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Autoparallel variational description of the free
relativistic top third order dynamics ?

Roman Matsyuk

Abstract. A second order variational description of the autoparallel curves of
some differential-geometric connection for the third order Mathisson’s “new
mechanics” of a relativistic free spinning particle is suggested starting from
general requirements of invariance and “variationality”.
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1. Introduction

In 1937 M. Mathisson, in the article named “Neue Mechanik materieller Sys-
teme”, see [5], introduced a third order differential equation to describe the mo-
tion of quasi-classical relativistic particle with inner angular momentum given by a
skew-symmetric tensd®*#:

Du® D2 1
1 m =gp=—F _ =
@ % dr dz? 2

o Bays
Rﬁyau g,

where the velocity four-vecton®, « € (0, 3) is subject to the usual constraint
u“u, = 1. Equation (1) in fact was considered by Mathisson under the assumption
of later well-known “Pirani auxiliary condition”

) usS* =0,
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which fixes one possible way of choosing the point of reference within the tube
of world lines followed by different points of extended object with dipole angu-
lar momentumS*#. This way or that, one may pose the following question: what
geometry is best suited for the description of physical particles with complicated
internal structure? In presence of the gravitational field such geometry of course
will incorporate the curvature tensor, but the other question arises then to invent a
local model for such a future geometry. And with this approach in mind, we start
with the pseudo-Euclidean space, endowed not only with the usual structure of ge-
odesic straight lines, but also with some other structure, the autoparallel curves of
which would satisfy also the unparametrized version of Mathisson’s equation (1)
with zero curvature tensdr; ;.

The constraint (2) suggests the idea to introduce the spin four-vector

1
S = = Eap,sU* S,
2| "

and it was proved in [6] and published in [7] that in terms of this spin vector the
Mathisson equation (1) is equivalent to the following one (wefg; = 0):

Uguﬂ
2
full

(3) eapysUPUTS — 3 eapysUPUYS — mo(lull?u, — ugufu,) =0,

subject to the constraint
4) su* =0.

And we recall that spin four-vectaris a constant vector along the word line of
the particle as long as no gravitational field is considered.

The equation (3) does not change under arbitrary reparametrizations of the world
line, i.e., under arbitrary local transformations of the independent variglitee
parameter, and because of that it is often said that the equation is presented in
homogeneous form, or that it is parameter-independent.

Now, we set the following two-fold task:

1. invent a variational description for the equation (3);

2. try to add some parametrization to equation (3) in such a way that the (parame-
tried) autoparallel curves of the corresponding second order connection would also
satisfy (3) everywhere on the constraint submanifold (4).

2. Variationality

As far as we are interested in the parameter-homogeneous form of a variational
third-order equation that should be equivalent to the equation (3), and also as far
as we intend to impose pseudo-Euclidean symmetry, it is convenient to work in the
variablesu® = 1,v' = u',i € (1, 3), x° = t, that is to pass to the manifold pfth
order contact elements in the manifditi= {t, x'}. We note that pseudo-Euclidean
transformations permute the variabteandx' .
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Let, in generalT;M denote the bundle of Ehresmaprvelocities of order to
manifoldM and letC' (p, M) denote the manifold af-th order contact elements of
p-dimensional submanifolds ip+ q dimensional manifoldM. The groupGI" (p)
of invertible jets fromRP to RP which both start and terminate at-ORP, acts on
the right upon the manifolfl‘{J M by jet composition rule. This action, as we shall
see, is in charge of parameter (independent variable) transformations of the veloc-
ities from T{, M and hence governs the transformations of a variational equation in
parametric form. The generators are the generalized Liouville fields

r—|Mj
M| +|N d
(5) §nM=Z(| |+ |>U“ > 1=<IM[=r,

N+1
INI=0 IM| " UM

where, as common, multi-indexes M (i1, ..., uwp) and N= (vq, ..., vp) both
belong toNP with the length defined byN| = v; + - - - + vy, and the multi-index
1, corresponds to partial differentiation along the direction ofrtike independent
variablet", n € (1, p). In future we shall abuse the notatiof in place ofx“,
x* = t*if « < p. The zero section of ;M is well defined and we have the
guotient projection with respect to the above mentioned action

(6)  : TIM\{0} — C'(p, M).

On the manifoldM we shall define a variational problem, invariant under the
action of pseudo-Euclidean group &h. A Lagrangian will mean a semi-basic
with respect toM local p-form defined orC' (p, M), and two such forms will be
recognized equivalent if in common domain their difference belongs to the ideal,
generated by contact forms. As our consideration€bfp, M) are local and in-
finitesimal, we shall profit from the local isomorphism

C'(p, M) = J"(RP, RY).

