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Abstract The paper is devoted to the interior Euler-Lagrange operator in field theory, rep-
resenting an important tool for constructing the variational sequence. We give a new invari-
ant definition of this operator by means of a natural decomposition of spaces of differential
forms, appearing in the sequence, which defines its basic properties. Our definition extends
the well-known cases of the Euler-Lagrange class (Euler-Lagrange form) and the Helmholtz
class (Helmholtz form). This linear operator has the property of a projector, and its kernel
consists of contact forms. The result generalizes an analogous theorem valid for variational
sequences over 1-dimensional manifolds and completes the known heuristic expressions by
explicit characterizations and proofs.
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1 Introduction

In 1989, the variational sequence theory on finite order jet spaces was introduced by Krupka
[6], primarily for the purpose of study of basic variational objects and their local and global prop-
erties. Later, the variational sequence was analysed in the particular case of fibred manifolds with
1-dimensional base (fibred mechanics, Krupka [7]). Related concepts of global variational theory
(especially Lepage forms and variational bicomplexes) were also studied, see Krupka [9], Vitolo
[14], and references therein. In particular, it was discovered that the Euler-Lagrange mapping,
assigning to a Lagrangian (n-form) its Euler-Lagrange form ((n+1)-form, its coefficients are the
Euler-Lagrange expressions) is a globally defined morphism in the variational sequence. Another
important result of the variational sequence theory is the concept of Helmholtz class, a global-
ization of the well-known Helmholtz variationality conditions. The elements of the variational
sequence are classes of differential forms on the underlying jet space, representing all known
variational objects, such as total derivatives, Lagrangians, Euler-Lagrange equations, variation-
ality conditions. Since the variational sequence is a quotient sequence, there arises a natural
problem of representing classes by different geometric objects, e.g. differential forms. A map-
ping, assigning to a class its chart representative is known as the (local) interior Euler-Lagrange
operator. This operator was considered by several authors in different ways: Anderson [1] intro-
duced the interior Euler-Lagrange operator by means of (local) differential operators within the
variational bicomplex theory; Krbek and Musilová [4] applied the integration by parts procedure;

† This paper was prepared in relation to the meeting Variations on a Theme (A meeting to celebrate the 70th
birthday of Demeter Krupka), 23-24 August 2012, Levoča, Slovakia.
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for further approaches see also Bauderon [2], Dedecker and Tulczyjew [3]. Uniqueness of the
interior Euler-Lagrange operator in the context of the variational bicomplex on infinite jet spaces
was studied by Mikulski [10].

On the other hand, Krupka and Šeděnková-Volná [8], [12] introduced the interior Euler-
Lagrange operator by means of decomposition theory of spaces of contact forms, naturally ap-
pearing in the sequence. This approach resulted in an invariant construction of the operator. Our
objective is to generalize the results of [8], obtained for variational sequences over 1-dimensional
manifolds, to the case of n-dimensional base manifolds (field theory). This paper completes the
results of the preprint Volná [13]. We give a new proof of the main theorem, characterizing basic
properties of the interior Euler-Lagrange operator. Namely, we show that this R-linear operator
(a) preserves the classes of differential forms in the sequence, (b) has the kernel coinciding with
the space of contact forms, and (c) has the property of a projector.

Our basic references on the variational sequence theory on finite order jet prolongations of
fibred manifolds are Krupka [5, 7, 9] and Šeděnková-Volná [11, 12].

Throughout this paper, the standard multiindex notation as well as the Einstein summation
convention are freely applied. The symbol iξ ρ denotes the contraction of a differential form ρ

by a vector field ξ .

2 Background

Throughout this paper we denote by Y a fibred manifold over n-dimensional base X with
projection π , where m = dimY − n. Let r ≥ 0. Let JrY denote the r-jet prolongation of Y , and
πr,s : JrY → JsY , 0≤ s < r, and πr : JrY → X , denote the canonical jet projections. An element
of JrY , denoted by Jr

xγ , is the r-jet of a section γ of π : Y → X with source at a point x ∈ X .
Recall that any fibred chart (V,ψ), ψ = (xi,yσ ), on Y , with 1 ≤ i ≤ n, 1 ≤ σ ≤ m, induces the
associated charts (V r,ψr), ψr = (xi,yσ ,yσ

j1 ,y
σ
j1 j2 , . . . ,y

σ
j1 j2... jr), on JrY , and (U,ϕ), ϕ = (xi), on

X , where V r = (πr,0)−1(V ), U = π(V ). The r-jet prolongation of a section γ of π is a section Jrγ

of πr, defined by Jrγ(x) = Jr
xγ .

For an open set W ⊂ Y , we put W r = (πr,0)−1(W ). If f : W r → R is a function, then for any
fibred chart (V,ψ) such that V ⊂W , we denote by di f : V r+1→R the i-th formal derivative of f
with respect to (V,ψ); in fibred coordinates ψ = (xi,yσ ),

di f =
∂ f
∂xi +

r

∑
l=0

∑
j1≤ j2≤...≤ jl

∂ f
∂yσ

j1 j2... jl

yσ
j1 j2... jl i.

Recall that a vector field Ξ on Y is called π-vertical, if T π ·Ξ = 0; this means in local coordinates
Ξ = Ξσ (∂/∂yσ ). The s-jet prolongation of a π-vertical vector field Ξ on Y is a vector field JsΞ

on JsY , given by

Js
Ξ =

s

∑
|J|=0

Ξ
σ
J

∂

∂yσ
J
, where Ξ

σ
Ki = diΞ

σ
K .

