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VARIATIONAL PROJECTORS IN FIBRED MANIFOLDS

DEMETER KRUPKA, ZBYNĚK URBAN, AND JANA VOLNÁ

Abstract. The aim of this paper is to give a survey of recent developments in global variational
geometry, and in particular, to complete the results on the construction of classes (terms) in
the variational sequences related to higher-order variational problems on fibred spaces. Explicit
description of the first order variational sequences is given as an example.
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1. INTRODUCTION

This paper contains the essential parts of the lecture presented by the first au-
thor at the workshop Algebra, Geometry and Mathematical Physics, Brno University
of Technology, September 12–14, 2012, and prepared in collaboration with Zbyněk
Urban and Jana Volná. The aim is to give a survey of the basic concepts and the-
orems of global variational geometry, and in particular to complete the construction
of the terms (classes) in the variational sequences related to higher–order variational
problems on fibred spaces (Section 3).

Our main references for general higher–order variational theory on smooth mani-
folds (Section 2) are the papers Garcia [4], Goldschmidt and Sternberg [5], Krupka
[7], and Trautman [15], where the geometric setting for the theory of variational
functionals has been established. Later, essential contributions were obtained by An-
derson and Duchamp [2], and Dedecker [3]; a broad, conceptually more complete
treatment, including invariance of variational functionals, was presented by Olver
[14]. For contemporary status of the theory, we refer to the survey chapters in the
book Krupka and Saunders [11], where many other relevant references can be found.

For the notion of the interior Euler–Lagrange operator, as defined by a chart
expression, we refer to Anderson [1], and Krbek and Musilová [6] (see also other
sources quoted therein). In global variational theory, we relate this notion to differ-
ent terms (classes) in the variational sequence; to this purpose, however, the existing
theory should be completed by proving the coordinate independence of the interior
Euler–Lagrange operator, and then also by a description of its image. In this paper, we
apply a coordinate-free definition given by Krupka and Šeděnková-Volná [13], and
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Volná and Urban [16], and extend the description of the interior Euler-Lagrange op-
erators by the discussion of the image (Section 3). We also briefly discuss the classes
entering the first order variational sequence in field theory. In order to avoid misun-
derstanding with the Euler–Lagrange mapping, we change terminology and call the
(global version of) interior Euler–Lagrange operators the variational projectors.

From now on, we suppose we are given a fibred manifold Y with base X and
projection � and set n D dimX and n C m D dimY . We denote by J rY the r-
jet prolongation of Y . An element of the set J rY is usually denoted by J r

x  ; the
mapping x ! J r.x/ D J r

x  is the r-jet prolongation of  . The canonical source
projection J r

x  ! x of J rY onto X (resp. the canonical jet projection J r
x  ! J s

x

of J rY onto J sY , 0 � s � r) is denoted by �r (resp. �r;s). The r-jet prolongation
J r� of a �-projectable vector field � , is a vector field on J rY whose flow is the
canonical jet prolongation of the flow of � . For any open set W � Y , we set W r D

.�r;0/�1.W / and denote by 
rW the exterior algebra of differential forms on the
set W r .

If .V;  /,  D .xi ; y� /, is a fibred chart on Y , then the associated fibred chart on
J rY is denoted by .V r ;  r/,  r D .xi ; y� ; y�i1 ; y

�
i1i2
; : : : ; y�i1i2:::ir /. When we use a

multi-index notation, we write r D .xi ; y�I /, where I D .i1i2 : : : is/, and the length
s D jI j of I satisfies 0 � jI j � r . We also write I i D .i1i2 : : : isi/. Differential
forms, locally generated by differential forms !�

I D dy�I �y
�
Iidx

i , 0 � jI j � r � 1,
and d!�

I , jI j D r�1, are called contact forms. The canonical decomposition theorem
(cf. e.g. Krupka [9]) for a q-form � on J rY says that .�rC1;r/�� D h� C p1� C

p2�C : : :C pq�, where the component pk� contains exactly k exterior factors !�
I .

Throughout, standard concepts of analysis of differential forms on smooth mani-
folds are used; d� is the exterior derivative of a form �, and i�� (resp. @��) is the
contraction (resp. Lie derivative) of � by a vector field �.