And further on, let us recall the isomorphisf(RP, RY) ~ J" (RPxRY), where the
right-hand side means the bundle of jets of cross sections of the fibifidh—
RP. From among the equivalent Lagrangians@rip, M) it is always possible to
fix the unique representative, semi-basic with respettfan this local represen-
tation.

Let us introduce the notatiar@z, with Q = (w1, ..., wp), for the canonical coor-
dinates inJ" (RP, RY) and let(t*, x'), w € (1, p),i € (1, q), be the corresponding
local coordinates irvi. One would like to pull the variational problem posed on
C"(p, M), back to the manifold’y M in the temptation to obtain some variational
equation in the parameter-homogeneous fornvigrand in case = 1 to construct
then a kind of higher-order connection on so&M, k < 2r, in such a way, that
the autoparallel curves of this connection would prescribe some parametrization to
the unparametrized integral submanifolds of the initial parameter-independent vari-
ational problem. But the pull-back of a one-form is again one-form, and what we
need is a local Lagrandeanctionon Tg M, not a form. The way out is to consider
the manifoIdT{JM as a rudiment of the parameter-extended spH¢RP, M) in
the following way.
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First, recall the isomorphismd" (RP, M) ~ RP x J"(RP, M)(0), given by the
correspondencg’ o (t) — (t, j"(o o 8,)(0)), whereé, is the translation by in
R. Then notice thatl"(RP, M)(0) is exactly the definition off;M and apply the
projection onto the second factor,

) J'(RP, M) ~RP x TIM 2, 1o,

Now, the idea is to pull a variational problem from the manifGld p, M) back
to the manifoldd" (RP, M) and then to find od" (RP, M) an equivalent Lagrangian
of the formLodt! A --- A drP. The functionLo will then in fact be defined on
the spacél’l{) M. To make our consideration precise, let us recall some calculus on
J'(RP, M).

2.1. Lagrange differential

Let us introduce an abridged notatidh = J"(RP, M) and, of courseY will
stand in place oRP x M. Also letQ; = Y~ QM'* denote the module of semi-basic
with respect toRP differential forms onY" with values in the duall *(Y' /RP)
to the bundleT (Y" /RP) of RP-vertical tangent vectors t%"; h andv mean the
corresponding degrees in the bigraded module

QM ~ Sed \' T*(Y'/RP) @yt A" T*RP).

It is not our goal here to present any definition of the Euler—Lagrange differéntial
(see [2] or [9]). We merely recall that it is possible to interpret the opedadsrone
acting fromQ* to Qg;““ so that for any. e QP 0 the result of applying belongs
to Qgr’l, and in factsx is a semi-basig-form taking values inT *(Y/RP) alone.
Its components ifT *(Y/RP) along some local coordinat¢s®} in M are the clas-
sical Euler-Lagrange expressions. Let us identify the fibre bufdle (Y" /RP)
with the reciprocal image of\ T*(T; M) along the projection (7). We think of the
algebraQ(Ty M) of differential forms orT; M as of°(T} M)-subalgebra of2,
the inclusion being defined by the reciprocal image construction gbe@g. The
operatord takesQ2(T;M) into the Q°(T/" M)-subalgebra2(Tz" M) of Q5. We
denote the restriction of the operafoto the algebra&2(T; M) by 5T

Now, consider some Lagrangian

(8) A = LodPr € QPO

wheredPr stands for thep-fold exterior productiz® A - -- A dtP, and, in general,
function £o may depend onr € RP. We say that such a Lagrangian defines a
variational problem in extended parametric form. In this case,

9) sr=go®dPr € Q)',  where gy =248Lo.
Let
(10) P iTIM > M



Third-order autoparallel spin dynamics 451

denote the standard projection. We observe that essertjallya cross-section of
the induced bundlg,(2r)* p? “T*M.

Let v be the graph of a local immersian : RP — M. Recall that by the
definition of the action of pull-backs on vector bundle valued differential forms,

jZ¥u*sa € Sedo*T*M ® AP T*RP),
jZvsr = (8Loo j¥0) @ dPr,

wherej? v denotes the prolongation of the cross-secti@md % o is the essential
component of the cross-secti¢fi v. Thus the Euler—Lagrange equations appear to
have two equivalent guises:

(11) jYu'sa =0 or 8Lgo |¥(0)=0.

