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Abstract

We offer an example of the second order Kawaguchi metric function the
extremal flow of which generalizes the flat space-time model of the semi-
classical spinning particle to the framework of the pseudo-Riemannian
space-time. The general shape of the variational Euler–Poisson equation
of the fourth order in the (pseudo-)Riemannian space is being developed
too.

Introduction. In 1946 Fritz Bopp in an attempt to describe the relativis-
tic motion of the charged particle influenced by self-radiation in flat space-time
considered a Lagrange function [1]1), which, in the absence of the external elec-
tromagnetic field, may be expressed in terms of the particle’s world line Frenet
curvature as follows:

Lk = (k
2
+ A)‖u‖ ,(1)

where u denotes the derivative ẋ of the configuration space variable x with
respect to the evolution parameter ξ along the particle’s world line xn(ξ). Later
different modifications of Bopp Lagrangian were introduced, among them a more
general expression was investigated by Lovelock in 1963 [2]2). Then, in 1972,
Riewe, still staying in the framework of flat space-time, proposed an equation
of the fourth order with the purpose to give a description of the semi-classical
“Zitterbewegung” of test particle with an internal degree of freedom:

d
4
xn

ds4 + ω
2 d

2
xn

ds2 = 0 ,(2)

where the derivatives are calculated with respect to the natural parameter. Re-
cently in papers [4] and [5] I showed that the Riewe equation follows from the
Bopp Lagrangian under the a posteriori imposed constraint k

2
= 1

3 A + 2
3 ω

2
.
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This work was supported by the grant GAČR 201/09/0981 of the Czech Science Founda-

tion.
1)Numbers in brackets refer to the references at the end of the paper.
2)We even do not try to present the exhaustive bibliography on the subject here.

1



The goal of the present communication is to obtain a generalization of the equa-
tion (2) from the variational principle with the fundamental function (1) in the
(pseudo-)Riemannian case. The space, endowed with the metric function (1),
may be considered as an example of a Kawaguchi space, because this function Lk

satisfies Zermelo conditions.

§ 1. The covariant momenta. Let us introduce the following change
of local coordinates in the second-order velocities space:

{xn, un, u̇n} 7→ {xn, un, u′n} ,

where the prime stands for the covariant derivative. Let us also denote the
local expression of the Lagrange function in terms of the new coordinates by L̃.
The following formulæ produce then the receipt of the recalculation of partial
derivatives:

∂L

∂un
=

∂L̃

∂un
+ 2

∂L̃

∂u′q
Γq

mnum,
∂L

∂xn
=

∂L̃

∂xn
+

∂L̃

∂u′q
∂Γq

ml

∂xn
ulum .(3)

For further use we recall the familia conventions from the Riemannian ge-
ometry

a′ n =
dan

dξ
+ Γn

lmamul, a′n =
dan

dξ
− Γm

lnamul ,(4)

∂gmn

∂xk
= gmlΓl

kn + gnlΓl
km ,(5)

Rkmn
l =

∂Γl
kn

∂xm
− ∂Γl

mn

∂xk
+ Γl

mqΓq
kn − Γl

kqΓq
mn .(6)

Let us introduce the covariant momenta

π(1) =
∂L̃

∂u′
, π =

∂L̃

∂u
− π(1)′ .(7)

Proposition 1 Let some Lagrange function L depend on all the variables ex-
clusively through the differential invariants γ = u·u, β = u·u′, and α = u′ ·u′
only. In this case the Euler–Poisson expression is:

En = −π′n − π(1)
lRnkm

lumuk(8)

The proof is given in steps:

Step 1. In second order Ostrohrads’kyj mechanics the Euler–Poisson expres-
sion E , that constitutes the system of variational Euler–Poisson equations {En =
0} is known to be conveniently put down in terms of the momenta

p(1)
n =

∂L

∂u̇n
, pn =

∂L

∂un
− dp

(1)
n

dξ
,(9)

as follows
En =

∂L

∂xn
− dpn

dξ
= 0 .(10)
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Step 2. The covariant momentum π, profiting from the first of the for-
mulæ (3) together with the covariant derivative pattern (4), is presented as:

πn =
∂L

∂un
− 2Γq

mnumπ(1)
q − π(1) ′

n .(11)

The covariant derivative of the momentum π(1), again profiting from the pat-
tern (4), writes down as

π(1) ′
n =

d

dξ
π(1)

n − Γm
lnπ(1)

mul .(12)

Step 3. in terms of the covariant quantities above, the non-covariant quan-
tity pn from the expression (9) is given by the following calculation:

pn = πn + 2Γq
mnumπ(1)

q + π(1) ′
n − (by virtue of (11))

− d

dξ
π(1)

n (by virtue of (7))

= πn + Γq
mnumπ(1)

q (by virtue of (12)).(13)

Differentiating (13) and applying the pattern (4) in order to express the ordinary
derivatives of the variables π and u in terms, respectively, of the covariant
derivatives π′ and u′, and implementing the guise (12), produces:

d

dξ
pn =

(
π′n + Γl

mnπlu
m

)
+

∂Γl
mn

∂xk
ukumπ(1)

l

+
(
Γl

mnu′m − Γl
mnΓm

qkuquk
)
π(1)

l + Γl
mnum

(
π(1) ′

l + Γq
klπ

(1)
qu

k
)

= π′n +
(
π(1) ′

l + πl

)
Γl

mnum + π(1)
lΓl

mnu′m

+ π(1)
qu

muk

(
Γl

mnΓq
lk +

∂Γq
mn

∂xk
− Γq

lnΓl
mk

)
.

