Some Recent Developmentsin Symmetries and Conservation Lawsfor Partial
Differential Equations

This course will be concerned with recent developisien how to find and use
symmetries for PDEs; how to find and use consesadaws for PDES; connections
between symmetries and conservation laws for PIMEsch of the material in this
course will appear in a forthcoming book to be mh#d in the Springer Applied
Mathematical Sciences series. Background mai@péars irBymmetry and Integration
Methods for Differential Equations (Springer 2002) by George W. Bluman and Stephen
C. Anco, which focused on Lie groups of transfoiiora and their applications to
solving ordinary differential equations (ODESs), ttanstruction of conservation laws
(integrating factors) for ODEs, and finding invariaolutions of PDEs.

Topics to be selected from:

Local symmetries—point, contact, higher-order.

How to find local symmetries admitted by a givIDE system.

Noether’s theorem and its limitations.

How to directly find local conservation lawsagfiven PDE system.

Connections between symmetries and conserviatizs

Linearization of PDEs by invertible mappingsotigh admitted symmetries;

through admitted conservation law multipliers.

How to systematically find trees of equivaleat bonlocally related PDE systems

for a given PDE system.

8. How to systematically find nonlocal symmetriesl monlocal conservation laws
for a given PDE system.
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Overview of the subject matter of this course.

In the latter part of the facentury Sophus Lie initiated his studies on carirs
groups (Lie groups) in order to put order to, dmeteby extend systematically, the
hodgepodge of heuristic techniques for solving ODHe showed that the problem of
finding the Lie group of point transformations (pbsymmetries) admitted by a DE
(ordinary or partial) reduced to solving relatatelr systems of determining equations
for its infinitesimal generators. Lie also showkdt an admitted point symmetry led to
reducing the order of an ODE (irrespective of anpased initial conditions) and, in the
case of a PDE, to finding special solutions caille@riant (similarity) solutions.
Moreover, he showed that an admitted point symngnerates a one-parameter family
of solutions from a known solution of a DE. Mostpontantly, the applicability of Lie’s
work extends to nonlinear DEs. This work is disedlss the above-mentioned book as
well as many other excellent references thereime direct applicability of Lie’s work to
PDEs (especially nonlinear PDES) is rather limign when a given PDE admits a
point symmetry, since the resulting invariant solos yield only a small subset of the
solution set of the PDE and hence few posed boynadune problems can be solved.

The extensions of Lie’s work to PDEs have focusetiow to find and
implement further applications for admitted symnestrhow to extend the applications
arising from admitted symmetries to applicationisiag from generalizations of
symmetries (e.g., conservation laws arising fronitigiliers, solutions arising from the



“nonclassical method”), how to extend the spacesdofitted symmetries, and how to
efficiently solve the (overdetermined) linear systef symmetry determining equations
through the development of symbolic computatiornvearfe as well as related
calculations to find multipliers for conservati@wls or to solve the nonlinear system of
determining equations for the nonclassical method.

A symmetry of a PDE is any transformation of itluon manifold into itself,

i.e., a symmetry transforms (maps) any solutioa BDE to another solution of the same
PDE. Consequently, continuous symmetry transfaonatare defined topologically and
are not restricted to admitted point symmetrieBusl in principle, any nontrivial PDE
admits symmetries. The problem is to find andadmitted symmetries. Practically, to
find an admitted symmetry one must consider transdtions, acting on spaces of a
finite number of variables, which leave invariame solution manifold of the given PDE
and its differential consequences.

One such extension is to consitiegher-order symmetries (local symmetries)
where the solutions of the determining equationsyonmetries are allowed to depend
on a finite number of derivatives of the given degent variables of the PDE (point
symmetries depend at most linearly on the firsivaéives of the dependent variables and
contact symmetries allow dependence at most andinsvatives). In making this
extension, it is essential to realize that thedirgetermining equations for local
symmetries are the linearized system of the giVeg Ehat holds foall of its solutions.
Globally, point and contact symmetries act on @érdimensional spaces whereas higher-
order symmetries act on infinite-dimensional spamessisting of the dependent and
independent variables as wellakof their derivatives. Well-known integrable eqoat
of mathematical physics such as the Korteweg-desguation admit an infinite
number of higher-order symmetries.

Another extension is to consider solutions of teeednining equations that allow
an ad-hoc dependence on nonlocal variables suiciiegsals of the dependent variables.
Usually such symmetries are found formally throogtursion operators that depend on
inverse differentiation. Integrable equations sashhe sine-Gordon and cubic
Schrodinger equations admit an infinite numberuahssymmetries.