In fibred coordinates ψ = (xi,yσ ), we denote

ω0 = dx1∧dx2∧ . . .∧dxn,

ωi = i∂/∂xiω0 = (−1)i−1dx1∧dx2∧ . . .∧dxi−1∧dxi+1∧ . . .∧dxn.

We say that a differential k-form ρ on JrY is contact, if it vanishes along the r-jet prolongation
Jrγ of every section γ of π . An important case are contact 1-forms; if (V,ψ), ψ = (xi,yσ ), is
a fibred chart on Y , then a 1-form is contact if and only if it is a linear combination of the forms

(1) ω
σ
J = dyσ

J − yσ
Jidxi,
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where J = ( j1, . . . , js), 0≤ s≤ r−1, 0≤ j1, . . . , js ≤ n. We get the contact basis of linear forms
on V r, constituted by dxi, ωσ

J , dyσ
I , where 0 ≤ |J| ≤ r− 1 and |I| = r. A general differential

k-form ρ on V r is contact if and only if ρ is generated by 1-forms ωσ
J , and by 2-forms dωσ

I , with
0 ≤ |J| ≤ r−1, |I| = r−1 (Krupka [6]). After the canonical lifting to Jr+1Y , every differential
k-form ρ on JrY has a unique decomposition, expressed by the sum of l-contact components plρ

of ρ ,

(πr+1,r)∗ρ =
k

∑
l=0

plρ = hρ +
k

∑
l=1

plρ,

where hρ = p0ρ is a horizontal component of ρ , and a k-form plρ on Jr+1Y contains exactly
l-factors ωσ

J of the form (1); see e.g. [9]. Note that if ρ is a contact k-form, then also the exterior
derivative dρ is contact, and the exterior product of two contact forms is again a contact form.
This implies, in particular, that contact forms constitute a differential ideal in exterior algebra of
differential forms, called the contact ideal.

By means of the previous definition of a contact form, it is evident that every k-form with
k ≥ n+ 1 would be contact. For the forms of degree ≥ n+ 1, we apply a new definition of
contactness.

Let k ≥ n+ 1. A differential k-form ρ on JrY is said to be contact, if for every point of JrY
there exist a fibred chart (V,ψ) on Y , an integer s, s≥ r, and a contact (k−1)-form η on V s such
that

(2) pk−n((π
s,r)∗ρ−dη) = 0.

Condition (2) is equivalent to saying that (πs,r)∗ρ can be expressed in the form

(3) (πs,r)∗ρ = µ +dη ,

where µ is a k-form on V s such that pk−nµ = 0, and η is a contact (k−1)-form on V s. A k-form
ρ , with k ≥ n+1, satisfying pk−nρ = 0, is called strongly contact.

Let k ≥ 0. Denote by Ωr
k the direct image of the sheaf of smooth k-forms over JrY by the jet

projection πr,0. We set Ωr
0,c = {0}, and

(4)
Ω

r
k,c = kerh, for 1≤ k ≤ n,

Ω
r
k,c = ker pk−n, for n+1≤ k ≤ N, N = dimJrY,

and

(5) Θ
r
k = Ω

s
k,c +dΩ

s
k−1,c,

where k ≥ 1, and dΩs
k−1,c is the image sheaf of Ωs

k−1,c by d. Formula (5) means that a form ρ

belongs to Θr
k if its canonical lift (πs,r)∗ρ possesses a decomposition (3). Note that for 2≤ k≤ n,

Θr
k = Ωr

k,c. For every open set W ⊂Y , Ωr
kW (resp. Ωr

k,cW ) is the Abelian group of k-forms (resp.
contact k-forms (1 ≤ k ≤ n), strongly contact k-forms (n+1 ≤ k ≤ N)) on W r, dΩr

k−1,cW is the
Abelian group of forms which can be locally expressed as differentials of contact, resp. strongly
contact (k−1)-forms on W r, and Θr

kW is a subgroup of Ωr
kW of contact forms. We get an exact

sequence of sheaves of Abelian groups

(6) 0→Θ
r
1→Θ

r
2→Θ

r
3→ ·· · → Θ

r
M → 0,

in which all arrows denote the exterior differentiation d, and M = m
(n+r−1

n

)
+2n−1 (see Krupka

[6]). Sequence (6) is a subsequence of the de Rham sequence of differential forms

(7) 0→ R→Ω
r
0→Ω

r
1→Ω

r
2→ ··· →Ω

r
N−1→Ω

r
N → 0,
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where N = dimJrY . The quotient sequence

(8) 0→ R→Ω
r
0→Ω

r
1/Θ

r
1→ ··· →Ω

r
M/Θ

r
M →Ω

r
M+1→ ··· →Ω

r
N → 0

is also exact. We call (8) the r-th order variational sequence on JrY . The class of a differential
form ρ ∈Ωr

kW in the variational sequence (8) is denoted by [ρ].
The quotient mappings E : Ωr

k/Θr
k→Ωr

k+1/Θr
k+1 are defined by

(9) E([ρ]) = [dρ],

and satisfy the condition E2 = 0. The quotient mapping E : Ωr
n/Θr

n→Ωr
n+1/Θr

n+1 coincides with
the well-known Euler-Lagrange mapping, and E : Ωr

n+1/Θr
n+1→ Ωr

n+2/Θr
n+2 is the Helmholtz-

Sonin mapping.
A Lagrangian of order r is a πr-horizontal n-form λ . In a fibred chart, we write

