also remains valid in the spaces of analytic functions
introduced in Ref, 2, : ‘

The function ¢=GM) 4+ Pf is a solution of Eqg. (8)
for g=f, and h="hy +hy+hg, where '

hy =e™ (Lg"™ + 2T(f,, gMNY),

2(m—1) - om~1
h,= 2 g T f'(g(l), g(l—l))’
I=m#1 I=f+1-m

hy =€lly PLD(G™) _ Py,

Consequently, the function Pyf is consistent with the rep-
resentation ‘ :

Pf=Gm) 4 gtm) 4 glm)
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Interest in the motion of classical scalar and spinning
particles in gauge and gravitational fields has recently
Increased. The corresponding equations are generaliza-
tions of the Lorentz equations and the Papapetrou—Pirani
equations.!»? At the same time, the Mathiesson— Papapet-
rou equations with the Pirani condition u A g =0 e =
*¥) yield a third-order equation of motion®

Du® _ caB
Mo TS G T3
u‘gu‘i = 1.

)

The Mathiesson —Papapetrou equations and the preceding
equations of Frenkel' have beén derived from a varia-
tional principle by many authors. The question of the
existence of a Lagrangian for the Mathiesson equation (1),
‘however, has so far not been investigated, On the other
hand, if the particle is not a test particle, the radiational
-frietion force that is in the equation of motion contains a
third-order term® as, e.g., in the Dirac~ Lorentz equation

u% l.lﬁuﬂ ‘a] e
m | = Hy
'°{||uu’ K el s
2e2[ i g uf iguf va (uguf)?
o — — — 3
3 L0ull® Jul® lull ® ul? . (2)

The question of the existence of a Lagrangian for the
Dirac—TLorentz equation so far has not been solved fully,b
Equation (2) is invariant with respect to a change in the
parametrization of the integral curve. If we set my=0

and HOB=Q, the equation becomes the equation for the
geodesic cireles, which determines the motion of relativis-
tic particles and which was investigated in connection with

the p7roblem of a uniformly accelerated coordinate sys-
tem.’

- The parametrically invariant form of Mathiesson
equations (1) can be obtained immediat ely from Dixon's
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&> =y, (0), fo, 0) = V(G™NQ), fo, 0),

R = y(GmQ), fo, 0) - V(GP)(), fo, h).

It is eagy to derive Theorem 2 from these relations and
Theorem 1,

'T, Nishida, Commun. Math, Phys. 61, 119 (1978).
?s. Ukai and K. Asano, Hokkaido Math, J, 12, 811 (1983),

Translated by Edward U, Oldham

equationg®
bee | Dsof
— R By TR Al
T T REaet s, FrY 2plegfl

where A is an ai*bitrary parameter along the world line.

Here we propose an equivalent formulation in terms of the
spin four-vector

Vgl
lulloy = 3 €ap e §7°; .
Du DuP
mouun[uun“ﬂ“—uull’up(“ ua] @)
‘ ‘ D2uf Du? Duf
=|lu au[ 2 Y - —— ____“'Y
Nulio” VTeT lull *eqpy, T 3Vlgl ug NPTy

, ,

—

” u " 4675“ u-Ralj'Yauﬂ u“

It is necessary to supplement Eq. (4) with the condition
flul ugo =0 and with the spin part of Dixon's equations

B
Dg* Du® - ®)
hull? e+ lulloy 5 #* = O

If the world line of the particle is a null geodesic line,

the expression flu |y in Eqs. (4) and (5) should be under-
stood in the sense of Eq, (3). If the particle has no rest
mass, we should set my [ull=0 in Bq, (4).) For the mo-
tion of a particle with nonzero rest mass in a flat space~

time the spin four-vector remains constant and Eq. (5)
can be omitted,

In this communication we examine the question of the
existence of the invariant third-order Euler— Poisson
equations!® in a pseudo-Euclidean space. Locally, the
variational problem is determined by a Lagrangian density
LE, %,v, v')dt in the space of second-order jets & (R,
R, Let p: TyRM—Jp®, R") be the local expression |
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o the canonical projection of the space of 1% velocitias
T}Rn._. Jy®, R")(0) onto the manifold C.®R", 1) of one-
fimenslonal contact elements in R, Identifying RM with
o direct product BX RA-!, we denote the canonical co-
ordinates in T RA by x= ¢, x); u= (uor w) =k dw=i, M W In
the 8pace R, a parametrically Invarlant variational Prob-
jom arises with & Lagrangian £0x u,0) mu®L(, x,vo p,
yop), that is defined locally In TRD, We denote by B
md 8o, §) the Euler—Poleson expressions generated
by the corresponding Lagrange functions L and £, Then
M8, +u-8=0 and the relation &(x u, 4,4) = u®E(r, x,vep,
yop,v'op).  holds. The arbitrary expression E(t, x, v'
v") ig then the Euler—Lagrange expression if and only if