2. VARIATIONAL FUNCTIONALS

We introduce a morphism of exterior algebras related with a fibred manifold struc-
ture.

Lemma 1. Let W be an open set in the fibred manifold Y . Then there exists a
unique morphism 
rW 3 � ! h� 2 
rC1W of exterior algebras, such that for
any fibred chart .V;  /,  D .xi ; y� /, with V � W , and any differentiable function
f W W r ! R,

hf D f � �rC1;r ; hdf D dif � dxi ; (2.1)

where

dif D
@f

@xi
C

X
j1�j2�:::�jk

@f

@y�j1j2:::jk

y�j1j2:::jki : (2.2)
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The morphism h is called the horizontalisation. The symbol di in (2.2) is called
the i -th formal derivative operator relative to the fibred chart .V;  /. It is important
for practical calculations that hdxi D dxi and hdy�I D y�Iidx

i .
A Lagrangian for Y is a �r -horizontal n-form � on the r-jet prolongation J rY of

Y . The number r is the order of �. The pair .Y; �/ is sometimes called the variational
structure. In a fibred chart .V;  /,  D .xi ; y� /, � has an expression � D L!0,
where !0 D dx1 ^ dx2 ^ : : : ^ dxn and L W V r ! R is the component of � with
respect to .V;  / (the Lagrange function).

Let 
 be a piece of X with boundary @
, let �
Y be the set of sections of Y ,
defined on 
. A Lagrangian � of order r defines the variational functional

�
Y 3  ! �
./ D

Z



J r�� 2 R: (2.3)

The main objective of the variational theory is to study the properties of this real-
valued function, such as extremals and invariance conditions. To investigate �
 ,
we apply variational methods based on variations of each individual section  of
Y , and induced variations of the value �
./. Given a �-projectable vector field
� on Y , and its �-projection �, we can construct 1-parameter family of sections
t D ��t �

�
�t , using the flows ��t and ��t of � and � . Then, differentiating the

function t ! �
.t / at t D 0, we get another variational functional

�
Y 3  !

�
d

dt
�
.t /

�
0

D

Z



J r�@J r�� 2 R; (2.4)

the first variation of (2.3), induced by � . For further computations of the Lie deriv-
ative @J r�� in this expression, we need the following result.

Theorem 1 (Lepage equivalents of a Lagrangian). Let � be a Lagrangian of order
r for Y . There exists an integer s and an n-form � on J sY such that:

(a) J s�� D J r�� for all sections  of Y .
(b) J s�i�d� D 0 for all sections  of Y and all �s;0-vertical vector fields � on

J sY .

Conditions (a) and (b) can be equivalently expressed in terms of the horizontalisa-
tion h as h� D � and hi�d� D 0, respectively.

Any form �, satisfying conditions (a) and (b), is called a Lepage equivalent of the
Lagrangian �. Comparing condition (a) with formula (2.3), we see that a Lepage
equivalent � defines the same variational functional as �.

There are many interesting examples of Lepage equivalents (see references in
Krupka, Krupková and Saunders [12]). We mention here the principal Lepage equi-
valent of a second-order Lagrangian � D L!0,

� D L!0 C

  
@L

@y�i
� dj

@L

@y�ij

!
!� C

@L

@y�ij
!�
j

!
^ !i ; (2.5)
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where !� D dy� � y�
l
dxl , !�

i D dy�i � y
�
il
dxl , and !i D i@=@xi!0 (Krupka [7]).

The Lepage form � is important in applications. If � is of the first order, then �
reduces to the well-known Poincaré-Cartan form introduced by Garcia [4].

Theorem 2 (Infinitesimal first variation formula). Let � be a Lagrangian of order
r for Y , and let � be any Lepage equivalent of �, defined on J sY . Then, for any
section  and any �-projectable vector field � on Y ,

J r�@J r�� D J s�iJ s�d�C dJ s�iJ s��: (2.6)

Formula (2.6) is called the infinitesimal first variation formula. It corresponds with
the integrand of the “classical” (integral) first variation formula, but does not have a
classical analogue. Using the horizontalisation, (2.6) can be equivalently written as

@J r�� D hiJ s�d�C hdiJ s��: (2.7)

The Euler-Lagrange form of a Lagrangian � of order r is an .nC 1/-form E� on
J 2rY , defined by

E� D E� .L / !� ^ !0; (2.8)

where E� .L / are the Euler-Lagrange expressions,

E� .L / D

rX
lD0

.�1/ldp1dp2 : : : dpl
@L

@y�p1p2:::pl
: (2.9)

It can be verified that the first summand on the right-hand side of (2.6) represents the
Euler–Lagrange form: by a direct computation J s�iJ s�d� D J sC1�iJ sC1�E�.
The boundary term dJ s�iJ s�� is an exact differential form; in the integral first
variation formula, it transforms, via the Stokes’ theorem, to the boundary @
.