(10) λ = L ω0,

where L is a function on JrY , called the Lagrange function.
Let ρ be an n-form on JrY . A form ρ is called a Lepage n-form if p1dρ is a πr+1,0-horizontal

(n+ 1)-form. A Lepage form ρ is called a Lepage equivalent of a Lagrangian λ if hρ = λ . It
is known that in higher order mechanics, Lepage equivalents are uniquely determined by La-
grangians. We denote by θλ a Lepage equivalent of a Lagrangian λ . If r = 1, θλ is, e.g., the well
known Poincaré-Cartan form, if r > 1, we have the generalized Poincaré-Cartan form. If λ has
a local expression (10), then

(11) p1dθλ = Eσ (L )ωσ ∧ω0,

where

(12) Eσ (L ) =
r

∑
l=0

(−1)ld j1d j2 . . .d jl
∂L

∂yσ
j1... jl

.

The form (11) is called the Euler-Lagrange form with components (12), the Euler-Lagrange
expressions.

3 The Interior Euler-Lagrange Operator

First, we formulate the following lemma on the structure of 1-contact (n+1)-forms.

Lemma 1 Let ρ be a 1-contact (n+1)-form on Jr+1Y , expressed by

(13) ρ =
r

∑
|J|=0

AJ
σ ω

σ
J ∧ω0.

Then there exist a 1-contact ωσ -generated (n+ 1)-form I1ρ on J2r+1Y , a 1-contact n-form J1ρ

on J2rY , and a 2-contact (n+1)-form K1ρ on J2r+1Y such that

(14) (π2r+1,r+1)∗ρ = I1ρ−dJ1ρ +K1ρ,

where

(15)

I1ρ = Bσ ω
σ ∧ω0, J1ρ =

r−1

∑
|J|=0

BJi
σ ω

σ
J ∧ωi,

K1ρ =
r−1

∑
|J|=0

(pdBJi
σ )∧ω

σ
J ∧ωi,
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and

(16)

Bσ =
r

∑
s=0

(−1)sdi1di2 . . .disA
i1i2...is
σ ,

BJi
σ =

r−k

∑
q=1

(−1)q+1dik+2dik+3 . . .dik+qA
Jiik+2ik+3...ik+q
σ ,

with |J|= k, k = 0,1, . . . ,r−1.

Proof. Suppose that a 1-contact (n+1)-form ρ has an expression (13). By a direct calcula-
tion we obtain for every multiindex J,

(17) PJi
σ ω

σ
Ji ∧ω0 =−diPJi

σ ω
σ
J ∧ω0 +(pdPJi

σ )∧ω
σ
J ∧ωi−d(PJi

σ ω
σ
J ∧ωi).

Applying condition (17) to the form ρ , we separate all terms containing ωσ ∧ω0. Then

(π2r+1,r+1)∗ρ =
r

∑
s=0

Ai1i2...is
σ ω

σ
i1i2...is ∧ω0

= Aσ ω
σ ∧ω0 +

r

∑
s=1

(
−disA

i1...is−1is
σ ω

σ
i1...is−1

∧ω0

+(pdAi1...is−1is
σ )∧ω

σ
i1...is−1

∧ωis −d(Ai1...is−1is
σ ω

σ
i1...is−1

∧ωis)
)

= Aσ ω
σ ∧ω0 +

r

∑
s=1

(
dis−1dis A

i1...is−2is−1is
σ ω

σ
i1...is−2

∧ω0

− (pd(disA
i1...is−2is−1is
σ ))∧ω

σ
i1...is−2

∧ωis−1

+d(dis A
i1...is−2is−1is
σ ω

σ
i1...is−2

∧ωis−1)

+(pdAi1...is−1is
σ )∧ω

σ
i1...is−1

∧ωis −d(Ai1...is−1is
σ ω

σ
i1...is−1

∧ωis)
)

= . . .

=
r

∑
s=0

(−1)sdi1 . . .dis−1disA
i1...is−1is
σ ω

σ ∧ω0

+
r

∑
s=1

pd
( s

∑
q=1

(−1)q+1dis−q+2 . . .disA
i1...is−qis−q+1...is
σ

)
∧ω

σ
i1...is−q ∧ωis−q+1

−d
( s

∑
q=1

(−1)q+1dis−q+2 . . .disA
i1...is−qis−q+1...is
σ ω

σ
i1...is−q ∧ωis−q+1

)
,

and resummating the last expression over k with k = s−q, k = 0,1, . . . ,r−1, we obtain

(π2r+1,r+1)∗ρ

=
r

∑
s=0

(−1)sdi1 . . .dis−1disA
i1...is−1is
σ ω

σ ∧ω0

−d
( r−1

∑
k=0

r−k

∑
q=1

(−1)q+1dik+2 . . .dik+qA
i1...ikik+1ik+2...ik+q
σ ω

σ
i1...ik ∧ωik+1

)



6 J. Volná and Z. Urban

+
r−1

∑
k=0

pd
( r−k

∑
q=1

(−1)q+1dik+2 . . .dik+qA
i1...ikik+1ik+2...ik+q
σ

)
∧ω

σ
i1...ik ∧ωik+1

= Bσ ω
σ ∧ω0−d

( r−1

∑
|J|=0

BJi
σ ω

σ
J ∧ωi

)
+

r−1

∑
|J|=0

(pdBJi
σ )∧ω

σ
J ∧ωi

= I1ρ−d(J1ρ)+K1ρ,

as required.

