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SECOND ORDER NATURAL LAGRANGIANS ON COFRAME
BUNDLES

JÁN BRAJERČÍK AND MILAN DEMKO

Abstract. We study the structure of second order natural Lagrangians on the bundle of linear
coframes F �

X over an n-dimensional manifold X . They are identified with the corresponding
differential invariants which can be obtained by the factorization method. We give an explicit
description of these differential invariants in terms of their bases. For construction of natural
Lagrangians, the canonical odd n-form on F �

X is also introduced.
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1. INTRODUCTION AND PRELIMINARIES

The aim of this paper is to characterize all global, second order Lagrangians on
coframe bundles F �X , invariant with respect to diffeomorphisms of X . Such Lag-
rangians are called natural. Natural Lagrangians on coframe bundles play an import-
ant role in several theories, such as teleparallel description of gravity (see, e. g., [11]).
A characteristic property of a natural Lagrangian is that it is a differential invariant.
The domain of definition of second order natural Lagrangians on coframe bundles,
the bundle J 2F �X , can equivalently be understood as the type fibre of J 2F �X .

As usual, we denote by R the field of real numbers. The r-th differential group
Lrn of Rn is the Lie group of invertible r-jets with source and target at the origin
0 2 R

n. The group multiplication in Lrn is defined by the composition of jets. The
first (second) canonical coordinates are denoted by aij1 , aij1j2 , . . . , aij1j2:::jr (bij1 ,
bij1j2 , . . . , bij1j2:::jr ), where 1 � i � n, 1 � j1 � j2 � : : : � jr � n. The
canonical jet projection of Lrn onto L1n is a Lie group homomorphism. Denoting by
Krn its kernel, we can represent the differential group Lrn as a semi-direct product of
L1n and Krn, Lrn D L1n �s K

r
n. For generalities on spaces of jets and their mappings,

differential groups, their actions, etc., we refer to [6, 10].
By a left G-manifold we mean a smooth manifold endowed with a left action of a

Lie group G. Let P and Q be two left Lrn-manifolds. A smooth mapping F W P !
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Q is called a differential invariant if it is Lrn-equivariant, i.e., F.g � p/ D g � F.p/

for all g 2 Lrn and p 2 P .
If Lrn acts on manifold Q from the left via its subgroup L1n, and F W P ! Q is

a differential invariant, then the restriction of the group action of Lrn to Krn gives the
condition F.g �p/ D F.p/. This is the basic idea of the orbit reduction method, first
time used by Krupka in [7], which utilizes the semi-direct product of Lrn to compute
the differential invariants.

Let us consider a left L1n-manifold Q, and denote by T rnQ the manifold of r-jets
with source 0 2 Rn and target inQ. According to the general theory of prolongations
of left G-manifolds, T rnQ has a (canonical) structure of a left LrC1n -manifold. To
define this structure, denote by tx the translation of Rn defined by tx.y/ D y � x.
Consider elements q 2 T rnQ, q D J r0 
 , and a 2 LrC1n , a D J rC1�. If we denote
N�x D tx � � � t���1.x/, setting N�.x/ D J 10 N�x we get an element of the group L1n.
Then the formula

a � q D J r0 . N� � .
 � �
�1// (1.1)

defines a left action of the differential group LrC1n on T rnQ. The formula (1.1) is
usually called the prolongation formula for the action of the group L1n onQ. The left
LrC1n -manifold T rnQ is called the r-jet prolongation of the left L1n-manifold Q.

Let X be an n-dimensional manifold. By an r-frame at a point x 2 X we mean
an invertible r-jet with source 0 2 Rn and target x. The set of r-frames together with
its natural structure of a principal Lrn-bundle with base X is denoted by F rX , and is
called the bundle of r-frames over X . For r D 1, we get the bundle of linear frames,
and write F 1X D FX . If Q is a left L1n-manifold, then the bundle with type fibre
Q, associated with FX is denoted by FQX . Formula (1.1) defines on J rFQX the
structure of a fibre bundle with type fibre T rnQ, associated with the bundle F rC1X
(see, e. g., [9]).