Suppose that the Euler–Lagrange form E� is of order s. Then a section  is called
an extremal, if E� vanishes along the s-jet prolongation J s ;  is an extremal if and
only if its restriction to any coordinate neighborhood satisfies the Euler-Lagrange
equations E� .L / D 0.

The R-linear mapping � ! E�, assigning to a Lagrangian its Euler–Lagrange
form, is called the Euler-Lagrange mapping. The Lagrangians, belonging to its ker-
nel, are called (variationally) trivial, or null.

Theorem 3 (Trivial Lagrangians). For a Lagrangian � of order r , the following
two conditions are equivalent:

(a) E� D 0.
(b) To each point y0 2 Y , there exist a fibred chart .V;  / at y0 and an .n�1/-form

� defined on V r�1 � J r�1Y such that

J r�� D dJ r�1�� (2.10)

for all sections  , defined on U D �.V / � X .
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Condition (b) is equivalent to the equation � D hd� on V r .
By a source form on J sY , we mean a differential .n C 1/-form " expressible in

any fibred chart .V;  /,  D .xi ; y� /, as

" D "�!
� ^ !0: (2.11)

Clearly, this definition is invariant under transformations of fibred coordinates. Every
Euler–Lagrange form is a source form. A source form is said to be variational if it
is expressible as " D E� for some Lagrangian �. The problem as to find conditions
under which a source form is variational is the inverse problem of the calculus of
variations.

To study the invariant variational structure, let us first mention, for the record,
some general differential-geometric notions that are needed, sometimes with slight
modifications, in proofs. Let X be a manifold, W an open set in X and � W W ! X

a diffeomorphism, let � be a p-form on X . We say that � is invariant with respect to
�, if its pull-back ��� coincides with �,

��� D �: (2.12)

We also say that � is an invariance transformation of �. This definition immediately
extends to vector fields. Let � be a vector field on X , �� its flow and ��t its local
1-parameter group. � is said to be the generator of invariance transformations of � if
for all .t; x/ from the domain of the flow �� ,

.�
�
t /
��.x/ D �.x/: (2.13)

Lemma 2. For every point .t; x/ from the domain of the definition of the flow of
the vector field � ,

d

dt
.�

�
t /
��.x/ D ..�

�
t /
�@��/.x/: (2.14)

Lemma 3. The following two conditions are equivalent:
(a) � generates invariance transformations of �.
(b) The Lie derivative of � by � vanishes,

@�� D 0: (2.15)

Let � be a Lagrangian of order r for Y , � W W ! Y an automorphism of the fibred
manifold Y , and J r� W W r ! J rY the r-jet prolongation of �. We say that � is an
invariance transformation of �, if .J r�/�� D �. A generator of invariance trans-
formations of � is a �-projectable vector field � on Y whose local one-parameter
group consists of invariance transformations of �. The definitions naturally extend to
r-jet prolongations J r� of � .

In the following lemma, we use the multi-index notation. We introduce a class of
vector fields on J rY , preserving the contact forms !�

I D dy�I � y
�
Iidx

i , 0 � jI j �

r�1. We say that a vector fieldZ on J rY preserves contact forms if, for any contact
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form �, the Lie derivative @Z� is again a contact form; we also say thatZ is a contact
symmetry (see Krupka, Krupkova, Prince and Sarlet [10]).

Lemma 4. For any �-projectable vector field � on Y , the r-jet prolongation
Z D J r� is a contact symmetry.

Lemma 5. Let � be a Lagrangian of order r for Y .
(a) A �-projectable vector field � on Y generates invariance transformations of

� if and only if
@J r�� D 0: (2.16)

(b) Generators of invariance transformations of � constitute a subalgebra of the
algebra of the vector fields on J rY .