In the following lemma we show that the form I1ρ in decomposition (14) of Lemma 1 is
uniquely determined.

Lemma 2 Suppose ρ is a 1-contact (n+1)-form on Jr+1Y , expressed by (13), such that

(18) (π2r+1,r+1)∗ρ = ρ0−dρ
′+ρ

′′,

where ρ0 is a 1-contact ωσ -generated (n+1)-form on J2r+1Y , ρ ′ is a 1-contact n-form on J2rY ,
and ρ ′′ is a 2-contact (n+1)-form on J2r+1Y . Then

(19) ρ0 = I1ρ

and

(20) −dρ
′+ρ

′′ =−dJ1ρ +K1ρ,

where the forms I1ρ , J1ρ and K1ρ are given by (15).

Proof. By assumption (18) and by Lemma 1, (14), we have two decompositions of the form
ρ , hence

(21) 0 = (ρ0− I1ρ)−d(ρ ′− J1ρ)+(ρ ′′−K1ρ),

where ρ0 − I1ρ is a 1-contact ωσ -generated (n+ 1)-form on J2r+1Y , ρ ′ − J1ρ is a 1-contact
n-form on J2rY , and ρ ′′−K1ρ is a 2-contact (n+1)-form on J2r+1Y . Let us denote

(22) ρ0− I1ρ = Mσ ω
σ ∧ω0, ρ

′− J1ρ =
2r−1

∑
|J|=0

NJ,i
σ ω

σ
J ∧ωi.

Now we apply the formula

d(ωσ
J ∧ωi j) = ω

σ
Ji ∧ω j−ω

σ
J j ∧ωi,

where ωi j = i∂/∂x j i∂/∂xiω0. We get

N j1... js,i
σ ω

σ
j1... js ∧ωi

=
( 1

s+1
(N j1... js,i

σ +Ni j2... js, j1
σ +N j1i j3... js, j2

σ + · · ·+N j1... js−1i, js
σ )

+
1

s+1
(N j1... js,i

σ −Ni j2... js, j1
σ )+

1
s+1

(N j1... js,i
σ −N j1i j3... js, j2

σ )

+ · · ·+ 1
s+1

(N j1... js,i
σ −N j1... js−1i, js

σ )
)

ω
σ
j1... js ∧ωi



The interior Euler-Lagrange operator in field theory† 7

=
1

s+1
(N j1... js,i

σ +Ni j2... js, j1
σ +N j1i j3... js, j2

σ + · · ·+N j1... js−1i, js
σ )ωσ

j1... js ∧ωi

+
1

s+1
N j1... js,i

σ d(ωσ
j2... js ∧ω j1i)+

1
s+1

N j1... js,i
σ d(ωσ

j1 j3... js ∧ω j2i)

+ · · ·+ 1
s+1

N j1... js,i
σ d(ωσ

j1... js−1
∧ω jsi)

= Ñ j1... jsi
σ ω

σ
j1... js ∧ωi

+
1

s+1
d(N j1... js,i

σ ω
σ
j2... js ∧ω j1i)+

1
s+1

d(N j1... js,i
σ ω

σ
j1 j3... js ∧ω j2i)

+ · · ·+ 1
s+1

d(N j1... js,i
σ ω

σ
j1... js−1

∧ω jsi)

− 1
s+1

d(N j1... js,i
σ )∧ω

σ
j2... js ∧ω j1i−

1
s+1

d(N j1... js,i
σ )∧ω

σ
j1 j3... js ∧ω j2i

−·· ·− 1
s+1

d(N j1... js,i
σ )∧ω

σ
j1... js−1

∧ω jsi,

where

Ñ j1... jsi
σ =

1
s+1

(N j1... js,i
σ +Ni j2... js, j1

σ +N j1i j3... js, j2
σ + · · ·+N j1... js−1i, js

σ ).

Computing 1-contact part of the right-hand side of equation (21), we obtain

0 = ρ0− I1ρ− p1d(ρ ′− J1ρ)

= Mσ ω
σ ∧ω0− p1d(NJ,i

σ ω
σ
J ∧ωi)

= Mσ ω
σ ∧ω0 +diÑJi

σ ω
σ
J ∧ω0 + ÑJi

σ ω
σ
Ji ∧ω0

− 1
s+1

d j1N j1... js,i
σ ∧ω

σ
j2... jsi∧ω0 +

1
s+1

diN
j1... js,i

σ ∧ω
σ
j2... js j1 ∧ω0

− 1
s+1

d j2N j1... js,i
σ ∧ω

σ
j1 j3... jsi∧ω0 +

1
s+1

diN
j1... js,i

σ ∧ω
σ
j1 j3... js j2 ∧ω0

− . . .

− 1
s+1

d js N
j1... js,i

σ ∧ω
σ
j1... js−1i∧ω0 +

1
s+1

diN
j1... js,i

σ ∧ω
σ
j1... js−1 js ∧ω0,

hence the coefficients Mσ , NJ,i
σ , and ÑJi

σ must satisfy the conditions

(23)

Mσ +diÑi
σ = 0,

diÑ
J ji
σ + ÑJ j

σ +
1

|J|+2
di(N

Ji, j
σ −NJ j,i

σ ) = 0, 0≤ |J| ≤ 2r−2,

Ñ j1... j2r
σ = 0.

