0
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Let us discuss the laws for the growth of the cells,
The external scale 1(7) increases because of adsorption
of single cells by other cells. The law for its growth
{s determined by the nature of the initial perturbations

sir). Let the spectral density ga(k) of these perturba-
tions decrease rapidly to zero in the limit k-~ «, This
gssumption is, in the framework of the adiabatic sce-
narlo, justified by the suppression of small-scale modes
in the course of the recombination.b

Let us determine the characteristic size of the re-
glon in which the absolute minima are found from the
condition that the increase of the paraboloid and the ini-
tial action are equal:

P21 ~VDU)), D(p) = {[2(s) -2 (O]M. (14)

From Eq. (14) it follows that the laws for the increase of
1(7) are qualitatively different if the dispersion of the
initial action is limited, (#)!= @4’ <=, and it

golk) ~ 1%k ~",
In the first case, D(p »1,) ~20% and from Eq. (14) we
find

I(f)~vo¢r~lo(r/'r‘)‘“; {16)

here the increase in 1{r) is determined only by the in-

tegral characteristics of the spectrum of the initial action

and is Independent of lts flne structure, In the second
case, in which D{p) ~k*p? =%, Eq, (14) gives

I(r) ~ V& 7210-0), (17)

The physical difference between these two cases of the
initial perturbations is the absence (in the first case)
and the presence (in the second case) of slowly decreas-
ing spatial correlations of the initial perturbations.

3<8<5, k-0 (15)

Which case 1s realized in the universe depends on the
initial density fluctuations. We assume that the spec-
trum of these fluctuations is g (k) ~k8, The gravitational
instability leads to velocity fluctuations whose action
spectrum, found in a linear approximation, is gg ~8 pk"4.
We thus find that 6 =4 —n in Eq. (15) and if n>= 1, Eq,

(18) will be valid.

In the case o‘zq, < o, the velocity field and the cell
structure can bhe analyzed in detail statistically because
of the presence of the small parameter € = 1,/] at v > 7*
(Ref, 9). The one-point and two-point probability den-
sities, the spectra, and more accurate laws for the in-
crease of 1{7) have been found for the velocity field.!

We wish to thank A. N. Malakhov for a discussion
of this study and for useful comments,
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Interest has reoently‘mcreased in the description of

motion of classical scalar and spin particles in gauge
and gravitational fields. The corresponding equations
generalize the Lorentz and Papapetrou—Pirani equa-
tions,!”? At the same time, the Mathisson—Papapetron
equations with Pirani's condition u,8%8 =0 % =%x%)
lead to the third-order equation of motion?

Du®
. Mo —— =S‘x‘3
" s ds?

Dgu{, 1
=5 R%y

uﬂu5=1.

The Mathisson—Papapetrou equations, like the earlier

equations of Frenkel, are derived by many authors from
a variational principle. However, until now the problem
of the existence of a Lagrangian for the Mathisson equa~
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uﬁS'Yo' f (.1)

0360-5689/85/11 0923-03 $02.20

tion (1) was not investigated. On the other hand, if it is
not agsumed that the particle is a test particle, the force
of radiation friction in the equation of motion will also
contain a third-order term,? like, say, in the Lorentz—
Dirac equations

L'l“ l'lguﬂ a]
m P LS 7]
Ol Wul? T Tul®

2 2[ i ~ fguf o aguf i (gufy®
3 lul? fullf Jul® Nul?