An r-coframe at x 2 X is an invertible r-jet with source x and target 0 2 Rn. If
r D 1, we speak of linear coframes. We denote by F �X the set of all linear coframes
at all x 2 X . The right action of L1n on F �X is given by

F �X � L1n 3 .J
1
x �; J

1
0 �/ 7! J 1x � � J

1
0 � D J 1x .�

�1 � �/ 2 F �X: (1.2)

With this action, F �X is a right principal L1n-bundle.
F �X can also be considered as a fibre bundle with type fibre L1n associated with

L1n-bundle FX , i.e., we have an identification F �X D FL1
n
X . Induced left action of

the group L1n on the type fibre L1n, is given by

L1n � L
1
n 3 .J

1
0 �; J

1
0 �/ 7! J 10 .� � �

�1/ 2 L1n: (1.3)

In the canonical coordinates .pij / on the type fibre L1n of F �X , (1.3) is expressed as

pij .J
1
0 .� � �

�1// D pis.J
1
0 �/ a

s
j .J

1
0 �

�1/ D pis.J
1
0 �/ b

s
j .J

1
0 �/; (1.4)
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or simply by

Npij D pisb
s
j : (1.5)

(1.5) is called the coframe action of L1n on itself.
J rF �X denotes the r-jet prolongation of F �X . Since F �X D FL1

n
X , J rF �X

has the structure of a fibre bundle with type fibre T rnL
1
n, associated with F rC1X .

The action of LrC1n on T rnL
1
n can be obtained by prolongation of the action (1.4) of

L1n on L1n using the formula (1.1).
Let us consider a left action of the general linear group L1n on the real line R

defined by L1n � R 3 .a; t/ 7! j det a�1j � t 2 R. The real line, endowed with this
action, is an L1n-manifold, denoted by zR. A differential invariant with values in zR is
called a scalar invariant. General result on the structure of natural Lagrangians says
that, given L1n-manifold Q, there is a one-to-one correspondence between natural
Lagrangians on J rFQX and differential invariants I W T rnQ ! zR (see, e. g., [9]).
This means that for finding second order natural Lagrangians of coframe bundles it
is sufficient to describe all scalar invariants of T 2nL

1
n associated with the coframe

action (1.5).

2. BASIS OF THE SECOND ORDER INVARIANTS

We are interested in differential invariantsF W P ! Qwith values inL1n-manifold
Q, which can be viewed as manifold with action of Lrn via its subgroup L1n. In such
case, each differential invariant F W P ! Q has the form F D f � � , where � W

P ! P=Krn is the canonical projection onto the orbit space, and f W P=Krn ! Q is
a uniquely determined L1n-equivariant mapping (see [10]).

Indeed, in this scheme P=Krn is considered with the quotient topology, but it is
not necessarily a smooth manifold. The quotient projection � is continuous but not
necessarily smooth. If P=Krn has a smooth structure such that � is a submersion, we
call � the basis of differential invariants on P . The general concepts on equivari-
ant mappings, related with a normal subgroup of a Lie group, and corresponding
assertions with the proofs can be found in [4, 7].

Our aim is to find a basis of differential invariants on T 2nL
1
n. We use the expression

of the action ofL3n on T 2nL
1
n (see [3]), obtained as prolongation of the coframe action

of L1n on L1n (1.5),

Npij D pisb
s
j ;

Npij;k D pis;tb
t
kb
s
j C pisb

s
jk;

Npij;kl D pis;tub
u
l b
t
kb
s
j C pis;t .b

t
klb

s
j C btkb

s
jl C btlb

s
jk/C pisb

s
jkl :

(2.1)
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Restricting to the kernel K3n of the projection �3;1n W L3n ! L1n we obtain the
group action of K3n on T 2nL

1
n induced by the coframe action (see [3])

Npij D pij ;

Npij;k D pij;k C pisb
s
jk;

Npij;kl D pij;kl C pij;tb
t
kl C pis;kb

s
jl C pis;lb

s
jk C pisb

s
jkl :

(2.2)

We denote by qij the inverse matrix of the matrix pij ; thus, qij W T
2
nL

1
n ! R are func-

tions such that qisp
s
j D �ij , where �ij denotes the Kronecker symbol. Symmetrization

(antisymmetrization) in some indices j; k; l; : : : is denoted by writing a bar (a tilde)
over these indices, i.e., by writing Nj ; Nk; Nl ; : : : ( Qj ; Qk; Ql ; : : :).

We also introduce the following functions on T 2nL
1
n:

I ij;k.p
a
b ; p

a
b;c ; p

a
b;cd / D qimp

m
Qj ; Qk
;

I ij;kl.p
a
b ; p

a
b;c ; p

a
b;cd / D qimp

m
Qj ; Qkl

C qimq
s
t .p

m

Qs; Qj
ptNk; Nl

� pm
Qs; Qk
ptNj ; Nl

/:
(2.3)

Lemma 1. K3n-orbits in T 2nL
1
n induced by the coframe action of L1n on L1n are

defined by the equations

pij D cij ; I ij;k.p
a
b ; p

a
b;c ; p

a
b;cd / D cij;k; I ij;kl.p

a
b ; p

a
b;c ; p

a
b;cd / D cij;kl ;

where cij ; c
i
j;k
; ci
j;kl

2 R are constants satisfying det cij ¤ 0, ci
j;k

C ci
k;j

D 0,
ci
j;kl

C ci
k;jl

D 0, and ci
j;kl

� ci
j;lk

D 0.