From the second equation we express

Ñi
σ =−d jÑ

i j
σ −

1
2

d j(N
j,i

σ −Ni, j
σ ),

and put these functions to the first equation of (23) to obtain

Mσ −did jÑ
i j
σ = 0.

Note that the antisymmetric part of Ñi
σ vanishes because of the symmetry of did j. We can repeat
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this procedure until we use the last condition Ñ j1... j2r
σ = 0. Finally we get

Mσ = 0

hence ρ0 = I1ρ . Condition (20) now directly follows from (21). This completes the proof.

The preceding lemma gives us uniqueness of I1ρ . We extend the operator I1, acting on 1-
contact (n+ 1)-forms, to operator Ik that will be defined on k-contact (n+ k)-forms. To this
purpose, we use inductive definition.

Let k > 1. Suppose ρ is a k-contact (n+ k)-form on Jr+1Y , and Ξ1,Ξ2, . . . ,Ξk are arbitrary
π-vertical vector fields on Y . We define a k-contact (n+ k)-form Ikρ on J2r+1Y by

(24)

iJ2r+1Ξk
. . . iJ2r+1Ξ2

iJ2r+1Ξ1
Ikρ

=
1
k

(
iJ2r+1Ξk

iJ2r+1Ξk−1
. . . iJ2r+1Ξ3

iJ2r+1Ξ2
Ik−1(iJr+1Ξ1

ρ)

− iJ2r+1Ξk
iJ2r+1Ξk−1

. . . iJ2r+1Ξ3
iJ2r+1Ξ1

Ik−1(iJr+1Ξ2
ρ)

− iJ2r+1Ξk
iJ2r+1Ξk−1

. . . iJ2r+1Ξ1
iJ2r+1Ξ2

Ik−1(iJr+1Ξ3
ρ)

− . . .

− iJ2r+1Ξk
iJ2r+1Ξ1

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

Ik−1(iJr+1Ξk−1
ρ)

−iJ2r+1Ξ1
iJ2r+1Ξk−1

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

Ik−1(iJr+1Ξk
ρ)

)
and a k-contact (n+ k−1)-form Jkρ on J2rY by

(25)

iJ2rΞk
. . . iJ2rΞ2

iJ2rΞ1
Jkρ

=−1
k

(
iJ2rΞk

iJ2rΞk−1
. . . iJ2rΞ3

iJ2rΞ2
Jk−1(iJr+1Ξ1

ρ)

− iJ2rΞk
iJ2rΞk−1

. . . iJ2rΞ3
iJ2rΞ1

Jk−1(iJr+1Ξ2
ρ)

− iJ2rΞk
iJ2rΞk−1

. . . iJ2rΞ1
iJ2rΞ2

Jk−1(iJr+1Ξ3
ρ)

− . . .

− iJ2rΞk
iJ2rΞ1

. . . iJ2rΞ3
iJ2rΞ2

Jk−1(iJr+1Ξk−1
ρ)

−iJ2rΞ1
iJ2rΞk−1

. . . iJ2rΞ3
iJ2rΞ2

Jk−1(iJr+1Ξk
ρ)

)
.

Finally, we define Kkρ by

(26) Kkρ = pk+1dJkρ.

Now let η be an arbitrary (n+ k)-form on JrY , k ≥ 1. Using the previous definition of Ik we
set

(27) I η = Ik pkη .

An R-linear mapping

(28) I : Ω
r
n+kW →Ω

2r+1
n+k W,

defined by (27), is called the interior Euler-Lagrange operator (cf. Anderson [1], Krupka and
Šeděnková-Volná [8], Krbek and Musilová [4]). The form I η is called the canonical represen-
tative of η .

For our proof of the main theorem, we need the following lemma.

Lemma 3 Let k ≥ 1. Let W ⊂ Y be an open set in a fibred manifold Y . Suppose that an
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(n+ k)-form ρ ∈Ωr
n+kW is expressed in a fibred chart on W as

(29) ρ = d(AI1... Iki
σ1...σk ω

σ1
I1
∧·· ·∧ω

σk
Ik
∧ωi).

Then I ρ = 0.

Proof. We proceed by induction. First, let k = 1. By a direct computation, we have

p1ρ =−diAIi
σ ω

σ
I ∧ω0−AIi

σ ω
σ
Ii ∧ω0.

Using definition (27) of I , and Lemma 1, (15), we obtain

I ρ = I1(p1ρ) =−
(

I1(diAIi
σ ω

σ
I ∧ω0)+ I1(AIi

σ ω
σ
Ii ∧ω0)

)
=−

r−1

∑
s=0

(−1)sdi1di2 . . .disdiA
i1i2...isi
σ ω

σ ∧ω0

−
r

∑
s=1

(−1)sdi1di2 . . .dis A
i1i2...is
σ ω

σ ∧ω0 = 0.