Step 4. Now the Euler–Poisson expression (10) takes on the shape

En =
∂L̃

∂xn
− (

π(1) ′
l + πl

)
Γl

mnum − π(1)
lΓl

mnu′m − π′n − π(1)
lu

mukRnkm
l .

Let us show, that the first four addends in this expression produce zero,—
under the assumptions of the proposition we are now proving. For the sake of
constructing the expression

∂L̃

∂xn
=

∂L̃

∂γ

∂γ

∂xn
+

∂L̃

∂β

∂β

∂xn
+

∂L̃

∂α

∂α

∂xn
,(14)

using formula (5), we calculate:

∂γ

∂xn
= 2Γl

mnumul ,
∂β

∂xn
= Γl

mnumu′l + Γl
mnu′mul ,

∂α

∂xn
= 2Γl

mnu′mu′l .
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On the other hand, applying the definitions (7), we get:

π(1)
n =

∂L̃

∂β
un + 2

∂L̃

∂α
u′n , π(1) ′

n + πn = 2
∂L̃

∂γ
un +

∂L̃

∂β
u′n .(15)

Extracting these two expressions from (14) produces zero ♥.

§ 2. The generalized variational equation of a structured particle
in Riemannian space. Now it is straightforward to obtain the equation of
the extremal world line for the model (1). Recalling the expression of the first
Frenet curvature,

k =
‖u ∧ u′‖
‖u‖3

,

one sees that in terms of the invariants γ, β, and α, the Lagrange function (1)
takes the shape

Lk =
αγ − β2

γ5/2
+ Aγ1/2 ,

from where by means of the formulæ (15) together with the differential prolon-
gation of the first of them,

π(1)′
n =

(
d

dξ

∂L̃

∂β

)
un +

∂L̃

∂β
u′n + 2

(
d

dξ

∂L̃

∂α

)
u′n + 2

∂L̃

∂α
u′′n ,

one immediately obtains:

π(1) =
2

‖u‖3
u′ − 2 u·u′

‖u‖5
u ,(16)

π =

(
2 u·u′′
‖u‖5

− u′ ·u′
‖u‖5

− 5 (u·u′)2
‖u‖7

+
A

‖u‖

)
u +

6 u·u′
‖u‖5

u′ − 2

‖u‖3
u′′.(17)

§ 3. Relation to physics.

The Riewe equation. The Euler–Poisson equation (8) for Lk inherits the
property of parametric ambivalence from the same property of the correspond-
ing variational problem with the fundamental function (1) due to the fulfillment
of the Zermelo conditions. Thus it is possible to pass to the natural parametriza-
tion in the expression (17) while substituting it in (8). Then one gets

D

ds
[(−3 u′s ·u′s + A)un − 2 (u′′s )n] = −π(1)

lRnkm
lumuk .

The Riewe equation (2) follows from this expression in flat space-time on the
surface k = const.
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The Dixon equations. General relativistic top with inner angular momen-
tum Snm in pseudo-Riemannian space-time is in common knowledge described
by means of the system of first-order equations [6]3)





P ′n = −1
2

Rnm
klumSkl ,

S′nm = Pnum − Pmun .
(18)

By the skew-symmetric property of the Riemannian curvature tensor it easily
follows that the first of the above equations is regained by putting P = π and
S = u ∧ π(1) in (8).

Proposition 2 Under the assumptions of the Proposition 1 the governing sys-
tem of equations (18) does not depend on any particular appearance of the fun-
damental function L.

This follows from formulæ (15) along with the similar formula for π ♥.

Institute for Applied Problems
in Mechanics and Mathematics

15 Dudayev St.
290005 L’viv, Ukraine

E-mail: matsyuk@lms.lviv.ua

References

[1] F. Bopp: Quantentheorie der Feldmechanik, Zf. für Naturf., 1 (1946), 196–
203.

[2] D. Lovelock: Classical relativistic dynamics of “spin” particles, il Nuovo
cim., 29 (1963), 1126–1142.

[3] F. Riewe: Relativistic classical spinning-particle mechanics, il Nuovo cim.,
8 B (1972), 271–277.

[4] R. Matsyuk: A covering second–order Lagrangian for the relativistic top
withouo forces, Proc. Inst. Math. NAS of Ukraine, 43 (2002), Part 2, 741–
745.

[5] R. Matsyuk: Canonical formalism for quasi–classical particle “Zitterbe-
wegung” in Ostrohrads’kyj mechanics, in Differential Geometry and Its
Applications, Proc. Conf. Prague, August 30–September 3, 2004, Charles
University, Prague, 2005, 629–637.

[6] W. G. Dixon: Dynamics of extended bodies in general relativity I. Momen-
tum and angular momentum, Proc. Roy. Soc. London. Ser. A, 314 (1970),
499–527.

3)The definition of the curvature tensor, adopted in the present communication, differs in
sign from the one used in the Dixon’s paper

5