Let us assume that the Lagrange functi@ydoes not depend on parametee
RP: Lo = pa(r)*L. Consider the second componégto of the jetj¥ o under the
projectionpo(2r) : J¥ (RP, M) — Tgf M. The Euler—Lagrange equations take the
shape of

(12) 8"L)odxyo =0.

2.2. Parametric invariance

Introduce an arbitrary local change of paramé&ér— RP and let us see how
it effects a variational problem in extended parametric form on the fibred manifold
7 . J'(RP, M) — RP, given by (8). The standard prolongation of the pair of
morphismg f, id) : RPx M — RPx M is denoted byd" (f,id) : f*J"(RP, M) —
J'(RP, M) and is defined by the property

(13) J(fid) o ) lojoof=(of)

for arbitrary jetj'o € J"(RP, M), and we mention that in standard functorial no-
tations morphisme*f : f*J"(RP, M) — J"(RP, M) is a bijection as long as
the mappingf is a diffeomorphism. LetW, o) be a pair consisting of a com-
pact setwW in RP and of a mapping from W into M. Diffeomorphism f acts
upon such pairs by means of the rule: (W,o) — (f~*W, 0 o f). Let Sbe

a function, defined for each paiW, o) by means ofS : (W, o) — fW jfo*A.
We demand that the functiddbe equivariant with respect to the action fofthat

is,

(14) Sof=8

and in this case the variational problem is called a parameter-invariant one. By (13)
and by the well-known change of variables formula,

S(W, ) =/ f*j o*a,

f-lw
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we obtain:

(So H)(W,0) = S(f W, 00 f) =/ (j"(g o )2
f~iw

:/ £4§7 0 (e £)74) (37 (£, id)) "2
f-lw

= §[W, (G 7Y (I"(F i) "2 .
Now the parametric invariance (14) means that
(15) JN(f,id)*A = (™ f)*A.

The identification (7) implies that* J"(RP, M) ~ RPx T/M andrz* f = (f xid),
thus (15) takes the form
of
(16) Loo J'(f,id) = Lo (f xid).deta—.
T
The infinitesimal analogue of (16) reads

0
(¢, d;Lo) =& (Lo) + Lo.tr i,

where¢ generates some local flow @®P, ¢' denotes the standard prolongation of

¢ to the space)" (RP, M), andd,, is the fibre differential along fibres af. As far
asd¢/dt is an arbitrary matrix, we conclude thdp must not depend on (put

d¢ /9t = 0) and thus essentially is defined and may be thought of as some func-
tion onTyM alone:Lo = py(r)*L. The calculation ot' according to the standard
procedure, [12], ultimates in Zermeloé@&niau’s conditions

(17) ey =8YL,

where fieldg M are given by (5).

It is well known, that each invariance of Lagrangiaimplies the invariance of
the corresponding differential fordn (see [3] for technical details). In our nota-
tions,

JZ (f,id)*8xr = (f x id)*8,

and in terms of the projection (7) it gives feg = p.(2r)*8" £, as defined in (9),
of
J% (f,id)* p2(2r)*8" £ = (p2(2r)*87 ). det_ .
T

The infinitesimal analogue in terms of fibre derivatig: with respect to the fi-
brationp? : TM — M reads

2r * T *xoT a;

(€7, pa(2r)*d 28" L) = (p2(2r)*s [,).tra—,

T
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and again in course of the arbitrarinesg offe come up to the following formula-
tion of parametric invariance of the Euler—Lagrange fege= p,(2r)*8' L:

(18) N . da8"L)=8)8"L.

2.3. Transition from C" (p, M) to parameter-homogeneous form

The projection (6) in local coordinates is given by the following formula, which
may be deduced from general reflections on the subject of transformation rules for
derivatives, [1],

r
i _ Wi Wk |
unl...nr - Z Pr|]:_|-...|'1r pwl...WKv
k=1
where we put

i g
pwl"‘wk - UQ o pa

vh, being the coordinates i6" (p, M), which coincide withul, for N = € when
uy = 8,{, and in the multi-index2 = (w1 - - - @p), of lengthk, everyw,, denotes
the number of repetitions ab in the sequencéw; - - - wy). The matrixP is calcu-
lated according to the formula:

|
Pwlmwk _ r:
ng---np =

Looorud pql ... |
l<ri<--<rg<r re lk: p1* Pr—k+1:

r14-Frg=r
(wy w2 T
(Ng-+Nrg “ Ny 41Ny 4rp Nrq oty g +1 Mgt pttry )

where eaclpy means the number of repetitionsloin the sequencé; - - - r¢) and
parentheses denote the symmetrization procedure.

