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Autoparallel variational description of the free
relativistic top third order dynamics 1
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Abstract. A second order variational description of the autoparallel curves of
some differential-geometric connection for the third order Mathisson’s “new
mechanics” of a relativistic free spinning particle is suggested starting from
general requirements of invariance and “variationality”.
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1. Introduction

In 1937 M. Mathisson, in the article named “Neue Mechanik materieller Sys-
teme”, see [5], introduced a third order differential equation to describe the mo-
tion of quasi-classical relativistic particle with inner angular momentum given by a
skew-symmetric tensorSαβ :

(1) m0
Duα

dτ
= Sαβ D2uβ

dτ 2 − 1

2
Rα

βγ δu
β Sγ δ,

where the velocity four-vectoruα, α ∈ (0, 3) is subject to the usual constraint
uαuα = 1. Equation (1) in fact was considered by Mathisson under the assumption
of later well-known “Pirani auxiliary condition”

(2) uβ Sαβ = 0,

1This paper is in final form and no version of it will be submitted for publication elsewhere.
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Sports, and GǍCR 201/00/0724 of the Grant Agency of the Czech Republic.
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which fixes one possible way of choosing the point of reference within the tube
of world lines followed by different points of extended object with dipole angu-
lar momentumSαβ . This way or that, one may pose the following question: what
geometry is best suited for the description of physical particles with complicated
internal structure? In presence of the gravitational field such geometry of course
will incorporate the curvature tensor, but the other question arises then to invent a
local model for such a future geometry. And with this approach in mind, we start
with the pseudo-Euclidean space, endowed not only with the usual structure of ge-
odesic straight lines, but also with some other structure, the autoparallel curves of
which would satisfy also the unparametrized version of Mathisson’s equation (1)
with zero curvature tensorRα

βγ δ.
The constraint (2) suggests the idea to introduce the spin four-vector

sδ = 1

2‖uuu‖εαβγ δu
αSβγ ,

and it was proved in [6] and published in [7] that in terms of this spin vector the
Mathisson equation (1) is equivalent to the following one (we putRα

βγ δ = 0):

(3) εαβγ δüu
βuγ sδ − 3

u̇uβuβ

‖uuu‖2 εαβγ δu̇u
βuγ sδ − m0

(‖uuu‖2u̇uα − u̇uβuβuα

) = 0,

subject to the constraint

(4) sαuα = 0.

And we recall that spin four-vectorsss is a constant vector along the word line of
the particle as long as no gravitational field is considered.

The equation (3) does not change under arbitrary reparametrizations of the world
line, i.e., under arbitrary local transformations of the independent variableτ , the
parameter, and because of that it is often said that the equation is presented in
homogeneous form, or that it is parameter-independent.

Now, we set the following two-fold task:
1. invent a variational description for the equation (3);
2. try to add some parametrization to equation (3) in such a way that the (parame-

tried) autoparallel curves of the corresponding second order connection would also
satisfy (3) everywhere on the constraint submanifold (4).

2. Variationality

As far as we are interested in the parameter-homogeneous form of a variational
third-order equation that should be equivalent to the equation (3), and also as far
as we intend to impose pseudo-Euclidean symmetry, it is convenient to work in the
variablesu0 = 1, vi = ui , i ∈ (1, 3), x0 = t , that is to pass to the manifold ofr -th
order contact elements in the manifoldM = {t, xi }. We note that pseudo-Euclidean
transformations permute the variablest andxi .



Third-order autoparallel spin dynamics 449

Let, in general,Tr
p M denote the bundle of Ehresmannp-velocities of orderr to

manifoldM and letCr (p, M) denote the manifold ofr -th order contact elements of
p-dimensional submanifolds inp+ q dimensional manifoldM . The groupGlr (p)

of invertible jets fromR
p to R

p which both start and terminate at 0∈ R
p, acts on

the right upon the manifoldTr
p M by jet composition rule. This action, as we shall

see, is in charge of parameter (independent variable) transformations of the veloc-
ities fromTr

p M and hence governs the transformations of a variational equation in
parametric form. The generators are the generalized Liouville fields

