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It is common in the similarity theories of differential equations to consider transfor-
mations which leave invariant some prolonged manifolds in jet-spaces of appropriate order
within which the integral manifolds of a given system of partial differential equations lie [1].
From this invariance it follows that the solutions of the system in charge transform but
into some other solutions. However, we are not sure enough that the prolonged manifold
is “densely” covered by the integral manifolds. If not, then some additional symmetries
may occur. In this paper we consider a symmetry of a differential equation be defined in
general as a generator of such a transformation, which carries every solution into nothing
more than some other solution.

Then we reformulate this into slightly different language of the algebraic invariance
of some vector valued exterior differential system. This has an advantage that we can
use Lagrange multiplies method to solve the problem. In the case of ordinary differential
equations the two approaches (algebraic and the general one) coincide due to the com-
pleteness of Pfaff systems (that is that every differential form, annulled by every solution
of the system expands by the Lagrange multiplies into the elements of the differential
ideal, generated by the system itself).

The Euler-Lagrange equations of the variational calculus (of arbitrary order) naturally
fall into the framework of vector bundle valued exterior differential systems when the
dependent variables are globally segregated from the independent ones [2]. This is the case
of the field theory. In general such segregation depends on the local chart µ : M → Rp×Rq
which constitutes a way of introducing a fibred structure in the manifold M . In applying
infinitesimal considerations we can use this structure every time the manifold M is not
endowed by a fibred structure in an intrinsic manner. If Y denotes a fibred manifold over

a base Z, we take Ys
def
= JsY to mean the space of all the jets of order s of cross-sections

of the surmersion π : Y → Z. Then µJ : Ys → Js(Rp × Rq) ≈ Js(Rp,Rq) will denote
the standard s-order prolongation of the local chart µ.

1. Vector bundle valued differential systems. Let E → B, E1 → B1, F → X,
F1 → X1, and E′ → B be some fibre bundles, let Γ(E) denote the set of smooth cross-
sections of the fibred manifold E and let F(B) stand for the ring of smooth functions
defined on the manifold B. We shall denote the tensor product of the inverse image of
vector bundles with respect to some manifold morphisms f : B → X and f1 : B → X1

by ⊗B . If the manifold B is fibred over some manifold N , the semi-basic differential
forms over the manifold B with values in the vector bundle F are defined as smooth
cross-sections of the vector bundle ∧T ∗N ⊗B F. They constitute an F(B)-submodule,
denoted by F

B
(N,F ), of the graded module F(B,F ) = Γ(∧T ∗B ⊗B F ). Every bundle
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homomorphism h : F → F1 over the base homomorphism h : X → X1 satisfying
f1 = h ◦ f obviously defines the moduli homomorphism h# : F(B,F ) → F(B,F1).
The canonical vector bundle pairing E × Hom(E,E′) → E′ defines an exterior product
∧ : F(B,E)×F(B,E∗⊗E′)→ F(B,E′). If we think of a cross-section ϕ ∈ F0(B,E∗×E′)
as a B-morphism φ̂ : E → E′, then φ̂#ω = ω ∧ϕ for any ω ∈ F(B,E).

The vector bundle End(E) is a bundle of algebras with the composition rule that of
the superposition of endomorphism. This fibrewise composition defines the structure of a
graded non-commutative algebra in the F(B) module of End(E)-valued differential forms
which we denote by F(E,EndE). The vector bundle E may be viewed as the bundle of
End(E)-moduli with respect to the pairing E × End(E) → E. This pairing makes the
F(B)-module F(B,E) into a graded module over the algebra F(B,EndE).

Now let h : E1 → E be a vector bundle homomorphism over a base morphism g :
B1 → B and let h1 denote the corresponding induced B1-homomorphism of vector bundles
h1 : E1 → g−1E. The dual vector bundle homomorphism h1

∗ : (g−1E)∗ → E1
∗ denotes,

by virtue of identification (g−1E)∗ ≈ g−1(E∗), some g-comorphism h∗ : g−1(E∗) → E1
∗.