+ FoBy ' @
i|u|| e o

The question of whether there exists a Lagrang1an for the
Lorentz—Dirac equationhasnot yet been settled.! Equa-
tion (2) is invariant under changes of parametrization of
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integral curves. Upon setting m,=0 and F%F =0, this
equation becomes the equation of geodesic clrcles, which
defines the hyperbolic motion of relativistic particles.
Equation (2) was investigated in connection with the

study of reference frames which are accelerated equally,’

A parameter-invariant form of the Mathisson equa=
tions (1) may be obtained directly from the Dirac equa-
tions

Dp*©
ax

1 DseF
= Boré = 9pla,fl
= -2—R°ﬁwu 57, — 2pleyfl,
where A 15 an arbitrary parameter along the world line.
Here we propose an equivalent formulation in texrms of
the spin four-vector

Vigl (3)

5.
lulloy = Eqpys ufs7é,

namely,

- Dug ~ Duf
molfull[(u-u)’ - —(u-u)up—z-;-um

D*uf
= +/1gl ||u||a”{(u-u)eaﬁ,r,, o u?
Db puf (- u)? 5,0
—3u8-d-z— EWWW Y- 675HVROlﬁ7 ufuh| . (4)

We must add to Eq. (4) the condition fluflu 505 =0 and the
the spin part of Dixon's equation

Do¢
ful®
dX

Dyf
+ IIuiIaa-—)\‘u“=0. ‘ - (8)

If the world line of the particle is a null geodesic, then
expression [u| o, in Egs. (4) and (5) must be understood
in the context of (3), If the particle has no rest mass,

we must set || u|/m,=0 (Ref, 9) in Eq. (4). For the
motienof a particle with nonzero rest mass in flat
space~time, the spin four=-vector remains constant and
Eq. (5) draps out,

Lagrange functions with higher derivatives have
been used for a long time in mechanics of clagsical
particles.!%" The corresponding ordinary higher-order
Euler—Lagrange equations are also called Euler—Polsson
equations, In this article we investigate the question of
the existence in pseudo-Euclidean space of invariant
Euler—Poisson third-order equations, The variational
problem is locally defined by a Lagrangian density Lit,
X, v, v')dt on the space J,(R, R 1) of second-order jets,
Letp: T, (RM) -~ Ju(R, R1-) be the 1ocal expression of
the canonical projection of the space T,(R%) =J..(R, RD) -
(0) of 1T-velocities on the manifold C,(R, 1) of one-
dimensional contact elements in R, Identifying R? with
the direct product }Ix R, we denote hy x=(t, x), u=
x=@’% u), 4, ..., ¥ the canonical coordinates on T,(RY),
In the space RY, there arises g parameter-invariant
variational problem with Lagrangian L0 u ) =Lt x,
Yep Ve p), defined locally on T,(R™). We denote by
Eand &= (&, &) the Euler-Poisson expressions gen-~
erated by the Langrangians L, and - L, respectively,
Then &ou® + & w=0 and the relation &0 u i, ) = wCE(, x,
vep,vo p,v'e p). holds. The arbitrary expression.

E(t, x, v', v") is an Euler-Poisson expression if and
only if '
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v

R~ o T(RU™Y)], We assume that the pseudogroup [
~of transformations, which s generated by the vector

E=AY +(V 3)AY +B.v +c,

where the skew-symmetric matrix A, the matrix Ban d
the row ¢ depend only on the variableg t, X, and v ‘a’nd'

satisfy the known Lagranglanity condition,!? The Euier
morphism® £ /y®, R'~1) » T*(R'™1) o\ 7*(R). g o

v )=E@ x, v, v, v edt, is an affine mapping over 1 '(R' )
RO, The Pfaff form with values in the veotoy Space
RI-1* {5 therefore naturally associated with it '
its

e=(e)=Adv'+kdt, k= (v!E)AN 4Byt
The form € and the T(RD!)-valued contact form g =

2 i i ..a__ i '

rwild @’ — v + oot S@V'-v'ldr) gonerate a mogy,
M(e,8) over the algebra of differentia] forms on the
space J,(R, R*™) with values in the vector space. Eng

fleld X= 78+ £- 8y, acts InR™and we also assume thatX ()=
X+ Zjo g+ .'5" () 18 the extension of the generator X onthe

space J(R, R"™), The infinitesimal condition of invari-
ance of the Euler~Polsson equations under the pseudo-
group I' is expressed by the lnvariance of the modyle
M(e, ) under the action of the vector field X() The
defining equations have the form 7