Proof. Since the coordinates bs
jk

are symmetric in j; k, from the action (2.2) we
can write bs

jk
D qsi . Np

i
Nj ; Nk
�pi

Nj ; Nk
/, and substituting this expression of bs

jk
in (2.2), we

get

qsi . Np
i
j;k � p

i
j;k/ D qsi . Np

i
Nj ; Nk

� piNj ; Nk
/:

Now we compare the tensor on the left hand side with its symmetric part. Using Nqsi D

qsi , it gives us Nqsi Np
i
Qj ; Qk

D qsi p
i
Qj ; Qk

. Thus, for the functions I s
j;k

, defined by (2.3), we

have I s
j;k
. Npa
b
; Npa
b;c
; Npa
b;cd

/ D I s
j;k
.pa
b
; pa
b;c
; pa
b;cd

/. If we denote �s
jkl

D qsi . Np
i
j;kl

�

pi
j;kl

� pij;tb
t
kl
� pi

t;k
bt
jl
� pi

t;l
bt
jk
/, expressing bs

jkl
from (2.2), we analogously

obtain that �s
jkl

D �s
Nj Nk Nl

. Using the Young decomposition of the tensor �s
jkl

, this
equation is equivalent to I s

j;kl
. Npa
b
; Npa
b;c
; Npa
b;cd

/ D I s
j;kl

.pa
b
; pa
b;c
; pa
b;cd

/. Therefore
the functions I s

j;k
and I s

j;kl
are invariant with respect to the action (2.2). Finally, it is

easy to see that the functions I i
j;k

, I i
j;kl

are antisymmetric in the indices j; k, and the
functions I i

j;kl
are symmetric in the indices k; l . �
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Corollary 1. The mappings pij , I i
j;k

, I i
j;kl

represent a basis of second order in-
variants of coframes with values in left L1n-manifold.

3. SCALAR INVARIANTS OF COFRAMES

In order to obtain scalar invariants of L3n on T 2nL
1
n it is sufficient to consider L1n-

equivariant mappings defined on T 2nL
1
n=K

3
n (see [1]). Let us define the functions

I
i
j;k

, Ii
j;kl

, on T 2nL
1
n, by

I
i
j;k D qsj q

t
kp

i
Qs;Qt
;

I
i
j;kl D qsj q

t
kq
u
l .p

i
Qs;Qtu

C qvm.p
i
Qv;Qsp

m
Nt ; Nu
� pi

Qv;Qt
pmNs; Nu//

(3.1)

Theorem. (a) The functions Ii
j;k

, Ii
j;kl

on T 2nL
1
n are invariant with respect to the

prolonged coframe action.
(b) Any function on T 2nL

1
n, invariant with respect to the prolonged coframe action,

is a differentiable function of the functions Ii
j;k

, and Ii
j;kl

.

Proof. (a) The group L1n ' L3n=K
3
n acts in orbit space T 2nL

1
n=K

3
n , with coordin-

ates I i
j;k

and I i
j;kl

, by

NI ij;k D airb
s
j b
t
kI
r
s;t ;

NI ij;kl D airb
s
j b
t
kb
u
l I

r
s;tu: (3.2)

Using relations air D Nqi
l
plr , and bsj D qsm Npmj , obtained from (1.5), in (3.2), we have

Npai Nq
j

b
Nqkc
NI ij;k D par q

s
bq
t
cI
r
s;t ; Npai Nq

j

b
Nqkc Nq

l
d
NI ij;kl D par q

s
bq
t
cq
u
dI

r
s;tu;

which describes L1n-invariant objects in T 2nL
1
n=K

3
n . Applying (2.3), we get

pirq
s
j q
t
kI
r
s;t D I

i
j;k; pirq

s
j q
t
kq
u
l I

r
s;tu D I

i
j;kl ;

where Ii
j;k

, Ii
j;kl

are given by (3.1).
(b) The statement follows from the invariance theory. �

Lemma 2. The function I0 W T 2nL
1
n 3 q 7! I0.q/ D j det qij .q/j 2 zR is a

differential invariant.