In her celebrated 1918 paper, Emmy Noether shohagdfta system of DEs
admits a variational principle, then any local sfammation group leaving invariant the
action integral for its Lagrangian density, i.en,amittedvariational symmetry, yields a
conservation law. Conversely, any conservatianddmitted by a variational system of
DEs arises from a variational symmetry, and heheeetis a direct correspondence
between conservation laws and variational symnge(hN®ether’s theorem).

There are several limitations to Noether’s theofenfinding conservation laws
for a given system of DEs. First of all, it istrésted to variational systems.
Consequently, for this theorem to be applicable ¢iven system as written, the system
must be of even order, have the same number ohdepévariables as the number of
equations in the given system, and have no dissipdh particular, a given system of
DEs is variational if and only if its linearizedssgm is self-adjoint. There is also the
difficulty of finding symmetries admitted by thetamn integral. In general, not all
admitted local symmetries of a variational systdrdBs are variational symmetries.
Moreover, the use of Noether’s theorem to find eovastion laws is coordinate
dependent.



A conservation law of a given system of PDEs isvargence expression that
vanishes on all solutions of the PDEs. In gendtalugh divergences arise from a scalar
product formed by multipliers, depending on anyependent and dependent variables as
well as at most a finite number of derivativeshad tlependent variables of the system,
with each PDE in the system. It then follows thgiveen system of PDEs has a
conservation law if and only if there exist muligrs whose scalar product with the PDEs
in the system is identically annihilated by thedfudperators associated with each of its
dependent variables without restricting these Wéggin the scalar product to solutions
of the system of PDEs. If a given PDE system isatianal then its multipliers are
variational symmetries. In this case, it turnsthat all multipliers satisfy the linearized
PDE system augmented by additional determining teapgthat correspond to the action
integral being invariant under the associated tianal symmetry. In general, all
multipliers are the solutions of a linear determgnsystem that includes the adjoint
system of the linearized PDE system. For any nlidtigielding a conservation law,
there is an integral formula that yields the flugesl densities of any admitted
conservation law without need of a specific Lagiangven in the case when the given
system of DEs is variational.

Another important application of symmetries to PO¥® determine whether or
not a given PDE can be mapped into an equivaleget®DE of interest. This is
especially significant if a target class of PDEB ba completely characterized in terms
of admitted symmetries. Target classes which shélnacterizations include linear
systems and linear PDEs with constant coefficie@tsnsequently, from the admitted
point or contact symmetries of a given system oEB[®ne can determine whether or not
it can be mapped into a linear PDE by a point otact transformation and find such an
explicit mapping when one exists. Moreover, one &lao see whether or not such a
linearization is possible from its admitted muliggp$ for conservation laws. From the
admitted point symmetries of a linear PDE with &bhe coefficients, one can determine
whether or not it can be mapped by a point transéion into a linear PDE with
constant coefficients and find such an explicit piag when one exists.

In order to effectively apply symmetry methods @H3, one needs to work in
some coordinate frame in order to perform calcoteti A systematic procedure to find
symmetries that are nonlocal and yet are locabmesrelated coordinate frame involves
embedding a given PDE system in another PDE systeained by adjoining nonlocal
variables in such a way that the related PDE syseasquivalent to the given PDE
system and the given PDE system arises througkgiion. Consequently, any local
symmetry of the related system yields a symmetityhefgiven system. If the local
symmetry of the related PDE system has an esselefi@ndence on the nonlocal
variables after projection, then it yields a nomlogymmetry of the given PDE system.

A systematic way to find such an embedding is thhoconservation laws of a
given PDE system of. For each conservation law,cameintroduce potentials. By
adjoining the resulting potential equations toghen system, one can construct an
augmented PDE systempofential system). By construction, such a potential system is
nonlocally equivalent to the given PDE system sitfweugh built in integrability
conditions, any solution of the given PDE systesids a solution of the potential system
and, conversely, through projection any solutiothef potential system yields a solution
of the given PDE system. But this relationshipaslocal since there is not a one-to-one



correspondence between solutions of the given atehpal systems. If a local
symmetry of the potential system depends essgntinlthe potential variables when
projected to the given PDE system, then it yield®@alocal symmetrypotential

symmetry) of the given system. It turns out that many PiyEtems admit such potential
symmetries. Moreover, one can find further nonlsganmetries of the given PDE
system through seeking local symmetries of equntadabsystems of the given system or
potential system provided such subsystems are aalhfaquivalent to the given PDE
system. Invariant solutions of such potential syst@and subsystems can yield further
solutions of the given PDE system. Since a potesyimmetry is a local symmetry of a
potential system, it generates a one-parametehfarhsolutions from any known
solution of the potential system that in turn yseldone-parameter family of solutions
from a known solution of the given PDE system. Remnore, conservation laws of
potential systems (and subsystems) can yield nahtmmservation laws of given
systems. Linearizations of such potential systdmmugh local symmetry or
conservation law analysis can yield explicit noaldmearizations of given systems of
PDEs. Moreover, through a potential system oneegéend the mappings of linear
systems with variable coefficients to linear systemith constant coefficients to include
nonlocal mappings between such systems.