In terminology used by Trautman [15] (see also Krupka [8]), equation (2.16) is
the Noether equation. This equation represents a relation between the Lagrangian �
and the generator � of invariance transformations. Given �, we can use the Noether
equation to determine the generators � . On the other hand, given a Lie algebra of
�-projectable vector fields � , one can use the corresponding Noether equations to
determine invariant Lagrangians �.

Theorem 4. Suppose that a Lagrangian � is invariant with respect to a �-projec-
table vector field � . Then for any Lepage equivalent � of order s of �,

J s�iJ s�d�C dJ s�iJ s�� D 0 (2.17)

for every section  of Y .

By a conserved current for a section  2 �
.Y /, we mean any .n� 1/-form � on
J rY such that

dJ r�� D 0: (2.18)
We call formula (2.18) the conservation law equation, or a conservation law for

the section  .
The following assertion says that extremals of invariant Lagrangians satisfy, in

addition to the Euler–Lagrange equations, also some other conditions in the form of
conservation law equations.

Theorem 5 (First theorem of Emmy Noether). Let � be a Lagrangian, � a Lepage
equivalent of � defined on J sY and let  be an extremal. Then, for every generator
� of invariance transformations of �,

dJ s�iJ s�� D 0: (2.19)

One can use invariance of variational functionals in a different way than in The-
orem 5. Namely, the infinitesimal first variation formula (Theorem 2) shows that
the property of a Lagrangian to be invariant reduces the number of Euler–Lagrange
equations.
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Theorem 6. Let � be an invariant Lagrangian with respect to a vector field � ,
and suppose that a section  satisfies the conservation law

dJ s�iJ s�� D 0 (2.20)

for a Lepage equivalent � of � of order s. Then, for any fibred chart .V;  /, the
associated Euler–Lagrange expressions are linearly dependent along  .

Let � W W ! Y be an automorphism of Y and let " be a source form on J sY .
We say that � is an invariance transformation of ", if J s��" D ". A generator
of invariance transformations of " is a �-projectable vector field on Y whose local
one-parameter group consists of invariance transformations of ".

Lemma 6 (Noether–Bessel–Hagen equation). Let " be a source form of order s
for Y .

(a) A �-projectable vector field � on Y is the generator of invariance transform-
ations of " if and only if

@J r�" D 0: (2.21)
(b) Generators of invariance transformations of " constitute a subalgebra of the

algebra of vector fields on J rY .

To study invariant Euler–Lagrange forms, note the following identity.

Lemma 7. Let � be a Lagrangian of order r for Y , let � be an automorphism of
Y , and let E� be the Euler–Lagrange form of �. Then

J 2r��E� D EJ r���: (2.22)

Lemma 8. (a) Every invariance transformation of a Lagrangian � is an invariance
transformation of the Euler–Lagrange form E�.

(b) For every invariance transformation � of E�, the Lagrangian � � J r��� is
variationally trivial.

We can generalize Noether’s theorem to invariance transformations of the Euler–
Lagrange forms and conservation equations. However, since the proof is based on
the theorem on the kernel of the Euler–Lagrange mapping � ! E�, which is of
local character (Theorem 3), the assertion we obtain is also of local character. Let
�� denote the principal Lepage equivalent of � (see Krupka, Krupková, Saunders
[12]); for second-order Lagrangians, �� was defined in (2.5). Note, however, that
for general orders �� is not necessarily defined globally.

Theorem 7. Let � be a Lagrangian of order r ,  an extremal, and� the generator
of invariance transformations of the Euler–Lagrange form E�. Then, for every point
y0 2 Y , there exists a fibred chart .V;  / at y0 and an .n � 1/-form � defined on
V r�1 such that

dJ 2r�.iJ 2r��� � �/ D 0 (2.23)
on U D �.V /.
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Now, we study symmetries of solutions of the Euler–Lagrange equations. Let �
be a Lagrangian of order r for Y . Suppose that we have an extremal  of �; thus, 
satisfies the Euler–Lagrange equations

E� � J
2r D 0: (2.24)

An automorphism � W W ! Y of Y with projection �0 is said to be a symmetry of
 , if the section ���10 is also an extremal, i.e.,

E� � J
2r.���10 / D 0: (2.25)

We say that a �-projectable vector field � generates symmetries of  if its local
one-parameter group consists of symmetries of  .