If set E = TB, E1 = TB1, one gets the action h# of h on the ordinary differential
forms on B. If αg stand for the inverse image of the cross-section α ∈ F(B,R), then
h#α = (∧h)∗ ◦ αg ∈ F(B1,R). Given some cross-section ω ∈ F(B,E) and recalling the
notion of its inverse image ωg ∈ Γ(∧T ∗B⊗B1 E), the differential form g?ω ∈ F(B1, E) is
being defined by the superposition of mappings: g?ω = ((∧Tg)∗⊗id)◦ωg. If the morphism
g has a canonical prolongation to a vector bundle g-comorphism k : g−1E → E1, then the
notation g#ω will mean the differential form k#g

?ω = ((∧Tg)∗ ⊗ k) ◦ ω.
The functor g? is consistent with the tensor product and contraction operations. Let

throughout this paragraph the manifold B be parallelizable and the module Γ(E) be
free. Then, if ω = α ⊗ γ ∈ F(B,E) ≈ F(B,R) ⊗ Γ(E) and if Ω = β ⊗ ϕ ∈ F(B,E∗ ⊗
E′) ≈ F(B,R) ⊗ Γ(E∗ ⊗ E′), then for the inverse images of the cross-sections ω, Ω, and
ω∧Ω = (α∧β)⊗〈γg,ϕ〉 , it is true that (ω∧Ω)g = (αg∧βg)⊗〈γg,ϕg〉 ∈ Γ(∧T ∗B⊗B1

E′).
Composing with (∧Tg)∗ one gets g?(ω ∧Ω) = g?ω ∧ g?Ω.

A one-form ϑ ∈ F1(B, TB) may be thought of as a B-homomorphism of vector bundles
θ̂ : TB → TB; then the dual homomorphism θ̂∗ : T ∗B → TB acts over the cross-
sections from Γ(T ∗B) ≡ F1(B,R) in an obvious manner and is being extended to F(B,R)
as a differentiation of degree 0 acting trivially on the ring of functions. We denote this
extended action by ϑ∧̄. Again within local considerations for a parallelizable B and
Γ(E) being free, we can identify F(B,EndE) with the tensor product F(B,R) ⊗

F (B)

Γ(EndE) and define ϑ∧̄(α⊗ϕ) = (ϑ∧̄α)⊗ id(ϕ). Consider the ideal I ≡ I(B) ≡ I(ϑ) =∑
d>0

I(d) = ϑ∧̄F(B,R) in the algebra F(B,R). Consider also the F(B,R)-submodule

I(B,EndE) = ϑ∧̄F(B,EndE) in the F(B,R)-module F(B,EndE). We denote by
I(B,E) the submodule F(B,E) ∧ I in the module F(B,E) over the algebra F(B,R).
It is clear that I(B,E) is also a submodule over the algebra F(B,EndE) and that
I(B,E) = F(B,E) ∧ I(B,EndE). In fact, I(B,E) is generated over F(B,R) by the
F0(B,EndE)-submodule of one-forms

P(B,E) = ϑ∧̄F1(B,E) = F0(B,E) ∧P,

where P ≡ P(B) ≡ I(1) = ϑ∧̄F1(B,R) is an F(B)-submodule, that is the ordinary Pfaff
system.
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Definition 1 An exterior differential system S ≡ S(F ) (with values in the vector bundle
F ) is an F(B,EndF )-submodule of the module F(B,F ). A Pfaff system is an exterior
differential system, generated by one-forms. Let a manifold Z be given. We call the
germ of an immersion σ : Z → B be a solution of the exterior differential system S
if σ?S = 0. Two exterior differential systems (in general, over different manifolds) are
called equivalent if the sets of their solutions coincide (in general, are isomorphic).

Let over a manifold B be given an exterior differential system S with values in the
vector bundle E and an exterior differential system S′ with values in the vector bundle
E′ and let sol(S) denote the set of solutions of the system S. If S∧F(B,E∗⊗E′) ⊃ S′,
then sol(S) ⊂ sol(S′).

Definition 2 Exterior differential systems S and S′ are algebraically equivalent, if at the
same time both S ∧ F(B,E∗ ⊗ E′) ⊃ S′ and S′ ∧ F(B,E′∗ ⊗ E) ⊃ S.

Lemma 1 Two Pfaff systems which are algebraically equivalent, are equivalent.

This follows from the completeness of Pfaff systems.
Let S̃ denote the image of the exterior differential system S under the projection j :

F(B,E)→ F(B,E)/I(B,E). In view of the inclusion I(B,E)∧F(B,E∗⊗E′) ⊂ I(B,E′)
the action ∧ of the elements from F(B,E∗⊗E′) over the quotient module is defined and

if for this action S ∧ F(B,E∗ ⊗ E′) ⊃ S′, then also S̃ ∧ F(B,E∗ ⊗ E′) ⊃ S̃′.