One can further extend embeddings through usingeseation laws to
systematically construct trees of nonlocally redabeit equivalent systems of PDEs. If a
given PDE system haslocal conservation laws, then each conservatiaryialds
potentials and a corresponding potential systensthhoportantly, from the

conservation laws, one can directly constr2itt-1 independent nonlocally related
systems of PDEs by considering the corresponditgnpial systems individuallyn(
singlets), in pairsn(n — 1)/2 couplets),..., taken all together (onplet). In turn, any

one of thes@" —1 systems could lead to the discovery of new nohlggametries

and/or nonlocal conservation laws of the given Rp&em or any of the oth&"
nonlocally related systems. Moreover, such norlogaservation laws could yield
further nonlocally related systems, etc. Furtheeneubsystems of such nonlocally
related systems could yield further nonlocally tetesystems. Correspondingly, a tree of
nonlocally related systems is constructed. Thraswgth constructions, one can
systematically relate Eulerian and Lagrangian coaité descriptions as well as find
other descriptions of gas dynamics and nonlinesstieity equations. In both cases,
subsystems of potential systems arising from tkystems written in Eulerian
coordinates yield the corresponding systems indgjan coordinates.

For a given class of PDEs with constitutive funieipit is of interest to classify
its trees of nonlocally related systems and cooedimg symmetries and conservation
laws with respect to various forms of its conshteifunctions. When a system is
variational, i.e., its linearized system is selfedt, then of course the conservation laws
arise from a subset of its symmetries and, in @aldr, the number of linearly
independent conservation laws cannot exceed théd&uai higher-order symmetries.
But from the above, we see that this will not be ¢thse when a system is not variational.
Here a constitutive function could yield more canaéon laws than symmetries as well
as vice versa.

For any given system of PDEs, an admitted symn{etrgtinuous or discrete)
yields a formula that maps a conservation law ¢oraservation law of the same system,



whether or not the given system is variationalthé symmetry is continuous, then in
terms of a parameter expansion a given conservivoicould map into more than one
new conservation law for the given system.

Another important extension relates to Lie’s workfmding invariant solutions
for PDEs. As mentioned previously, a point symmatimitted by a PDE maps each of
its solutions into a one-parameter family of sa@ns. But some solutions map into
themselves, i.e., they are themselves invarianth Solutions satisfy the characteristic
PDE that is the invariant surface condition yietdthe invariants for the point symmetry.
The invariant solutions arising from the point syairg are the solutions of the given
PDE that satisfy the augmented system consisting characteristic PDE with known
coefficients (obtained from the point symmetry) dinel given PDE itself. The invariant
solutions arise as solutions of a reduced systamavie less independent variable. This
method (“classical method”) of Lie to find invariasolutions of a given PDE generalizes
to thenonclassical method introduced in 1967 where one seeks solutions of an
augmented system consisting of the given PDE amdlhracteristic PDE with unknown
coefficients as well as differential consequendat® characteristic PDE. Here the
unknown coefficients are determined by substituthrggcharacteristic equation into the
determining system for symmetries of the augmesystem. The resulting over-
determined system is nonlinear (even if the givBiE#s linear) in these unknown
coefficients, but less over-determined than isctiiee when finding point symmetries of
the given PDE. Each solution of the determiningteay for point symmetries is a
solution of the determining system for the unknawefficients of the characteristic
PDE. Solving for the unknown coefficients, onerttproceeds to find the corresponding
“nonclassical” solutions of the augmented systeat, thy construction, include the
classical invariant solutions.

The solutions of a PDE that can be obtained bytrelassical method include
all of its solutions that satisfy a particular ftinoal form (ansatz) of some generality that
allows an arbitrary dependence on a similarityatale (depending on the independent
and dependent variables of the PDE) and an anpitiggsendence on a function of a
similarity variable and the independent variableghe PDE. The solutions obtained by
the nonclassical method include all solutions atadi“directly” from such an ansatz by
thedirect method introduced by Clarkson and Kruskal in 1988.