Xy (A)= AA - AL, e
Xy ()= 8k = A Qe #¥d v B ED - k@tvdn

The matrix A is used as an undefined multiplier, In th
following by Invariance we mean the Invariance under::
pseudo-orthogonal transformations, B Fu,

Suppose the Lagrangian £ is translation~invariadt,
Solving the partlal differential equation (7) In conjunctisn
with the Lagranglanity condition,®® we can prove the '+
following assertions:

1, In three-dimensional pseduo-Euclidean space
there exists only a one-parameter family of third-order
invariant Euler—Poiagon equations:

m . iiXu Ueu |
o (@i =@ u)u] = Tl =3 o X (8

If m=0, Eq. (8) is algebralcally equivalent to the equa-
tion of geodesle olroles,

2, In four~dimensional pseudo-Euclidean space
there are no invariant third-order Euler—Polsson equa-
tlons. In this case however, we can, find an invariant
family of Euler—~Polsson equations

m [i_ tk-ou_u~ *UAuNANGT o)
TolP L Tul ~ Tup “To Aul?

+3n'4/\u/\a
w(o/\u)-(a Au),

which depend on the four-vector parameter o=(d, o)
Comparing it with (4), we can show that Eq. (9) describes
the motiou of free particles with rest mass my=m-
[ (o up 32
-
(0:0)(u w)
Ifm=0, Eq. (9) with the supplementary oondition ¢+u=0

describes the motion of massless time~like particles
with constant spin four-vector,

and constant spin four-vector o.
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3, If m =0, the set of integral lines of Eq. (9) con-
tains those geodesic circles along which the unit four-
velocity vector in the motion makes an arbitrary con-

stant angle with a singled-out direction o (-‘-’—“—i“) =0,
u

The geodesic circles are singled-out in the set of inte~
gral curves of Eq. (9) by the conditions m =0 and

(f_.....u_>'=0 and (o )it A u=0.
flul

4, Egquation (8) also has a physical meaning. It
describes the planar motion of a free-particle with rest
mass m || o || and spin o, orthogonal to the plane of mo-
tion. Such motions were analyzed in Ref, 14,

Making use of the Lagrangianity condition,12 we can
verify that there are no Euler—Poisson equations equiva-
lent to the Lorentz—Dirac equations (2).

The Lagrangian for Eq. (8) is not invariant and has
the following general form:

. 1 g (fh1to — liolly) Uy (lialiq — l'lollz)]
20 ul upt® +ugu'
+(@L3y)f + cu—miul,

ugtt® +uyu?

where the arbitrary function satisfies the condition w.d,f.
In a more general approach, let us assume that the
pseudo-Euclidean space has dimension larger than two
and that the metric's signature is different from two,
There will then be no invariant Lagrangian on it, for
which the Euler-Poisson equation is of the third order.

Let X be the generator of Lorentz transfarmations,
specified by the vector wand g, and let expressions’ &,
and E correspond to Eq. (9). Then X(3) (E)= & XE +(8 +
v)E—(E*v)8. Let X he the generator of pseudo-orthog-
onal transformations of the three-dimensional space,
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specified by the vector parameter, w, xT 5 its prolonga-
tion to the space T%(Ra),_ and let expression & correspond
to Eq. (8). Then Xy (8) =w X & We thus conclude that
neither the pseudo-orthogonal transformations nor the
Lorentz transformations are generalized invariance
transformations!? of the corresponding variational prob-
lems. Accordingly, the: proposed method of finding in-
variant Buler—Poisson equations 1s essentially more
general than the methods proceeding from the Langran-
gian,

We have shown that in certain cases the Mathisson
equation and the equation of geodesic circles can be con-
sidered in the context of Ostrogradskii's mechanics and
Kawaguci's geometry, The case of two-dimensional
space was considered in Ref, 15,
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