Suppose now I ρ = 0 for every (n+ k)-form (29), where k ≥ 1. We show that the assertion
is valid also for (n+ k+1)-forms. Let ρ ∈Ωr

n+k+1W be of the form (29). Thus

ρ = d(AI1... Ik+1i
σ1...σk+1ω

σ1
I1
∧·· ·∧ω

σk+1
Ik+1
∧ωi)

= dAI1... Ik+1i
σ1...σk+1ω

σ1
I1
∧·· ·∧ω

σk+1
Ik+1
∧ωi +AI1... Ik+1i

σ1...σk+1d(ωσ1
I1
∧·· ·∧ω

σk+1
Ik+1

)∧ωi,

and for the (k+1)-contact component of ρ we get

(30)
pk+1ρ = (−1)k+1diA

I1... Ik+1i
σ1...σk+1ω

σ1
I1
∧·· ·∧ω

σk+1
Ik+1
∧ω0

+(−1)k+1(k+1)AI1 I2... Ik+1i
σ1σ2...σk+1ω

σ1
I1i ∧ω

σ2
I2
∧·· ·∧ω

σk+1
Ik+1
∧ω0.

By definitions of I and Ik+1 (27), (24), it is now sufficient to show that for an arbitrary vertical
vector field Ξ on Y , Ik(iJr+1Ξ

pk+1ρ) vanishes. Computing the contraction of (30), we have

iJr+1Ξ
pk+1ρ = (−1)k+1(k+1)diA

I1 I2... Ik+1i
σ1σ2...σk+1 Ξ

σ1
I1

ω
σ2
I2
∧·· ·∧ω

σk+1
Ik+1
∧ω0

+(−1)k+1(k+1)AI1 I2... Ik+1i
σ1σ2...σk+1 Ξ

σ1
I1i ω

σ2
I2
∧·· ·∧ω

σk+1
Ik+1
∧ω0

− (−1)k+1(k+1)AI1 I2... Ik+1i
σ1σ2...σk+1 ω

σ1
I1i ∧ (k Ξ

σ2
I2

ω
σ3
I3
∧·· ·∧ω

σk+1
Ik+1

)∧ω0

= (−1)k+1(k+1)di(A
I1 I2... Ik+1i
σ1σ2...σk+1 Ξ

σ1
I1
)ω

σ2
I2
∧·· ·∧ω

σk+1
Ik+1
∧ω0

+(−1)k+1(k+1)AI1 I2 I3... Ik+1i
σ1σ2σ3...σk+1 k Ξ

σ1
I1

ω
σ2
I2i ∧ω

σ3
I3
∧·· ·∧ω

σk+1
Ik+1
∧ω0

= pkη ,

where

η = d(ÃI2 I3... Ik+1i
σ2σ3...σk+1 ω

σ2
I2
∧ω

σ3
I3
∧·· ·∧ω

σk+1
Ik+1
∧ωi),

and

ÃI2 I3... Ik+1i
σ2σ3...σk+1 =−(k+1)AI1 I2 I3... Ik+1i

σ1σ2σ3...σk+1Ξ
σ1
I1
.

But by our assumption, I η = 0 hence Ik(iJr+1Ξ
pk+1ρ) = Ik(pkη) = 0, as required.
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The following theorem characterizes the main properties of the interior Euler-Lagrange ope-
rator I .

Theorem 1 Let k ≥ 1 be an integer. Let π : Y → X be a fibred manifold over n-dimensional
base X, and W ⊂ Y be an open set.

(a) For every ρ ∈Ωr
n+kW, I ρ lies in the same class as (π2r+1,r)∗ρ .

(b) The kernel of I : Ωr
n+kW →Ω

2r+1
n+k W coincides with Θr

n+kW.
(c) I ◦I = I (up to the canonical jet projection).

Proof. (a) When it is obvious from the context, we omit pull-back of forms by the canonical
jet projection π2r+1,r+1. We proceed by induction. If k = 1, then I ρ−ρ ∈Θ

2r+1
n+1 is straightfor-

ward from decomposition (14) and formulas (15) of Lemma 1.
Suppose that I ρ−ρ ∈ Θ

2r+1
n+k for some k > 1. We shall prove that the same condition holds

for k+ 1. Let ρ be an arbitrary (n+ k+ 1)-form on W r ⊂ JrY . From definition (27) we have
I ρ = Ik+1(pk+1ρ). For an arbitrary π-vertical vector field Ξ on Y , iJr+1Ξ

pk+1ρ is a k-contact
(n+ k)-form hence, by our assumption, I (iJr+1Ξ

pk+1ρ)− iJr+1Ξ
pk+1ρ belongs to Θ

2r+1
n+k W ; we

write

(31) Ik(iJr+1Ξ
pk+1ρ) = iJr+1Ξ

pk+1ρ +µΞ,

where µΞ ∈ Θ
2r+1
n+k W . Substituting (31) in the definition of Ik+1 (24), we get for arbitrary π-

vertical vector fields Ξ1,Ξ2, . . . ,Ξk+1,

iJ2r+1Ξk+1
. . . iJ2r+1Ξ2

iJ2r+1Ξ1
Ik+1(pk+1ρ)

=
1

k+1

(
iJ2r+1Ξk+1

iJ2r+1Ξk
. . . iJ2r+1Ξ3

iJ2r+1Ξ2
Ik(iJr+1Ξ1

pk+1ρ)

− iJ2r+1Ξk+1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ1

Ik(iJr+1Ξ2
pk+1ρ)

− iJ2r+1Ξk+1
iJ2r+1Ξk

. . . iJ2r+1Ξ1
iJ2r+1Ξ2

Ik(iJr+1Ξ3
pk+1ρ)

− . . .