To study symmetries, we need a lemma on pushforward vector fields. Let X be
any manifold, � a vector field on X , W � X an open set, and � W W ! X a
diffeomorphism. The pushforward vector field of � by � is the vector field

�.�/.x/ D T��1.x/� � �.�
�1.x//: (2.26)

Lemma 9. Let X be a manifold, W an open set in X , � a vector field on X ,
� W W ! X a diffeomorphism, and � a p-form. Then

i��
�� D ��i�.�/�: (2.27)

The following theorem says that invariance transformations of the Euler–Lagrange
form E� permute extremals of the variational structure .Y; �/ and give us examples
of symmetries of extremals.

Theorem 8. An invariance transformation of the Euler–Lagrange form E� is a
symmetry of every extremal  of �.

The following theorem describes the properties of individual extremals.

Theorem 9. Let � be a Lagrangian of order r , let s be the order of the Euler–
Lagrange form E�, and let  be an extremal. Then a �-projectable vector field �
generates symmetries of  if and only if

E@Jr�� � J
s D 0: (2.28)

3. VARIATIONAL SEQUENCES AND VARIATIONAL PROJECTORS

We have already defined contact forms on the r-jet prolongation J rY . Evidently,
every q-form, where q � nC 1, n D dimX , would be contact. Now, we introduce,
for .n C k/-forms, k � 1, a modified concept of a strongly contact form. We say
that an .n C k/-form � on J rY is strongly contact if, for every point J r

x  2 J
rY ,

there exist a fibred chart .V;  /,  D .xi ; y� /, on Y , an integer s � r , and a contact
.nC k � 1/-form � on V s with pk�1� D 0 such that

pk..�
s;r/�� � d�/ D 0: (3.1)
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This condition is equivalent to saying that .�s;r/�� can be expressed in the form

.�s;r/�� D �C d�; (3.2)

where � and � satisfy pk� D 0 and pk�1� D 0.
Let q � 0, k � 1. If 0 � q � n, denote by �r

q the sheaf of contact forms on J rY ;
if q > n, then let �r

q be the sheaf of strongly contact forms on J rY . We get an exact
subsequence

0! �r
1 ! �r

2 ! �r
3 ! : : :! �r

M ! 0 (3.3)
of the de Rham sequence of sheaves of Abelian groups on J rY ,

0! R! 
r
0 ! 
r

1 ! 
r
2 ! : : :! 
r

M ! 
r
MC1 ! : : :! 
r

N ! 0; (3.4)

with the sequence mappings equal to the exterior derivative operator d . Then num-
bers N and M are given by

N D dimJ rY; M D n

 
nC r � 1

n

!
C 2n � 1: (3.5)

We call (3.3) the contact subsequence of the de Rham sequence. The quotient se-
quence

0! R! 
r
0 ! 
r

1=�
r
1 ! : : :! 
r

M=�
r
M ! 
r

MC1 ! : : :! 
r
N ! 0

(3.6)
is also exact; we call the quotient sequence the variational sequence (of order r).
The class ��� of a form � 2 
r

n (� 2 
r
nC1, � 2 
r

nC2) is called the Lagrangian
(Euler-Lagrange class, Helmholtz class) of �. The quotient mappingsE W 
r

k
=�r

k
!


r
kC1

=�r
kC1

are defined by
E.���/ D �d��: (3.7)

The mapping E W 
r
n=�

r
n ! 
r

nC1=�
r
nC1, assigning to a Lagrangian � D ���

its Euler–Lagrange class E.�/ D �d��, is called the Euler-Lagrange mapping; one
can extend the definition and call each of the quotient mappings in (3.6) the Euler-
Lagrange morphisms.

Theorem 10. The variational sequence is an acyclic resolution of the constant
sheaf R.

In the well-known sense, Theorem 10 allows us to identify the cohomology of the
sequence of global sections of (3.6) with the De Rham cohomology of the underlying
fibred manifold Y (see Krupka [9]). In particular, we get cohomology conditions for
the existence of global variational principles for systems of differential equations on
a manifold, expressed by means of a source form.

Now, we explain without proofs the basic results on variational projectors (Volná
and Urban [16]).

