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VARIATIONALITY OF GEODESIC CIRCLES
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This note treats the notion of Lagrange derivative for the third order mechanics
in the context of covariant Riemannian geometry. The variational differential
equation for geodesic circles in two dimensions is obtained. The influence of
the curvature tensor on the Lagrange derivative leads to the emergence of the
notion of quasiclassical spin in the pseudo-Riemannian case.
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1. Introduction

This is a note on the variational formulation for the differential equations
of geodesic circles in two-dimensional Riemannian space, although the re-
sults apply straightforward to the pseudo-Riemannian case. The geodesic
curves x'(t) obey with respect to the natural parameter s the third order
differential equation!
D3zt D%zl D%27 Do’
5 T9i 5 2 .
ds ds? ds* ds
and they are exactly characterized by the property that the (signed) Frenet
curvature k keeps constant along them. In view of the Proposition 2.1 be-
low we could have immediately stated that the variational functional [kdt
provides an answer to the problem, all the more that in two dimensions
Vk? depends linearly on the second derivatives of the coordinates along
the curve thus producing exactly the third order variational (called Euler-
Poisson) equation.
However, we wish to investigate, to what extent this answer in prede-
fined by the limiting case of the Euclidean space — the local model of the
Riemannian one. With this idea in mind we start by recalling one solution

:0’
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of the invariant inverse variational problem in two-dimensional Euclidean
space for a third order variational equation possessing the first integral k.
Before proceeding further, it is necessary to agree about some notations and
to recall some basic calculus on the second order Ehresmann velocity space
T2M JE(R, M) of jets from R to our manifold M starting at 0 € R (as

possible source of references we can recommend, for example, Refs. 2—4)

2. Calculus on the higher order velocities space

Let u?, %} denote the standard fiber coordinates in 72M. In case of an affine
space M, we use the vector notations u, @ for that tuple. In future we shall
profoundly also use another tuple of coordinates, namely, u, u’, where

u't =t + Ffjuluj (1)

stands for the covariant derivative of u. Let us recall some operators acting
in the algebra of differential forms, defined on the velocity spaces of the
sequential orders:

e The total derivative:

of ey of ., 0f
oxt ou’ ou’
This is a derivation of degree zero and of the type d, i.e. who commutes

with the exterior differential: ddr = drd.

e For each k = 1,2,3, let uék) = ot uéo) = u?, x%k) = uékfl), and

de = Ui

_|_

xéo) = 2'. For each » = 0,1,2,3,..., we recall the following derivations
of degree zero and of the type i, i.e. who produce zeros while acting on
the ring of functions:

k! (2)

Lr(d.l‘ék)) = mdxfk_r), and Lr(dl‘zk)) =0, if r>k
e The Lagrange derivative d:
1 1
0= (LO — dTL1 + Ed%LQ - ?d;}LB + .. ) d, (3)
who satisfies 62 = 0.

Let some system of the third order ordinary differential equations
Ei(x9,u? 47, ii7) be put in the shape of a covariant object e:

€= &2l u? 0l il )dat .
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The variationality criterion reads: If de = 0, then the system &; is varia-
tional, i.e. locally there exists some function L, such that e = JL.

The left action of the prolonged group G L(2)(R) df 7 2(R,R)g of param-
eter transformations (invertible transformations of the independent variable
t) on T?M gives rise to the so-called fundamental fields on T2M:

| 9 9
== 17. 2.17. = v T .
G =ugu tA e G=ugs

A function f defined on T2M does not depend on the change of inde-
pendent variable ¢ (so—called parameter—independence) if and only if

Gf=0, Gf=0. (4)
On the other hand, a function L defined on 7T2M consti-

tutes a parameter—independent variational problem with the functional
[ L(z7,u7,47)dt if and only if the following Zermelo conditions are sat-

isfied:
GL=L, (GL=0. (5)
Let us introduce the generalized momenta:
(1)_6L ':aL—d (1)
pi’ =g Pi= g —drei
These satisfy the relation:
. , 1
pWidu + pyda® = 1ydL — SdriadL. (6)
The Euler—Poisson equation is given by dL = 0, or, equivalently, by
Y
hidx' = —dz* .
pidx pp x

The Hamilton function is given by:
H = pﬁ”ui +put — L.
Lemma 2.1.
H=(L—dr(L—L.
Proposition 2.1. If a function Ly is parameter—independent and a func-

tion L1 constitutes a parameter-independent variational problem, then L1y
18 constant along the extremals of L = Lyy + Ly.

Proof. By Lemma 2.1 and in course of the properties (4) and (5) we cal-
culate Hy 4+, = ¢1(Lux + L1) — drle(Lir + L1) — L = —Ly;. But as far as
the Hamilton function is constant of motion, so is the L. O
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3. The Lagrange derivative in Riemannian space

In Riemannian space with symmetric connection the covariant differential
of a vector field £ is a vector field valued semibasic differential form D&
calculated according to the formula

(D€)" = d¢' + T, da’. (7)

The fundamental application of the curvature tensor, from which this note
profits, provides the commutator of the subsequent derivations, the one
that substitutes the known Schwarz lemma:

(Du)"" = (D(u))" — Ry uiulda’. (8)

We also recall that, on the other hand, the first order derivations com-
mute:

(dz)' = Du. (9)
Given some local coordinate expression of a function,

we wish to introduce generalized momenta 7; and 7(!);, calculated with
respect to the alternative set of coordinates in T2M, namely, z%u’, u’*,
where the transition functions are presented by (1).