(5) ζζζM
n =

r −|M|∑
|N|=0

(|M| + |N|
|M|

)
uα

N+1n

∂

∂uα
N+M

, 1 ≤ |M| ≤ r,

where, as common, multi-indexes M= (µ1, . . . , µp) and N = (ν1, . . . , νp) both
belong toN

p with the length defined by|N| = ν1 + · · · + νp, and the multi-index
1n corresponds to partial differentiation along the direction of then-th independent
variableτ n, n ∈ (1, p). In future we shall abuse the notationuα

0 in place ofxα,
xα = tα if α ≤ p. The zero section ofTr

p M is well defined and we have the
quotient projection with respect to the above mentioned action

(6) ℘ : Tr
p M\{0} −→ Cr (p, M).

On the manifoldM we shall define a variational problem, invariant under the
action of pseudo-Euclidean group onM . A Lagrangian will mean a semi-basic
with respect toM local p-form defined onCr (p, M), and two such forms will be
recognized equivalent if in common domain their difference belongs to the ideal,
generated by contact forms. As our considerations onCr (p, M) are local and in-
finitesimal, we shall profit from the local isomorphism

Cr (p, M) ≈ Jr (Rp, R
q).

And further on, let us recall the isomorphismJr (Rp, R
q) ≈ Jr (Rp×R

q), where the
right-hand side means the bundle of jets of cross sections of the fibrationR

p+q −→
R

p. From among the equivalent Lagrangians onCr (p, M) it is always possible to
fix the unique representative, semi-basic with respect toR

p in this local represen-
tation.

Let us introduce the notationvi
�, with � = (ω1, . . . , ωp), for the canonical coor-

dinates inJr (Rp, R
q) and let(tw, xi ), w ∈ (1, p), i ∈ (1, q), be the corresponding

local coordinates inM . One would like to pull the variational problem posed on
Cr (p, M), back to the manifoldTr

p M in the temptation to obtain some variational
equation in the parameter-homogeneous form onM , and in casep = 1 to construct
then a kind of higher-order connection on someTkM , k < 2r , in such a way, that
the autoparallel curves of this connection would prescribe some parametrization to
the unparametrized integral submanifolds of the initial parameter-independent vari-
ational problem. But the pull-back of a one-form is again one-form, and what we
need is a local Lagrangefunctionon Tr

p M , not a form. The way out is to consider
the manifoldTr

p M as a rudiment of the parameter-extended spaceJr (Rp, M) in
the following way.
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First, recall the isomorphismJr (Rp, M) ≈ R
p × Jr (Rp, M)(0), given by the

correspondencej r σ(τ) −→ (τ, j r (σ ◦ δτ )(0)), whereδτ is the translation byτ in
R. Then notice thatJr (Rp, M)(0) is exactly the definition ofTr

p M and apply the
projection onto the second factor,

(7) Jr (Rp, M) ≈ R
p × Tr

p M −p2(r )−−−→ Tr
p M.

Now, the idea is to pull a variational problem from the manifoldCr (p, M) back
to the manifoldJr (Rp, M) and then to find onJr (Rp, M) an equivalent Lagrangian
of the formL0 dτ 1 ∧ · · · ∧ dτ p. The functionL0 will then in fact be defined on
the spaceTr

p M . To make our consideration precise, let us recall some calculus on
Jr (Rp, M).

2.1. Lagrange differential

Let us introduce an abridged notationYr = Jr (Rp, M) and, of course,Y will
stand in place ofRp × M . Also let�·,·

r = ∑
�h,v

r denote the module of semi-basic
with respect toRp differential forms onYr with values in the dualT∗(Yr /R

p)

to the bundleT(Yr /R
p) of R

p-vertical tangent vectors toYr ; h andv mean the
corresponding degrees in the bigraded module

�h,v
r ≈ Sec(

∧v T∗(Yr /R
p) ⊗Yr

∧h T∗
R

p).