Since our definition of the variational projectors is inductive, we first need the
following lemma on the structure of 1-contact .nC 1/-forms.
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Lemma 10. Let � be a 1-contact �rC1;r -horizontal .n C 1/-form on W rC1 �

J rC1Y expressed in a fibred chart .V;  /,  D .xi ; y� /, by

� D
X

0�jJ j�r

AJ
�!

�
J ^ !0: (3.8)

Then, there exist a unique 1-contact !� -generated .n C 1/-form I1� on W 2rC1 �

J 2rC1Y , and a 1-contact n-form J1� and a 2-contact .nC1/-formK1� defined over
the chart neighborhood V such that

.�2rC1;rC1/�� D I1� � dJ1�CK1�; (3.9)

where
I1� D B�!

� ^ !0;

J1� D
X

0�jJ j�r�1

BJ i
� !�

J ^ !i ; K1� D
X

0�jJ j�r�1

pdBJ i
� ^ !�

J ^ !i ;
(3.10)

and

B� D
X

0�s�r

.�1/sdi1di2 : : : disA
i1i2:::is
� ;

BJ i
� D

X
1�q�r�k

.�1/qC1dikC2
dikC3

: : : dikCq
A
J iikC2ikC3:::ikCq

� ;
(3.11)

where jJ j D k D 0; 1; 2; : : : ; r � 1.

The form I1�, defined by Lemma 10 on .nC 1/-forms � in a unique way, can be
extended to arbitrary .nC k/-forms. We proceed as follows.

Let k > 1. Let W be an open subset of Y . Suppose we have a k-contact .nC k/-
form � defined on W rC1 � J rC1Y . Let �1; �2; : : : ; �k be arbitrary �-vertical
vector fields on W � Y . Then, we define a k-contact .nC k/-form Ik� on J 2rC1Y

by
iJ 2rC1�k

: : : iJ 2rC1�2
iJ 2rC1�1

Ik�

D
1

k

�
iJ 2rC1�k

iJ 2rC1�k�1
: : : iJ 2rC1�3

iJ 2rC1�2
Ik�1.iJ rC1�1

�/

� iJ 2rC1�k
iJ 2rC1�k�1

: : : iJ 2rC1�3
iJ 2rC1�1

Ik�1.iJ rC1�2
�/

� iJ 2rC1�k
iJ 2rC1�k�1

: : : iJ 2rC1�4
iJ 2rC1�1

iJ 2rC1�2
Ik�1.iJ rC1�3

�/

� : : :

� iJ 2rC1�k
iJ 2rC1�1

iJ 2rC1�k�2
: : : iJ 2rC1�3

iJ 2rC1�2
Ik�1.iJ rC1�k�1

�/

� iJ 2rC1�1
iJ 2rC1�k�1

: : : iJ 2rC1�3
iJ 2rC1�2

Ik�1.iJ rC1�k
�/
�

and an R-linear mapping 
r
nCk

W 3 �! I � 2 
2rC1
nCk

W by

I � D Ikpk�: (3.12)
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It should be pointed out that the form I � 2 
2rC1
nCk

W is defined over the same
open setW as �. The following theorem has a fundamental meaning for applications
of the theory of variational sequences.

Theorem 11. Let k � 1 be an integer. Let � W Y ! X be a fibred manifold over
n-dimensional manifold X , and let W be an open set in Y .

(a) For every form � 2 
r
nCk

W , I � belongs to the same class as .�2rC1;r/��.
(b) The kernel of the mapping 
r

nCk
W 3 � ! I � 2 
2rC1

nCk
W coincides with

the Abelian group �r
nCk

W .
(c) I satisfies, up to the canonical jet projection,

I �I D I : (3.13)

Remark. Theorem 11, (b) states that the kernel KerI of the morphism of Abelian
groups 
r

nCk
W 3 � ! I � 2 
2rC1

nCk
W coincides with the subgroup �r

nCk
W �


r
nCk

W of contact forms. Consequently, the image Im I is canonically isomorphic
with the quotient group 
r

nCk
W=�r

nCk
W . Under this isomorphism, the class ���

of a form � 2 
r
nCk

W can be canonically identified with a form I � 2 
2rC1
nCk

W .
In particular, the quotient group can be characterized as a subgroup of the group

2rC1
nCk

W ; this gives a way to compute the classes. One can find equations of the
subgroups; however, in general, an explicit solution of these equations is still an open
problem.