We now proceed further in the realization of our main goal: to represent a vari-
ational problem, initially posed on the contact manif@t(p, M), by means of
some parameter-homogeneous form of an equivalent variational problem, this time
on the manifoldT; M. Let be given in some local chart 6f (p, M) anRRP-semi-
basic representative

(19) A=LdPt, dPt=dttA...AdtP

of a class of equivalent Lagrangians (see [8]). The pull-back afong the total
projectionp = g o po(r) equalsL op . dPt. Let us decompose theform dPt with
respect to the basis, constituted by fi#éorm dPt and by the forms

d
(@PT)T = 9T A9 A o 2 o dPr,
l1<l=zplzn<---<n==pl<o<- <o <p+q, where
»* = dx* — u2d<" are the first order contact forms on the manifdfdRP, M)
andr € RP. In fact, only terms withd Pz and(dpr)ﬁll_'_fr’]f', l<wi<---<w=<p
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survive in this decomposition, and we obtain

p
dPt = detU . dPt + Z O (PP

w--w| ny---n
I=1 1<nj<--<n<p
l<wi<--<w <p

where U;ll'fffl')l denotes the algebraic adjunct of the mirtqfllg'j,;‘l" in the matrix
U= ().

Let us consider for a moment another local chart, x",t") of the manifold
C'(p, M), denote bypc the corresponding transition function andAt= L’ dPt’
be such a representative, thigtA’ — A belongs to the ideal, generated by differ-
ential forms

(dpt)iu%'l'.'.i.lm —Q1A...00 A pre e ] preT 1 dPt,
l<l<pl<w<--<w<pl<ip<--<i <q, whered =

dxi — viudtw are the first order contact forms on the manifdldRP, RY) and
t € RP.
The pull-back operation preserves the corresponding contact ideal ([8]):

as well, as the coherent transition functipnin the manifoldJ" (RP, M) does, and
it may be proved that the differengg (L’ o p . dPt’) — L o p . dPt belongs to the
contact ideal ord" (RP, M). Hence our considerations are intrinsic.

Let us recall the notations (8, 9, 11, 12), and introduce the shortcut notation

9o =dcop:TEM — J'(RP,RY),
same for each.
Proposition 1. Let£ = (L o gy). detU. The equations
(BL) o gy 0 00 =0

and
8T(L)odyo =0

are equivalent.

The Lagrange functiof and the corresponding differential fodh £ obviously
satisfy Zermelo—@heniau’s conditions (17) and (18).

Remark 1. We strive to give an (in fact trivial) algorithm for building up a
Lagrange function and the corresponding Euler-Lagrange equations in parameter-
homogeneous form directly from solutions of an inverse variational problem on
contact manifoldC'" (p, M). But treating this latter problem, especially in the as-
pects of equivalence and symmetry of differential equations, appears to be more
convenient in terms of thkepagean equivalent$4] (cf. [8, 10, 11]). So it would
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be of interest to translate the reparametrization technique, presented in this section,
directly into the language of Lepagean differential forms theory.

2.4. Third order equations with pseudo-Euclidean symmetry

In case of the system of ordinary differential Euler—Lagrange equations (we fol-
low the tradition of calling thentuler—Poisson equatiopshe vector-valued dif-
ferential formd A of A as in (19), takes the shape

(20) A = EjdX ®dt,

whereE; are the Euler—Poisson expressions. We call the problem of finding Euler—
Lagrange equations with prescribed symmetry and of prescribed order, the invari-
ant inverse problem of that order in the calculus of variations. In case of third or-
der Euler—Poisson equations with pseudo-Euclidean symmetry in four-dimensional
space, one solution was found in ([6]) and announced in ([7]). It is essential that
a four-vector parameter = (s*) should enter in variational equations of the third
order to make them obey the pseudo-Euclidean symmetry. This parameter does not
undergo any variations. Physically, it is responsible for an intrinsic dipole momen-
tum of a relativistic test particle. As the problem was posed on contact manifold, we
obtain the solution in terms of the coordinates on the contact mar@(t, M):

E_ V' x (S— V)
[(1+v2)(s§+sz)—(50+s-V)2]%
2 / _ . v
e 3 S + &)W V- (5+85-V)s v5 V X (- )

[(L4+VA) (S +9D) — (s9+5- V)72

A+ VAHV — (V- vV
+ m 3 3
1+v)2(sf +9)2
produced by any of the following Lagrange functions,
S (82 4+ ki2)(s — sovi) — s Ky - Ziy)
S+ (&5 + ki) 2i)? — K - 2)°