It is not our goal here to present any definition of the Euler–Lagrange differentialδδδ

(see [2] or [9]). We merely recall that it is possible to interpret the operatorδδδ as one
acting from�h,v

r to �
h,v+1
2r so that for anyλ ∈ �

p,0
r the result of applyingδδδ belongs

to �
p,1
2r , and in factδδδλ is a semi-basicp-form taking values inT∗(Y/R

p) alone.
Its components inT∗(Y/R

p) along some local coordinates{xα} in M are the clas-
sical Euler–Lagrange expressions. Let us identify the fibre bundle

∧
T∗(Yr /R

p)

with the reciprocal image of
∧

T∗(Tr
p M) along the projection (7). We think of the

algebra�(Tr
p M) of differential forms onTr

p M as of�0(Tr
p M)-subalgebra of�0,·

r ,
the inclusion being defined by the reciprocal image construction alongp2(r ). The
operatorδδδ takes�(Tr

p M) into the �0(T2r
p M)-subalgebra�(T2r

p M) of �
0,·
2r . We

denote the restriction of the operatorδδδ to the algebra�(Tr
p M) by δδδT .

Now, consider some Lagrangian

(8) λ = L0d
pτ ∈ �p,0

r ,

wheredpτ stands for thep-fold exterior productdτ 1 ∧ · · · ∧ dτ p, and, in general,
function L0 may depend onτ ∈ R

p. We say that such a Lagrangian defines a
variational problem in extended parametric form. In this case,

(9) δδδλ = εεε0 ⊗ dpτ ∈ �
p,1
2r , where εεε0 = δδδL0.

Let

(10) pr : Tr
p M −→ M
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denote the standard projection. We observe that essentiallyεεε0 is a cross-section of
the induced bundlep2(2r )∗ p2r ∗

T∗M .
Let υ be the graph of a local immersionσ : R

p −→ M . Recall that by the
definition of the action of pull-backs on vector bundle valued differential forms,

j 2r υ∗δδδλ ∈ Sec(σ ∗T∗M ⊗ ∧p T∗
R

p),

j 2r υ∗δδδλ = (δδδL0 ◦ j 2r σ) ⊗ dpτ,

where j 2r υ denotes the prolongation of the cross-sectionυ and j 2r σ is the essential
component of the cross-sectionj 2r υ. Thus the Euler–Lagrange equations appear to
have two equivalent guises:

(11) j 2r υ∗δδδλ = 0 or δδδL0 ◦ j 2r (σ ) = 0.

Let us assume that the Lagrange functionL0 does not depend on parameterτ ∈
R

p: L0 = p2(r )∗L. Consider the second component∂2r σ of the jet j 2r σ under the
projectionp2(2r ) : J2r (Rp, M) −→ T2r

p M . The Euler–Lagrange equations take the
shape of

(12) (δδδTL) ◦ ∂2r σ = 0.

2.2. Parametric invariance

Introduce an arbitrary local change of parameterR
p −→ R

p and let us see how
it effects a variational problem in extended parametric form on the fibred manifold
π : Jr (Rp, M) −→ R

p, given by (8). The standard prolongation of the pair of
morphisms( f, id) : R

p×M −→ R
p×M is denoted byJr ( f, id) : f ∗ Jr (Rp, M) −→

Jr (Rp, M) and is defined by the property

(13) Jr ( f, id) ◦ (π∗ f )−1 ◦ j r σ ◦ f = j r (σ ◦ f )

for arbitrary jet j r σ ∈ Jr (Rp, M), and we mention that in standard functorial no-
tations morphismπ∗ f : f ∗ Jr (Rp, M) −→ Jr (Rp, M) is a bijection as long as
the mapping f is a diffeomorphism. Let(W, σ ) be a pair consisting of a com-
pact setW in R

p and of a mappingσ from W into M . Diffeomorphism f acts
upon such pairs by means of the rulef : (W, σ ) �−→ ( f −1W, σ ◦ f ). Let S be
a function, defined for each pair(W, σ ) by means ofS : (W, σ ) �−→ ∫

W j r σ ∗λ.
We demand that the functionS be equivariant with respect to the action off , that
is,

(14) S◦ f = S,

and in this case the variational problem is called a parameter-invariant one. By (13)
and by the well-known change of variables formula,

S(W, σ ) =
∫

f −1W
f ∗ j r σ ∗λ,
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we obtain:

(S◦ f )(W, σ ) = S( f −1W, σ ◦ f ) =
∫

f −1W

(
j r (σ ◦ f )

)∗
λ

=
∫

f −1W
f ∗ j r σ ∗((π∗ f )−1

)∗(
Jr ( f, id)

)∗
λ

= S
[
W,

(
(π∗ f )−1

)∗(
Jr ( f, id)

)∗
λ

]
.