Definition 3 A solution of the system (S,ϑ) is a germ of an immersion σ : Z → B,
such that σ?j−1(S̃) = 0.

Let over the manifold B1 be specified a differential form ϑ1 ∈ F(B1, TB1) such
that g?ϑ = ϑ1∧̄% ∈ P(B1, g

−1TB) for some % ∈ F(B1, TB). Taking into account the
definitions of the actions g?, ϑ1∧̄ and identifying the differential forms ϑ, ϑ1, and % with
the corresponding vector bundle homomorphisms θ̂, θ̂1 and ρ̂ : TB1 → g∗TB we have
θ̂g ◦ (Tg)1 = ρ̂ ◦ θ̂1, where θ̂g is the inverse image of the homomorphism θ̂ with respect to

the morphism g. For the conjugated homomorphisms we also have (Tg)∗ ◦ θ̂g∗ = θ̂1
∗ ◦ ρ̂ ∗.

In view of the definition of the action ρ̂# on the differential form α ∈ F1(B,R) it
holds that

g?(ϑ∧̄α) = (Tg)∗ ◦ θ̂g∗ ◦ αg = θ̂1
∗ ◦ ρ̂ ∗ ◦ αg = ϑ1∧̄ρ̂ ∗α ∈ P1 ≡ P(B1).

It follows that g?P ⊂ P1, thus g?I ⊂ I1 and also

g?I(B,E) = g?F(B,E) ∧ g?I ⊂ F(B1, g
−1E) ∧ I(B1, g

−1E),

so the action g? of the homomorphism g over the quotient module F(B,E/I(B,E)) is
defined.

2. The Lie derivative. Let w : B →W be a morphism of manifolds and let wt denote
its deformation. Then ẇt(0) : B → TW is a lift of the morphism w. If the manifold
W is fibred over the manifold B and if every wt is a cross-section, then ẇt(0) belongs
to the vertical tangent bundle VW ⊂ TW . Let ξ and η̄ be some vector fields on the
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manifolds B and W respectively. The Lie derivative [3] of the morphism w with respect
to the pair of vector fields ξ, η̄ is defined by the expression Lξ,η̄w = (Tw) ◦ ξ − η̄ ◦ w.
If w is a cross-section and if the vector field η̄ is projectible onto the vector field ξ, then
the Lie derivative Lξ,η̄w belongs to VW . Let under this assertions exp

B
tη̄ denote the

one-parameter induced family of diffeomorphism over B, corresponding to exp tη̄ and let

wt = exp
B

(−tη̄) ◦ wexp tξ = exp(−tη̄) ◦ w ◦ exp tξ.

Differentiating at t = 0 we obtain

ẇt(0) = −(exp tη̄) ◦ w + (Tw) ◦ (exp tξ)̇ = Lξ,η̄ w.

If the fibre bundle W is a vector bundle, then VW ≈ W ×B W , the first component of
ẇt(0) coincides with the initial cross-section w, and the second one is identified with the
Lie derivative Lξ,η̄ w itself. In a special case setting W = ∧T ∗B ⊗ E and taking η̄ to
be build up from the standard lift to the cotangent bundle of the vector field ξ together
with some vector field η on E, projectible into ξ, we agree with truncated notation of

Lξ,η
def
= Lξ,η̄.

Definition 4 A diffeomorphism g : B → B is called a symmetry (vs an algebraic
symmetry) of the exterior differential system S(E), if the exterior differential systems
g?S and S itself are equivalent (vs algebraically equivalent). A vector field ξ on the
manifold B is called an infinitesimal symmetry (vs an algebraic infinitesimal symmetry)
of the exterior differential system S if for all t the transformation exp tξ is a symmetry
(vs an algebraic symmetry) of the system S.

That ξ is an algebraic infinitesimal symmetry of the exterior differential system S
means that

(exp tξ)?S ⊂ S ∧ F(B,E∗ ⊗ (exp tξ)−1E).

In particular, whatever the vector field η ∈ Γ(TE), projectible into the vector field ξ be,
the inclusions

(exp−tη)
B#

(exp tξ)−1S⊂S ∧ F(B,E∗ ⊗ (exp tξ)−1E ∧ F0(B, (exp tξ)−1?(E∗ ⊗ E))

⊂S ∧ F(B,E∗ ⊗ E) = S

hold. By differentiating with respect to the parameter t we conclude that if ξ is the
infinitesimal symmetry of the system S, then

Lξ,ηS =
d

dt
(exp tξ)?S(0) ⊂ S

for every vector field η, projectible into the field ξ. In the case of a trivial vector bundle
E, one can put η = (ξ, 0) and use the notation Lξ,0 in place of Lξ,(ξ,0).