4. EXAMPLE: FIRST ORDER VARIATIONAL SEQUENCE IN FIELD THEORY

We give some remarks on the structure of classes in the variational sequence on
J 1Y over an n-dimensional base. These expressions allow us to study the local
inverse problem for systems of differential equations and are also related with the
meaning of cohomological conditions arising from the variational sequence theory.

(a) Classes of n-forms (Lagrangians)

The class of a form � 2 
1
nW is canonically identified with an n-form h� 2 
2

nW .
Conversely, an n-form � 2 
2

nW is a class if and only if the equation � D h� has
a solution �. One can show that � is a class if and only if � D L!0, where L is a
polynomial

L D L0 C P j1i1
�1

y
�1
j1i1

C P j1i1
�1

j2i2
�2

y
�1
j1i1

y
�2
j2i2

C

: : :C P j1i1
�1

j2i2
�2

: : : jnin�n
y
�1
j1i1

y
�2
j2i2

: : : y
�n
jnin

(4.1)

with the coefficients depending on xi ; y� ; y�j , symmetric in jl , il , and such that

P
j1i1
�1

j2i2
�2 : : :

jkik
�k D 0 whenever one cannot choose i1; i2; : : : ; ik mutually different.
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(b) Classes of .nC k/-forms (source forms)

The class of an .n C 1/-form � 2 
1
nC1W is canonically identified with a form

I � 2 
3
nC1W , and conversely, an .nC 1/-form " 2 
3

nC1W is a class if and only
if the equation " D I � has a solution � or, which is the same, " should satisfy integ-
rability conditions for this equation. Proceeding in the same way as in (a), one can
describe these conditions explicitly. The resulting expression for " is polynomial in
y�ji and y�

jik
whose coefficients should satisfy a system of first order partial differen-

tial equations. The classes of .nC k/-forms for general k have the same structure.

(c) The Euler–Lagrange mapping

The mapping E of the quotient group 
1
nW=�

1
nW into 
1

nC1W=�
1
nC1W is ex-

pressed by familiar formulas with some restrictions. Writing a class � as above, we
get the corresponding class as an .nC 1/-form E.�/ D E� .L /!� ^ !0, where

E� .L / D
@L

@y�
� di

@L

@y�i
C didj

@L

@y�ij
: (4.2)

In addition, however, one should substitute for L from (4.1).

(d) The Helmholtz form

Given a source form " 2 
3
nC1W such that " D I � (i.e., belonging to the quotient

group
1
nC1W=�

1
nC1W ), then the classE."/ D I d� belongs to
1

nC2W=�
1
nC2W ,

and it can equivalently be characterized as a form from the space of forms 
3
nC2W .

Writing " D "�!
� ^ !0, we get a globally defined .nC 2/-form

E."/ D
�
H��."/!

� CH�
p1
� ."/!

�
p1
CH�

p1p2
� ."/!�

p1p2

CH�
p1p2p3
� ."/!�

p1p2p3

�
^ !� ^ !0; (4.3)

where the components are the Helmholtz expression

H��."/ D
@"�

@y�
�
@"�

@y�
C dp1

@"�

@y�p1
� dp1dp2

@"�

@y�p1p2
C dp1dp2dp3

@"�

@y�p1p2p3
;

H�
p1
� ."/ D

@"�

@y�p1
C
@"�

@y�p1
� 2dp2

@"�

@y�p1p2
C 3dp2dp3

@"�

@y�p1p2p3
;

H�
p1p2
� ."/ D

@"�

@y�p1p2
�

@"�

@y�p1p2
C 3dp3

@"�

@y�p1p2p3
;

H�
p1p2p3
� ."/ D

@"�

@y�p1p2p3
C

@"�

@y�p1p2p3
;

with " satisfying the integrability condition for the equation " D I �.
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[10] D. Krupka, O. Krupková, G. Prince, and W. Sarlet, “Contact symmetries of the helmholtz form,”
Differential Geometry and its Applications, vol. 25, pp. 518–542, 2007.

[11] D. Krupka and D. Saunders, Eds., Handbook of Global Analysis. Elsevier, 2008.
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