Now the parametric invariance (14) means that

(15) Jr ( f, id)∗λ = (π∗ f )∗λ.

The identification (7) implies thatf ∗ Jr (Rp, M) ≈ R
p×Tr

p M andπ∗ f = ( f ×id),
thus (15) takes the form

(16) L0 ◦ Jr ( f, id) = L0 ◦ ( f × id). det
∂ f

∂τ
.

The infinitesimal analogue of (16) reads

〈ζζζ r , dπL0〉 = ζζζ (L0) + L0.tr
∂ζζζ

∂τ
,

whereζζζ generates some local flow onRp, ζζζ r denotes the standard prolongation of
ζζζ to the spaceJr (Rp, M), anddπ is the fibre differential along fibres ofπ . As far
as∂ζζζ/∂τ is an arbitrary matrix, we conclude thatL0 must not depend onτ (put
∂ζζζ/∂τ = 0) and thus essentially is defined and may be thought of as some func-
tion onTr

p M alone:L0 = p2(r )∗L. The calculation ofζζζ r according to the standard
procedure, [12], ultimates in Zermelo–Géh́eniau’s conditions

(17) ζζζM
n (L) = δM

1n
L,

where fieldsζζζM
n are given by (5).

It is well known, that each invariance of Lagrangianλ implies the invariance of
the corresponding differential formδδδλ (see [3] for technical details). In our nota-
tions,

J2r ( f, id)∗δδδλ = ( f × id)∗δδδλ,

and in terms of the projection (7) it gives forεεε0 = p2(2r )∗δδδTL, as defined in (9),

J2r ( f, id)∗ p2(2r )∗δδδTL = (
p2(2r )∗δδδTL

)
. det

∂ f

∂τ
.

The infinitesimal analogue in terms of fibre derivativedp2r with respect to the fi-
bration p2r : T2r

p M −→ M reads

〈
ζζζ 2r , p2(2r )∗dp2r δδδTL

〉 = (
p2(2r )∗δδδTL

)
.tr

∂ζζζ

∂τ
,
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and again in course of the arbitrariness ofζζζ we come up to the following formula-
tion of parametric invariance of the Euler–Lagrange formεεε0 = p2(2r )∗δδδTL:

(18) 〈ζζζM
n , dp2r δδδTL〉 = δM

1n
δδδTL.

2.3. Transition from Cr (p, M) to parameter-homogeneous form

The projection (6) in local coordinates is given by the following formula, which
may be deduced from general reflections on the subject of transformation rules for
derivatives, [1],

ui
n1···nr

=
r∑

k=1

Pw1···wk
n1···nr

℘ i
w1···wk

,

where we put

℘ i
w1···wk

= vi
� ◦ ℘,

vi
� being the coordinates inCr (p, M), which coincide withui

N for N = � when
uw

N = δ
1w

N , and in the multi-index� = (ω1 · · · ωp), of lengthk, everyωw denotes
the number of repetitions ofw in the sequence(w1 · · · wk). The matrixP is calcu-
lated according to the formula:

Pw1···wk
n1···nr

=
∑

1≤r1≤···≤rk≤r
r1+···+rk=r

r !

r1! · · · rk! ρ1! · · · ρr −k+1!

u(w1
(n1···nr1

uw2
nr1+1···nr1+r2

· · · uwk)

nr1+r2+···+rk−1+1···nr1+r2+···+rk ),

where eachρk means the number of repetitions ofk in the sequence(r1 · · · rk) and
parentheses denote the symmetrization procedure.