E=A v+ dy)A v +B-v' 4 g 6)

where the skew=-symnielric matrix A, the matrix B, and
the column vector ¢ depend only on the variables t, x, and
y, and the following conditions are satisfied!!;

at).“A/“ = (), ZB( 7 BDxA” = 0,
2 B =4 3511471 * Ak 2Dy dyy = 0,
B, 06y~ DyByp = 0,

ZBUkau“L‘” - 4ax“B”k + Dx’aukA” + 6Dy

Adqig) ~ 2Dxd, (¢ ~ Dx*A =0,

The symbols Dx and Dy denote the truncated total dif-
ferential operators Dy = 8¢ +¥ +dx, Dy =Dy +v' +dy. The
puler morphism!® Bt vy (R, R"™') »T*Re , T'R™!, E(, x,
v vy=dt eE(r, x, v, v, v"), 1aan affine mapping
aver J,®%, R™1), A Pfaffian form ls therefore assooclated
with it with values Ln the vector space R™ ™

cemAdv tkdt, K=y dy)A v +Bov w

¥

ax[fA'l*l =0,

@)

"The form € and the contact TR™™ valued form ¢ = (dx -
fdf) od + (@' —v''dt) ® ¥y1  generate a module (e, 8)
over the algebra of differential forms in the space Jy(R,
R™!) with values in the vector space End(R""'* @ TR" 1),
Letthe pseudogroup of trans for mations I' generated b(y the

vactor felds X = T8¢+ £ * By, and Xy =X+£M). y+é 2,
Bk, ot E(X), By (r—y) [the continuation of the generator

X into the space I (R, R™1)] act In R1, The Infinitesimal
condition for the invariance of the Buler=Polsson equa-
tions with respect to the pseudogroup I' is Included in the
Invariance of the module (e, 8) under the action of the
vector flold X;. The definltive equations are

KW= A A=A D, X ()= Ack=A D E® ~kDyr. (9)

The matrix A serves as an undetermined multiplier, The
Ivartance below 18 assumed to be with respect to the
pseudo-orthogonal group of transformations,

Let the Lagranglan £ be translationally Invariant.
By solving partial differential equations (7) and (9) we can
prove the following assertions,

. L. In three-dimensional pseudo-Euclidean space there
exists only a one-parameter family of invariant third-
order Euler—Poisson equations;

iXu

o e (- u)
TTE [ll“li'u—- (U‘ll)ll] “W*'

3t Xt = 0,

hall® o

m=0, gq, (10) 18 algebraically equivalent to the equation
for the geodesic eircles,

2. There are no third-order invarlant Euter—Poisson
- ®uations in a four-dimensional pseudo~Euclidean space,

459 Sov. Phys. Dokl, 30(8), June 1988

B

However, in this case it is possible to find an invariant
family of Euler ~Poisson equations that depend on the
four-vector parameter o= ¢?, 0)
m i ()
Tol® [m B W“]
.+¢(ii/'\u'/\o) L OAD(oA) 1)
_-__T“o/\ull ——‘*T_]Ia/\uﬂ w(@AuMNg)=0.

A comparison with Eq. (4) shows that Eq. (11) describes

the motion of free particles with a rest mass mg =m[l -

(0-u)® P
(o 0) (u-u)

m=0, Bq. (11), with the additional condition ¢ »u=0, de-

scribes the motion of massless timelike particles with a
constant spin four-vector.

and a constant spin four-vector o. If

3. If m=0, the set of integral lines in Bq, (11) in-
cludes those geodesic circles for which the unit four-
velocity vector forms a constant arbitrary angle with the
direction chosenby o: (¢ *u/Jfu|)+=0. The geodesic
circles are separated from the set of integral lines in Eq.
(11) by the conditions m =0 and (o w)i Au=0,

" 4, Equation (10) also has a physical meaning. It de-
scribes the planar motion of a free particle with a rest
mass of m ¢ || and a spin ¢ that is orthogonal to the plane
of motion, These motions were considered in Ref, 13.

Using condition (7), we see that there are no Buler—
Polsson equations that are equivalent to the Dirac— Lorentz
equation [Eq. (2)]. : :

The noninvariant Iagrangian for Eq.‘ {10) has the fol-
lowing general form: ‘
1 . Uy (&1“0 ""40"1) u1 (l'lgllo —-'l.lolh) .

