Publications

The recent publication record of members of the LRI includes:


2021

  • D. Krupka, Higher-order homogeneous functions: Classification, Publ. Math. Debrecen (2021), to appear
  • D.J. Saunders, Jets and the variational calculus, Comm. Math. 29 (2021) 91-114
  • Z Urban, J Volná, On the Carathéodory Form in Higher-Order Variational Field Theory, Symmetry 13 (5), 800
  • EN Saridakis, R Lazkoz, V Salzano, PV Moniz, S Capozziello, JB Jiménez,, Modified Gravity and Cosmology: An Update by the CANTATA Network, arXiv preprint arXiv:2105.12582
  • N Minculete, C Pfeifer, N Voicu, Inequalities from Lorentz-Finsler norms, Mathematical Inequalities & Applications 24 (2), 373–398
  • N Voicu, S Garoiu, B Vasian, On the closure property of Lepage equivalents of Lagrangians, https://arxiv.org/abs/2102.12955
  • M Hohmann, C Pfeifer, N Voicu, Canonical variational completion and 4D Gauss-Bonnet gravity,, Eur. Phys. J. Plus 136 (180)

2020


2019

2018


2017

2016

  • G. Sardanashvily, Noether's Theorems, Applications in Mechanics and Field Theory, Atlantis Studies in Variational Geometry, Vol. 3, Atlantis Press, Amsterdam-Beijing-Paris, 2016.
  • N. Voicu, Energy–momentum tensors in classical field theories - A modern perspective, Int. J. Geom. Meth. Mod. Phys. (2016) in print.
  • Z. Urban and J. Volna, The metrizability problem for Lorentz-invariant affine connections, Int. J. Geom. Meth. Mod. Phys., vol. 13, no. 8, (2016)
  • A.V. Zhuchok and M. Demko, Free n-dinilpotent doppelsemigroups, in: Algebra and Discrete Mathematics, Vol. 22, no. 2 (2016), pp. 304-316.

2015

  • A.M. Bloch, D. Krupka, and D.V. Zenkov, The Helmholtz Conditions and the Method of Controlled Lagrangians, in: D. Zenkov (Ed.), The Inverse Problem of the Calculus of Variations, Atlantis Press, Amsterdam-Beijing-Paris, 2015, pp. 1-29.
  • D. Krupka, The Sonin-Douglas Problem, in: D. Zenkov (Ed.), The Inverse Problem of the Calculus of Variations, Atlantis Press, Amsterdam-Beijing-Paris, 2015, pp. 31-73.
  • J. Volná and Z. Urban, First-order Variational Sequences in Field Theory, in: D. Zenkov (Ed.), The Inverse Problem of the Calculus of Variations, Atlantis Press, Amsterdam-Beijing-Paris, 2015, pp. 215-284.
  • R. Matsyuk, Inverse Variational Problem and Symmetry in Action: The Relativistic Third Order Dynamics, in: D. Zenkov (Ed.), The Inverse Problem of the Calculus of Variations, Atlantis Press, Amsterdam-Beijing-Paris, 2015, pp. 75-102.
  • N. Voicu, Source Forms and Their Variational Completions, in: D. Zenkov (Ed.), The Inverse Problem of the Calculus of Variations, Atlantis Press, Amsterdam-Beijing-Paris, 2015, pp. 171-214.
  • Z. Urban, Variational Principles for Immersed Submanifolds, in: D. Zenkov (Ed.), The Inverse Problem of the Calculus of Variations, Atlantis Press, Amsterdam-Beijing-Paris, 2015, pp. 103-170.
  • J. Volna and Z. Urban, The interior Euler-Lagrange operator in field theory, Math. Slovaca 65, No. 6 (2015) 1427-1444.
    DOI: 10.1515/ms-2015-0097
  • N. Voicu and D. Krupka, Canonical variational completions of differential systems, J. Math. Phys. 56, 043507 (2015); arXiv:1406.6646 [math-ph].  
  • D. KrupkaG. MorenoZ. UrbanJ. Volná, On a bicomplex induced by the variational sequence, Int. J. Geom. Meth. Mod. Phys. 12, No. 5 (2015) 1550057 (15 pp.) DOI: 10.1142/S0219887815500577
  • G. Moreno and M.E. Stypa, Natural boundary conditions in geometric calculus of variations, Math. Slovaca 65, No. 6 (2015), 1531-1556, DOI: 10.1515/ms-2015-0105
  • Z. Urban and D. Krupka, Variational theory on Grassmann fibrations: Examples, Acta Math. Acad. Paed. Nyíregyhasiensis 31, No. 1 (2015) 153-170.  pdf
  • D. Krupka, Invariant variational structures on fibered manifolds, Int. J. Geom. Met. Mod. Phys. 12, No. 2 (2015) 1550020.
  • D. Krupka, Introduction to Global Variational Geometry, Atlantis Studies in Variational Geometry, Vol. 1, Atlantis Press, Amsterdam-Beijing-Paris, 2015.