We now proceed further in the realization of our main goal: to represent a vari-
ational problem, initially posed on the contact manifoldCr (p, M), by means of
some parameter-homogeneous form of an equivalent variational problem, this time
on the manifoldTr

p M . Let be given in some local chart ofCr (p, M) anR
p-semi-

basic representative

(19) � = L dpt, dpt = dt1 ∧ · · · ∧ dtp

of a class of equivalent Lagrangians (see [8]). The pull-back of� along the total
projectionp = ℘ ◦ p2(r ) equalsL ◦p . dpt . Let us decompose thep-form dpt with
respect to the basis, constituted by thep-form dpτ and by the forms

(dpτ)α1···αl
n1···nl

= ϑα1 ∧ · · · ϑαl ∧ ∂

∂τ n1
· · · ∂

∂τ nl
dpτ,

1 ≤ l ≤ p, 1 ≤ n1 < · · · < nl ≤ p, 1 ≤ α1 < · · · < αl ≤ p + q, where
ϑα = dxα − uα

ndτ n are the first order contact forms on the manifoldJr (Rp, M)

andτ ∈ R
p. In fact, only terms withdpτ and(dpτ)w1···wl

n1···nl
, 1 ≤ w1 < · · · < wl ≤ p
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survive in this decomposition, and we obtain

dpt = detU . dpτ +
p∑

l=1

∑
1≤n1<···<nl ≤p
1≤w1<···<wl ≤p

U
n1···nl

w1···wl
(dpτ)

w1···wl
n1···nl

,

where U
n1···nl

w1···wl
denotes the algebraic adjunct of the minorUw1···wl

n1···nl
in the matrix

U = (uw
n ).

Let us consider for a moment another local chart(u′i , x′i , t ′i ) of the manifold
Cr (p, M), denote byφC the corresponding transition function and let�′ = L ′ dpt ′

be such a representative, thatφ∗
C�′ − � belongs to the ideal, generated by differ-

ential forms

(dpt)i1···i l
w1...wl

= θ i1 ∧ · · · θ i l ∧ ∂

∂tw1
· · · ∂

∂twl
dpt,

1 ≤ l ≤ p, 1 ≤ w1 < · · · < wl ≤ p, 1 ≤ i1 < · · · < i l ≤ q, whereθ i =
dxi − vi

wdtw are the first order contact forms on the manifoldJr (Rp, R
q) and

t ∈ R
p.

The pull-back operation preserves the corresponding contact ideal ([8]):

p∗θ i = ϑ i − ℘ i
wϑw

as well, as the coherent transition functionϕJ in the manifoldJr (Rp, M) does, and
it may be proved that the differenceϕ∗

J(L
′ ◦ p . dpt ′) − L ◦ p . dpt belongs to the

contact ideal onJr (Rp, M). Hence our considerations are intrinsic.
Let us recall the notations (8, 9, 11, 12), and introduce the shortcut notation

℘φ = φC ◦ ℘ : Tr
p M −→ Jr (Rp, R

q),

same for eachr .

Proposition 1. LetL = (L ◦ ℘φ). detU. The equations

(δδδL) ◦ ℘φ ◦ ∂2r σ = 0

and
δδδT (L) ◦ ∂2r σ = 0

are equivalent.

The Lagrange functionL and the corresponding differential formδδδTL obviously
satisfy Zermelo–Ǵeh́eniau’s conditions (17) and (18).

Remark 1. We strive to give an (in fact trivial) algorithm for building up a
Lagrange function and the corresponding Euler–Lagrange equations in parameter-
homogeneous form directly from solutions of an inverse variational problem on
contact manifoldCr (p, M). But treating this latter problem, especially in the as-
pects of equivalence and symmetry of differential equations, appears to be more
convenient in terms of theLepagean equivalents, [4] (cf. [8,10,11]). So it would
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be of interest to translate the reparametrization technique, presented in this section,
directly into the language of Lepagean differential forms theory.