Proof. Obviously, the function I0 is smooth, and for every a 2 L3n, and every
q 2 T 2nL

1
n we have I0.a � q/ D j det a�1j � I0.q/. �

Corollary 2. Every differential invariant I W T 2nL
1
n !

zR is the product of some
differentiable function of Ii

j;k
, Ii
j;kl

, and the function I0.
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4. SECOND ORDER NATURAL LAGRANGIANS OF COFRAMES

Our aim in this Section is to characterize all Lagrangians on J 2F �X , invariant
with respect to all diffeomorphisms of X . First, we recall the main concepts to this
purpose.

We present basic definitions in full generality (for odd base forms). If the under-
lying manifold X is orientable, odd base forms may be replaced by ordinary forms.
The concept of volume form is needed for integration on not necessarily orientable
manifold.

Any chart .U; '/, ' D .xi /, on X , induces the fibred chart .V;  /,  D .xi ; ´ij /,

on F �X . By setting ´ijw
j

k
D �i

k
we define another coordinates wj

k
on F �X . With a

chart .V;  / we also associate the object

Q!.V; / D j det ´ij j � Q' 
 dx1 ^ dx2 ^ : : : ^ dxn; (4.1)

where Q' is a field of odd scalars on X , associated with .U; '/ (see [8]). It is easily
seen that (4.1) represents a globally defined odd base form on F �X ; we denote this
form by Q!, and call it the canonical odd n-form on F �X . This form has the following
properties:

(1) For each coframe field � W W ! F �X , where W is an open set on X , the
pullback �� Q! is an odd volume form on W .

(2) The construction of Q! does not depend on the orientability of the base man-
ifold X . In the case of orientable and oriented manifolds X , Q! is equivalent
to an (ordinary) n-form on F �X .

(3) The form Q! is diff X -invariant, i.e., if F �� denotes the canonical lift of a
diffeomorphism � W W ! X to F �X , then .F ��/� Q! D Q! for all �.

It should be pointed out that odd n-forms �� Q! may be used as volume forms for
integration on the base manifold X . In particular, these forms naturally appear as a
components of Lagrangians for variational problems for coframe fields.

The canonical jet projection �2 W J 2F �X ! X is, for every J 2x � 2 J 2F �X ,
defined by �2.J 2x �/ D x. A second order Lagrangian for F �X is any �2-horizontal
n-form � defined on the second jet prolongation J 2F �X of F �X . In the chart
.V 2;  2/,  2 D .xi ; ´ij ; ´

i
j;k
; ´i
j;kl

/, on J 2F �X , associated with .V;  /, a Lag-
rangian � has an expression � D L � Q' 
 !0, where !0 D dx1 ^ dx2 ^ : : : ^ dxn,
Q' is a field of odd scalars, and L W V 2 ! R is the component of � with respect to
.V;  / (the Lagrange function associated with .V;  /).

We say that a second order Lagrangian � is natural, if for every diffeomorphism
� W W ! X , where W is an open set in X , the canonical lift F �� of � to F �X is an
invariance transformation of �, i.e.,

.J 2F ��/�� D �
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on the corresponding open set in J 2F �X . An application of a general result, men-
tioned at the end of Section 1, to the structure considered in this paper gives us that
there is a one-to-one correspondence between natural Lagrangians on J 2F �X and
differential invariants I W T 2nL

1
n !

zR.
We denote by A�

diffX the algebra of diff X -invariant functions on J 2F �X . In any
chart .V;  /,  D .xi ; ´ij /, on F �X , define the functions Li

j;k
, Li

j;kl
, by

L
i
j;k D wsjw

t
k´
i
Qs;Qt
;

L
i
j;kl D wsjw

t
kw

u
l .´

i
Qs;Qtu

C wvm.´
i
Qv;Qs´

m
Nt ; Nu
� ´i

Qv;Qt
´mNs; Nu//;

(4.2)

(compare with (3.1)). The functions Li
j;k

, Li
j;kl

, in coordinates expressed by (4.2),
are globally well defined functions on J 2F �X .

Lemma 3. (a) The functions Li
j;k
;Li

j;kl
belong to A�

diffX .
(b) Every functionL fromA�

diffX can be locally written as a differentiable function
of the functions Li

j;k
, Li

j;kl
.

The following Theorem is an immediate consequence of the invariance theory.

Theorem. Every natural Lagrangian � on J 2F �X is of the form

� D L Q!;

where L 2 A�
diffX and Q! is canonical odd n-form of F �X .

Remark 1. Starting with the frame action of L1n on L1n, in the corresponding co-
ordinates given by Npij D ai

k
pkj (compare with (1.5)), by the similar procedure it is

possible to obtain differential invariants of frames. Second order differential invari-
ants, including second order natural Lagrangians of frames, were described in [2].
Orbit reduction method gives us an alternative expression of natural Lagrangians of
frames in comparison with [5].
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