibred manifold Y, can canonically be identified 
with Lagrangians for the fibred manifold Y,  
 -  the classes [!]  of (n +1) -forms  ! !"n+1

r  can canonically be identi-
fied with the source forms,  
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 -  the quotient morphism En :!n
r /"n

r #!n+1
r /"n+1

r   is exactly the Euler-
Lagrange mapping of the calculus of variations,  
 -  the quotient morphism En+1 :!n+1

r /"n+1
r #!n+2

r /"n+2
r  is exactly the 

Helmholtz mapping of the calculus of variations.  
 All these classes and morphisms are described explicitly in fibred charts; 
their expressions coincide with the corresponding expressions given in 
Chapter 4. Thus, the variational sequence allows us to rediscover basic vari-
ational concepts from abstract structure constructions on the jet manifolds 
J rY .  
 (b)  Global properties, represented by the theorem on the cohomology 
of the complex of global sections of the variational sequence; this implies, on 
the basis of the De Rham theorem that: 
 -  there exists an isomorphism between the cohomology groups of the 
complex of global sections and the De Rham cohomology groups,  
 -  the obstructions for global variational triviality of Lagrangians lie in 
the cohomology group H nY , where n = dim X ,  
 -  the obstructions for global variationality of source forms lie in the 
cohomology group H n+1Y . 
 We also provide a list of manifolds Y and its cohomology groups, which 
allows us to decide whether local variational triviality of a Lagrangian, resp. 
local variationality of a source form, necessarily implies its global triviality, 
resp. global variationality.  
 This book originated from my research in global variational geometry 
and from numerous courses and lectures at different universities and interna-
tional summer schools. Its first five chapters, essentially extending original 
notes, have been written during my stay at Beijing Institute of Technology 
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10932002). I am deeply indebted to BIT for the excellent conditions and 
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Especially I would like to thank Professor Donghua Shi for generous collab-
oration and kind hospitality, and to Professor Huafei Sun and Professor 
Yong-xin Guo for fruitful discussions and support.  
 I also highly appreciate research conditions, created for me by Professor 
Michal Lenc, head of the Department or Theoretical Physics and Astrophys-
ics, while working on the manuscript at my Alma Mater Masaryk University 
in Brno. Without his personal support this work could hardly have been 
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