− iJ2r+1Ξk+1
iJ2r+1Ξ1

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

Ik(iJr+1Ξk
pk+1ρ)

−iJ2r+1Ξ1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

Ik(iJr+1Ξk+1
pk+1ρ)

)
=

1
k+1

(
iJ2r+1Ξk+1

iJ2r+1Ξk
. . . iJ2r+1Ξ3

iJ2r+1Ξ2
(iJr+1Ξ1

pk+1ρ +µΞ1)

− iJ2r+1Ξk+1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ1

(iJr+1Ξ2
pk+1ρ +µΞ2)

− iJ2r+1Ξk+1
iJ2r+1Ξk

. . . iJ2r+1Ξ1
iJ2r+1Ξ2

(iJr+1Ξ3
pk+1ρ +µΞ3)

− . . .

− iJ2r+1Ξk+1
iJ2r+1Ξ1

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

(iJr+1Ξk
pk+1ρ +µΞk)

−iJ2r+1Ξ1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

(iJr+1Ξk+1
pk+1ρ +µΞk+1)

)
= iJ2r+1Ξk+1

. . . iJ2r+1Ξ2
iJ2r+1Ξ1

pk+1ρ +
1

k+1

(
iJ2r+1Ξk+1

iJ2r+1Ξk
. . . iJ2r+1Ξ3

iJ2r+1Ξ2
(µΞ1)

− iJ2r+1Ξk+1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ1

(µΞ2)

− iJ2r+1Ξk+1
iJ2r+1Ξk

. . . iJ2r+1Ξ1
iJ2r+1Ξ2

(µΞ3)

− . . .

− iJ2r+1Ξk+1
iJ2r+1Ξ1

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

(µΞk)

−iJ2r+1Ξ1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

(µΞk+1)
)
,
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and consequently

(32)

iJ2r+1Ξk+1
. . . iJ2r+1Ξ2

iJ2r+1Ξ1
(Ik+1(pk+1ρ)− pk+1ρ)

=
1

k+1

(
iJ2r+1Ξk+1

iJ2r+1Ξk
. . . iJ2r+1Ξ3

iJ2r+1Ξ2
(µΞ1)

− iJ2r+1Ξk+1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ1

(µΞ2)

− . . .

−iJ2r+1Ξ1
iJ2r+1Ξk

. . . iJ2r+1Ξ3
iJ2r+1Ξ2

(µΞk+1)
)
.

Let ξ1, . . . ,ξn ∈ TxJ2r+1Y be tangent vectors to J2r+1Y at a point x. Expressing the value of the
forms on both sides of (32) at x and ξ1, . . . ,ξn, we obtain

(33)

(Ik+1(pk+1ρ)− pk+1ρ)(J2r+1
Ξk+1(x), . . . ,J2r+1

Ξ1(x),ξ1, . . . ,ξn)

=
1

k+1
(
µΞ1(J

2r+1
Ξk+1,J2r+1

Ξk, . . . ,J2r+1
Ξ3,J2r+1

Ξ2,ξ1, . . . ,ξn)

−µΞ2(J
2r+1

Ξk+1,J2r+1
Ξk, . . . ,J2r+1

Ξ3,J2r+1
Ξ1,ξ1, . . . ,ξn)

− . . .

−µΞk+1(J
2r+1

Ξ1,J2r+1
Ξk, . . . ,J2r+1

Ξ3,J2r+1
Ξ2,ξ1, . . . ,ξn)

)
.

It now follows that the (k+ 1)-contact part of the left-hand side of (33) vanishes, thus the (n+
k+ 1)-form Ik+1(pk+1ρ)− pk+1ρ belongs to Θ

2r+1
n+k+1W (up to the canonical jet projection). In

addition to this, it is easy to see that pk+1ρ−ρ ∈ Θ
2r+1
n+k+1V hence we conclude with I ρ−ρ ∈

Θ
2r+1
n+k+1W .
(b) Let ρ ∈ Ωr

n+kW be an arbitrary (n+ k)-form. From assertion (a) of this theorem we have
I ρ−ρ ∈ Θ

2r+1
n+k V . Suppose first that I ρ = 0. Then it follows that −ρ ∈ Θ

2r+1
n+k W . However, ρ

is defined on W r ⊂ JrY hence by definition (2) of contact forms we get ρ ∈Θr
n+kW .

Conversely, let ρ ∈Θr
n+kW . Then ρ is expressible as a sum of the following terms

(34)
AI1...Ik+si1...is

σ1...σk+s ω
σ1
I1
∧·· ·∧ω

σk+s
Ik+s
∧ωi1...is ,

d(AI1...Ik+s−1i1...is
σ1...σk+s−1 ω

σ1
I1
∧·· ·∧ω

σk+s−1
Ik+s−1

∧ωi1...is),

where s = 1,2, . . . ,n. The summands µ of (34) for which pkµ = 0, obey I µ = 0 directly from
the definition of I . It remains to show that the condition I µ = 0 is satisfied also for terms of
the form

µ = d(AI1... Iki
σ1...σk ω

σ1
I1
∧·· ·∧ω

σk
Ik
∧ωi).

This was, however, already proved in Lemma 3. Thus, the kernel of I coincides with the space
of contact forms Θr

n+kW .
(c) Finally, we show that I has the property of a projector, up to a lift of the canonical

jet projection. From (a) we have I ρ −ρ ∈ Θ
2r+1
n+k W , and property (b) of this theorem implies

I (I ρ − ρ) = 0. From linearity of I we conclude that I (I ρ)−I ρ = 0 for every ρ ∈
Ωr

n+kW . This means that I ◦I = I .