2.4. Third order equations with pseudo-Euclidean symmetry

In case of the system of ordinary differential Euler–Lagrange equations (we fol-
low the tradition of calling themEuler–Poisson equations) the vector-valued dif-
ferential formδδδ� of � as in (19), takes the shape

(20) δδδ� = Ei dxi ⊗ dt,

whereEi are the Euler–Poisson expressions. We call the problem of finding Euler–
Lagrange equations with prescribed symmetry and of prescribed order, the invari-
ant inverse problem of that order in the calculus of variations. In case of third or-
der Euler–Poisson equations with pseudo-Euclidean symmetry in four-dimensional
space, one solution was found in ([6]) and announced in ([7]). It is essential that
a four-vector parametersss = (sα) should enter in variational equations of the third
order to make them obey the pseudo-Euclidean symmetry. This parameter does not
undergo any variations. Physically, it is responsible for an intrinsic dipole momen-
tum of a relativistic test particle. As the problem was posed on contact manifold, we
obtain the solution in terms of the coordinates on the contact manifoldC3(1,M):

(21)

EEE = vvv′′ × (sss− s0vvv)

[(1 + vvv222)(s2
0 + sss222) − (s0 + sss · vvv)2]

3
2

− 3
(s2

0 + sss222)vvv′ · vvv − (s0 + sss · vvv)sss · vvv′

[(1 + vvv222)(s2
0 + sss222) − (s0 + sss · vvv)2]

5
2

vvv′ × (sss− s0vvv)

+ m
(1 + vvv222)vvv′ − (vvv′ · vvv)vvv

(1 + vvv222)
3
2 (s2

0 + sss222)
3
2

,

produced by any of the following Lagrange functions,

L (i ) = s0

s2
0 + sss222 · (s2

0 + kkk(i )
222)(si − s0vi ) − si (kkk(i ) · zzz(i ))

(s2
0 + kkk(i )

222)zzz(i )
222 − (kkk(i ) · zzz(i ))

2

· [vvv′, (sss− s0vvv),eee(i )]

(sss− s0vvv)222 + (sss× vvv)222 − m

(s2
0 + sss222)

3
2

√
1 + vvv222 ,

where some shortcut notations were introduced:

kkk(i ) = sss− si eee(i ), zzz(i ) = (sss− s0vvv) − (si − s0vi )eee(i ),

and vectors eee(i ) form a basis inR3.
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Remark 2. By virtue of a certain proposition of ([6]) it is not realistic to try
to find any third order variational equation with pseudo-Euclidean symmetry in
four-dimensional space without introducing into it some additional quantities, con-
structed from the representations of the pseudo-Euclidean group.

Proposition 1 immediately allows us to build the parameter-homogeneous form
of the expression (21) by means of the following prescription: if

δδδTL = Eα dxα and δδδ(L dt) = Ei dxi ⊗ dt,

then

Eα dxα = dxi

dτ
· (Ei ◦ ℘φ) dt + dt

dτ
· (Ei ◦ ℘φ) dxi .

So for (21) we obtain:

(22)

EEE = ∗ üüuüuu ∧ uuu ∧ sss

‖sss ∧ uuu‖3 − 3
∗ u̇u̇uu̇uu ∧ uuu ∧ sss

‖sss ∧ uuu‖5 (u̇u̇uu̇uu ∧ sss) · (uuu ∧ sss)

+ m

‖sss‖3

[
u̇u̇uu̇uu

‖uuu‖ − u̇u̇uu̇uu · uuu

‖uuu‖3 uuu

]

= 0,

and again Proposition 1 helps to guess the family of four Lagrange functions, each
of which produces equation (22):

(23) L(α) = ∗ u̇u̇uu̇uu ∧ uuu ∧ sss ∧ eee(α)

‖sss‖2‖sss ∧ uuu‖ · sss222uα + (sss · uuu) sα

(uαsss − sαuuu)222 − (sss ∧ uuu)222 − m

‖sss‖3‖uuu‖,

with vectorseee(α) constituting a basis inM . Equation (22) possesses the first integral

(24)
sss · uuu

‖uuu‖ ,

and by comparison with (3) and (4) we calculate that every time we choose

(25) sss · uuu = 0,

it describes the free motion of a relativistic top.