Definition 3.1. Let
(1) oL oL 1)

i =

- auli ’ i = 8'[1/2

7 -

Proposition 3.1. In Riemannian space the generalized momenta satisfy
the relation, analogous to (6):

1
7MW Du + wde = 11dL — §(L2dL)I

Proof. First let us calculate by the reason of formulas (2) and (1):
tdu =dz, udu’ =2Du, adu’ =2dx.

For the differential of Lagrange function,

oL OL 0L
dL = %Jr%dqu o

du’ (10)

we then check:
oL

auldr.

L2dL =2
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5
Now calculate:
0L 0L
ndL = %dx + 2 WDu
oL oL .\’ oL\’
= de+2 | — —2 (=
auda:+ <au,dm> <8u’> dx
oL oL\’
= 87ud$ + (LgdL)l -2 (W) d.’l?,
from where and from the Definition 3.1 it follows immediately that
L /
wdr = 1ydL — (12dL) + <§u') dx
1 ’ 1 ’ 1)y
=undL - i(LQdL) - §(L2dL) + (7Y dx
1
= udL — i(LgdL), — (7#Wdz) + (wM) da
1
= 11dL — 5(LQdL)' — 7Dy
by virtue of (9). |

Proposition 3.2. In Riemannian space the Fuler—Poisson equation for a
second order Lagrange function reads:

S oL oL ., oL .
wdy + 7l Ry twlulda! = Sdat — STl dat = ST utdat (1)

Proof. From (3) and from Proposition 3.1 we obtain
0L = 1pdL — dp(mwdzx + W(I)Du).

While the expression in the parenthesis constitutes a geometrical invariant,
it is possible to replace dr by the covariant derivative, after what by direct
calculation we obtain in virtue of (9) and of (8):

5L = dL—(mdz+7YDu)’ = ydL—n'de— (7 +7D") Du—7V(Du)’
L ) o
= 19dL — w'dx — g—Du — ), (D(u')" — leq’ujuqd:cl) ,
u

and the proof ends by substituting (10) into igdL = dL here and by apply-
ing (7). |
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4. The two-dimensional variational concircular geometry

As promised, we first cite one result, concerning the invariant inverse vari-

ational problem in two dimensional Euclidean space.®

Proposition 4.1. Let some system of third order differential equations
Ei(@? ! i id) =0 (12)

satisfy the conditions:

(i) The system (12) possesses Euclidean symmetry

(ii) The Euclidean geodesics @ = 0 enter in the set of solutions of (12)

(iv) drk =0 along the solutions of (12)

Then

&= eiju; -3 Ch 1;) 61‘jﬁj +m i — (% - w)u;
[[ul [[ul

This system may be obtained from the Lagrange function

[[ul?

e;utud
L= HJUH?’ —m||ull. (13)

The first addend in (13) is sometimes called the signed Frene curvature in

[E2. This, along with the observation that in two dimensional Riemannian
space the Frenet curvature

IR A (14)

depends linearly on u’ and thus produces at most third order Euler—Poisson
equation, suggests the next assertion, based on Proposition 2.1:

Proposition 4.2. The variational functional [(k — m|ul))dt produces
geodesic circles in two dimensional Riemannian space.

It remains to calculate the Euler—Poisson expression for the Lagrange
function (14). In the process of calculations it is convenient to profit from
the exeptional properties of vector operations in two dimensions. Namely,
the following two relations for arbitrary vectors hold:

(a Ab)-(v Aw) = £ [la A bl[[v A w],
and

laAbl(b-c)+bAcl(a-b)=llanc|(-b).
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The above simplifications bring much release to otherwise very laborious
calculations.
We start with the momentum 7(1):

Wy — (dx Au)-(uAu) _ lldx A ull
lul* A2/ [
y g, e Awl e Al

3 = (u-u’).
[l [Jull

Based on Definition 3.1 we now calculate 7r:
sy = 2 1AWl Awlw)  (dewlu A e o]
[Jull [Jull [l [Jull

In terms of the Hodge star operator the derivative of the momentum 7 may

be put in the form

* 2 * ’
ﬂ-/ — L _3L(u.u,)7

= 3 5
[[ea] [[e]
which agrees with the flat Euclidean case.
For the Lagrange function (14) it is easy to verify that

ok ., Ok _, . 0
- _ v Iyt —

Ot de ou? Tiju'de ou't
The proof consists in direct calculations and founds on the skew-symmetric
property of the Christoffel symbols in Riemannian geometry:

59ij

Oxe’

Going back to the Euler—Poisson equation (11) it is now facile to obtain

ujdat = 0.

! !
gjtlqi + 9al'q; =

the variational equation for the full Lagrange function L = k — m|ju||:

" ’

*U lu|?u — (u - u)u
ul|® ul® [[a]®

The term on the right in pseudo-Riemannian case physically may be

*U

(u-u') +m =7, Ry wu?. (15)

interpreted as a spin force” if, following Ref. 6, we formally introduce spin
tensor as S = (u A u').

In fact, one checks that in terms of the tensor S the right hand side of
Ry -l S
equation (15) may be rewritten as quli,.
(][] A 2]
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