Definition 5 A diffeomorphism g : B → B is called a symmetry (vs algebraic symme-
try) of the system (S,ϑ), if g?I ⊂ I and if the exterior differential systems g?S̃ and
S̃ itself are equivalent (vs algebraically equivalent).

An (algebraic symmetry of system (S,ϑ) is symmetry (vs an algebraic symmetry) of
the exterior differential system S + I(B,E) and vice versa. In that case LξI ⊂ I and

Lξ,ηS̃ ⊂ S̃, that is
Lξ,ηS ⊂ S + I(B,E) . (1)
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3. Symmetries of the Euler-Lagrange equations. On the manifold Ys+1 of the jets
of order s + 1 of the cross-sections of the fibred manifold π : Y → Z there exists
a canonical contact differential form ϑs ∈ Fs+1(Ys, Vs), semi-basic with respect to the
projection πs+1

s : Ys+1 → Ys which takes values in the vector bundle Vs of vertical
tangent vectors to the surmersion πs : Ys → Z and such that Pfaff system Ps =
ϑs∧̄F1

s+1(Ys,R) is nothing but the Cartan co-distribution. (We use subscript s instead of
Ys where possible). For an open set Us ⊂ Ys and applying the projection πsv : Ys → Yv
let us put Iv(Us) = I(πsv|Us

? ϑv) and let υJ : Ys → J(Rp,Rq) be the canonical lift of a

local fibred chart υ on the manifold Y . A lagrangian is an element λ̃ of the quotient sheaf,

generated by the quotient moduli Fp
Ur

(Y,R)/I
(p)
0 (Ur), which we shall briefly denote by

F p
r (Y,R)/I (p)

0 (Yr). (We denote the corresponding sheaves by the calligraphic characters).
There can always be found, at least locally, a representative λ, semi-basic with respect
to the projection πr : Yr → Z, that is λ ∈ Frp(Z,R). The Euler-Lagrange expressions
which correspond to the Lagrange density υJ

−1?λ ∈ Frp(Rp,R) naturally take the shape
of the components of the local expression of some differential p-form

ε ∈ F p
2r(Z, V0

∗) (2)

corresponding to the lagrangian λ [4].
The symmetries of the Euler-Lagrange equations are nothing else but the symmetries

of the system (Sε ,ϑ2r−1), where the module Sε is generated by the vector bundle valued
differential form ε. From here on we shall deal with variational calculus in one inde-
pendent variable. As an example we consider a system of third-order ordinary differential
equations

Ea = 0 . (3)

Let Y = Rp×Rq, and let the canonical coordinates in the manifold Jr(R1;Rq) be denoted
by t, x = (xa), v = (va), v′ = (v′a), . . . , v(r−1) = (v(r−1)a).

This corresponds to p = 1, k = q in (2). We introduce a vector valued differental
one-form

ε = Ea dxa ⊗ dt , (4)

where the expressions Ea are the Euler-Poisson expressions. Applying the general criterion
of [5] for an arbitrary system of differential equations to be a system of Euler-Poisson
equations, it was established in [6] that the vector expression E = {Ea} in (3) must take
the shape of

E = A . v′′+ (v′.∂v)A . v′+B . v′+ c , (5)

where the skew-symmetric matrix A, the matrix B, and the column vector c depend on the

variables t, x, v = dx/dt, and satisfy the following system of partial differential equations

in t, xa, and va [6, 7]

∂
v[aAbc] = 0

2B[ab] − 3 D
1
Aab = 0

2 ∂
v[aBb]c − 4 ∂

x[aAb]c + ∂
xc
Aab + 2 D

1
∂
vc
Aab = 0

∂
v(acb) −D

1
B(ab) = 0

2 ∂
vc
∂
v[acb] − 4 ∂

x[aBb]c + D
1

2 ∂
vc
Aab + 6 D

1
∂
x[aAbc] = 0

4 ∂
x[acb] − 2 D

1
∂
v[acb] −D

1
3 Aab = 0 .

(6)
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In (6) Ds denotes the generators of Cartan distribution,

D
2

= v′.∂v + D
1
,

D
1

= ∂t + v .∂x .