Remark 1 Theorem 1, (b), implies that the image of Ωr
n+kW by I : Ωr

n+kW → Ω
2r+1
n+k W

is canonically isomorphic with the quotient group Ω
2r+1
n+k W/Θ

2r+1
n+k W . If ρ ∈ Ωr

n+kW , then the
class [ρ] ∈ Ω

2r+1
n+k W/Θ

2r+1
n+k W in the variational sequence can be identified with the globally de-

fined differential form I ρ . However, it may happen that a class of ρ ∈ Ωr
n+kW , an element

of Ωs
n+kW/Θs

n+kW in the variational sequence of order s, s < 2r+ 1, is not a globally defined
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differential form (for an example, see [7]).

Remark 2 Instead of inductive definition (24) of operator Ik, it is also possible to use an
equivalent definition by means of the operator I1.

Let k ≥ 1. Let ρ be a k-contact (n+ k)-form on Jr+1Y , and Ξ1,Ξ2, . . . ,Ξk be arbitrary π-
vertical vector fields on Y . We define a k-contact (n+ k)-form Ikρ on J2r+1Y by

iJ2r+1Ξk
. . . iJ2r+1Ξ2

iJ2r+1Ξ1
Ikρ =

1
k

(
iJ2r+1Ξk

I1(iJr+1Ξk−1
iJr+1Ξk−2

. . . iJr+1Ξ3
iJr+1Ξ2

iJr+1Ξ1
ρ)

− iJ2r+1Ξk−1
I1(iJr+1Ξk

iJr+1Ξk−2
. . . iJr+1Ξ3

iJr+1Ξ2
iJr+1Ξ1

ρ)

− iJ2r+1Ξk−2
I1(iJr+1Ξk−1

iJr+1Ξk
. . . iJr+1Ξ3

iJr+1Ξ2
iJr+1Ξ1

ρ)

− . . .

− iJ2r+1Ξ2
I1(iJr+1Ξk−1

iJr+1Ξk−2
. . . iJr+1Ξ3

iJr+1Ξk
iJr+1Ξ1

ρ)

−iJ2r+1Ξ1
I1(iJr+1Ξk−1

iJr+1Ξk−2
. . . iJr+1Ξ3

iJr+1Ξ2
iJr+1Ξk

ρ)
)
.

4 Examples

We conclude this paper with two examples of canonical representatives of differential forms,
canonically isomorphic with classes in the variational sequence, well-known in the calculus of
variations. From the variational sequence theory we observe that classes of forms represent La-
grangians (n-forms), Euler-Lagrange expressions ((n+1)-forms), Helmholtz variationality con-
ditions ((n+2)-forms), etc.

At first, consider a Lagrangian λ of order r on JrY , given in a fibred chart by λ = L ω0 on
JrY . λ represents the class of a 1-form (the Lagrange class), defined by its horizontal component.
We find the canonical representative of the (n+1)-form dλ . By our definition of I , we compute

p1(dλ ) = pdL ∧ω0 =
( r

∑
l=0

∂L

∂yσ
j1 j2... jl

ω
σ
j1 j2... jl

)
∧ω0,

and obtain by Lemma 1, (15), the Euler-Lagrange form of dλ ,

(35) I (dλ ) = I1(p1dλ ) = Eσ (L )ω
σ ∧ω0,

where

(36) Eσ (L ) =
r

∑
l=0

(−1)ld j1d j2 . . .d jl
∂L

∂yσ
j1 j2... jl

.

The mapping assigning to the Lagrange class its Euler-Lagrange expressions (36) represents the
well-known Euler-Lagrange mapping.

Let ε be a 1-contact, πr,0-horizontal form on JrY (called the source form), an element of
image of the Euler-Lagrange mapping. In a fibred chart (V,ψ), ψ = (xi,yσ ), ε is of the form
ε = εν ων ∧ω0. We have

p2dε =
r

∑
l=0

∂εν

∂yσ
j1 j2... jl

ω
σ
j1 j2... jl ∧ω

ν ∧ω0.

By the definition of the operator I2ρ (24), for arbitrary π-vertical vector fields Ξ1, Ξ2 on Y we
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get

iJ2r+1Ξ2
iJ2r+1Ξ1

I2ρ =
1
2
(iJ2r+1Ξ2

I1(iJr+1Ξ1
ρ)− iJ2r+1Ξ1

I1(iJr+1Ξ2
ρ)).

Hence, we obtain a chart expression of I2(p2dε) of the form

I (dε) = I2(p2dε)

=
1
2

r

∑
k=0

H j1 j2... jk
νσ (ε)ω

σ
j1 j2... jk ∧ω

ν ∧ω0,

where

(37)

H j1 j2... jk
νσ (ε) =

∂εν

∂yσ
j1 j2... jk

− (−1)k ∂εσ

∂yν
j1 j2... jk

−
r

∑
p=k+1

(−1)p
(

p
k

)
d jk+1d jk+2 . . .d jp

∂εσ

∂yν
j1 j2... jp

.

I (dε) is a globally defined object in the variational sequence, called the Helmholtz form,
with coefficients (37), the Helmholtz expressions (cf. Krupka [9], Krbek and Musilová [4],
Šeděnková-Volná [12]).
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[8] KRUPKA, D.—ŠEDĚNKOVÁ, J.: Variational sequences and Lepage forms. In: Diff. Geom.

Appl., Proc. Conf., Prague, August 2004 (J. Bureš, O. Kowalski and D. Krupka, eds.), Charles
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