2014

  • Z. Urban and D. Krupka, Foundations of higher-order variational theory on Grassmann fibrations, Int. J. Geom. Met. Mod. Phys. 11, No. 7 (2014) 1460023 (27 pp.) doi 
  • N. Voicu, Biharmonic maps from Finsler spacesPublicationes Mathematicae Debrecen 84, No. 3-4 (2014). 
  • J. Brajercik, M. Demko and D. Krupka, Principal bundle structure on jet prolongations of frame bundles, Math. Slovaca 64, No. 5 (2014) 1277-1290.
  • J. Brajercik and M. Demko, On sheaf spaces of partially ordered quasigroups, Quasigroups and Related Systems 22 (2014) 51-58.

  • D. Krupka, Lepage forms in Kawaguchi spaces and the Hilbert form, paper in honor of Professor Lajos Tamassy, Publ. Math. Debrecen 84, No. 1-2 (2014) 147-164.

2013

  • J. Brajercik and M. Demko, Second order natural Lagrangians on coframe bundles, Miskolc Mathematical Notes 14, No. 2 (2013), 487-494.  pdf
  • D. Krupka, Z. Urban and J. Volna, Variational projectors in fibred manifolds, Miskolc Mathematical Notes 14, No. 2 (2013), 503-516.  pdf
  • E. Tanaka and D. Krupka, On the structure of Finsler and Areal spaces, Miskolc Mathematical Notes 14, No. 2 (2013), 539-546.  pdf
  • Z. Urban and D. Krupka, The Helmholtz conditions for systems of second order homogeneous differential equations, Publ. Math. Debrecen (2013), 83, No. 1-2 (2013) 71-84.
  • T. Li and D. Krupka, The geometry of tangent bundles: Canonical vector fields, Geometry (2013), Hindawi Publishing Corporation, Article ID 364301, 10 pp.  doi-pdf
  • Z. Urban and D. Krupka, The Zermelo conditions and higher order homogeneous functions, Publ. Math. Debrecen 82, No. 1 (2013) 59-76.

2012

  • M. Demko, Partially ordered quasigroups, Southeast Asian Bulletin of Mathematics 36 (5), (2012), 631–649. 
  • Z. Urban and D. Krupka, Variational sequences on fibred velocity spaces, Glob. J. Math. Sci. 1, No. 1, 6th World Congress of Nonlinear Analysts, June 25-July 1, 2012 Athens, Greece (2012) 77-87. 
  • E. Tanaka and D. Krupka, On metrizability of invariant affine connections, Internat. J. Geom. Met. Mod. Phys. 9 (2012) 1250014 (15 pages), doi

2011

  • J. Brajercik, Invariant variational problems on principal bundles and conservation laws, Arch. Math. (Brno), 47, No. 5 (2011) 357-366.
  • J. Brajercik, Euler-Poincare reduction on frame bundles, Diff. Geom. Appl., 29 (2011) S33-S40, doi:10.1016/j.difgeo.2011.04.005. 
  • D. Krupka, O. Krupkova and D. Saunders, Cartan-Lepage forms in geometric mechanics, Internat. J. of Nonlinear Mechanics 47 (2011) 1154-1160.

Partners & Cooperations
Lepage Research Institute Partners Jagiellonian University in Krakow VSB - Technical University of Ostrava University of Presov, Presov, Slovakia Comenius University in Bratislava University of Naples Federico II, Italy University of Wroclaw, Poland University of Turin, Italy University of Granada, Spain West University of Timisoara, Romania University of Tartu, Estonia