Let ϑ
2

, ϑ
3

denote the canonical contact forms

ϑ
3

=
∂

∂v′a
⊗ (dv′

a − v′′
a
dt) +ϑ

2
,

ϑ
2

=
∂

∂va
⊗ (dva − v′

a
dt) +

∂

∂xa
⊗ (dxa − vadt) .

Along with the differential form ε, we introduce another one,

ε = Aab dxa ⊗ dv′
b
+ Ka dxa ⊗ dt ,

K= (v′.∂v)A . v′+B . v′+ c .

Exterior differential systems, generated by the forms ε and ε, are equivalent:

ε− ε = ϑ
3
∧̄(Aab dxa ⊗ dv′

b
) . (7)

Now it is time to put in the concept of symmetry. Let

x = t
∂

∂t
+ xa

∂

∂xa
(8)

denote a generator of some local group of transformations of the manifold R × Rq, its
successive prolongations to the space Js(R;Rq) denoted by xs ,

x
2

= va
∂

∂v′a
+ x

1
.

The demand that the exterior differential system, generated by the vector valued dif-
ferential form ε, be invariant under the infinitesimal transformation x incarnates in con-
sistency with (1) into the following equation

L(x
2

)(ε) = Ξ . ε+ϑ
2
∧̄ω , (9)

where the elements of a matrix Ξ ∈ F0(J2(R;Rq); Hom(Rq∗;Rq∗)) and the coefficients of a

π2
1-horizontal Rq∗-valued one-form ω ∈ F1

2(J1(R;Rq);Rq∗) depend upon the variables t, x,

v, and v′. Both Ξ and ω play the role of Lagrange multipliers. Splitting equation (9) with

respect to independent differentials dt, dxa, dva, and dv′a, gives the following system of

partial differential equations

L(x
1

)Aab = Ξa
c Acb − Aac

∂

∂v′b
vc (10)

L(x
2

)Ka = Ξa
b Kb − AabD2

vb − KaD1
t . (11)
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Variational problems in parametric form. A variational problem in parametric
form is a variational problem, posed on the manifold Jr(Z,M), so we have to put Y =
Z×M , the dimension of the manifold M equal to p+ q with p = 1, and k = p+ q = 1 + q
in (2). Canonical coordinates in the manifold Jr(R;R1+q) are denoted by τ, x = (xρ), u =

(uρ), u̇ = (u̇ρ), . . . ,
r−1
u = (

r−1
u
ρ
). The manifold of rth-order velocities, T 1

rM , is defined
as T 1

rM = Jr(R;M)0. There exists an obvious isomorphism Jr(R;M) ≈ R × T 1
rM .

Coordinates in the manifold T 1
rM are denoted by x,u, u̇, . . . ,

r−1
u . If M is a (pseudo-)Euc-

lidean n-dimensional space (of an arbitrary signature), the Hodge operator “∗” is defined
as (∗w)ρk+1...ρn = 1

(n−k)!eρ1...ρnw
ρ1...ρk .

Consider now a variational problem in parametric form, set by a Lagrangian

`(τ, xρ, uρ, . . . ,
r−1
u ρ)dτ

on the space Jr(R;M). As long as we constrain ourselves only to the case of autonomous
Euler-Poisson equations,

Eρ = 0 , (12)

the differential form
ε = Eρ dxρ ⊗ dτ , (13)

may globally be deprived of the factor dτ , constituting thus a globally defined T ∗M -valued
density

e = Eρdxρ . (14)

Let C1
rM denote the manifold of the rth order contact germs of one-dimensional sub-

manifolds of M . The projection ℘ : T 1
rM \ 0 → C1

rM can be employed to generate an
autonomous variational problem set over T 1

rM from every one variational problem over
C1
rM .

Lemma 2 ([2]) In terms of a local chart, if in (4) the local semi-basic differential form
ε corresponds to the Lagrangian

λ = Ldt ,

then the vector valued density

e = −ua(Ea ◦ ℘)dx0 +u0(Ea ◦ ℘)dxa (15)

corresponds to the Lagrangian

`(τ, xρ, uρ, . . . ,
r−1
u ρ)dτ = L(xρ, uρ, . . . ,

r−1
u ρ)dτ

with the Lagrange function
L = u0L ◦℘ . (16)
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4. The classical spinning particle. Let in (8) generator x correspond to the (pseudo-)
orthogonal transformations of a four-dimensional (pseudo-)Euclidean space. In this case,
equations (10) have no solutions of the third order, that is to say, no invariant system of
Euler-Poisson equations (3) consists of at least one equation of the third order.