3. Autoparallel reparametrization of geodesic curves

It was argued, in [10], that an arbitrary third order equationξξξ : T2M −→ T3M
of the local form

(26) üuα = ξα(u̇uβ, uβ, xβ)

defines an autoparallel curve only in the case, when the functionsξα satisfy (in
terms of the vector fieldξξξ ) the following commutation relations with the Liouville

R
Pencil
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fields (5):

(27)

{
(T℘)[ζζζ 1, ξξξ ] = (T℘)ξξξ

(T℘)[ζζζ 2, ξξξ ] = 0,

which might be put into the local form by the following PDE system with constant
Lagrange multipliersµ andκ

(28) u̇uα − 1

3

∂ξα

∂u̇uβ
uβ = κuα

(29) ξα − 1

3

∂ξα

∂uβ
uβ − 2

3

∂ξα

∂u̇uβ
u̇uβ = µuα.

It remains to solve the equations (28, 29), and to find the functionsξα for the
representation (26) of the equation (22). In order to cast the equation (22) into the
form (26), solved with respect to the highest order derivatives, we add to it one
more equation of general type

(30) üüuüuu · uuu = ‖uuu‖2#(u̇u̇uu̇uu,uuu),

and that will prescribe some kind of parametrization along the unparametrized
curves – the solutions of (22). Next we also make use of the physical constraint
(25). To proceed further, contract the vector equation (22) with the tensor∗uuu ∧ sss
and differentiate the first integral (24) twice. This helps to solve the equation (22)
with respect töuüuüuu:

(31) üüuüuu = 3
u̇u̇uu̇uu · uuu

‖uuu‖2 u̇u̇uu̇uu − 3
(u̇u̇uu̇uu · uuu)2

‖uuu‖4 uuu − m
‖uuu ∧ sss‖
‖sss‖3‖uuu‖ ∗ u̇u̇uu̇uu ∧ uuu ∧ sss + u.#.

Comparing (31) with (26), we rewrite (28, 29) in terms of#, and then applying the
compatibility conditions to the system of PDE{(28, 29)} shows thatκ = 0. The
Ansatz for# is

# = 3

‖uuu‖2 (1
2 ‖u̇u̇uu̇uu‖2 + ψ),

and from (28) there arises a constraint on possible functionsψ :

(32) uuu.
∂ψ

∂u̇u̇uu̇uu
= 0.

Let us apply symmetry concept to the equation (26). The group of transforma-
tions ofM must not operate on the parameterτ . In case of pseudo-Euclidean group
the generators read:

(33) X = �αβuα

∂

∂uβ
+ �αβ u̇uα

∂

∂u̇uβ
+ �αβ üuα

∂

∂üuβ
+ �αβsα

∂

∂sβ
,

with arbitrary skew-symmetric matrix parameter�αβ .
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Now applyX to the equation (31) and observe that ifaaa is a vector, thenXaα =
−ηαβ�βγ aγ , whereηαβ is the constant canonical diagonal metric tensor of pseudo-
EuclideanM .

This observation together with (32) and (29) suggests the solution

# = 3
‖uuu‖2 (1

2
‖u̇u̇uu̇uu‖2 + A‖u̇u̇uu̇uu ∧ uuu‖4

3 ), µ = 0,

with arbitrary scalar constantA

Proposition 2. The autoparallel curves in four-dimensional pseudo-Euclidean
space describe the motion of the free relativistic top and satisfy the equation

üüuüuu = 3
u̇u̇uu̇uu · uuu

‖uuu‖2 u̇u̇uu̇uu − 3

[
(u̇u̇uu̇uu · uuu)2

‖uuu‖4 − 1

2

‖u̇u̇uu̇uu‖2

‖uuu‖2 − A
‖u̇u̇uu̇uu ∧ uuu‖

4
3

‖uuu‖2

]
uuu

− m
‖uuu ∧ sss‖
‖sss‖3‖uuu‖ ∗ u̇u̇uu̇uu ∧ uuu ∧ sss.

The world lines are those among the extremal curves of the Lagrange function(23),
who agree with the physical constraint(4).

The constantA corresponds to different ways of the parametrization of world
lines. One may choseA = 0.
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