[V, (58— soV), €;)] m
: — V142,
(s— soV)? + (5 x V)? 2+ 2)3 "

Li) =

where some shortcut notations were introduced:
Kiy=S—S€i, 2= (—5V)— (S — Sv) €,

and vector®g form a basis irR>.
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Remark 2. By virtue of a certain proposition of ([6]) it is not realistic to try
to find any third order variational equation with pseudo-Euclidean symmetry in
four-dimensional space without introducing into it some additional quantities, con-
structed from the representations of the pseudo-Euclidean group.

Proposition 1 immediately allows us to build the parameter-homogeneous form
of the expression (21) by means of the following prescription: if

8L =¢&,dx* and &(Ldt) = E dx ®dt,
then
dx dt -
50{ dx* :'a . (E| e} 69¢) dt + a . (E| @) gD(p)dXI
So for (21) we obtain:

*UAUAS *UAUAS

€ = -3 UuAns)-(UAS
s Aul® s A ull® Uns)-Wns)
(22) N m [u u-uu]
IsI®Lul lul®
=0,

and again Proposition 1 helps to guess the family of four Lagrange functions, each
of which produces equation (22):

*U AUASA €q Su, +(s-U)s, |
Islls Aull  (US—sW?—(sAWw? s|®

(23) L) =

with vectorse,, constituting a basis iM. Equation (22) possesses the first integral
s-u

(24) TR

[[ull

and by comparison with (3) and (4) we calculate that every time we choose

(25) s-u=0,

it describes the free motion of a relativistic top.

3. Autoparallel reparametrization of geodesic curves

It was argued, in [10], that an arbitrary third order equagonT?M — T3M
of the local form

(26) Ue = 2P, uf, x#)

defines an autoparallel curve only in the case, when the funcfibreatisfy (in
terms of the vector fiel§) the following commutation relations with the Liouville


R
Pencil
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fields (5):

T LE]l=(T

27) {( 5@)[(2 §] = (Tp)§
(Tt~ €1 =0,

which might be put into the local form by the following PDE system with constant
Lagrange multiplierg. andx«

10 S
28 ue — — U
(28) 3P "
19 2 9ev
(29) @ & 5 0f = e,

u —
3a0uf 3auf

It remains to solve the equations (28, 29), and to find the funcéner the
representation (26) of the equation (22). In order to cast the equation (22) into the
form (26), solved with respect to the highest order derivatives, we add to it one
more equation of general type

(30) U-u=ul®¥v@,u),

and that will prescribe some kind of parametrization along the unparametrized
curves — the solutions of (22). Next we also make use of the physical constraint
(25). To proceed further, contract the vector equation (22) with the tensors

and differentiate the first integral (24) twice. This helps to solve the equation (22)
with respect tdi:

u- u. U -u)? luAsl

m
Il Isl®llul

Comparing (31) with (26), we rewrite (28, 29) in termsdfand then applying the
compatibility conditions to the system of PORS8, 29)} shows thatc = 0. The
Ansatz for¥ is

U= aj®+
||u||2(2|| 17+ ),

and from (28) there arises a constraint on possible funcijans

oY
32 u— =0.
(32) ou
Let us apply symmetry concept to the equation (26). The group of transforma-
tions of M must not operate on the parametem case of pseudo-Euclidean group

the generators read:

9 9 9
(33) X = Q*u, a—+s2“f’u — + i,

0
af
P 8ﬁ+Q Saaﬁ,

with arbitrary skew-symmetric matrix paramefet”.
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Now apply X to the equation (31) and observe thaifk a vector, therXa* =
—n*fQg,a”, wheren® is the constant canonical diagonal metric tensor of pseudo-
EuclideanM.

This observation together with (32) and (29) suggests the solution

3

4
Wzmmﬂ%mV+AMAUML pn=0,
with arbitrary scalar constam

Proposition 2. The autoparallel curves in four-dimensional pseudo-Euclidean
space describe the motion of the free relativistic top and satisfy the equation

. . 2 .2 o 4
. u-u, @-w* 1 |u [a Auls
U=5-—7U~- e AT 2
full full [Jull flufl
luAs
s kU AUAS.
ISl llul]

The world lines are those among the extremal curves of the Lagrange fu(@sipn
who agree with the physical constrait).

The constantA corresponds to different ways of the parametrization of world
lines. One may chosA = 0.
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