Nevertheless, if we allow a vector parameter s = (s0, s) (that is, a constant quantity,
transforming as a four-vector under the action of the (pseudo-)orthogonal group) enter into
expressions (5), then equations ( 6 &10 ) turn out to possess a family of solutions, which
depend on s and actually contain some third-order derivatives. We succeeded in obtaining
the following one (in an unessential assumption g00 = +1)

E =
v′′ × (s− s0v)

[(1 + v·v)(s02 + s·s)− (s0 + s·v)2]3/2

− 3
(s0

2 + s·s) v′·v− (s0 + s·v) s·v′

[(1 + v·v)(s02 + s·s)− (s0 + s·v)2]5/2
v′ × (s− s0v)

+ m
(1 + v·v) v′ − (v′·v) v

(1 + v·v)3/2(s02 + s·s)3/2
. (17)

Applying the prescription (15) the above expression (17) produces the corresponding
four-dimensional expression and thus the desired Euler-Poisson equations

E =
∗ ü ∧ u ∧ s
‖s ∧ u‖3

− 3
∗ u̇ ∧ u ∧ s
‖s ∧ u‖5

(u̇ ∧ s)·(u ∧ s) +
m

‖s‖3
[
u̇

‖u‖
− u̇·u
‖u‖3

u

]
= 0

(18)
Assume x

3
denote the third-order prolongation of the generator x (8) of (pseudo-)

orthogonal transformations with the group parameters n, q to the space J3(R;R3),

x
3

= − (q·s) ∂
s0

+ s0 (q .∂s) + [n, s,∂s] − (q·x) ∂t + t (q .∂x) + [n, x,∂x]

+ (q .∂v) + (q·v) (v .∂v) + [n, v,∂v]

+ 2 (q·v) (v′.∂v′ ) + (q·v′) (v .∂v′ ) + [n, v′,∂v′ ] . (19)

The following assertions are true:

1. Vector quantity E in (18) constitutes a system of Euler-Poisson expressions;

2. Let vector field x
3

be given by (19), and let E be given by (17) (recall that (17)

is nothing more but merely (18), parametrized with respect to the coordinate time
t = x0). The relation

L(x
3

)(E) = n× E + (q·v) E − (v·E) q

proves the invariance of the Euler-Poisson equations (18), and at the same time
shows that whatever a possible Lagrange function for (18) might exist, it by no means
will reveal invariance under (pseudo-)orthogonal transformations, even in the gener-
alized sense (that is up to a total derivative term).
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3. Equations (18) describe (in metric signature 2) the motion of relativistic spinning
free particle with constant spin four-vector s and with the rest mass

m0 = m

[
1 − (s·u)2

(s·s) (u·u)

]3/2

.

In [7, 8] and [6] more details about the classical spinning particle equations are supplied.

A comment on the order of the Euler-Lagrange form. Euler-Lagrange equa-
tions are polynomial with respect to the derivatives of orders greater than the maximal
order of the derivatives which enter in the corresponding Lagrange function. It was this
property that inspired us to try to diminish the order of the underlying manifold Js(R,Rq)
from s = 3 to s = 2 by means of introducing the differential form ε in (7) rather than ε.
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[3] I. Kolář. Lie derivatives and higher-order Lagrangians. In bk.: Proceedings of the Con-
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[6] R.Ya. Matsyuk. Poincaré-invariant Equations of Motion in Lagrangian Mechanics With
Higher Derivatives. Thesis, Institute for Applied Problems in Mechanics and Mathe-
matics, Academy of Science. Ukraine– L’vive, 1984.–140 pp (In Russian).

[7] R.Ya. Matsyuk. Lagrangian analysis of the third-order invariant equations of motion
in the relativistic mechanics of classical particles. Sov. Phys.–Dokl. (U.S.A.). Vol 30,
no 6, 1985, p. 458–460.

[8] R.Ya. Matsyuk. Lagrangian approach to spinning or radiating particle higher-order
equations of motion in special relativity. In bk.: 11th International Conference on Gen-
eral Relativity and Gravitation. Stockholm, Sweeden, July 6–12, 1986. Abstracts of
contributed papers, Vol. II.–Stockholm, 1986, p. 648.

9