21wl ud+ud ud = u} : L A

+ @) e u=miull,

where the arbitrary function f{u) satisfies the condition
u+9yf =0, In'general, suppose:that the pseudo-Euclidean
space has a dimension greater than two and a signature
not equal to two,  An invariant Lagrangian, for which the
Euler—Poisson equations are third-order equations, will
then he missing in this space. o

Let X be the generator of the Lorentz transformations
which is defined by the vector parametersw and B, and let
the expression & correspond.to Eq. (11), Then X4(E) =
wXE+ (8 v)E—-(v*E)3. Let X be the generator of the
pseudo~orthogonal transformations in three—dimensi%nal
gpace, which is defined by the vector parameter w, X3,
its continuation into the space T3B3. and let the expression
& correspond to Eq, (10). Then X, (&) = wX & We
thus conclude that the pseudo-orthogonal transformations
and the Lorentz transformations are not the generalized
invariance transformations.}? The proposed method for
finding the invariant Euler—Poisson equations is thus
much more general than the methods arising from the
Lagrangian, : o

We showed that the Mathiesson equation and the equa-
tion for the geodesic circles in some cases can be con-
sidered in the context of Ostrogradskii mechanics and
Kawaguchi geometry. The case of the two-dimensional
gpace was considered in Ref. 14 S
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In the present paper, we study the solution of & non-
linear equation of gravitation theory,! This problem
has been formulated by Academician A. A, Logunov in con-
nection with the new approach he developed to describe
the gravitational interaction in Minkowski space,?

One version of the gravitational field theory which
uses this approach is based on an incomplete geometrized
densgity of the Lagrangian

e

T g ME N, ~ T+ Ly G va),

where the relation gjj =i + ¢j) is the Riemann space—
time metric tensor gj) with the metric tengor Yik of the
Minkowski space and with the gravitational field Pik G is
the gravitational constant, c is the speed of light, Lyr(gik»
@A) is the density of the Lagrangian for matter, which -
depends on the metrie tensor gik and on the remaining
matter fields pa, and Hl& is the tensor which is obtained
from the Christoffel symbols through replacement of the
partial derivatives by the covariant derivatives with re-
Spect to the metric Yik- Furthermore, new physical con-
ditions, which allow one to limit the spin states of the
gravitational field, have been introduced in this theory,

In the approach developed by Logunov, the laws of
the conservation of energy and momentum and of angular
momentum are valid for a closed system. Ten gravita-
tional field equations have been obtained in this theory;
the first six are the Hilbert—Einstein equations, and the
four others reflect the nature of the gravitational field.
In analyzing the different solutions of this theory, the prob-
lem arises of determining the functional dependences of the
coordinates of Riemann space—time on the coordinates of
Minkowski space, Knowing this dependence, one can obtain
some very important physical data about the distribution
of the gravitational field in 8pace, about the nature of the

forces acting on a test particle, the time for it to fall onto
the force center, ete.

From the mathematical point of view, the problem of
determining the functional dependence of the Riemann
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space—time coordinates on the coordinates of Minkowski
space reduces to the solution of a system of non-linear
differential equations. In particular, in the case of a static,
spherically symmetric gravitational field, this system is
reduced to a single equation

w2 _O0m  (-amrm 25y (1)
YT Y —am) y [y’+ x’]' o

where m is the mass of the spherically symmetric body,
and x is its radius,

The problem consists of finding a solution of this
equation which satisfies the condition y(x)/x~1 for x — %,
which is necessary to satiafy Newton's law of gravitation
{the external condition). Equation (1) was analyzed in Ref,
1 for the boundary conditions (m=2)

YO =2 ye)>2 foal xe (0, *);
y ) _ ~ (2)

— ]’

" lim "
Xk oo
where y(x) € €°[0, %) N C?(0, ). The following theorem
for the existence of a global solution of Eqs. (1) and (2)
was proved in Ref, 1.

Theorem, The solution y(x) of Eqs,

(1) and (2) exists along the entire semi- .

axis [0, =), where y(x) Is an increasing
function on the half-line [0, w)

We emphasize that a numerical calculation of the
solution y (x) was carried out on a computer in Ref, 1.
This calculation showed that at large x the solution y(x)
behaves as x+1, i,e.,

Yoy ~x+1,

We are thus led to ask whether the global solution of
the boundary value problem in (1) and (2) is unique and

whether there is a more accurate agymptotic behavior of
the solution yx).

In this paper we prove the following two theorems.

Theorem 1, The solution y(x)€&C*( )

of Eq. (1) withm = 1 on the semlaxis (a, ®),
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